Connect public, paid and private patent data with Google Patents Public Datasets

Electro-optic displays

Download PDF

Info

Publication number
US20050122563A1
US20050122563A1 US10898027 US89802704A US2005122563A1 US 20050122563 A1 US20050122563 A1 US 20050122563A1 US 10898027 US10898027 US 10898027 US 89802704 A US89802704 A US 89802704A US 2005122563 A1 US2005122563 A1 US 2005122563A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
adhesive
layer
lamination
display
front
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10898027
Inventor
Charles Honeyman
Harit Doshi
Seungman Sohn
Eva Chen
Richard LeCain
Simon Pang
Gregg Duthaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Ink Corp
Original Assignee
E Ink Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B26/00Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating
    • G02B26/02Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Abstract

An electro-optic display comprises first and second substrates and a lamination adhesive layer and a layer of an electro-optic material disposed between the first and second substrates, the lamination adhesive layer having a thickness of from about 14 to about 25 μm.

Description

    REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application claims benefit of Provisional Applications Serial No. 60/481,133, filed Jul. 24, 2003 and Serial No. 60/481,320, filed Sep. 2, 2003.
  • [0002]
    This application is also related to application Ser. No. 10/064,389, filed Jul. 2, 2002 (Publication No. 2003/0025855), which itself claims priority of Provisional Application Serial No. 60/304,117, filed Jul. 9, 2001.
  • [0003]
    The entire contents of these copending applications, and of all other U.S. patents and published and copending applications mentioned below, are herein incorporated by reference.
  • BACKGROUND OF INVENTION
  • [0004]
    This invention relates to improvements in electro-optic displays. More specifically, in one aspect this invention relates to electro-optic media and displays in which the thickness of a lamination adhesive layer is controlled to avoid certain problems otherwise experienced in such displays. In another aspect, this invention relates to the prevention of void growth in electro-optic displays.
  • [0005]
    Electro-optic displays comprise a layer of electro-optic material, a term which is used herein in its conventional meaning in the imaging art to refer to a material having first and second display states differing in at least one optical property, the material being changed from its first to its second display state by application of an electric field to the material. Although the optical property is typically color perceptible to the human eye, it may be another optical property, such as optical transmission, reflectance, luminescence or, in the case of displays intended for machine reading, pseudo-color in the sense of a change in reflectance of electromagnetic wavelengths outside the visible range.
  • [0006]
    The terms “bistable” and “bistability” are used herein in their conventional meaning in the imaging art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in published U.S. patent application No. 2002/0180687 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
  • [0007]
    Several types of electro-optic displays are known. One type of electro-optic display is a rotating bichromal member type as described, for example, in U.S. Pat. Nos. 5,808,783; 5,777,782; 5,760,761; 6,054,071 6,055,091; 6,097,531; 6,128,124; 6,137,467; and 6,147,791 (although this type of display is often referred to as a “rotating bichromal ball” display, the term “rotating bichromal member” is preferred as more accurate since in some of the patents mentioned above the rotating members are not spherical). Such a display uses a large number of small bodies (typically spherical or cylindrical) which have two or more sections with differing optical characteristics, and an internal dipole. These bodies are suspended within liquid-filled vacuoles within a matrix, the vacuoles being filled with liquid so that the bodies are free to rotate. The appearance of the display is changed to applying an electric field thereto, thus rotating the bodies to various positions and varying which of the sections of the bodies is seen through a viewing surface.
  • [0008]
    Another type of electro-optic display uses an electrochromic medium, for example an electrochromic medium in the form of a nanochromic film comprising an electrode formed at least in part from a semi-conducting metal oxide and a plurality of dye molecules capable of reversible color change attached to the electrode; see, for example O'Regan, B., et al., Nature 1991, 353, 737; and Wood, D., Information Display, 18(3), 24 (March 2002). See also Bach, U., et al., Adv. Mater., 2002, 14(11), 845. Nanochromic films of this type are also described, for example, in U.S. Pat. No. 6,301,038, International Application Publication No. WO 01/27690, and in U.S. patent application 2003/0214695. This type of medium is also typically bistable.
  • [0009]
    Another type of electro-optic display, which has been the subject of intense research and development for a number of years, is the particle-based electrophoretic display, in which a plurality of charged particles move through a suspending fluid under the influence of an electric field. Electrophoretic displays can have attributes of good brightness and contrast, wide viewing angles, state bistability, and low power consumption when compared with liquid crystal displays. Nevertheless, problems with the long-term image quality of these displays have prevented their widespread usage. For example, particles that make up electrophoretic displays tend to settle, resulting in inadequate service-life for these displays.
  • [0010]
    Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation have recently been published describing encapsulated electrophoretic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles suspended in a liquid suspending medium, and a capsule wall surrounding the internal phase. Typically, the capsules are themselves held within a polymeric binder to form a coherent layer positioned between two electrodes. Encapsulated media of this type are described, for example, in U.S. Pat. Nos. 5,930,026; 5,961,804; 6,017,584; 6,067,185; 6,118,426; 6,120,588; 6,120,839; 6,124,851; 6,130,773; 6,130,774; 6,172,798; 6,177,921; 6,232,950; 6,249,721; 6,252,564; 6,262,706; 6,262,833; 6,300,932; 6,312,304; 6,312,971; 6,323,989; 6,327,072; 6,376,828; 6,377,387; 6,392,785; 6,392,786; 6,413,790; 6,422,687; 6,445,374; 6,445,489; 6,459,418; 6,473,072; 6,480,182; 6,498,114; 6,504,524; 6,506,438; 6,512,354; 6,515,649; 6,518,949; 6,521,489; 6,531,997; 6,535,197; 6,538,801; 6,545,291; 6,580,545; 6,639,578; 6,652,075; 6,657,772; 6,664,944; 6,680,725; 6,683,333; 6,704,133; 6,710,540; 6,721,083; 6,724,519; and 6,727,881; and U.S. patent applications Publication Nos. 2002/0019081; 2002/0021270; 2002/0053900; 2002/0060321; 2002/0063661; 2002/0063677; 2002/0090980; 2002/0106847; 2002/0113770; 2002/0130832; 2002/0131147; 2002/0145792; 2002/0171910; 2002/0180687; 2002/0180688; 2002/0185378; 2003/0011560; 2003/0011868; 2003/0020844; 2003/0025855; 2003/0034949; 2003/0038755; 2003/0053189; 2003/0102858; 2003/0132908; 2003/0137521; 2003/0137717; 2003/0151702; 2003/0189749; 2003/0214695; 2003/0214697; 2003/0222315; 2004/0008398; 2004/0012839; 2004/0014265; 2004/0027327; 2004/0075634; 2004/0094422; 2004/0105036; and 2004/0112750; and International Applications Publication Nos. WO 99/67678; WO 00/05704; WO 00/38000; WO 00/38001; WO/0036560; WO 00/67110; WO 00/67327; WO 01/07961; WO 01/08241; WO 03/092077; WO 03/107315; and WO 2004/049045.
  • [0011]
    Many of the aforementioned patents and applications recognize that the walls surrounding the discrete microcapsules in an encapsulated electrophoretic medium could be replaced by a continuous phase, thus producing a so-called “polymer-dispersed electrophoretic display” in which the electrophoretic medium comprises a plurality of discrete droplets of an electrophoretic fluid and a continuous phase of a polymeric material, and that the discrete droplets of electrophoretic fluid within such a polymer-dispersed electrophoretic display may be regarded as capsules or microcapsules even though no discrete capsule membrane is associated with each individual droplet; see for example, the aforementioned 2002/0131147. Accordingly, for purposes of the present application, such polymer-dispersed electrophoretic media are regarded as sub-species of encapsulated electrophoretic media.
  • [0012]
    An encapsulated electrophoretic display typically does not suffer from the clustering and settling failure mode of traditional electrophoretic devices and provides further advantages, such as the ability to print or coat the display on a wide variety of flexible and rigid substrates. (Use of the word “printing” is intended to include all forms of printing and coating, including, but without limitation: pre-metered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; ink jet printing processes; and other similar techniques.) Thus, the resulting display can be flexible. Further, because the display medium can be printed (using a variety of methods), the display itself can be made inexpensively.
  • [0013]
    Known encapsulated electrophoretic displays can be divided into two main types, referred to hereinafter for convenience as “single particle” and “dual particle” respectively. A single particle medium has only a single type of electrophoretic particle suspended in a colored medium, at least one optical characteristic of which differs from that of the particles. (In referring to a single type of particle, we do not imply that all particles of the type are absolutely identical. For example, provided that all particles of the type possess substantially the same optical characteristic and a charge of the same polarity, considerable variation in parameters such as particle size and electrophoretic mobility can be tolerated without affecting the utility of the medium.) The optical characteristic is typically color visible to the human eye, but may, alternatively or in addition, be any one or more of reflectivity, retroreflectivity, luminescence, fluorescence, phosphorescence, or color in the broader sense of meaning a difference in absorption or reflectance at non-visible wavelengths. When such a medium is placed between a pair of electrodes, at least one of which is transparent, depending upon the relative potentials of the two electrodes, the medium can display the optical characteristic of the particles (when the particles are adjacent the electrode closer to the observer, hereinafter called the “front” electrode) or the optical characteristic of the suspending medium (when the particles are adjacent the electrode remote from the observer, hereinafter called the “rear” electrode, so that the particles are hidden by the colored suspending medium).
  • [0014]
    A dual particle medium has two different types of particles differing in at least one optical characteristic and a suspending fluid which may be uncolored or colored, but which is typically uncolored. The two types of particles differ in electrophoretic mobility; this difference in mobility may be in polarity (this type may hereinafter be referred to as an “opposite charge dual particle” medium) and/or magnitude. When such a dual particle medium is placed between the aforementioned pair of electrodes, depending upon the relative potentials of the two electrodes, the medium can display the optical characteristic of either set of particles, although the exact manner in which this is achieved differs depending upon whether the difference in mobility is in polarity or only in magnitude. For ease of illustration, consider an electrophoretic medium in which one type of particles are black and the other type white. If the two types of particles differ in polarity (if, for example, the black particles are positively charged and the white particles negatively charged), the particles will be attracted to the two different electrodes, so that if, for example, the front electrode is negative relative to the rear electrode, the black particles will be attracted to the front electrode and the white particles to the rear electrode, so that the medium will appear black to the observer. Conversely, if the front electrode is positive relative to the rear electrode, the white particles will be attracted to the front electrode and the black particles to the rear electrode, so that the medium will appear white to the observer.
  • [0015]
    If the two types of particles have charges of the same polarity, but differ in electrophoretic mobility (this type of medium may hereinafter to referred to as a “same polarity dual particle” medium), both types of particles will be attracted to the same electrode, but one type will reach the electrode before the other, so that the type facing the observer differs depending upon the electrode to which the particles are attracted. For example suppose the previous illustration is modified so that both the black and white particles are positively charged, but the black particles have the higher electrophoretic mobility. If now the front electrode is negative relative to the rear electrode, both the black and white particles will be attracted to the front electrode, but the black particles, because of their higher mobility, will reach it first, so that a layer of black particles will coat the front electrode and the medium will appear black to the observer. Conversely, if the front electrode is positive relative to the rear electrode, both the black and white particles will be attracted to the rear electrode, but the black particles, because of their higher mobility will reach it first, so that a layer of black particles will coat the rear electrode, leaving a layer of white particles remote from the rear electrode and facing the observer, so that the medium will appear white to the observer: note that this type of dual particle medium requires that the suspending fluid to sufficiently transparent to allow the layer of white particles remote from the rear electrode to be readily visible to the observer. Typically, the suspending fluid in such a display is not colored at all, but some color may be incorporated for the purpose of correcting any undesirable tint in the white particles seen therethrough.
