US20050106830A1 - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
US20050106830A1
US20050106830A1 US11/004,786 US478604A US2005106830A1 US 20050106830 A1 US20050106830 A1 US 20050106830A1 US 478604 A US478604 A US 478604A US 2005106830 A1 US2005106830 A1 US 2005106830A1
Authority
US
United States
Prior art keywords
polysilicon
region
low resistance
resistors
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/004,786
Inventor
Mika Shiiki
Hiroaki Takasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to US11/004,786 priority Critical patent/US20050106830A1/en
Publication of US20050106830A1 publication Critical patent/US20050106830A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Definitions

  • the present invention relates to a semiconductor device, in particular, a bleeder resistance circuit using a thin film resistor, a semiconductor device having the bleeder resistance circuit, and a method of manufacturing the same.
  • a bleeder resistance circuit using a thin film resistor is used in many cases.
  • attention is not paid on a potential of a wiring located on the thin film resistor and a potential of a conductor located under the thin film resistor.
  • polysilicon is often used for a thin film resistor material.
  • MOS type transistor is combined on a single chip, it is known that the polysilicon with the same film thickness as a gate electrode of the MOS type transistor is used.
  • the present invention has been made to solve the above problems, and an object of the present invention is therefore to provide a bleeder resistance circuit which has an accurate voltage dividing ratio, a small temperature coefficient of a resistance value, and high precision, and a semiconductor device using such a bleeder resistance circuit, which has high precision and a small temperature coefficient, such as a voltage detector or a voltage regulator.
  • first means used in a semiconductor device of the present invention is characterized in that, in a bleeder resistance circuit using a thin film resistor, the potential of a wiring located over the thin film resistor and the potential of a conductor located under the thin film resistor are made to be substantially the same as that of the thin film resistor.
  • second means used in a semiconductor device of the present invention is characterized in that, the film thickness of the polysilicon thin film resistor in the bleeder resistance circuit is made to be thinner than that of a gate electrode of an MOS type transistor combined on a single chip.
  • third means used in a semiconductor device of the present invention is characterized in that an impurity introduced into the polysilicon thin film resistor in the bleeder resistance circuit is made to be a P-type. This arises from the fact that became evident that, if the impurity introduced into the thin film resistor is of the P-type, the variation in the resistance value becomes smaller, and the temperature dependency of the resistance value becomes smaller even in the case of the same sheet resistance according to experiments of the present inventor(s).
  • the potential of the wiring located over the thin film resistor and the potential of the conductor located under the thin film resistor are made to be substantially the same as that of the thin film resistor.
  • the bleeder resistance circuit having an accurate voltage dividing ratio and high precision can be realized.
  • the film thickness of the polysilicon thin film resistor in the bleeder resistance circuit is made to be thin, and further the variation in the resistance value can be suppressed by introducing the P-type impurity into the polysilicon. Further, the temperature dependency of the resistance value can be reduced.
  • a semiconductor device using such a bleeder resistance circuit having high precision and a small temperature coefficient, such as a voltage detector or a voltage regulator can be obtained.
  • FIG. 1 is a schematic cross sectional view representing one embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention
  • FIG. 2 is a schematic cross sectional view representing other embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention
  • FIG. 3 is a schematic cross sectional view representing one embodiment in which a portion of a bleeder resistance circuit region in a semiconductor device of the present invention is enlarged;
  • FIG. 4 shows a relationship between a displacement in a resistance value of a polysilicon resistor and the film thickness of the polysilicon resistor in the case where a potential of 0 volt to 5 volts is applied to an aluminum wiring located over the polysilicon resistor having a sheet resistance of 10 kiloohms;
  • FIG. 5 is a circuit diagram of a bleeder resistance circuit representing one embodiment of a semiconductor device of the present invention.
  • FIG. 6 shows a relationship between the lengths of P-type and N-type polysilicon thin film resistors which have a film thickness of 1000 angstroms and a sheet resistance of 10 kiloohms/square and constitute the bleeder circuit and the dividing voltage output error;
  • FIG. 7 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • FIG. 8 shows a relationship between the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor for the bleeder resistance circuit with the sheet resistance of 10 kiloohms and the film thickness of the polysilicon thin film resistor;
  • FIG. 9 shows a relationship between the sheet resistance value and the temperature coefficient (TC) in the case where BF 2 is used as a P-type impurity and phosphorus is used as an N-type impurity with respect to the polysilicon film having a film thickness of 1000 angstroms;
  • FIG. 10 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • FIG. 11 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • FIG. 12 is a block diagram of one embodiment of a voltage detector using a bleeder resistance circuit according to the present invention.
  • FIG. 13 is a block diagram of one embodiment of a voltage regulator using a bleeder resistance circuit according to the present invention.
  • FIGS. 14A to 14 F are schematic cross sectional views representing one embodiment of a semiconductor device manufacturing method according to the present invention.
  • FIGS. 15A to 15 F are schematic cross sectional views representing other embodiment of a semiconductor device manufacturing method according to the present invention.
  • FIG. 1 is a schematic cross sectional view representing one embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention.
  • Separated P-type well regions 301 , 302 , and 303 are formed in a silicon semiconductor substrate 101 having a lightly N-type impurity concentration. It is preferred that an impurity concentration of the well regions 301 , 302 , and 303 is about 1E16 atoms/cm 3 or more in the surface of the silicon semiconductor substrate 101 from the viewpoint of preventing the depletion of the silicon semiconductor substrate 101 . Thus, the well regions may be provided with a heavy impurity concentration.
  • a silicon oxide film 102 is formed on the silicon semiconductor substrate 101 .
  • Polysilicon resistors 105 , 106 , and 107 each having a high resistance region 104 sandwiched between heavy P-type impurity regions 103 for making contact with wirings are formed on the silicon oxide film 102 . Further, wirings 201 , 202 , 203 , and 204 made of aluminum are connected with the heavy P-type impurity regions 103 .
  • the well regions 301 , 302 , and 303 are electrically connected with the wirings 202 , 203 , and 204 , respectively, and thus these are made to have the same potential. Therefore, a potential of the high resistance region 104 of the polysilicon resistor 105 , a potential of the wiring 202 located over the polysilicon resistor 105 , and a potential of the well region 301 located under the polysilicon resistor 105 are substantially equal to each other.
  • a potential relationship among the polysilicon resistor 106 , the wiring 203 located over the polysilicon resistor 106 , and the well region 302 located under the polysilicon resistor 106 is the same as in the case of the polysilicon resistor 105 .
  • a potential relationship among the polysilicon resistor 107 , the wiring 204 located over the polysilicon resistor 107 , and the well region 303 located under the polysilicon resistor 107 is the same as in the case of the polysilicon resistor 105 .
  • a conductivity type of the silicon semiconductor substrate 101 may be a P-type.
  • the well regions 301 , 302 , and 303 are set to be an N-type.
  • the number of polysilicon resistors is not limited, and may be set in accordance with voltage dividing numbers required in the bleeder resistance circuit.
  • the well regions 301 , 302 , and 303 may be combined for several resistors or formed as a single unit without dividing. In this case, voltage dividing precision is reduced somewhat, but this is next best following the embodiment of FIG. 1 .
  • FIG. 1 the case where the silicon semiconductor substrate 101 is formed as the N-type and the well regions 301 , 302 , and 303 are formed as the P-type is described.
  • the silicon semiconductor substrate 101 may be formed as the P-type and the well regions 301 , 302 , and 303 may be formed as the N-type.
  • the wirings are made of aluminum.
  • the wirings may be made from a lamination film of a barrier metal and a silicide film.
  • the barrier metal refers to a protective film that is formed under a wiring and has a high corrosion resistance and a high environmental resistance, for ensuring reliability maintenance and a long life of a semiconductor device.
  • a lamination film of TiN and Ti is used as the barrier metal and Al—Si—Cu is used as the silicide film.
  • Al—Si may be used as the silicide film.
  • FIG. 2 is a schematic cross sectional view representing other embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention.
  • a silicon oxide film 102 is formed on a silicon semiconductor substrate 101 .
  • Heavy N-type polysilicon thin films 401 , 402 , and 403 are formed on the silicon oxide film 102 .
  • Polysilicon resistors 105 , 106 , and 107 each having a high resistance region 104 sandwiched between heavy P-type impurity regions 103 for making contact with wirings are formed on the heavy N-type polysilicon thin films 401 , 402 , and 403 through a first insulating film 404 made of a silicon oxide film or the like.
  • aluminum wirings 201 , 202 , and 203 are formed on the polysilicon resistors 105 , 106 , and 107 through a second insulating film 405 made of a silicon oxide film or the like, and are connected with the heavy P-type impurity regions 103 of the polysilicon resistors 105 , 106 , and 107 and the heavy N-type polysilicon thin films 401 , 402 , and 403 through contact holes 506 and 606 .
  • a potential of the high resistance region 104 of the polysilicon resistor 105 , a potential of the wiring 202 located over the polysilicon resistor 105 , and a potential of the heavy N-type polysilicon thin film 401 located under the polysilicon resistor 105 are substantially equal to each other.
  • a potential relationship among the polysilicon resistor 106 , the wiring 203 located over the polysilicon resistor 106 , and the heavy N-type polysilicon thin film 402 located under the polysilicon resistor 106 is the same as in the case of the polysilicon resistor 105 .
  • a potential relationship among the polysilicon resistor 107 , the wiring 204 located over the polysilicon resistor 107 , and the heavy N-type polysilicon thin film 403 located under the polysilicon resistor 107 is the same as in the case of the polysilicon resistor 105 .
  • a composite film comprising a silicon nitride film is formed as both or one of the first insulating film 404 and the second insulating film 405 .
  • the number of polysilicon resistors is not limited, and may be set in accordance with voltage dividing numbers required in the bleeder resistance circuit.
  • FIG. 2 it is described that the wirings are made of aluminum. However, the wirings may be made from a lamination film of a barrier metal and a silicide film. In the present invention, a lamination film of TiN and Ti is used as the barrier metal and Al—Si—Cu is used as the silicide film. However, Al—Si may be used as the silicide film.
  • FIG. 3 is a schematic cross sectional view representing one embodiment in which a portion of a bleeder resistance circuit region in a semiconductor device of the present invention is enlarged.
  • connection between an aluminum wiring 203 and a heavy P-type impurity region 103 of a polysilicon resistor 106 and the connection between the aluminum wiring 203 and a heavy N-type polysilicon thin film 402 of the polysilicon resistor 106 , which are desired to be the same potential, are made through one contact hole 701 .
  • an area occupied by a contact hole forming region can be reduced, and thus there is an effect for the reduction in the area of the entire bleeder resistance circuit region.
  • Other portions are provided with the same reference numerals as those of FIG. 2 , and thus the explanation is omitted.
  • FIG. 4 shows a relationship between a displacement (variation) in a resistance value of the polysilicon resistor and the film thickness of the polysilicon resistor in the case where a potential of 0 volt to 5 volts is applied to the aluminum wiring located over the polysilicon resistor having a sheet resistance of 10 kiloohms.
  • the resistance value is hardly influenced by the potential of the wiring.
  • the film thickness of the polysilicon resistor is set to be several tens to 2000 angstroms, the variation in the resistance value can be suppressed within a small range.
  • the film thickness is set to be 100 angstroms or thicker in the case of a current manufacturing method (such as a CVD method). If discontinuous films are formed, the variation in the-resistance value occurs all the more.
  • the bleeder resistance circuit having a small occupation area, a small dividing voltage output error, and high precision can be realized using the polysilicon thin film resistor into which the P-type impurity is introduced.
  • FIG. 5 is a circuit diagram of a bleeder resistance circuit representing one embodiment of a semiconductor device of the present invention.
  • a voltage V applied between a terminal A 11 and a terminal B 12 is divided by respective resistors R 1 and R 2 , and thus a dividing voltage Vo is obtained from a terminal C 13 .
  • the dividing voltage output error can be reduced by changing the impurity introduced into the polysilicon thin film resistor from the N-type to the P-type.
  • a characteristic required for the polysilicon thin film resistor constituting a rudder circuit includes that the dividing voltage output error of the bleeder circuit and an integrated area are small. Generally, if the film thickness of polysilicon is thinned, a variation in the concentration of a low concentration impurity is reduced. Thus, the dividing voltage output error of the bleeder circuit becomes small, and the bleeder circuit with high precision can be manufactured. However, even if the film thickness of polysilicon is thinned, when the length of the polysilicon thin film resistor into which an N-type impurity is introduced (hereinafter referred to as an N-type polysilicon thin film resistor) is made short, since the dividing voltage output error becomes large, it is difficult to reduce the integration area. However, when a P-type polysilicon thin film resistor is used, the length of this resistor can be shortened and the integration area can be reduced. An example will be described with reference to FIG. 3 .
  • FIG. 6 shows a relationship between the lengths of the P-type and N-type polysilicon thin film resistors which have a film thickness of 1000 angstroms and a sheet resistance of 10 kiloohms/square and constitute the bleeder circuit and the dividing voltage output error.
  • the example is shown, in which BF 2 is used as the P-type impurity introduced into the P-type polysilicon thin film resistor and phosphorus is used as the N-type impurity introduced into the N-type polysilicon thin film resistor.
  • FIG. 7 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • An MOS type transistor 134 which has a pair of regions (source region 131 and drain region 132 ) and a polysilicon gate electrode 133 is formed on a silicon semiconductor substrate 101 .
  • a polysilicon thin film resistor 139 which has a high resistance region 138 sandwiched between high concentration impurity regions 137 for making contact with aluminum wirings 136 is formed on a field oxide film 135 .
  • FIG. 7 only one polysilicon thin film resistor is shown for simplification. However, an actual bleeder resistance circuit region is formed by a large number of polysilicon thin film resistors.
  • the film thickness of the polysilicon gate electrode 133 of the MOS type transistor 134 is different from that of the polysilicon thin film resistor 139 into which the P-type impurity is introduced, and the polysilicon thin film resistor 139 is formed thinner.
  • the film thickness of the polysilicon gate electrode 133 is set to be 4000 angstroms, and the film thickness of the polysilicon thin film resistor 139 is set to be 1000 angstroms.
  • the polysilicon gate electrode 133 is required such that a portion thereof acts as a wiring, and thus it is desirable that a sheet resistance value is as low as possible.
  • the polysilicon thin film resistor 139 is required such that a sheet resistance value is as high and accurate as possible and a temperature coefficient of a resistance value is as small as possible.
  • the film thicknesses of the polysilicon gate electrode 133 of the MOS type transistor 134 and the polysilicon thin film resistor 139 are changed in accordance with objects.