  • [0016]
    Certain of the aforementioned E Ink and MIT patents and applications describe electrophoretic media which have more than two types of electrophoretic particles within a single capsule. For present purposes, such multi-particle media are regarded as a sub-class of dual particle media.
  • [0017]
    Both single and dual particle electrophoretic displays may be capable of intermediate gray states having optical characteristics intermediate the two extreme optical states already described.
  • [0018]
    A related type of electrophoretic display is a so-called “microcell electrophoretic display”. In a microcell electrophoretic display, the charged particles and the suspending fluid are not encapsulated within capsules but instead are retained within a plurality of cavities formed within a carrier medium, typically a polymeric film. See, for example, International Application Publication No. WO 02/01281, and U.S. patent application Publication No. 2002/0075556, both assigned to Sipix Imaging, Inc.
  • [0019]
    Although electrophoretic media are often opaque (since, for example, in many electrophoretic media, the particles substantially block transmission of visible light through the display) and operate in a reflective mode, many electrophoretic displays can be made to operate in a so-called “shutter mode” in which one display state is substantially opaque and one is light-transmissive. See, for example, the aforementioned U.S. Pat. Nos. 6,130,774 and 6,172,798, and U.S. Pat. Nos. 5,872,552; 6,144,361; 6,271,823; 6,225,971; and 6,184,856. Dielectrophoretic displays, which are similar to electrophoretic displays but rely upon variations in electric field strength, can operate in a similar mode; see U.S. Pat. No. 4,418,346. Other types of electro-optic displays may also be capable of operating in shutter mode.
  • [0020]
    An electro-optic display normally comprises a layer of electro-optic material and at least two other layers disposed on opposed sides of the electro-optic material, one of these two layers being an electrode layer. In most such displays both the layers are electrode layers, and one or both of the electrode layers are patterned to define the pixels of the display. For example, one electrode layer may be patterned into elongate row electrodes and the other into elongate column electrodes running at right angles to the row electrodes, the pixels being defined by the intersections of the row and column electrodes. Alternatively, and more commonly, one electrode layer has the form of a single continuous electrode and the other electrode layer is patterned into a matrix of pixel electrodes, each of which defines one pixel of the display. In another type of electro-optic display, which is intended for use with a stylus, print head or similar movable electrode separate from the display, only one of the layers adjacent the electro-optic layer comprises an electrode, the layer on the opposed side of the electro-optic layer typically being a protective layer intended to prevent the movable electrode damaging the electro-optic layer.
  • [0021]
    The manufacture of a three-layer electro-optic display normally involves at least one lamination operation. For example, in several of the aforementioned MIT and E Ink patents and applications, there is described a process for manufacturing an encapsulated electrophoretic display in which an encapsulated electrophoretic medium comprising capsules in a binder is coated on to a flexible substrate comprising indium-tin-oxide or a similar conductive coating (which acts as an one electrode of the final display) on a plastic film, the capsules/binder coating being dried to form a coherent layer of the electrophoretic medium firmly adhered to the substrate. Separately, a backplane, containing an array of pixel electrodes and an appropriate arrangement of conductors to connect the pixel electrodes to drive circuitry, is prepared. To form the final display, the substrate having the capsule/binder layer thereon is laminated to the backplane using a lamination adhesive. (A very similar process can be used to prepare an electrophoretic display useable with a stylus or similar movable electrode by replacing the backplane with a simple protective layer, such as a plastic film, over which the stylus or other movable electrode can slide.) In one preferred form of such a process, the backplane is itself flexible and is prepared by printing the pixel electrodes and conductors on a plastic film or other flexible substrate. It will readily be apparent to those skilled in the manufacture of electro-optic displays that other types of electro-optic media, for example microcell electrophoretic media and rotating bichromal member media, can be laminated in an exactly analogous manner. The obvious lamination technique for mass production of displays by this process is roll lamination using a lamination adhesive. In a modified form of such a lamination process, as described for example in the aforementioned 2004/0027327, the substrate having the capsule/binder layer thereon is first laminated to a layer of adhesive carried on a release sheet to form a structure called a “front plane laminate” (or “FPL”), and thereafter the release sheet is peeled from the front plane laminate and the remaining layers of the front plane laminate are laminated to a backplane using the adhesive layer exposed by removal of the release sheet, thereby forming the final display. A related lamination process using two separate laminations is described in copending application Ser. No. 10/605,024, filed Sep. 2, 2003; see also the corresponding International Application PCT/US03/27686. Publication No. WO 2004/023195.
  • [0022]
    In practice, these lamination processes impose stringent requirements upon both the mechanical and electrical properties of the lamination adhesive. In the final electro-optic display, the lamination adhesive is located between the electrodes which apply the electric field needed to change the electrical state of the electro-optic medium, so that the electrical properties of the adhesive become crucial. As will be apparent to electrical engineers, the volume resistivity of the lamination adhesive becomes important, since the voltage drop across the electro-optic medium is essentially equal to the voltage drop across the electrodes, minus the voltage drop across the lamination adhesive. If the resistivity of the adhesive layer is too high, a substantial voltage drop will occur within the adhesive layer, requiring an increase in voltage across the electrodes. Increasing the voltage across the electrodes in this manner is undesirable, since it increases the power consumption of the display, and may require the use of more complex and expensive control circuitry to handle the increased voltage involved. Hence, it has hitherto been assumed that it is desirable to make the adhesive layer as thin as possible, consistent with satisfactory adhesion, in order to minimize the “wasted” voltage drop across the adhesive layer.
  • [0023]
    There are numerous other electrical and mechanical constraints which a lamination adhesive used in an electro-optic display must satisfy, as discussed in detail in the aforementioned 2003/0025855. One particular problem not there discussed, but to which the present invention relates, is the “void problem”. To ensure a high quality display, it is essential that the final display be free from voids, since such voids produce visible defects in images written on the display. To ensure that the final display is free from voids, it is essential that both the lamination to form the front plane laminate (when effected) and the final lamination to the backplane be carried out without the formation of voids. It is also necessary that the final display be able to withstand substantial temperature changes (such as may occur, for example, when a portable computer or personal digital assistant is removed from an air-conditioned car to outdoor sun on a hot day) without inducing or aggravating the formation of voids, since it has been found that some displays, which initially appear essentially free from voids, can develop objectionable voids when exposed to such temperature changes. This phenomenon may be termed “void re-growth”.
  • [0024]
    It has now been found that, especially in encapsulated electrophoretic displays, such void re-growth is a function of the thickness of the lamination adhesive, and that to avoid the formation of objectionable voids the thickness of the lamination adhesive should not be reduced below a critical value. This value is believed to be somewhat dependent upon the specific material, typically a polymer, used as the lamination adhesive, the exact type of electro-optic medium used and the lamination conditions employed, but is typically around 14 μm.
  • [0025]
    Thus, in one aspect this invention provides an electro-optic display having a controlled thickness of lamination adhesive.
  • [0026]
    Also, from the foregoing discussion, it will be seen that many electro-optic displays are of a “hybrid” type and consist of an asymmetric stack of materials with highly dissimilar properties. For example, the aforementioned front plane laminate (“FPL”) comprises, in order, a polymeric film substrate, a light-transmissive electrode, a layer of a electro-optic medium, a layer of lamination adhesive and a release sheet; to produce the final display, this front laminate is laminated in the manner already described to a backplane comprising a plurality of pixel electrodes on a glass or other substrate. The release sheet of the front plane laminate is removed prior to its lamination to the backplane, so that the final structure comprises, in order, the polymeric film substrate, light-transmissive electrode, layer of a electro-optic medium, layer of lamination adhesive, pixel electrodes and glass or other substrate. Such a structure is in principle structurally unstable, as differences in thermal and moisture expansion coefficients of the polymeric film and glass substrates induce very large stress and strains in the display. Under particular stresses, especially those realized at elevated temperatures, the instability manifests itself in the formation of voids (i.e. delamination, hereafter called void growth) of the layers derived from the front plane laminate from the glass substrate.
  • [0027]
    This invention provides approaches to eliminating, or at least reducing, void growth in electro-optic displays.
  • SUMMARY OF INVENTION
  • [0028]
    Accordingly, in one aspect, this invention provides an electro-optic display comprising first and second substrates and a lamination adhesive layer and a layer of an electro-optic material disposed between the first and second substrates, the lamination adhesive layer having a thickness of from about 14 to about 25 μm.
  • [0029]
    This electro-optic display may hereinafter for convenience be referred to as the “controlled lamination adhesive thickness” or “CLAT” display of the present invention.
  • [0030]
    In such a CLAT display, the lamination adhesive layer desirably has a thickness of from about 14 to about 20 μm. In one form of the CLAT display, the electro-optic layer comprises a particle-based electrophoretic material comprising a suspending fluid and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material. Such an electrophoretic material may be an encapsulated electrophoretic material in which the suspending fluid and the electrically charged particles and encapsulated within a plurality of capsules, each of the capsules having a capsule wall. (In this case, and in the other cases where encapsulated electrophoretic material is mentioned below, the encapsulated electrophoretic material may be of the polymer-dispersed type with the suspending fluid and the electrically charged particles in the form of a plurality of droplets dispersed in a continuous phase which in effect acts as capsule walls for the droplets, although no discrete capsule wall for each droplet is present.)
  • [0031]
    The lamination adhesives used in CLAT displays may be similar to those used in the aforementioned 2003/0025855. Thus, the lamination adhesive may have one or more of the following characteristics:
      • (a) a volume resistivity, measured at 10° C., which does not change by a factor of more than about 3 after being at 25° C. and 45 per cent relative humidity for 1000 hours;
      • (b) a peel strength from an electrode material in contact with the lamination adhesive of at least about 2 lb/inch (about 35 Newtons m−1);
      • (c) a volume resistivity which changes by a factor of less than about 10 within a range of 10 to 90 per cent relative humidity and over a temperature range of 10 to 50° C.;
      • (d) a shear modulus at 120° C. of not more than about 1 megapascal;
      • (e) in the case of displays using an electrophoretic material, a dielectric constant and volume resistivity such that the product of the dielectric constant and the volume resistivity of the lamination adhesive are not greater than the product of the dielectric constant and the volume resistivity of the electrophoretic material within a range of 10 to 90 per cent relative humidity and over a temperature range of 10 to 50° C.; and
      • (f) at least one of an ultra-violet stabilizer and a light absorbing material incorporated in the lamination adhesive.
  • [0038]
    This invention also provides a front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an electro-optic material, a lamination adhesive having a thickness of from about 14 to about 25 μm, and a release sheet.
  • [0039]
    In such a front plane laminate, the lamination adhesive layer desirably has a thickness of from about 14 to about 20 μm. In one form of the front plane lamination, the electro-optic layer may comprise a particle-based electrophoretic material comprising a suspending fluid and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material. Such an electrophoretic material may be an encapsulated electrophoretic material in which the suspending fluid and the electrically charged particles and encapsulated within a plurality of capsules, each of the capsules having a capsule wall.