  • a method of reducing the temperature coefficient of the resistance value of the polysilicon thin film resistor 139 a method of thinning the film thickness of the polysilicon thin film resistor 139 and introducing the P-type impurity into the polysilicon thin film resistor 139 is simple and easy and has a large effect.
  • the explanation will be made based on experimental data of the present inventor(s).
  • FIG. 8 shows a relationship between the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor for the bleeder resistance circuit with the sheet resistance of 10 kiloohms and the film thickness of the polysilicon thin film resistor.
  • the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor can be markedly reduced by thinning the film thickness of the polysilicon thin film resistor.
  • the TC can be made extremely small to be ⁇ 3000 ppm/° C. or less.
  • FIG. 8 is the example with respect to the polysilicon thin film resistor with the sheet resistance of 10 kiloohms.
  • TC temperature coefficient
  • FIG. 9 shows a relationship between the sheet resistance value and the temperature coefficient (TC) in the case where BF 2 is used as the P-type impurity and phosphorus is used as the N-type impurity with respect to the polysilicon film having a film thickness of 1000 angstroms. It is shown that a variation in the resistance value against the temperature in the P-type polysilicon thin film resistor is smaller than that in the N-type polysilicon thin film resistor.
  • TC temperature coefficient
  • the sheet resistance value is increased, a variation in the concentration of a low concentration impurity becomes larger, and thus the dividing voltage output error becomes larger. Further, the variation in the resistance value against the temperature becomes larger. Thus, it is desirable that the sheet resistance value is 25 kiloohms/square or less. On the other hand, if the sheet resistance value is small, a variation in a grain size cannot be neglected. Thus, it is desirable that the sheet resistance value is 1 kiloohm/square or more. That is, it is desirable that the sheet resistance value of the P-type polysilicon thin film resistor is 1 kiloohm/square to 25 kiloohms/square. At this time, the variation in the resistance value against the temperature of the P-type polysilicon thin film resistor is ⁇ 4000 ppm/° C. or less.
  • FIG. 10 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • a first insulating film 151 made of silicon dioxide or the like is formed on a silicon semiconductor substrate 101 .
  • a polysilicon thin film resistor 155 having a high resistance region 154 sandwiched between low resistance regions 153 with high impurity concentrations for making contact with metal wirings 152 made of aluminum or the like is formed on the flat surface of the first insulating film 151 .
  • a second insulating film 156 made of PSG, BPSG, or the like is formed on the polysilicon thin film resistor 155 into which the P-type impurity is introduced and the first insulating film 151 .
  • Contact holes 157 are provided in the second insulating film 156 to electrically connect the metal wirings 152 with the low resistance regions 153 with high impurity concentrations.
  • the film thickness of the high resistance region 154 in the polysilicon thin film resistor 155 is made to be thinner than that of the low resistance regions 153 .
  • a high sheet resistance value is obtained.
  • the contact holes 157 for connecting the metal wirings 152 with the low resistance regions 153 are formed, the low resistance regions 153 are formed thick such that the penetration of the polysilicon film does not occur.
  • the temperature coefficient of the resistance value can be made extremely small to be ⁇ 3000 ppm/° C. or less.
  • contact holes are generally formed by dry etching for minuteness. When the contact holes 157 are formed in the second insulating film 156 , over etching is performed so as not to leave the etching residue. During this etching, the low resistance regions 153 in the polysilicon thin film resistor 155 are also etched.
  • the penetration of the contact holes 157 is prevented by increasing the film thickness of the low resistance regions 153 .
  • the second insulating film 156 is made of PSG or BPSG and its film thickness is 1 ⁇ m or thinner, when the film thickness of the low resistance regions 153 is about 2000 angstroms or thicker, the penetration can be prevented.
  • FIG. 11 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • the film thickness of a first insulating film 151 is partially different.
  • Low resistance regions 153 of a polysilicon thin film resistor 155 are formed on a region of the first insulating film 151 , in which the film thickness is thin.
  • a high resistance region 154 is formed on a region of the first insulating film 151 , in which the film thickness is thick.
  • the upper surfaces of the low resistance regions 153 and the high resistance region 154 are formed to be substantially the same flat surface.
  • the film thickness of the high resistance region 154 can be formed thin and that of the low resistance regions 153 can be formed thick.
  • Other portions are provided with the same reference numerals as those of FIG. 10 , and thus the explanation is omitted.
  • FIGS. 10 and 11 only one polysilicon thin film resistor is shown for simplification. However, an actual resistance circuit region is formed by a large number of polysilicon thin film resistors. Also, in FIGS. 10 and 11 , it is described that the wirings are made of aluminum. However, the wirings may be made from a lamination film of a barrier metal and a silicide film. In the present invention, for example, TiN and Ti are used as the barrier metal and Al—Si—Cu is used as the silicide film. However, Al—Si may be used as the silicide film.
  • FIG. 12 is a block diagram of one embodiment of a voltage detector using a bleeder resistance circuit according to the present invention.
  • Basic circuit structure components of the voltage detector are a current source 703 , a standard voltage circuit 701 , a bleeder resistance circuit 702 , and an error amplifier 704 . Further, an inverter 706 , N-type transistors 705 and 708 , a P-type transistor 707 and the like are added. Hereinafter, a part of the operation will be simply described.
  • a voltage VDD is a predetermined reset voltage or higher
  • the N-type transistors 705 and 708 are turned OFF and the P-type transistor 707 is turned ON.
  • the voltage VDD is output to an output terminal OUT.
  • the input voltage of the differential amplifier 704 becomes (RB+RC )/(RA+RB+RC) ⁇ VDD.
  • the basic operation is performed such that the standard voltage generated in the standard voltage circuit 701 is compared with the voltage divided by the bleeder resistance circuit 702 in the differential amplifier 704 .
  • the precision of the voltage divided by the bleeder resistance circuit 702 is very important. If the voltage dividing precision of the bleeder resistance circuit 702 is low, the input voltage to the differential amplifier 704 is varied, and thus, the predetermined reset voltage or the predetermined detection voltage can not be obtained.
  • the bleeder resistance circuit according to the present invention the voltage dividing with high precision can be made. Thus, a yield of a product as an IC can be improved and the voltage detector with further high precision can be manufactured.
  • the resistance value of the entire bleeder resistance circuit 702 is made to be a high resistance of megaohm order or higher in many cases.
  • the bleeder resistance circuit is structured by combining very narrow shaped resistors, a wide area is required. In the voltage detector, it is not uncommon for the bleeder resistance circuit to occupy a half or more of the area of the entire IC chip. Since the variation in the resistance value of the respective resistors is small in the bleeder resistance circuit according to the present invention, the constant precision can be obtained by using the resistors with a short shape. Thus, the occupation area of the bleeder resistance circuit can be reduced, and this largely contributes to the reduction in the area of the entire IC chip.
  • FIG. 13 is-a block diagram of one embodiment of a voltage regulator using a bleeder resistance circuit according to the present invention.
  • Basic circuit structure elements of the voltage regulator are a current source 703 , a standard voltage circuit 701 , a bleeder resistance circuit 702 , a differential amplifier 704 , a P-type transistor 710 which acts as a current control transistor, and the like.
  • a current source 703 a current source 703 , a standard voltage circuit 701 , a bleeder resistance circuit 702 , a differential amplifier 704 , a P-type transistor 710 which acts as a current control transistor, and the like.