  • [0040]
    This invention also provides an electro-optic display comprising: a backplane comprising at least one electrode; a layer of electro-optic material; and a lamination adhesive disposed between the backplane and the layer of electro-optic material, the lamination adhesive comprising an adhesion promoter effective to increase the adhesion between the lamination adhesive and the backplane.
  • [0041]
    In such an electro-optic display, the adhesion promoter may comprise any one or more of 1-propanamine, 3-aminopropyltrimethoxysilane, 3-aminopropyl-dimethylethoxysilane, and hexamethyldisilizane.
  • [0042]
    This invention also provides a front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a front substrate, a light-transmissive electrically-conductive layer, a layer of an electro-optic material, and a lamination adhesive layer, wherein the front substrate has a thickness not greater than about 20 mil (about 0.5 mm).
  • [0043]
    In such a front plane laminate, the front substrate desirably has a thickness not greater than about 10 mil (about 0.25 mm). The front plane laminate may further comprise a release sheet covering the lamination adhesive. Such a release sheet desirably has a thickness not greater than about 15 mil (about 0.37 mm), and preferably not greater than about 10 mil (about 0.25 mm). The electro-optic material may be an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material.
  • [0044]
    This invention also provides a front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an electro-optic material, a lamination adhesive layer, and a release sheet wherein the release sheet has a thickness not greater than about 15 mil (about 0.37 mm).
  • [0045]
    In such a front plane laminate the release sheet desirably has a thickness not greater than about 10 mil (about 0.25 mm). The electro-optic material may be an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material.
  • [0046]
    This invention also provides a front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material, and a lamination adhesive layer, wherein the lamination adhesive layer has a peak to valley roughness not greater than about 15 μm.
  • [0047]
    In such a front plane laminate, the lamination adhesive layer desirably has a peak to valley roughness not greater than about 10 μm, preferably not greater than about 5 μm.
  • [0048]
    Finally, this invention provides a front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material, and a lamination adhesive layer, wherein the lamination adhesive layer has local surface angles not greater than about 15° from the horizontal.
  • [0049]
    In such a front plane laminate, the lamination adhesive layer desirably has local surface angles not greater than about 100 from the horizontal, preferably not greater than about 5° from the horizontal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0050]
    FIG. 1A is a schematic side elevation of a electro-optic display as it is formed at room temperature.
  • [0051]
    FIG. 1B is a schematic side elevation similar to that of FIGS. 1A but taken at an elevated temperature and showing the buckling of the front substrate of the electro-optic display.
  • [0052]
    FIG. 2 is a schematic side elevation of a front plane laminate of the present invention showing the uneven surfaces of the electro-optic material and lamination adhesive layer.
  • [0053]
    FIG. 3 is a schematic side elevation similar to that of FIG. 2 but prior to the application of the lamination adhesive and shows the manner in which the peak-to-valley roughness and the local surface angles of the electro-optic layer are measured.
  • [0054]
    FIG. 4A is a photomicrograph of a front plane laminate having a peak-to-valley roughness greater than 5 μm.
  • [0055]
    FIG. 4B is a photomicrograph showing the voids which result from the lamination of the front plane laminate of FIG. 4A to a glass backplane.
  • DETAILED DESCRIPTION
  • [0056]
    In the controlled lamination adhesive thickness display of the present invention, and in the corresponding front plane laminate, the thickness of the lamination adhesive is controlled to eliminate, or at least substantially reduce, void re-growth in the final display. Empirically, it has been found that typically a minimum lamination adhesive thickness of about 14 μm is needed to reduce void re-growth to an acceptable level, and that increasing the lamination adhesive thickness further, up to about 18 μm, may provide additional control of void re-growth. Increasing the lamination adhesive thickness above about 18 μm does not appear to increase resistance to void re-growth but, as already noted, it is desirable to avoid an unnecessarily thick lamination adhesive layer in order to avoid a large voltage drop across this layer, so in practice it is advantageous to limit the lamination adhesive thickness to not more than about 25, or preferably 20, μm.
  • [0057]
    Apart from controlling the thickness of the lamination adhesive in accordance with the present invention, the lamination adhesive may be as described in the aforementioned 2003/0025855; thus, the lamination adhesive may have any one of more of the following properties:
      • (a) a volume resistivity, measured at 10° C., which does not change by a factor of more than about 3 after being at 25° C. and 45 per cent relative humidity for 1000 hours;
      • (b) a peel strength from an electrode material in contact with the lamination adhesive of at least about 2 lb/inch (about 35 Newtons m−1);
      • (c) a volume resistivity which changes by a factor of less than about 10 within a range of 10 to 90 per cent relative humidity and over a temperature range of 10 to 50° C.;
      • (d) a shear modulus at 120° C. of not more than about 1 megaPascal;
      • (e) in the case of CLAT displays using an electrophoretic material, a product of the dielectric constant and the volume resistivity of the lamination adhesive not greater than the product of the dielectric constant and the volume resistivity of the electrophoretic material within a range of 10 to 90 per cent relative humidity and over a temperature range of 10 to 50° C.;
      • (f) an ultra-violet stabilizer incorporated into the lamination adhesive; and
      • (g) a light absorbing material incorporated into the lamination adhesive.
  • [0065]
    The CLAT display and front plane laminate of the invention, are especially, but not exclusively, intended to use with encapsulated electrophoretic media; as discussed above, such media comprise a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material. Other types of electro-optic media, for example microcell electrophoretic, rotating bichromal member media, and electrochromic media, may also be used.
  • [0066]
    The following Example 1 is now given, though by way of illustration only, to show details of preferred materials and techniques for use in CLAT display of the present invention.
  • EXAMPLE 1
  • [0067]
    An internal phase was prepared comprising polymer-coated titania white particles and polymer-coated carbon black particles in a hydrocarbon suspending fluid. This internal phase was encapsulated in gelatin/acacia microcapsules substantially as described in Paragraphs [0069] to [0074] of the aforementioned 2002/0180687. The resultant microcapsules were separated by size and capsules having an average particle size of about 35 μm were used in the following experiments. The microcapsules were mixed into a slurry with a polyurethane binder and coated by a roll-to-roll process at a dry coating weight of 18 g m−2 on to the surface of a 7 mil (177 μm) poly(ethylene terephthalate) film carrying an indium tin oxide (ITO) layer on one surface, the microcapsules being deposited on the ITO-covered surface, substantially as described in Paragraphs [0075] and [0076] of the aforementioned 2002/0180687. The capsule-bearing film was then formed into a front plane laminate by laminating it to a layer of a polyurethane lamination adhesive carried on a release sheet, this lamination being effected at 65 psig (0.51 mPa) at a speed of 6 inches/min (2.5 mm/sec) using a Western Magnum twin roll Laminator with both rolls held at 120° C. The thickness of the lamination adhesive on the release sheet was varied to vary the thickness of the corresponding layer in the final display. To provide experimental single-pixel displays suitable for use in these experiments, pieces of the resultant front plane laminate has their release sheets removed and were then laminated at 75° C. to the ITO-covered surfaces of ITO-on-glass substrates.
  • [0068]
    To test void re-growth, the displays thus produced were subjected to a temperature of 90° C. and a relative humidity of 17 per cent for 17 hours, and the percentage of voids in the display was measured before exposure to the elevated temperature, after 5 hours exposure and after the 17 hours exposure. Eight sections of each display was measured and the results reported below are the average of the eight sections. The panels were switched to their white optical state, and a digital image of each section was taken. All pixels of the digital image were analyzed to determine whether they were above or below a threshold (and thus white or dark) and the total area of white and dark pixels was calculated, and hence the percentage void area, the black pixels being assumed to represent void area.
  • [0069]
    The thickness of the lamination adhesive layer initially formed on the release sheet was adjusted to provide nominal adhesive thicknesses of 12, 14, 16 and 16 μm inn the final displays. The actual thicknesses measured are as shown in Table 1 below:
    TABLE 1
    Target Measured Standard
    Thickness (μm) thickness (μm) Deviation (μm)
    12 11.7 0.8
    14 13.6 0.9
    16 15.6 1.3
    18 18.1 1.5
  • [0070]
    The results obtained are shown in Table 2 below; in the third and fourth columns, the figures given are the increase in voids at 5 hours and 17 hours respectively, compared with the initial figures for the same samples, while the last column gives the total percentage of voids at the end of the experiment:
    TABLE 2
    Target
    Thickness Initial % 5 Hour Δ % Final Δ % Total
    (μm) void void void % void
    12 0.06 0.39 0.68 0.74
    14 0.02 0.08 0.13 0.14
    16 0.03 0.01 0.09 0.12
    18 0.09 −0.04 0.06 0.15
  • [0071]
    From Table 2, it will be seen that the display having the 12 μm lamination adhesive layer suffered substantial void re-growth during the experiment, but the extent of void re-growth was much less in the other displays.
  • [0072]
    The aspects of the present invention other than the CLAT display and front plane laminate will now be discussed. As already indicated, these other aspects of the invention relate mainly to controlling the thicknesses and mechanical properties of the various layers of an electro-optic display or front plane laminate.
  • [0073]
    Before discussing these aspects of the present invention in detail, it is deemed advisable to first consider the forces which lead to void growth and related defects in electro-optic displays. Void growth in electro-optic displays arises from a combination of factors. As already noted, the structural mechanics of this type of display suggest that the display will tend to be unstable at elevated temperatures. When, as is typically the case, an electro-optic display is constructed with a front substrate comprising a polymeric film (through which an observer views the display) and a glass or similar rigid backplane, differences in coefficient of thermal expansion (CTE) and coefficient of relative humidity expansion (CHE) between the materials used in the construction create stresses and strains large enough to cause curling or warping of the display. More specifically, the CTE of the polymeric film will typically be substantially greater than that of the rigid backplane. Thus, even though as originally formed at ambient temperature, the front substrate lies parallel to the backplane, as illustrated in FIG. 1A of the accompanying drawings (the electro-optic medium is omitted from FIGS. 1A and 1B for ease of illustration), under extreme high temperature (and/or high humidity) conditions, the polymeric film substrate enters into a state of compression because its bond to the rigid glass substrate prevents the polymeric from expanding as much as it desires. Under the action of this compressive stress, the polymeric film buckles.
  • [0074]
    It is difficult to conceive of ways to prevent the emergence of compressive stresses in this high temperature/relative humidity environmental limit, given the structural elements in this system. One cannot simply build the display panel at elevated temperatures so that only minimal temperature gradients are experienced during environmental stressing, as such a panel will dramatically curl when lowered to room temperature, as the polymeric film shrinks substantially more with temperature than the backplane. Moreover, if this approach were used, the display might experience catastrophic failure such as edge seal delamination when it is stressed in cold temperature extremes, such delamination being caused by tension generated in the front substrate during cooling.
  • [0075]
    One can look to structural theory to gain insight into what parameters to modify in order to reduce the tendency of the film to delaminate. However, one finds that the critical buckling force Pcrit per unit width may be predicted to a first order using the following relationship (the one-dimensional case is considered for simplicity): P crit ( kEt 3 3 ) 1 / 2
    where k is the tensile stiffness of the adhesive connecting the electro-optic material layer to the backplane, E is the Young's modulus of the polymeric front substrate, and t is the thickness of this front substrate. From this simple relationship, it can be seen that it is desirable to increase the tensile stiffness of the adhesive, the stiffness of the bond between the adhesive and the backplane and the stiffness of the bond between the adhesive and the electro-optic layer.