  • the differential amplifier 704 compares the voltage divided by the bleeder resistance circuit 702 with the standard voltage generated in the standard voltage, circuit 701 , and then supplies, to the P-type transistor 710 , a gate voltage required for obtaining a constant output voltage VOUT which is not influenced by a change in an input voltage VIN or a temperature.
  • the basic operation is performed such that the standard voltage generated in the standard voltage circuit 701 is compared with the voltage divided by the bleeder resistance circuit 702 in the differential amplifier 704 .
  • the precision of the voltage divided by the bleeder resistance circuit 702 is very important.
  • the voltage dividing precision of the bleeder resistance circuit 702 is low, the input voltage to the differential amplifier 704 is varied, and thus, the predetermined output voltage VOUT can not be obtained.
  • the bleeder resistance circuit according to the present invention is used, the voltage dividing with high precision can be made. Thus, the yield of a product as an IC can be improved and the voltage regulator with higher precision can be manufactured.
  • FIGS. 14A to 14 F and FIGS. 15A to 15 F Next, a method of manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 14A to 14 F and FIGS. 15A to 15 F.
  • FIGS. 14A to 14 F are schematic cross sectional views representing one embodiment of a semiconductor device manufacturing method according to the present invention.
  • FIG. 14A after a light N-type silicon substrate 801 is prepared and a P-type impurity is selectively introduced thereinto by an ion implantation method, a heat treatment is performed to form separated and independent P well regions 802 .
  • the surface concentration of the P well regions 802 is about 1E16 atoms/cm 3 .
  • a field oxide film 803 having a thickness of about 8000 angstroms is selectively formed by the LOCOS method.
  • a channel dope for a predetermined threshold control is performed.
  • a polysilicon layer 805 is deposited with a thickness of about 4000 angstroms by a CVD method, and an impurity such as phosphorus is introduced thereinto by an ion implantation method so as to obtain a predetermined sheet resistance value.
  • an impurity such as BF 2 is selectively introduced by an ion implantation method such that a predetermined region has a predetermined sheet resistance value.
  • An impurity such as phosphorus with a high concentration is selectively introduced such that a predetermined region of the polysilicon layer 805 has a low resistance.
  • the polysilicon layer 805 is processed by etching into a predetermined shape to form a gate electrode 806 with a low resistance and polysilicon resistors 807 having high resistance regions 809 .
  • the respective polysilicon resistors 807 are located to match with the P well regions 802 formed in the previous process.
  • a P-type impurity such as BF 2 is introduced by an ion implantation method to form a source region 810 and a drain region 811 of a P-type transistor and low resistance regions 808 of the polysilicon resistors 807 .
  • a P-type impurity such as BF 2 is introduced by an ion implantation method to form a source region 810 and a drain region 811 of a P-type transistor and low resistance regions 808 of the polysilicon resistors 807 .
  • an N-type impurity such as phosphorus is introduced by an ion implantation method to form the source region and the drain region of the transistor.
  • an intermediate insulating film 812 made of PSG, NSG, or the like is deposited at about 8000 angstroms, and subsequently contact holes 813 are formed therein.
  • an aluminum layer 814 having a thickness of about 1 ⁇ m as a wiring is deposited by a sputtering method, and then patterned into a predetermined shape.
  • the aluminum layers 814 connected with the low resistance regions 808 in the ends of the respective polysilicon resistors 807 are arranged on the respective polysilicon resistors 807 .
  • the aluminum layers 814 are connected with the P well regions 802 located under the respective polysilicon resistors 807 through the field oxide film 803 .
  • a protective film 815 made of a silicon nitride film and having a thickness of about 8000 angstroms is formed.
  • a portion of the protective film 815 is removed to provide a region of a bonding pad and the like.
  • FIGS. 15A to 15 F are schematic cross sectional views representing other embodiment of a semiconductor device manufacturing method according to the present invention.
  • FIG. 15A after a light N-type silicon substrate 801 is prepared and a P-type impurity is selectively introduced thereinto by an ion implantation method, a heat treatment is performed to form a separated and independent P well region 802 .
  • the surface concentration of the P well region 802 is about 1E16 atoms/cm 3 .
  • the P well region 802 are not necessarily formed in a region in which polysilicon resistors are to be formed by a later process.
  • a field oxide film 803 having a thickness of about 8000 angstroms is selectively formed by the. LOCOS method.
  • a channel dope for a predetermined threshold control is performed. Further, a polysilicon layer 805 is deposited with a thickness of about 4000 angstroms by a CVD method. Then, the impurity such as phosphorus with a high concentration is introduced such that the polysilicon layer 805 has a low resistance.
  • the polysilicon layer 805 is processed by etching into a predetermined shape to form a gate electrode 806 with a low resistance and low resistance polysilicon layers 901 .
  • a first insulating film 902 is formed by a thermal oxidation method, a CVD method, or the like.
  • the first insulating film 902 is made of a multilayer film including a silicon oxide film or a silicon nitride film.
  • polysilicon is deposited with a thickness of 1000 angstroms, and then the impurity such as BF 2 is introduced by an ion implantation method so as to obtain a predetermined sheet resistance. Subsequently, after patterning into a predetermined shape, the P-type impurity such as BF 2 is introduced by an ion implantation method to simultaneously form low resistance regions 808 and a source region 810 and a drain region 811 of a P-type transistor. Thus, polysilicon resistors 807 each having a high resistance region 809 sandwiched between the low resistance regions 808 can be formed.
  • the respective polysilicon resistors 807 are formed on the independent low resistance polysilicon layers 901 through the first insulating film 902 .
  • the N-type transistor region is not shown, as in the case of the P-type transistor, the N-type impurity such as phosphorus is introduced by an ion implantation method to form the source region and the drain region of the transistor.
  • an intermediate insulating film 812 made of PSG, NSG, or the like is deposited at about 8000 angstroms, and subsequently contact holes 813 are formed therein.
  • common contact holes 903 are formed such that the low resistance regions 808 of the polysilicon resistors 807 and the low resistance polysilicon layers 901 can be connected with each other.
  • a lamination film of Ti/TiN as barrier metals is deposited at about 1500 angstroms by a sputtering method.
  • an aluminum layer 814 having a thickness of about 1 ⁇ m as a wiring is deposited and then patterned into a predetermined shape.
  • the aluminum layers 814 for connecting the low resistance regions 808 located in the ends of the respective polysilicon resistors 807 with the low resistance polysilicon layers 901 located under the polysilicon resistors 807 through the first insulating film 902 through the common contact holes 903 are arranged on the respective polysilicon resistors 807 .
  • a protective film 815 made of a silicon nitride film and having a thickness of about 8000 angstroms is formed.
  • a portion of the protective film 815 is removed to provide a region of a bonding pad and the like.
  • the resistance values of the polysilicon resistors are accurately kept in the bleeder resistance circuit.
  • the bleeder resistance circuit having an accurate voltage dividing ratio and high precision can be realized.
  • the film thickness of the polysilicon resistors is 2000 angstroms or thinner and the impurity introduced into the polysilicon resistors is made to be the P-type, the variation in the resistance values of the polysilicon resistors can be reduced and the bleeder resistance circuit having higher precision can be realized.
  • the temperature coefficient of the resistance value can be reduced.
  • the film thickness is 1000 angstroms or thinner, the extremely small temperature coefficient of 3000 ppm/° C. or less can be obtained with the sheet resistance value of about 10 kiloohms/square. Therefore, there is an effect that the bleeder resistance circuit in which a wide temperature range and high voltage dividing precision can be obtained can be formed with an occupation area smaller than that in case of a conventional method.
  • the voltage dividing can be made with high precision.
  • the yield of the product as the IC can be improved and the product with higher precision can be manufactured.
  • the resistance value of the entire bleeder resistance circuit is made to be a high resistance of megaohm order or higher in many cases.
  • the bleeder resistance circuit is structured by combining very narrow shaped resistors, and thus, a wide area is required. In the voltage detector, it is not uncommon for the bleeder resistance circuit to occupy a half or more of the area of the entire IC chip.
  • the constant precision can be obtained by using the resistors with a short shape.
  • the occupation area of the bleeder resistance circuit can be reduced, and this largely contributes to the reduction in the area of the entire IC chip.

Abstract

There are provided a bleeder resistance circuit which has an accurate voltage dividing ratio, a small temperature coefficient of a resistance value, and high precision, and a semiconductor device using such a bleeder resistance circuit, which has high precision and a small temperature coefficient, such as a voltage detector or a voltage regulator. In the bleeder resistance circuit using a thin film resistor, conductors located over and under the thin film resistor are made to have substantially the same potential as the thin film resistor. Further, when polysilicon is used for the thin film resistor, the film thickness of the polysilicon thin film resistor is thinned, and an impurity introduced into the polysilicon thin film resistor is made to be a P-type. Thus, a variation in a resistance value is suppressed, and a temperature dependency of the resistance value is made small.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device, in particular, a bleeder resistance circuit using a thin film resistor, a semiconductor device having the bleeder resistance circuit, and a method of manufacturing the same.
  • 2. Description of the Related Art
  • Conventionally, a bleeder resistance circuit using a thin film resistor is used in many cases. However, attention is not paid on a potential of a wiring located on the thin film resistor and a potential of a conductor located under the thin film resistor. Thus, the circuits with different arrangements are known. In addition, polysilicon is often used for a thin film resistor material. In the case where an MOS type transistor is combined on a single chip, it is known that the polysilicon with the same film thickness as a gate electrode of the MOS type transistor is used.
  • However, there is a problem in that a voltage dividing ratio often becomes inaccurate in the conventional bleeder resistance circuit using the thin film resistor. Also, in the case of the conventional bleeder resistance circuit in which the MOS type transistor is combined on a single chip, a change in a resistance value (temperature coefficient of the resistance value) by the temperature of a polysilicon thin film resistor is large in a region with a high sheet resistance value of 1 kiloohm/square or more. Thus, in order to obtain high voltage dividing precision over a wide temperature range, a low sheet resistance value must be set. Therefore, there is a problem in that an area occupied by the bleeder resistance circuit region in which a high resistance value of megaohm order or more is required is expanded as a whole.
  • SUMMARY OF THE INVENTION
  • The present invention has been made to solve the above problems, and an object of the present invention is therefore to provide a bleeder resistance circuit which has an accurate voltage dividing ratio, a small temperature coefficient of a resistance value, and high precision, and a semiconductor device using such a bleeder resistance circuit, which has high precision and a small temperature coefficient, such as a voltage detector or a voltage regulator.
  • To achieve the above object, first means used in a semiconductor device of the present invention is characterized in that, in a bleeder resistance circuit using a thin film resistor, the potential of a wiring located over the thin film resistor and the potential of a conductor located under the thin film resistor are made to be substantially the same as that of the thin film resistor. This arises from the fact that became evident that the resistance value of the thin film resistor is changed by the potentials of the wiring located thereover and the conductor located thereunder in the bleeder resistance circuit using the thin film resistor (in particular, a polysilicon thin film resistor) according to experiments of the present inventor(s).
  • To achieve the above object, second means used in a semiconductor device of the present invention is characterized in that, the film thickness of the polysilicon thin film resistor in the bleeder resistance circuit is made to be thinner than that of a gate electrode of an MOS type transistor combined on a single chip. This arises from the fact that became evident that, as the film thickness of the thin film resistor (in particular, a polysilicon thin film resistor) is thinner, the variation in the resistance value becomes smaller, and the temperature dependency of the resistance value becomes smaller even in the case of the same sheet resistance according to experiments of the present inventor(s).
  • To achieve the above object, third means used in a semiconductor device of the present invention is characterized in that an impurity introduced into the polysilicon thin film resistor in the bleeder resistance circuit is made to be a P-type. This arises from the fact that became evident that, if the impurity introduced into the thin film resistor is of the P-type, the variation in the resistance value becomes smaller, and the temperature dependency of the resistance value becomes smaller even in the case of the same sheet resistance according to experiments of the present inventor(s).
  • According to the semiconductor device of the present invention, in the bleeder resistance circuit using the thin film resistor, the potential of the wiring located over the thin film resistor and the potential of the conductor located under the thin film resistor are made to be substantially the same as that of the thin film resistor. Thus, the bleeder resistance circuit having an accurate voltage dividing ratio and high precision can be realized. In particular, when polysilicon is used for the thin film resistor, according to the present invention, the film thickness of the polysilicon thin film resistor in the bleeder resistance circuit is made to be thin, and further the variation in the resistance value can be suppressed by introducing the P-type impurity into the polysilicon. Further, the temperature dependency of the resistance value can be reduced.
  • Therefore, a semiconductor device using such a bleeder resistance circuit, having high precision and a small temperature coefficient, such as a voltage detector or a voltage regulator can be obtained.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
  • FIG. 1 is a schematic cross sectional view representing one embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention;
  • FIG. 2 is a schematic cross sectional view representing other embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention;
  • FIG. 3 is a schematic cross sectional view representing one embodiment in which a portion of a bleeder resistance circuit region in a semiconductor device of the present invention is enlarged;
  • FIG. 4 shows a relationship between a displacement in a resistance value of a polysilicon resistor and the film thickness of the polysilicon resistor in the case where a potential of 0 volt to 5 volts is applied to an aluminum wiring located over the polysilicon resistor having a sheet resistance of 10 kiloohms;
  • FIG. 5 is a circuit diagram of a bleeder resistance circuit representing one embodiment of a semiconductor device of the present invention;
  • FIG. 6 shows a relationship between the lengths of P-type and N-type polysilicon thin film resistors which have a film thickness of 1000 angstroms and a sheet resistance of 10 kiloohms/square and constitute the bleeder circuit and the dividing voltage output error;
  • FIG. 7 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention;
  • FIG. 8 shows a relationship between the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor for the bleeder resistance circuit with the sheet resistance of 10 kiloohms and the film thickness of the polysilicon thin film resistor;
  • FIG. 9 shows a relationship between the sheet resistance value and the temperature coefficient (TC) in the case where BF2 is used as a P-type impurity and phosphorus is used as an N-type impurity with respect to the polysilicon film having a film thickness of 1000 angstroms;
  • FIG. 10 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention;
  • FIG. 11 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention;
  • FIG. 12 is a block diagram of one embodiment of a voltage detector using a bleeder resistance circuit according to the present invention;
  • FIG. 13 is a block diagram of one embodiment of a voltage regulator using a bleeder resistance circuit according to the present invention;
  • FIGS. 14A to 14F are schematic cross sectional views representing one embodiment of a semiconductor device manufacturing method according to the present invention; and
  • FIGS. 15A to 15F are schematic cross sectional views representing other embodiment of a semiconductor device manufacturing method according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A preferred embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross sectional view representing one embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention.