  • [0076]
    Increasing the stiffness of the adhesive can be troublesome, however, as a stiffer adhesive tends to be much more difficult to laminate using thermal lamination processes, such as those described in the aforementioned 2004/0027327. It is instead desirable to influence the strength of the bonds between the lamination adhesive layer, the backplane and the electro-optic layer. To strengthen the bond between the lamination adhesive and the backplane, one can use adhesion promoters such as 1-propanamine, 3-(trimethoxysilyl) (more systematically named 3-amino-propyltrimethoxysilane), 3-aminopropyldimethylethoxysilane, hexamethyldisilizane or other such materials. Other materials that form covalent bonds to the glass surface (or coatings on the glass surface) and have suitable chemistry for bonding to the lamination adhesive may also be used. To strengthen the bond with the electro-optic layer, it is primarily desirable to ensure that the adhesive bonds well to the materials which forms the surface of this layer adjacent the lamination adhesive; in the case of encapsulated electrophoretic media, this material is typically the polymeric binder used to form the capsules into a coherent layer, as described in the aforementioned E Ink and MIT patents and applications.
  • [0077]
    Alternatively or in addition, it may be desirable to use state-of-the-art cleaning methods to prepare the surface of the backplane. Ultra-violet, ozone, plasma, solvent cleaning, and other such methods known to those skilled in the art and may be used for this purpose. Corona discharge processing of the adhesive is another surface preparation method that may prove useful.
  • [0078]
    At first glance, the above equation also suggests that it is desirable to increase E and t of the polymeric front substrate. However, further analysis of the stress/strain state of a hybrid display show that increasing E and t increases the loading on the polymeric substrate in absolute terms, so increases in these parameters tend to be counter-productive.
  • [0079]
    The above equation is, however, based upon a simplified model of the display, and practical experience indicates that there are additional factors which affect the void growth process in encapsulated electrophoretic and other electro-optic displays. Specifically, the experience of the present inventors and their co-workers has made it clear that, when a display is formed by laminating a front plane laminate to a backplane in the manner already described, the surface roughness of the front plane laminate should be kept small and the lamination adhesive thickness relatively large to ensure that a high quality lamination is achieved during manufacture, and that voids do not grow during storage in extreme environmental conditions.
  • [0080]
    The front plane laminate described in the aforementioned 2004/0027327 is preferably prepared (when an encapsulated electrophoretic medium is used) by first coating and drying a film of capsules and polymeric binder on a transparent conductor (for example, indium tin oxide or conductive polymer) carried on the polymeric film substrate (for which poly(ethylene terephthalate) or PEN are preferred). The capsules themselves vary in size, but are preferably 30 μm to 50 μm (85% confidence), more preferably 30 μm to 50 μm (99% confidence), and even more preferably 35 μm to 45 μm (99% confidence).
  • [0081]
    The effects of this variation in size of capsules will now be considered using FIGS. 2 and 3 of the accompanying drawings. FIG. 2 illustrates schematically a front plane laminate comprising a transparent front substrate 100 through which the observer views the display. This front substrate 100 carries a light-transmissive conductive layer 102, on which is formed an electrophoretic layer 104, illustrated as comprising a plurality of capsules dispersed in a binder. On the opposed side of the electrophoretic layer 104 from the conductive layer 102 is provided a release sheet 106. In practice, a layer of lamination adhesive is normally provided between the electrophoretic layer 104 and the release sheet 106, but this lamination adhesive is omitted from FIGS. 2 and 3 for ease of illustration. FIG. 3 of the accompanying drawings is a schematic illustration similar to FIG. 2 but showing the front plane laminate with the release sheet 106 removed, and showing the peak-to-valley roughness and local surface angle (as discussed below) of the electrophoretic layer 104.
  • [0082]
    It will be apparent that the aforementioned variation in size of capsules results in an uneven surface of the electrophoretic (electro-optic) layer 104 facing the release sheet 106 (i.e., the upper surface of the layer 104 as illustrated in FIGS. 2 and 3). In preferred embodiments, the front substrate is thick enough to enhance the mechanical ruggedness of the display, for example by conferring impact resistance. Preferably, the front substrate is thinner than 20 mil (approx. 0.5 mm). Even more preferably the front substrate is thinner than 10 mil (approx. 0.25 mm).
  • [0083]
    Consideration of the structure of such a front plane laminate shows that there is an optimum thickness for the release sheet, which is preferably also formed from poly(ethylene terephthalate) or PEN, and which may, for reasons explained in the aforementioned 2004/0027327 bear a conductive layer on its surface facing the electro-optic medium. If the release sheet is too thin, it will follow the contours of the electro-optic layer. If these contours are too closely followed, one finds that, after lamination of the front plane laminate to the backplane, many air voids exist between the backplane and the layer of lamination adhesive. However, if the release sheet is too thick, the release sheet becomes more costly and it becomes very difficult to maintain the integrity of the front plane laminate if it is rolled up during storage. For these reasons, it is generally preferred that the release sheet be thinner than 15 mil (approx. 0.37 mm), desirably thinner than 10 mil (approx. 0.25 mm). At present, it is typically preferred to use a polymeric substrate 7.5 mil (188 μm) thick and a release sheet 5 mil (approx. 127 μm) thick.
  • [0084]
    Since the release sheet is thinner than the front substrate, the topography of the uneven capsule film is mainly transferred to the release sheet 106, as shown in FIG. 2. Note that the uneven topography (known in the imaging industry as “orange peel”) is most apparent on the exposed surface of the release sheet, but is evident to some degree on the exposed surface of the front substrate. (As will readily be apparent to those skilled in the art, FIGS. 2 and 3 show the various layers of the display inverted with respect to FIG. 1, so that in FIGS. 2 and 3 the exposed surface of the front substrate, which forms the viewing surface of the display, is at the bottom of the Figure.)
  • [0085]
    There are two requirements for ensuring that voids are not present in the display cell after lamination of the front plane laminate to the backplane, namely: (1) there must be sufficient thickness of adhesive and/or binder to ensure that the interstitial spaces between capsules are filled with adhesive and/or binder and some amount of additional adhesive covers the largest diameter capsules in the layer, and (2) the surface roughness of the front plane laminate meets certain specifications described below.
  • [0086]
    Consideration of FIG. 2, and especially of the largest capsule shown therein, suggests that there may be situations in which the largest capsules do not have appreciable amounts of adhesive and/or binder between them and the release sheet. This creates a potential defect in the display, where adhesion is locally reduced and a void is likely to appear under high temperature stress. Accordingly, it is desirable to select the adhesive and/or binder material properties and thickness, and to apply the adhesive and/or binder in such a way that all interstitial spaces between capsules and all areas above capsules are coated with adhesive and/or binder. Preferably, the thinnest region of the adhesive and/or binder should be less than 30 μm, more preferably less than 20 μm, and desirably less than 10 μm. Of course, it is desirable to keep adhesive and/or binder thickness as low as possible to reduce voltage drop across the adhesive and maximize the voltage drop across the electro-optic medium.
  • [0087]
    Once sufficient adhesive and/or binder has been applied to fill in interstitial sites and cover the largest capsules, it is important that the surface of the adhesive be sufficiently flat. As shown in FIG. 3, which is a schematic side elevation similar to that of FIG. 2 but after removal of the release sheet from the FPL, this flatness requirement places limits on the surface roughness (measured as peak-to-valley roughness, δh in FIG. 3) of the front plane laminate after removal of the release sheet. There are many ways to specify surface roughness for such a laminate. It is desirable that the peak-to-valley roughness be less than 15 μm, preferably less than 10 μm, and most desirably less than 5 μm. In addition, it is also desirable that the local surface angles (indicated as θ in FIG. 3) on the front plane laminate be less than 15° from the horizontal, preferably less than 10° from the horizontal, and most desirably less than 5° from the horizontal. This restriction on surface angles helps to ensure that lamination process speeds can be high enough for mass production.
  • [0088]
    FIGS. 4A and 4B of the accompanying drawings show respectively a photomicrograph of a front plane laminate with long wavelength peak-to-valley roughness greater than 5 μm, and the voids that result after thermal lamination of this relatively rough front plane laminate to a glass backplane. These voids would be likely to produce unacceptable artifacts in a commercial electro-optic display.
  • [0089]
    It will be appreciated that the optimum adhesive thickness for adhesive filling of interstitial sites and covering the largest capsules may vary with capsule size distribution. As an example, assume the capsule size distribution ranges from 20 μm to 60 μm (i.e., assume 99% of capsules fall within this size range). After drying the capsules on the front substrate, their thickness typically drops by about 50% due to coating and drying dynamics, so the largest dried capsules will be some 30 μm in thickness and the smallest capsules will be some 10 μm in thickness. Thus, the peak-to-valley roughness of the resulting capsule layer will be slightly larger than 20 μm (30 μm for the largest capsule minus 10 μm for the smallest capsule, plus the distance from the top of the smallest capsule to the bottom of an interstitial site next to a small capsule). In such a situation, it is desirable to apply more than 20 μm, and typically more than 30 μm, of lamination adhesive to ensure that lamination voids do not exist after manufacture or after environmental stressing. If the capsule size distribution were much tighter, say 35 μm to 45 μm (with 99% confidence), then the peak-to-valley roughness would be only slightly larger then 5 μm and a thinner adhesive film could safely be applied.
  • [0090]
    The following Example 2 is now given to show how the peak-to-valley roughness of a front plane laminate affects the formation of voids after lamination of the front plane laminate to an experimental backplane.
  • [0091]
    Front plane laminates and experimental displays were prepared in substantially the same manner as in Example 1, except that either no lamination adhesive was applied to the capsule binder layer or (nominally) 12, 18, 25, 35 or 45 μm layers of a custom polyurethane-based lamination adhesive was applied. The root mean square surface roughness and the peak-to-valley roughness of the exposed surfaces of the front plane laminate, after removal of the release sheet, were measured using a KLA-Tencor Surface Profiler with a 2000 μm (2 mm) scan length. The laminates were then laminated to the backplane and the formation of voids immediately after lamination was observed; these voids are referred to as “t0 voids” in Table 3 below. The experimental displays thus formed were stored at 90° C. for 15 hours and the voids again observed visually (called “t15” in Table 3). The results are shown in Table 3 below, in which “Rptv” denotes peak-to-valley roughness.
    TABLE 3
    Adhesive R rms (um) R ptv
    micron AVG STDEV AVG STDEV t0 t15
    0 2.4 0.4 13.6 2.5 n/a n/a
    12 1.2 0.3 8.6 2.2 Many t0 voids! t0 voids coalescing,
    still evident but some
    “healing”
    18 0.2 0.2 0.9 1.7 Many t0 voids---fewer t0 voids coalescing,
    than 12 um level still evident but some
    “healing”
    25 0.3 0.3 1.9 2.0 Few/no t0 voids Few signs of void
    growth
    35 0.0 0.0 0.2 0.1 No t0 voids No signs of void
    growth
    45 0.0 0.0 0.2 0.1 No t0 voids No signs of void
    growth
  • [0092]
    From the data in Table 3, it will be seen that increasing the thickness of the lamination adhesive reduced the number of voids. More specifically, the data suggest that, to positively affect the void growth problem, the adhesive thickness should be somewhat larger than the maximum observed peak-to-valley height change of the electrophoretic layer.
  • [0093]
    From the foregoing, it will be seen that the buckling instability of layers in hybrid displays is a complex phenomena that could jeopardize the success of such products in the marketplace, especially as specifications on electronic displays become more and more demanding as competitive technologies such as liquid crystal displays become more refined. The present invention provides pathways for mitigating this problem which are well suited to large scale manufacture.
  • [0094]
    Numerous changes and modifications can be made in the preferred embodiments of the present invention already described without departing from the spirit and skill of the invention. Accordingly, the foregoing description is to be construed in an illustrative and not in a limitative sense.