  • Separated P- type well regions 301, 302, and 303 are formed in a silicon semiconductor substrate 101 having a lightly N-type impurity concentration. It is preferred that an impurity concentration of the well regions 301, 302, and 303 is about 1E16 atoms/cm3 or more in the surface of the silicon semiconductor substrate 101 from the viewpoint of preventing the depletion of the silicon semiconductor substrate 101. Thus, the well regions may be provided with a heavy impurity concentration. A silicon oxide film 102 is formed on the silicon semiconductor substrate 101. Polysilicon resistors 105, 106, and 107 each having a high resistance region 104 sandwiched between heavy P-type impurity regions 103 for making contact with wirings are formed on the silicon oxide film 102. Further, wirings 201, 202, 203, and 204 made of aluminum are connected with the heavy P-type impurity regions 103.
  • Here, although not shown in the figure, the well regions 301, 302, and 303 are electrically connected with the wirings 202, 203, and 204, respectively, and thus these are made to have the same potential. Therefore, a potential of the high resistance region 104 of the polysilicon resistor 105, a potential of the wiring 202 located over the polysilicon resistor 105, and a potential of the well region 301 located under the polysilicon resistor 105 are substantially equal to each other. A potential relationship among the polysilicon resistor 106, the wiring 203 located over the polysilicon resistor 106, and the well region 302 located under the polysilicon resistor 106 is the same as in the case of the polysilicon resistor 105. Also, a potential relationship among the polysilicon resistor 107, the wiring 204 located over the polysilicon resistor 107, and the well region 303 located under the polysilicon resistor 107 is the same as in the case of the polysilicon resistor 105.
  • As described above, when the potential of the respective polysilicon resistors is equal to those of the wirings and the well regions, which are located over and under the respective polysilicon resistors, resistance values of the polysilicon resistors 105, 106, and 107 are accurately kept. Note that, in the case where the silicon oxide film 102 is formed thin, instead of this film, a composite film comprising a silicon nitride film is used. Thus, a high insulation can be kept between the silicon semiconductor substrate 101 and the polysilicon resistors 105, 106, and 107. A conductivity type of the silicon semiconductor substrate 101 may be a P-type. In this case, the well regions 301, 302, and 303 are set to be an N-type. The number of polysilicon resistors is not limited, and may be set in accordance with voltage dividing numbers required in the bleeder resistance circuit. Although not shown in the figure, in order to take first priority over a high integration of the bleeder resistance circuit, when it is difficult to divide and locate the well regions for respective resistors, the well regions 301, 302, and 303 may be combined for several resistors or formed as a single unit without dividing. In this case, voltage dividing precision is reduced somewhat, but this is next best following the embodiment of FIG. 1. In FIG. 1, the case where the silicon semiconductor substrate 101 is formed as the N-type and the well regions 301, 302, and 303 are formed as the P-type is described. However, the silicon semiconductor substrate 101 may be formed as the P-type and the well regions 301, 302, and 303 may be formed as the N-type. Further, in FIG. 1, it is described that the wirings are made of aluminum. However, the wirings may be made from a lamination film of a barrier metal and a silicide film. Here, the barrier metal refers to a protective film that is formed under a wiring and has a high corrosion resistance and a high environmental resistance, for ensuring reliability maintenance and a long life of a semiconductor device. In the present invention, a lamination film of TiN and Ti is used as the barrier metal and Al—Si—Cu is used as the silicide film. Note that Al—Si may be used as the silicide film.
  • FIG. 2 is a schematic cross sectional view representing other embodiment of a bleeder resistance circuit region in a semiconductor device of the present invention. A silicon oxide film 102 is formed on a silicon semiconductor substrate 101. Heavy N-type polysilicon thin films 401, 402, and 403 are formed on the silicon oxide film 102. Polysilicon resistors 105, 106, and 107 each having a high resistance region 104 sandwiched between heavy P-type impurity regions 103 for making contact with wirings are formed on the heavy N-type polysilicon thin films 401, 402, and 403 through a first insulating film 404 made of a silicon oxide film or the like. Also, aluminum wirings 201, 202, and 203 are formed on the polysilicon resistors 105, 106, and 107 through a second insulating film 405 made of a silicon oxide film or the like, and are connected with the heavy P-type impurity regions 103 of the polysilicon resistors 105, 106, and 107 and the heavy N-type polysilicon thin films 401, 402, and 403 through contact holes 506 and 606. Thus, a potential of the high resistance region 104 of the polysilicon resistor 105, a potential of the wiring 202 located over the polysilicon resistor 105, and a potential of the heavy N-type polysilicon thin film 401 located under the polysilicon resistor 105 are substantially equal to each other. A potential relationship among the polysilicon resistor 106, the wiring 203 located over the polysilicon resistor 106, and the heavy N-type polysilicon thin film 402 located under the polysilicon resistor 106 is the same as in the case of the polysilicon resistor 105. Also, a potential relationship among the polysilicon resistor 107, the wiring 204 located over the polysilicon resistor 107, and the heavy N-type polysilicon thin film 403 located under the polysilicon resistor 107 is the same as in the case of the polysilicon resistor 105.
  • As described above, when the potential of the respective polysilicon resistors is equal to those of the wirings and the heavy N-type polysilicon thin films, which are located over and under the respective polysilicon resistors, resistance values of the polysilicon resistors 105, 106, and 107 are accurately kept. Note that, although not shown in the figure, in the case where a MOS type transistor is formed together with the bleeder resistance circuit on a single chip, when a gate electrode is formed using the same film as for the heavy N-type polysilicon thin films 401, 402, and 403, a manufacturing process is simplified. Further, as described in the embodiment of FIG. 1, from the viewpoint of reliability, it is effective that a composite film comprising a silicon nitride film is formed as both or one of the first insulating film 404 and the second insulating film 405. The number of polysilicon resistors is not limited, and may be set in accordance with voltage dividing numbers required in the bleeder resistance circuit. In FIG. 2, it is described that the wirings are made of aluminum. However, the wirings may be made from a lamination film of a barrier metal and a silicide film. In the present invention, a lamination film of TiN and Ti is used as the barrier metal and Al—Si—Cu is used as the silicide film. However, Al—Si may be used as the silicide film.
  • FIG. 3 is a schematic cross sectional view representing one embodiment in which a portion of a bleeder resistance circuit region in a semiconductor device of the present invention is enlarged.
  • The following point is different from the embodiment shown in FIG. 2. That is, the connection between an aluminum wiring 203 and a heavy P-type impurity region 103 of a polysilicon resistor 106, and the connection between the aluminum wiring 203 and a heavy N-type polysilicon thin film 402 of the polysilicon resistor 106, which are desired to be the same potential, are made through one contact hole 701. By this, an area occupied by a contact hole forming region can be reduced, and thus there is an effect for the reduction in the area of the entire bleeder resistance circuit region. Other portions are provided with the same reference numerals as those of FIG. 2, and thus the explanation is omitted.
  • FIG. 4 shows a relationship between a displacement (variation) in a resistance value of the polysilicon resistor and the film thickness of the polysilicon resistor in the case where a potential of 0 volt to 5 volts is applied to the aluminum wiring located over the polysilicon resistor having a sheet resistance of 10 kiloohms.
  • As apparent from FIG. 4, as the film thickness of the polysilicon resistor is thinner, the resistance value is hardly influenced by the potential of the wiring. In particular, when the film thickness of the polysilicon resistor is set to be several tens to 2000 angstroms, the variation in the resistance value can be suppressed within a small range. At this time, in order to form the polysilicon resistor with uniform continuous films, it is desirable that the film thickness is set to be 100 angstroms or thicker in the case of a current manufacturing method (such as a CVD method). If discontinuous films are formed, the variation in the-resistance value occurs all the more.