Claims (31)

1. An electro-optic display comprising first and second substrates and a lamination adhesive layer and a layer of an electro-optic material disposed between the first and second substrates, the lamination adhesive layer having a thickness of from about 14 to about 25 μm.
2. An electro-optic display according to claim 1 wherein the lamination adhesive layer has a thickness of from about 14 to about 20 μm.
3. An electro-optic display according to claim 1 wherein the electro-optic layer comprises a particle-based electrophoretic material comprising a suspending fluid and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material.
4. An electro-optic display according to claim 3 wherein the electrophoretic material is an encapsulated electrophoretic material in which the suspending fluid and the electrically charged particles and encapsulated within a plurality of capsules, each of the capsules having a capsule wall.
5. An electro-optic display according to claim 1 wherein the lamination adhesive has a volume resistivity, measured at 10° C., which does not change by a factor of more than about 3 after being at 25° C. and 45 per cent relative humidity for 1000 hours.
6. An electro-optic display according to claim 1 wherein the lamination adhesive has a peel strength from an electrode material in contact with the lamination adhesive of at least about 2 lb/inch (about 35 Newtons m−1).
7. An electro-optic display according to claim 1 wherein the lamination adhesive has a volume resistivity which changes by a factor of less than about 10 within a range of 10 to 90 per cent relative humidity and over a temperature range of 10 to 50° C.
8. An electro-optic display according to claim 1 wherein the lamination adhesive has a shear modulus at 120° C. of not more than about 1 megaPascal.
9. An electro-optic display according to claim 3 wherein the product of the dielectric constant and the volume resistivity of the lamination adhesive are not greater than the product of the dielectric constant and the volume resistivity of the electrophoretic material within a range of 10 to 90 per cent relative humidity and over a temperature range of 10 to 50° C.
10. An electro-optic display according to claim 1 wherein the lamination adhesive comprises at least one of an ultra-violet stabilizer and a light absorbing material.
11. A front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an electro-optic material, a lamination adhesive having a thickness of from about 14 to about 25 μm, and a release sheet.
12. A front plane laminate according to claim 11 wherein the lamination adhesive layer has a thickness of from about 14 to about 20 μm.
13. A front plane laminate according to claim 11 wherein the electro-optic layer comprises a particle-based electrophoretic material comprising a suspending fluid and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material.
14. A front plane laminate according to claim 13 wherein the electrophoretic material is an encapsulated electrophoretic material in which the suspending fluid and the electrically charged particles and encapsulated within a plurality of capsules, each of the capsules having a capsule wall.
15. An electro-optic display comprising:
a backplane comprising at least one electrode;
a layer of electro-optic material; and
a lamination adhesive disposed between the backplane and the layer of electro-optic material, the lamination adhesive comprising an adhesion promoter effective to increase the adhesion between the lamination adhesive and the backplane.
16. An electro-optic display according to claim 15 wherein the adhesion promoter comprises any one or more of 1-propanamine, 3-aminopropyltrimethoxysilane, 3-aminopropyldimethylethoxysilane, and hexamethyldisilizane.
17. A front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a front substrate, a light-transmissive electrically-conductive layer, a layer of an electro-optic material, and a lamination adhesive layer, wherein the front substrate has a thickness not greater than about 20 mil (about 0.5 mm).
18. A front plane laminate according to claim 17 wherein the front substrate has a thickness not greater than about 10 mil (about 0.25 mm).
19. A front plane laminate according to claim 17 further comprising a release sheet covering the lamination adhesive.
20. A front plane laminate according to claim 19 wherein the release sheet has a thickness not greater than about 15 mil (about 0.37 mm).
21. A front plane laminate according to claim 20 wherein the release sheet has a thickness not greater than about 10 mil (about 0.25 mm).
22. A front plane laminate according to claim 17 wherein the electro-optic material is an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material.
23. A front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an electro-optic material, a lamination adhesive layer, and a release sheet wherein the release sheet has a thickness not greater than about 15 mil (about 0.37 mm).
24. A front plane laminate according to claim 23 wherein the release sheet has a thickness not greater than about 10 mil (about 0.25 mm).
25. A front plane laminate according to claim 23 wherein the electro-optic material is an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material.
26. A front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material, and a lamination adhesive layer, wherein the lamination adhesive layer has a peak to valley roughness not greater than about 15 μm.
27. A front plane laminate according to claim 26 wherein the lamination adhesive layer has a peak to valley roughness not greater than about 10 μm.
28. A front plane laminate according to claim 26 wherein the lamination adhesive layer has a peak to valley roughness not greater than about 5 μm.
29. A front plane laminate for forming an electro-optic display, the front plane laminate being an article of manufacture comprising, in order, a light-transmissive electrically-conductive layer, a layer of an encapsulated electrophoretic material comprising a plurality of capsules, each capsule comprising a capsule wall, a suspending fluid encapsulated within the capsule wall and a plurality of electrically charged particles suspended in the suspending fluid and capable of moving therethrough on application of an electric field to the electrophoretic material, and a lamination adhesive layer, wherein the lamination adhesive layer has local surface angles not greater than about 15° from the horizontal.
30. A front plane laminate according to claim 30 wherein the lamination adhesive layer has local surface angles not greater than about 10° from the horizontal.
31. A front plane laminate according to claim 30 wherein the lamination adhesive layer has local surface angles not greater than about 5° from the horizontal.
US10898027 2003-07-24 2004-07-23 Electro-optic displays Abandoned US20050122563A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US48113303 true 2003-07-24 2003-07-24
US48132003 true 2003-09-02 2003-09-02
US10898027 US20050122563A1 (en) 2003-07-24 2004-07-23 Electro-optic displays

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10898027 US20050122563A1 (en) 2003-07-24 2004-07-23 Electro-optic displays
US11277368 US7636191B2 (en) 2003-07-24 2006-03-24 Electro-optic display
US12605606 US7957053B2 (en) 2003-07-24 2009-10-26 Electro-optic displays

Publications (1)

Publication Number Publication Date
US20050122563A1 true true US20050122563A1 (en) 2005-06-09

Family

ID=34107665

Family Applications (3)

Application Number Title Priority Date Filing Date
US10898027 Abandoned US20050122563A1 (en) 2003-07-24 2004-07-23 Electro-optic displays
US11277368 Active 2024-10-19 US7636191B2 (en) 2003-07-24 2006-03-24 Electro-optic display
US12605606 Active US7957053B2 (en) 2003-07-24 2009-10-26 Electro-optic displays

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11277368 Active 2024-10-19 US7636191B2 (en) 2003-07-24 2006-03-24 Electro-optic display
US12605606 Active US7957053B2 (en) 2003-07-24 2009-10-26 Electro-optic displays

Country Status (2)

Country Link
US (3) US20050122563A1 (en)
WO (1) WO2005010598A3 (en)