  • In the semiconductor device of the present invention, the bleeder resistance circuit having a small occupation area, a small dividing voltage output error, and high precision can be realized using the polysilicon thin film resistor into which the P-type impurity is introduced. Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
  • FIG. 5 is a circuit diagram of a bleeder resistance circuit representing one embodiment of a semiconductor device of the present invention.
  • A voltage V applied between a terminal A11 and a terminal B12 is divided by respective resistors R1 and R2, and thus a dividing voltage Vo is obtained from a terminal C13. This dividing voltage Vo is represented by the following equation:
    Vo=(R 2/(R 1+R 2))×V   (1)
  • Assume that the dividing voltage Vo by the equation (1) is a theoretical value, and a difference between this theoretical value and a measurement value is a dividing voltage output error. The dividing voltage output error is represented by the following equation:
    Dividing voltage output error=((|theoretical value Vo−measurement value Vo)/theoretical value Vo)×100   (2)
  • Here, it will be described based on data that the dividing voltage output error can be reduced by changing the impurity introduced into the polysilicon thin film resistor from the N-type to the P-type.
  • A characteristic required for the polysilicon thin film resistor constituting a rudder circuit includes that the dividing voltage output error of the bleeder circuit and an integrated area are small. Generally, if the film thickness of polysilicon is thinned, a variation in the concentration of a low concentration impurity is reduced. Thus, the dividing voltage output error of the bleeder circuit becomes small, and the bleeder circuit with high precision can be manufactured. However, even if the film thickness of polysilicon is thinned, when the length of the polysilicon thin film resistor into which an N-type impurity is introduced (hereinafter referred to as an N-type polysilicon thin film resistor) is made short, since the dividing voltage output error becomes large, it is difficult to reduce the integration area. However, when a P-type polysilicon thin film resistor is used, the length of this resistor can be shortened and the integration area can be reduced. An example will be described with reference to FIG. 3.
  • FIG. 6 shows a relationship between the lengths of the P-type and N-type polysilicon thin film resistors which have a film thickness of 1000 angstroms and a sheet resistance of 10 kiloohms/square and constitute the bleeder circuit and the dividing voltage output error. Here, the example is shown, in which BF2 is used as the P-type impurity introduced into the P-type polysilicon thin film resistor and phosphorus is used as the N-type impurity introduced into the N-type polysilicon thin film resistor.
  • From FIG. 6, even if the film thickness of the polysilicon in the bleeder circuit composed of the N-type polysilicon thin film resistor is thinned to be 1000 angstroms, when the length of the polysilicon thin film resistor is 30 μm or shorter, the dividing voltage output error of 0.5% or less cannot be obtained. However, in the case of the bleeder circuit composed of the P-type polysilicon thin film resistor, even if the length of the polysilicon thin film resistor is 10 μm, the dividing voltage output error of 0.5% or less can be obtained.
  • FIG. 7 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • An MOS type transistor 134 which has a pair of regions (source region 131 and drain region 132) and a polysilicon gate electrode 133 is formed on a silicon semiconductor substrate 101. On the other hand, a polysilicon thin film resistor 139 which has a high resistance region 138 sandwiched between high concentration impurity regions 137 for making contact with aluminum wirings 136 is formed on a field oxide film 135. In FIG. 7, only one polysilicon thin film resistor is shown for simplification. However, an actual bleeder resistance circuit region is formed by a large number of polysilicon thin film resistors.
  • In FIG. 7, the film thickness of the polysilicon gate electrode 133 of the MOS type transistor 134 is different from that of the polysilicon thin film resistor 139 into which the P-type impurity is introduced, and the polysilicon thin film resistor 139 is formed thinner. For example, the film thickness of the polysilicon gate electrode 133 is set to be 4000 angstroms, and the film thickness of the polysilicon thin film resistor 139 is set to be 1000 angstroms. The polysilicon gate electrode 133 is required such that a portion thereof acts as a wiring, and thus it is desirable that a sheet resistance value is as low as possible. In contrast to this, the polysilicon thin film resistor 139 is required such that a sheet resistance value is as high and accurate as possible and a temperature coefficient of a resistance value is as small as possible. Thus, it is natural and effective that the film thicknesses of the polysilicon gate electrode 133 of the MOS type transistor 134 and the polysilicon thin film resistor 139 are changed in accordance with objects. Here, as a method of reducing the temperature coefficient of the resistance value of the polysilicon thin film resistor 139, a method of thinning the film thickness of the polysilicon thin film resistor 139 and introducing the P-type impurity into the polysilicon thin film resistor 139 is simple and easy and has a large effect. Hereinafter, the explanation will be made based on experimental data of the present inventor(s).
  • FIG. 8 shows a relationship between the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor for the bleeder resistance circuit with the sheet resistance of 10 kiloohms and the film thickness of the polysilicon thin film resistor.
  • From FIG. 8, it is apparent that the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor can be markedly reduced by thinning the film thickness of the polysilicon thin film resistor. In particular, when the film thickness is 1000 angstroms or thinner, the TC can be made extremely small to be −3000 ppm/° C. or less.
  • FIG. 8 is the example with respect to the polysilicon thin film resistor with the sheet resistance of 10 kiloohms. However, according to experiments of the present inventor(s), it becomes clear that the temperature coefficient (TC) of the resistance value of the polysilicon thin film resistor can be reduced in at least a sheet resistance range of 1 to 500 kiloohms by thinning the film thickness of the polysilicon thin film resistor.
  • FIG. 9 shows a relationship between the sheet resistance value and the temperature coefficient (TC) in the case where BF2 is used as the P-type impurity and phosphorus is used as the N-type impurity with respect to the polysilicon film having a film thickness of 1000 angstroms. It is shown that a variation in the resistance value against the temperature in the P-type polysilicon thin film resistor is smaller than that in the N-type polysilicon thin film resistor.
  • If the sheet resistance value is increased, a variation in the concentration of a low concentration impurity becomes larger, and thus the dividing voltage output error becomes larger. Further, the variation in the resistance value against the temperature becomes larger. Thus, it is desirable that the sheet resistance value is 25 kiloohms/square or less. On the other hand, if the sheet resistance value is small, a variation in a grain size cannot be neglected. Thus, it is desirable that the sheet resistance value is 1 kiloohm/square or more. That is, it is desirable that the sheet resistance value of the P-type polysilicon thin film resistor is 1 kiloohm/square to 25 kiloohms/square. At this time, the variation in the resistance value against the temperature of the P-type polysilicon thin film resistor is −4000 ppm/° C. or less.