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050062714A1 (en) * 2003-09-19 2005-03-24 E Ink Corporation Methods for reducing edge effects in electro-optic displays
US20050078099A1 (en) * 2002-04-24 2005-04-14 E Ink Corporation Electro-optic displays, and components for use therein
US20050122565A1 (en) * 2003-11-05 2005-06-09 E Ink Corporation Electro-optic displays, and materials for use therein
US20050152022A1 (en) * 2003-12-31 2005-07-14 E Ink Corporation Electro-optic displays, and method for driving same
US20050151709A1 (en) * 2003-10-08 2005-07-14 E Ink Corporation Electro-wetting displays
US20050168801A1 (en) * 2004-01-16 2005-08-04 E Ink Corporation Process for sealing electro-optic displays
US20060023296A1 (en) * 2004-07-27 2006-02-02 E Ink Corporation Electro-optic displays
US20060209388A1 (en) * 2005-01-26 2006-09-21 E Ink Corporation Electrophoretic displays using gaseous fluids
WO2007104003A2 (en) 2006-03-08 2007-09-13 E Ink Corporation Methods for production of electro-optic displays
US20080129667A1 (en) * 2004-03-31 2008-06-05 E Ink Corporation Methods for driving electro-optic displays
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US7667886B2 (en) 2007-01-22 2010-02-23 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7791782B2 (en) 2002-06-10 2010-09-07 E Ink Corporation Electro-optics displays, and processes for the production thereof
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7843626B2 (en) 2001-07-09 2010-11-30 E Ink Corporation Electro-optic display and materials for use therein
US7848007B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic medium and process for the production thereof
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US7898717B2 (en) 2005-06-23 2011-03-01 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
EP2309322A1 (en) 2006-09-22 2011-04-13 E-Ink Corporation Electro-optic display and materials for use therein
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US8054526B2 (en) 2008-03-21 2011-11-08 E Ink Corporation Electro-optic displays, and color filters for use therein
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US8270064B2 (en) 2009-02-09 2012-09-18 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US8305341B2 (en) 1995-07-20 2012-11-06 E Ink Corporation Dielectrophoretic displays
US8314784B2 (en) 2008-04-11 2012-11-20 E Ink Corporation Methods for driving electro-optic displays
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
EP2555182A1 (en) 2007-02-02 2013-02-06 E Ink Corporation Electrophoretic displays having transparent electrode and conductor connected thereto
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US8389381B2 (en) 2002-04-24 2013-03-05 E Ink Corporation Processes for forming backplanes for electro-optic displays
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
WO2013074167A1 (en) 2011-11-18 2013-05-23 Avon Products, Inc. Use of electrophoretic microcapsules in a cosmetic composition
US8553012B2 (en) 2001-03-13 2013-10-08 E Ink Corporation Apparatus for displaying drawings
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
EP2711770A2 (en) 2005-10-18 2014-03-26 E Ink Corporation Components for electro-optic displays
US8754859B2 (en) 2009-10-28 2014-06-17 E Ink Corporation Electro-optic displays with touch sensors and/or tactile feedback
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US9170467B2 (en) 2005-10-18 2015-10-27 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
WO2016191673A1 (en) 2015-05-27 2016-12-01 E Ink Corporation Methods and circuitry for driving display devices
US9529240B2 (en) 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US9664978B2 (en) 2002-10-16 2017-05-30 E Ink Corporation Electrophoretic displays
US9671635B2 (en) 2014-02-07 2017-06-06 E Ink Corporation Electro-optic display backplane structures with drive components and pixel electrodes on opposed surfaces
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
US9726957B2 (en) 2013-01-10 2017-08-08 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011792A1 (en) 2000-08-10 2002-02-14 Novo Nordisk A/S A support for a cartridge for transferring an electronically readable information to an electronic circuit, and use of a composite material in a support
US6994261B2 (en) * 2000-08-10 2006-02-07 Novo Nirdisk A/S Support for a cartridge for transferring an electronically readable item of information from the cartridge to an electronic circuit
EP1608305B1 (en) * 2003-03-24 2008-07-30 Novo Nordisk A/S Transparent electronic marking of a medicament container
US20060243804A1 (en) * 2003-10-03 2006-11-02 Novo Nordisk A/S Container comprising code information elements
US8197449B2 (en) 2005-05-10 2012-06-12 Novo Nordisk A/S Injection device comprising an optical sensor
CA2623118A1 (en) 2005-09-22 2007-04-12 Novo Nordisk A/S Device and method for contact free absolute position determination
CN101405749B (en) 2006-03-20 2012-05-30 诺沃—诺迪斯克有限公司 Sleeve and medicament convey device when the sleeve inserts into the medicament convey device
EP2011223A1 (en) 2006-04-12 2009-01-07 Novo Nordisk A/S Absolute position determination of movably mounted member in medication delivery device
WO2007122253A1 (en) * 2006-04-26 2007-11-01 Novo Nordisk A/S Contact free absolute position determination of a moving element in a medication delivery device
JP5295217B2 (en) 2007-03-21 2013-09-18 ノボ・ノルデイスク・エー/エス Containers used in the pharmaceutical delivery systems and the pharmaceutical delivery system having a container identification
JP2009075229A (en) * 2007-09-19 2009-04-09 Fuji Xerox Co Ltd Display medium, and manufacturing method and apparatus of display medium
US9782949B2 (en) 2008-05-30 2017-10-10 Corning Incorporated Glass laminated articles and layered articles
US9186465B2 (en) 2008-11-06 2015-11-17 Novo Nordisk A/S Electronically assisted drug delivery device
KR101368392B1 (en) * 2008-12-12 2014-03-04 엘지디스플레이 주식회사 An apparatus for hardening seal of electrophoretic display deivce and method of fabricating electrophoretic display deivce using thereof
CN104583853B (en) 2012-07-27 2018-01-26 伊英克公司 Process for producing electro-optic displays
EP3215893A1 (en) * 2014-11-07 2017-09-13 E Ink Corporation Applications of electro-optic displays

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831769B2 (en) * 2001-07-09 2004-12-14 E Ink Corporation Electro-optic display and lamination adhesive

Family Cites Families (171)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3391015A (en) 1964-04-27 1968-07-02 Harris Intertype Corp Liquid development of electrostatic images with carbon black and a solid organic pigment
US3892568A (en) 1969-04-23 1975-07-01 Matsushita Electric Ind Co Ltd Electrophoretic image reproduction process
US3870517A (en) 1969-10-18 1975-03-11 Matsushita Electric Ind Co Ltd Color image reproduction sheet employed in photoelectrophoretic imaging
US3668106A (en) 1970-04-09 1972-06-06 Matsushita Electric Ind Co Ltd Electrophoretic display device
US3767392A (en) 1970-04-15 1973-10-23 Matsushita Electric Ind Co Ltd Electrophoretic light image reproduction process
US3792308A (en) 1970-06-08 1974-02-12 Matsushita Electric Ind Co Ltd Electrophoretic display device of the luminescent type
JPS4917079B1 (en) 1970-12-21 1974-04-26
US3772013A (en) 1971-01-06 1973-11-13 Xerox Corp Photoelectrophoretic imaging process employing electrically photosensitive particles and inert particles
US3959906A (en) 1973-11-14 1976-06-01 J. Robert Norris, Jr. Message display system
US4093534A (en) 1974-02-12 1978-06-06 Plessey Handel Und Investments Ag Working fluids for electrophoretic image display devices
US3976485A (en) * 1974-09-30 1976-08-24 Eastman Kodak Company Photoimmobilized electrophoretic recording process
US4160257A (en) 1978-07-17 1979-07-03 Dennison Manufacturing Company Three electrode system in the generation of electrostatic images
US4272596A (en) 1979-06-01 1981-06-09 Xerox Corporation Electrophoretic display device
US4418346A (en) 1981-05-20 1983-11-29 Batchelder J Samuel Method and apparatus for providing a dielectrophoretic display of visual information
US4550982A (en) 1981-11-09 1985-11-05 Nippon Electric Co., Ltd. All-solid-state display including an organic electrochromic layer with ion donor/acceptor
US4522472A (en) 1982-02-19 1985-06-11 North American Philips Corporation Electrophoretic image display with reduced drives and leads
US4602263A (en) 1984-09-04 1986-07-22 Polaroid Corporation Thermal imaging method
US4655897A (en) 1984-11-13 1987-04-07 Copytele, Inc. Electrophoretic display panels and associated methods
US4703573A (en) 1985-02-04 1987-11-03 Montgomery John W Visual and audible activated work and method of forming same
US4742345A (en) 1985-11-19 1988-05-03 Copytele, Inc. Electrophoretic display panel apparatus and methods therefor
US4902108A (en) 1986-03-31 1990-02-20 Gentex Corporation Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof
JPS6315230A (en) * 1986-07-08 1988-01-22 Hitachi Maxell Ltd Electrochromic display element
US4746917A (en) 1986-07-14 1988-05-24 Copytele, Inc. Method and apparatus for operating an electrophoretic display between a display and a non-display mode
EP0411029B1 (en) 1988-04-29 1994-10-12 Coat I Goteborg Ab Electrochromic device and a method to manufacture the same
US5484292A (en) 1989-08-21 1996-01-16 Mctaggart; Stephen I. Apparatus for combining audio and visual indicia
US5250938A (en) 1990-12-19 1993-10-05 Copytele, Inc. Electrophoretic display panel having enhanced operation
US5378404A (en) 1991-04-22 1995-01-03 Alliedsignal Inc. Process for forming dispersions or solutions of electrically conductive conjugated polymers in a polymeric or liquid phase
EP0600878B1 (en) 1991-08-29 1997-02-12 Copytele Inc. Electrophoretic display panel with internal mesh background screen
JP3120085B2 (en) 1991-11-21 2000-12-25 株式会社 セガトイズ Electronic devices and information carrier
US5412398A (en) 1992-02-25 1995-05-02 Copytele, Inc. Electrophoretic display panel and associated methods for blinking displayed characters
US5293528A (en) 1992-02-25 1994-03-08 Copytele, Inc. Electrophoretic display panel and associated methods providing single pixel erase capability
US5402145A (en) 1993-02-17 1995-03-28 Copytele, Inc. Electrophoretic display panel with arc driven individual pixels
WO1994024236A1 (en) 1993-04-21 1994-10-27 Copytele, Inc. Black and white electrophoretic particles and method of manufacture
GB9309246D0 (en) 1993-05-05 1993-06-16 Esselte Meto Int Gmbh Rechargeable shelf edge tag
US6105290A (en) 1993-05-25 2000-08-22 Coates Signco Pty. Limited Display device
EP0721638A4 (en) 1993-10-01 1997-04-09 Copytele Inc Electrophoretic display panel with selective character addressability
US5745094A (en) 1994-12-28 1998-04-28 International Business Machines Corporation Electrophoretic display
US6137467A (en) 1995-01-03 2000-10-24 Xerox Corporation Optically sensitive electric paper
US6710540B1 (en) * 1995-07-20 2004-03-23 E Ink Corporation Electrostatically-addressable electrophoretic display
US6664944B1 (en) 1995-07-20 2003-12-16 E-Ink Corporation Rear electrode structures for electrophoretic displays
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6262706B1 (en) 1995-07-20 2001-07-17 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US7106296B1 (en) 1995-07-20 2006-09-12 E Ink Corporation Electronic book with multiple page displays
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6459418B1 (en) 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US6727881B1 (en) * 1995-07-20 2004-04-27 E Ink Corporation Encapsulated electrophoretic displays and methods and materials for making the same
US7256766B2 (en) * 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US7002728B2 (en) * 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US6515649B1 (en) 1995-07-20 2003-02-04 E Ink Corporation Suspended particle displays and materials for making the same
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US20050035941A1 (en) * 1995-07-20 2005-02-17 Albert Jonathan D. Retroreflective electrophoretic displaya and materials for making the same
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6639578B1 (en) 1995-07-20 2003-10-28 E Ink Corporation Flexible displays
US5760761A (en) 1995-12-15 1998-06-02 Xerox Corporation Highlight color twisting ball display
US5825526A (en) 1996-04-24 1998-10-20 Minnesota Mining And Manufacturing Company Tape for use in manufacturing electrochromic devices
US6055091A (en) 1996-06-27 2000-04-25 Xerox Corporation Twisting-cylinder display
US5808783A (en) 1996-06-27 1998-09-15 Xerox Corporation High reflectance gyricon display
US6538801B2 (en) 1996-07-19 2003-03-25 E Ink Corporation Electrophoretic displays using nanoparticles
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6323989B1 (en) 1996-07-19 2001-11-27 E Ink Corporation Electrophoretic displays using nanoparticles
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5777782A (en) 1996-12-24 1998-07-07 Xerox Corporation Auxiliary optics for a twisting ball display
DE69830566D1 (en) 1997-02-06 2005-07-21 Univ College Dublin Dublin Electrochromic system
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6980196B1 (en) 1997-03-18 2005-12-27 Massachusetts Institute Of Technology Printable electronic display
US6825829B1 (en) 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6839158B2 (en) * 1997-08-28 2005-01-04 E Ink Corporation Encapsulated electrophoretic displays having a monolayer of capsules and materials and methods for making the same
US6232950B1 (en) 1997-08-28 2001-05-15 E Ink Corporation Rear electrode structures for displays
US6866760B2 (en) * 1998-08-27 2005-03-15 E Ink Corporation Electrophoretic medium and process for the production thereof
US6177921B1 (en) 1997-08-28 2001-01-23 E Ink Corporation Printable electrode structures for displays
US6252564B1 (en) 1997-08-28 2001-06-26 E Ink Corporation Tiled displays
US6300932B1 (en) 1997-08-28 2001-10-09 E Ink Corporation Electrophoretic displays with luminescent particles and materials for making the same
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
JP4085449B2 (en) 1997-10-09 2008-05-14 ブラザー工業株式会社 Electrophoretic display devices, microcapsules and medium
US5945555A (en) * 1997-11-28 1999-08-31 Dow Corning Toray Silicone Co., Ltd. Silatrane derivative, method for manufacturing same, adhesion promoter, and curable silicone composition
US6054071A (en) 1998-01-28 2000-04-25 Xerox Corporation Poled electrets for gyricon-based electric-paper displays
US6753999B2 (en) * 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
US6704133B2 (en) * 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
DE69917441D1 (en) 1998-03-18 2004-06-24 E Ink Corp electrophoretic display
EP1105772B1 (en) 1998-04-10 2004-06-23 E-Ink Corporation Electronic displays using organic-based field effect transistors
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
US6842657B1 (en) * 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
US6312304B1 (en) 1998-12-15 2001-11-06 E Ink Corporation Assembly of microencapsulated electronic displays
CA2329173A1 (en) 1998-04-27 1999-11-04 E Ink Corporation Shutter mode microencapsulated electrophoretic display
WO1999059101A3 (en) 1998-05-12 2000-04-27 E Ink Corp Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications
US6241921B1 (en) 1998-05-15 2001-06-05 Massachusetts Institute Of Technology Heterogeneous display elements and methods for their fabrication
WO1999067678A3 (en) 1998-06-22 2001-12-13 E Ink Corp Means of addressing microencapsulated display media
DE69934618T2 (en) 1998-07-08 2007-05-03 E-Ink Corp., Cambridge Improved color microencapsulated electrophoretic display
US20030102858A1 (en) * 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
DE69904185T2 (en) 1998-07-08 2003-03-27 E Ink Corp Method and apparatus for measuring the state of an electrophoretic display device
USD485294S1 (en) * 1998-07-22 2004-01-13 E Ink Corporation Electrode structure for an electronic display
US6144361A (en) 1998-09-16 2000-11-07 International Business Machines Corporation Transmissive electrophoretic display with vertical electrodes
US6225971B1 (en) 1998-09-16 2001-05-01 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using an absorbing panel
US6184856B1 (en) 1998-09-16 2001-02-06 International Business Machines Corporation Transmissive electrophoretic display with laterally adjacent color cells
US6271823B1 (en) 1998-09-16 2001-08-07 International Business Machines Corporation Reflective electrophoretic display with laterally adjacent color cells using a reflective panel
JP4061734B2 (en) 1998-09-30 2008-03-19 ブラザー工業株式会社 Display method and display device for a display medium
EP1169121B1 (en) 1999-04-06 2012-10-31 E Ink Corporation Methods for producing droplets for use in capsule-based electrophoretic displays
DE69905266T2 (en) 1998-10-07 2003-07-10 E Ink Corp Lighting system for non-emitierende electronic display devices
US6262833B1 (en) 1998-10-07 2001-07-17 E Ink Corporation Capsules for electrophoretic displays and methods for making the same
US6128124A (en) 1998-10-16 2000-10-03 Xerox Corporation Additive color electric paper without registration or alignment of individual elements
WO2000026761A9 (en) 1998-11-02 2000-10-12 E Ink Corp Broadcast system for display devices made of electronic ink
US6147791A (en) 1998-11-25 2000-11-14 Xerox Corporation Gyricon displays utilizing rotating elements and magnetic latching
US6097531A (en) 1998-11-25 2000-08-01 Xerox Corporation Method of making uniformly magnetized elements for a gyricon display
US6724519B1 (en) * 1998-12-21 2004-04-20 E-Ink Corporation Protective electrodes for electrophoretic displays
WO2000060410A1 (en) 1999-04-06 2000-10-12 E Ink Corporation Microcell electrophoretic displays
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7528822B2 (en) * 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
US7119772B2 (en) * 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7038655B2 (en) 1999-05-03 2006-05-02 E Ink Corporation Electrophoretic ink composed of particles with field dependent mobilities
US6693620B1 (en) * 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
JP2001056653A (en) 1999-06-11 2001-02-27 Ricoh Co Ltd Display liquid for electrophoresis display, display particles, display medium utilizing the foregoing same, display device, display method, display, recording sheet, display and reversible display type signboard
EP1192504B1 (en) 1999-07-01 2011-03-16 E Ink Corporation Electrophoretic medium provided with spacers
JP4948726B2 (en) 1999-07-21 2012-06-06 イー インク コーポレイション The preferred method of fabricating an electronic circuit elements for controlling the electronic display
WO2001007961A1 (en) 1999-07-21 2001-02-01 E Ink Corporation Use of a storage capacitor to enhance the performance of an active matrix driven electronic display
JP4400018B2 (en) 1999-08-06 2010-01-20 セイコーエプソン株式会社 Electrophoretic display device
US6545291B1 (en) * 1999-08-31 2003-04-08 E Ink Corporation Transistor design for use in the construction of an electronically driven display
WO2001017040A1 (en) 1999-08-31 2001-03-08 E Ink Corporation A solvent annealing process for forming a thin semiconductor film with advantageous properties
US6337761B1 (en) 1999-10-01 2002-01-08 Lucent Technologies Inc. Electrophoretic display and method of making the same
DE60017440T2 (en) * 1999-10-11 2006-03-02 University College Dublin Electrochromic device
US6515790B2 (en) 2000-01-28 2003-02-04 Minolta Co., Ltd. Reversible image display medium and image display method
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6672921B1 (en) * 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6504524B1 (en) 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
CN1237623C (en) 2000-04-18 2006-01-18 伊英克公司 Method for forming transistor on the underlay and underlay with polyphenylenes polyimides
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US20020060321A1 (en) * 2000-07-14 2002-05-23 Kazlas Peter T. Minimally- patterned, thin-film semiconductor devices for display applications
US6816147B2 (en) 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
WO2002045061A3 (en) * 2000-11-29 2003-05-08 E Ink Corp Addressing circuitry for large electronic displays
US20020090980A1 (en) 2000-12-05 2002-07-11 Wilcox Russell J. Displays for portable electronic apparatus
US6660352B2 (en) * 2001-01-09 2003-12-09 3M Innovative Properties Company Adhesive electrostatic sheets
US7158277B2 (en) * 2002-03-07 2007-01-02 Acreo Ab Electrochemical device
US7030854B2 (en) 2001-03-13 2006-04-18 E Ink Corporation Apparatus for displaying drawings
WO2002079869A1 (en) 2001-04-02 2002-10-10 E Ink Corporation Electrophoretic medium with improved image stability
US6580545B2 (en) * 2001-04-19 2003-06-17 E Ink Corporation Electrochromic-nanoparticle displays
EP1393122A1 (en) 2001-05-15 2004-03-03 E Ink Corporation Electrophoretic particles
WO2002093245A1 (en) * 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic displays containing magnetic particles
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
JP2004535599A (en) * 2001-07-09 2004-11-25 イー−インク コーポレイション Electro-optical display and the adhesive composition
US7110163B2 (en) * 2001-07-09 2006-09-19 E Ink Corporation Electro-optic display and lamination adhesive for use therein
US6967640B2 (en) * 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US6819471B2 (en) 2001-08-16 2004-11-16 E Ink Corporation Light modulation by frustration of total internal reflection
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
US6865010B2 (en) * 2001-12-13 2005-03-08 E Ink Corporation Electrophoretic electronic displays with low-index films
US6900851B2 (en) * 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
EP1497867A2 (en) 2002-04-24 2005-01-19 E Ink Corporation Electronic displays
US6958848B2 (en) * 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US7110164B2 (en) * 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US6842279B2 (en) * 2002-06-27 2005-01-11 E Ink Corporation Illumination system for nonemissive electronic displays
US7202847B2 (en) * 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US20040105036A1 (en) * 2002-08-06 2004-06-03 E Ink Corporation Protection of electro-optic displays against thermal effects
US7312916B2 (en) * 2002-08-07 2007-12-25 E Ink Corporation Electrophoretic media containing specularly reflective particles
EP3056941A3 (en) 2002-09-03 2016-11-30 E Ink Corporation Electro-phoretic displays
WO2004023202A1 (en) * 2002-09-03 2004-03-18 E Ink Corporation Electrophoretic medium with gaseous suspending fluid
JP4300396B2 (en) * 2002-09-20 2009-07-22 富士ゼロックス株式会社 Production method and a display element of the display device
US7182837B2 (en) * 2002-11-27 2007-02-27 Kimberly-Clark Worldwide, Inc. Structural printing of absorbent webs
US7065409B2 (en) * 2002-12-13 2006-06-20 Cardiac Pacemakers, Inc. Device communications of an implantable medical device and an external system
EP1573389A2 (en) 2002-12-16 2005-09-14 E Ink Corporation Backplanes for electro-optic displays
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US6987603B2 (en) 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
US7339715B2 (en) * 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
JP5044215B2 (en) * 2003-03-27 2012-10-10 イー インク コーポレイション Electro-optical assembly
JP4776532B2 (en) * 2003-05-02 2011-09-21 イー インク コーポレイション Electrophoretic display
US20050089656A1 (en) * 2003-10-28 2005-04-28 Noriyuki Shiina Laminate for container and paper container for liquid content manufactured therefrom

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831769B2 (en) * 2001-07-09 2004-12-14 E Ink Corporation Electro-optic display and lamination adhesive

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7848007B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic medium and process for the production thereof
US8305341B2 (en) 1995-07-20 2012-11-06 E Ink Corporation Dielectrophoretic displays
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7848006B2 (en) 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US8441714B2 (en) 1997-08-28 2013-05-14 E Ink Corporation Multi-color electrophoretic displays
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US8009348B2 (en) 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US8553012B2 (en) 2001-03-13 2013-10-08 E Ink Corporation Apparatus for displaying drawings
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US8390918B2 (en) 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7843626B2 (en) 2001-07-09 2010-11-30 E Ink Corporation Electro-optic display and materials for use therein
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US9269311B2 (en) 2001-11-20 2016-02-23 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US20070069247A1 (en) * 2002-04-24 2007-03-29 E Ink Corporation Electro-optic displays, and components for use therein
US9419024B2 (en) 2002-04-24 2016-08-16 E Ink Corporation Methods for forming patterned semiconductors
US9632389B2 (en) 2002-04-24 2017-04-25 E Ink Corporation Backplane for electro-optic display
US8969886B2 (en) 2002-04-24 2015-03-03 E Ink Corporation Electro-optic displays having backplanes comprising ring diodes
US8373211B2 (en) 2002-04-24 2013-02-12 E Ink Corporation Field effect transistor
US20050078099A1 (en) * 2002-04-24 2005-04-14 E Ink Corporation Electro-optic displays, and components for use therein
US8389381B2 (en) 2002-04-24 2013-03-05 E Ink Corporation Processes for forming backplanes for electro-optic displays
US20110194045A1 (en) * 2002-04-24 2011-08-11 E Ink Corporation Electro-optic displays, and components for use therein
US8830560B2 (en) 2002-06-10 2014-09-09 E Ink Corporation Electro-optic display with edge seal
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US8854721B2 (en) 2002-06-10 2014-10-07 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US8027081B2 (en) 2002-06-10 2011-09-27 E Ink Corporation Electro-optic display with edge seal
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US9182646B2 (en) 2002-06-10 2015-11-10 E Ink Corporation Electro-optic displays, and processes for the production thereof
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
US9612502B2 (en) 2002-06-10 2017-04-04 E Ink Corporation Electro-optic display with edge seal
US7791782B2 (en) 2002-06-10 2010-09-07 E Ink Corporation Electro-optics displays, and processes for the production thereof
US8891155B2 (en) 2002-06-10 2014-11-18 E Ink Corporation Electro-optic display with edge seal
US8049947B2 (en) 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US9075280B2 (en) 2002-09-03 2015-07-07 E Ink Corporation Components and methods for use in electro-optic displays
US9664978B2 (en) 2002-10-16 2017-05-30 E Ink Corporation Electrophoretic displays
US7910175B2 (en) 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
US9152003B2 (en) 2003-05-12 2015-10-06 E Ink Corporation Electro-optic display with edge seal
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
US20050062714A1 (en) * 2003-09-19 2005-03-24 E Ink Corporation Methods for reducing edge effects in electro-optic displays
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
US20050151709A1 (en) * 2003-10-08 2005-07-14 E Ink Corporation Electro-wetting displays
US8994705B2 (en) 2003-10-08 2015-03-31 E Ink Corporation Electrowetting displays
US20050122565A1 (en) * 2003-11-05 2005-06-09 E Ink Corporation Electro-optic displays, and materials for use therein
US7672040B2 (en) 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US9152004B2 (en) 2003-11-05 2015-10-06 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20070097489A1 (en) * 2003-11-05 2007-05-03 E Ink Corporation Electro-optic displays, and materials for use therein
US9829764B2 (en) 2003-12-05 2017-11-28 E Ink Corporation Multi-color electrophoretic displays
US9740076B2 (en) 2003-12-05 2017-08-22 E Ink Corporation Multi-color electrophoretic displays
US20050152022A1 (en) * 2003-12-31 2005-07-14 E Ink Corporation Electro-optic displays, and method for driving same
US20050168801A1 (en) * 2004-01-16 2005-08-04 E Ink Corporation Process for sealing electro-optic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US20080129667A1 (en) * 2004-03-31 2008-06-05 E Ink Corporation Methods for driving electro-optic displays
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20060023296A1 (en) * 2004-07-27 2006-02-02 E Ink Corporation Electro-optic displays
US20060209388A1 (en) * 2005-01-26 2006-09-21 E Ink Corporation Electrophoretic displays using gaseous fluids
US8208193B2 (en) 2005-06-23 2012-06-26 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7898717B2 (en) 2005-06-23 2011-03-01 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US8830553B2 (en) 2005-06-23 2014-09-09 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
EP2711770A2 (en) 2005-10-18 2014-03-26 E Ink Corporation Components for electro-optic displays
US9170467B2 (en) 2005-10-18 2015-10-27 E Ink Corporation Color electro-optic displays, and processes for the production thereof
US9726959B2 (en) 2005-10-18 2017-08-08 E Ink Corporation Color electro-optic displays, and processes for the production thereof
EP2309304A2 (en) 2006-03-08 2011-04-13 E-Ink Corporation Methods for production of electro-optic displays
EP2437114A1 (en) 2006-03-08 2012-04-04 E-Ink Corporation Methods for production of electro-optic displays
US7733554B2 (en) 2006-03-08 2010-06-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
WO2007104003A2 (en) 2006-03-08 2007-09-13 E Ink Corporation Methods for production of electro-optic displays
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US8830559B2 (en) 2006-03-22 2014-09-09 E Ink Corporation Electro-optic media produced using ink jet printing
US7952790B2 (en) 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US9164207B2 (en) 2006-03-22 2015-10-20 E Ink Corporation Electro-optic media produced using ink jet printing
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8199395B2 (en) 2006-07-13 2012-06-12 E Ink Corporation Particles for use in electrophoretic displays
US8018640B2 (en) 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
EP2309322A1 (en) 2006-09-22 2011-04-13 E-Ink Corporation Electro-optic display and materials for use therein
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
EP2546693A2 (en) 2006-12-19 2013-01-16 E Ink Corporation Electro-optic display with edge seal
US7688497B2 (en) 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7667886B2 (en) 2007-01-22 2010-02-23 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US8009344B2 (en) 2007-01-22 2011-08-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US8498042B2 (en) 2007-01-22 2013-07-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
EP2555182A1 (en) 2007-02-02 2013-02-06 E Ink Corporation Electrophoretic displays having transparent electrode and conductor connected thereto
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US20110026101A1 (en) * 2007-03-06 2011-02-03 E Ink Corporation Materials for use in electrophoretic displays
US9310661B2 (en) * 2007-03-06 2016-04-12 E Ink Corporation Materials for use in electrophoretic displays
US9841653B2 (en) 2007-03-06 2017-12-12 E Ink Corporation Materials for use in electrophoretic displays
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8728266B2 (en) 2007-06-29 2014-05-20 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US9554495B2 (en) 2007-06-29 2017-01-24 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US8054526B2 (en) 2008-03-21 2011-11-08 E Ink Corporation Electro-optic displays, and color filters for use therein
US8314784B2 (en) 2008-04-11 2012-11-20 E Ink Corporation Methods for driving electro-optic displays
US8270064B2 (en) 2009-02-09 2012-09-18 E Ink Corporation Electrophoretic particles, and processes for the production thereof
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
US8441716B2 (en) 2009-03-03 2013-05-14 E Ink Corporation Electro-optic displays, and color filters for use therein
US8754859B2 (en) 2009-10-28 2014-06-17 E Ink Corporation Electro-optic displays with touch sensors and/or tactile feedback
US9778500B2 (en) 2009-10-28 2017-10-03 E Ink Corporation Electro-optic displays with touch sensors and/or tactile feedback
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
US8446664B2 (en) 2010-04-02 2013-05-21 E Ink Corporation Electrophoretic media, and materials for use therein
WO2013074167A1 (en) 2011-11-18 2013-05-23 Avon Products, Inc. Use of electrophoretic microcapsules in a cosmetic composition
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
US9726957B2 (en) 2013-01-10 2017-08-08 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9529240B2 (en) 2014-01-17 2016-12-27 E Ink Corporation Controlled polymeric material conductivity for use in a two-phase electrode layer
US9671635B2 (en) 2014-02-07 2017-06-06 E Ink Corporation Electro-optic display backplane structures with drive components and pixel electrodes on opposed surfaces
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
WO2016191673A1 (en) 2015-05-27 2016-12-01 E Ink Corporation Methods and circuitry for driving display devices

Also Published As

Publication number Publication date Type
US20060176267A1 (en) 2006-08-10 application
US7636191B2 (en) 2009-12-22 grant
WO2005010598A3 (en) 2005-05-12 application
US20100039697A1 (en) 2010-02-18 application
US7957053B2 (en) 2011-06-07 grant
WO2005010598A2 (en) 2005-02-03 application

Similar Documents

Publication Publication Date Title
US7116466B2 (en) Electro-optic displays
US7535624B2 (en) Electro-optic display and materials for use therein
Zang et al. Microcup electronic paper by roll-to-roll manufacturing processes
Liang et al. 20.1: Microcup® Active and Passive Matrix Electrophoretic Displays by Roll‐to‐Roll Manufacturing Processes
US7206119B2 (en) Electro-optic displays, and method for driving same
US20090103166A1 (en) Adjustably transmissive mems-based devices
US20050012980A1 (en) Electrophoretic displays with controlled amounts of pigment
US7893435B2 (en) Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US7504050B2 (en) Modification of electrical properties of display cells for improving electrophoretic display performance
US20080136774A1 (en) Methods for driving electrophoretic displays using dielectrophoretic forces
US20090004442A1 (en) Processes for the production of electro-optic displays, and color filters for use therein
US20050181146A1 (en) Antireflective film, polarizing plate including the same, image display unit including the same and method for producing antireflective film
US20060066803A1 (en) Substrate free flexible liquid crystal displays
US20090283211A1 (en) Method of Manufacturing a Display Device and Bonding Method
US7327511B2 (en) Light modulators
US20080100907A1 (en) Electro-optic display
Liang et al. Microcup® displays: Electronic paper by roll‐to‐roll manufacturing processes
US20070097489A1 (en) Electro-optic displays, and materials for use therein
US20080130092A1 (en) Light modulators
US20080074730A1 (en) Electro-optic display and materials for use therein
US7843624B2 (en) Electro-optic displays, and materials and methods for production thereof
WO1987006626A1 (en) Sputter-coated thin glass sheeting in roll form and method for continuous production thereof
US20070223079A1 (en) Electro-optic media produced using ink jet printing
Wang et al. Microcup® Electronic Paper and the Converting Processes
US7443571B2 (en) Components and methods for use in electro-optic displays

Legal Events

Date Code Title Description
AS Assignment

Owner name: E INK CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONEYMAN, CHARLES H.;DOSHI, HARIT;SOHN, SEUNGMAN;AND OTHERS;REEL/FRAME:015652/0642;SIGNING DATES FROM 20041214 TO 20050204