  • FIG. 10 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • A first insulating film 151 made of silicon dioxide or the like is formed on a silicon semiconductor substrate 101. A polysilicon thin film resistor 155 having a high resistance region 154 sandwiched between low resistance regions 153 with high impurity concentrations for making contact with metal wirings 152 made of aluminum or the like is formed on the flat surface of the first insulating film 151. A second insulating film 156 made of PSG, BPSG, or the like is formed on the polysilicon thin film resistor 155 into which the P-type impurity is introduced and the first insulating film 151. Contact holes 157 are provided in the second insulating film 156 to electrically connect the metal wirings 152 with the low resistance regions 153 with high impurity concentrations. Here, the film thickness of the high resistance region 154 in the polysilicon thin film resistor 155 is made to be thinner than that of the low resistance regions 153. By thinning the film thickness of the high resistance region 154, a high sheet resistance value is obtained. Thus, while an occupation area is reduced, a small temperature coefficient is kept. On the other hand, when the contact holes 157 for connecting the metal wirings 152 with the low resistance regions 153 are formed, the low resistance regions 153 are formed thick such that the penetration of the polysilicon film does not occur. According to experiments of the present inventor(s), in the case where the sheet resistance value is about 10 kiloohms/square, when the film thickness of the high resistance region 154 is 1000 angstroms or thinner, it becomes clear that the temperature coefficient of the resistance value can be made extremely small to be −3000 ppm/° C. or less. Also, in a recent IC process, contact holes are generally formed by dry etching for minuteness. When the contact holes 157 are formed in the second insulating film 156, over etching is performed so as not to leave the etching residue. During this etching, the low resistance regions 153 in the polysilicon thin film resistor 155 are also etched. Thus, the penetration of the contact holes 157 is prevented by increasing the film thickness of the low resistance regions 153. In the case where the second insulating film 156 is made of PSG or BPSG and its film thickness is 1 μm or thinner, when the film thickness of the low resistance regions 153 is about 2000 angstroms or thicker, the penetration can be prevented.
  • FIG. 11 is a schematic cross sectional view representing other embodiment of a semiconductor device of the present invention.
  • The following point is different from the embodiment shown in FIG. 9. That is, the film thickness of a first insulating film 151 is partially different. Low resistance regions 153 of a polysilicon thin film resistor 155 are formed on a region of the first insulating film 151, in which the film thickness is thin. Further, a high resistance region 154 is formed on a region of the first insulating film 151, in which the film thickness is thick. The upper surfaces of the low resistance regions 153 and the high resistance region 154 are formed to be substantially the same flat surface. By this, the film thickness of the high resistance region 154 can be formed thin and that of the low resistance regions 153 can be formed thick. Thus, an effect described in the embodiment of FIG. 10 is obtained. Other portions are provided with the same reference numerals as those of FIG. 10, and thus the explanation is omitted.
  • In FIGS. 10 and 11, only one polysilicon thin film resistor is shown for simplification. However, an actual resistance circuit region is formed by a large number of polysilicon thin film resistors. Also, in FIGS. 10 and 11, it is described that the wirings are made of aluminum. However, the wirings may be made from a lamination film of a barrier metal and a silicide film. In the present invention, for example, TiN and Ti are used as the barrier metal and Al—Si—Cu is used as the silicide film. However, Al—Si may be used as the silicide film.
  • FIG. 12 is a block diagram of one embodiment of a voltage detector using a bleeder resistance circuit according to the present invention.
  • For simplification, a simple circuit is shown. However, in the case of an actual product, functions may be added if necessary.
  • Basic circuit structure components of the voltage detector are a current source 703, a standard voltage circuit 701, a bleeder resistance circuit 702, and an error amplifier 704. Further, an inverter 706, N- type transistors 705 and 708, a P-type transistor 707 and the like are added. Hereinafter, a part of the operation will be simply described.
  • When a voltage VDD is a predetermined reset voltage or higher, the N- type transistors 705 and 708 are turned OFF and the P-type transistor 707 is turned ON. Thus, the voltage VDD is output to an output terminal OUT.
  • At this time, the input voltage of the differential amplifier 704 becomes (RB+RC )/(RA+RB+RC)×VDD.
  • When the voltage VDD decreases and then becomes a detection voltage or lower, a voltage VSS is output to the output terminal OUT. At this time, the N-type transistor 705 is turned ON and the input voltage of the differential amplifier 704 becomes RB/(RA+RB)×VDD.
  • As described above, the basic operation is performed such that the standard voltage generated in the standard voltage circuit 701 is compared with the voltage divided by the bleeder resistance circuit 702 in the differential amplifier 704. Thus, the precision of the voltage divided by the bleeder resistance circuit 702 is very important. If the voltage dividing precision of the bleeder resistance circuit 702 is low, the input voltage to the differential amplifier 704 is varied, and thus, the predetermined reset voltage or the predetermined detection voltage can not be obtained. When the bleeder resistance circuit according to the present invention is used, the voltage dividing with high precision can be made. Thus, a yield of a product as an IC can be improved and the voltage detector with further high precision can be manufactured. Also, in order to suppress a consumption current of the IC, the resistance value of the entire bleeder resistance circuit 702 is made to be a high resistance of megaohm order or higher in many cases. At this time, in order to kept constant precision, since the bleeder resistance circuit is structured by combining very narrow shaped resistors, a wide area is required. In the voltage detector, it is not uncommon for the bleeder resistance circuit to occupy a half or more of the area of the entire IC chip. Since the variation in the resistance value of the respective resistors is small in the bleeder resistance circuit according to the present invention, the constant precision can be obtained by using the resistors with a short shape. Thus, the occupation area of the bleeder resistance circuit can be reduced, and this largely contributes to the reduction in the area of the entire IC chip.
  • FIG. 13 is-a block diagram of one embodiment of a voltage regulator using a bleeder resistance circuit according to the present invention.
  • For simplification, a simple circuit is shown. However, in the case of an actual product, functions may be added if necessary.
  • Basic circuit structure elements of the voltage regulator are a current source 703, a standard voltage circuit 701, a bleeder resistance circuit 702, a differential amplifier 704, a P-type transistor 710 which acts as a current control transistor, and the like. Hereinafter, a part of the operation will be simply described.
  • The differential amplifier 704 compares the voltage divided by the bleeder resistance circuit 702 with the standard voltage generated in the standard voltage, circuit 701, and then supplies, to the P-type transistor 710, a gate voltage required for obtaining a constant output voltage VOUT which is not influenced by a change in an input voltage VIN or a temperature. In the voltage regulator, as the case of the voltage detector described in FIG. 12, the basic operation is performed such that the standard voltage generated in the standard voltage circuit 701 is compared with the voltage divided by the bleeder resistance circuit 702 in the differential amplifier 704. Thus, the precision of the voltage divided by the bleeder resistance circuit 702 is very important. If the voltage dividing precision of the bleeder resistance circuit 702 is low, the input voltage to the differential amplifier 704 is varied, and thus, the predetermined output voltage VOUT can not be obtained. When the bleeder resistance circuit according to the present invention is used, the voltage dividing with high precision can be made. Thus, the yield of a product as an IC can be improved and the voltage regulator with higher precision can be manufactured.
  • Next, a method of manufacturing a semiconductor device according to the present invention will be described with reference to FIGS. 14A to 14F and FIGS. 15A to 15F.
  • FIGS. 14A to 14F are schematic cross sectional views representing one embodiment of a semiconductor device manufacturing method according to the present invention.
  • In FIG. 14A, after a light N-type silicon substrate 801 is prepared and a P-type impurity is selectively introduced thereinto by an ion implantation method, a heat treatment is performed to form separated and independent P well regions 802. The surface concentration of the P well regions 802 is about 1E16 atoms/cm3. Then, a field oxide film 803 having a thickness of about 8000 angstroms is selectively formed by the LOCOS method.
  • Next, as shown in FIG. 14B, after a gate oxide film 804 is formed, a channel dope for a predetermined threshold control is performed. Also, a polysilicon layer 805 is deposited with a thickness of about 4000 angstroms by a CVD method, and an impurity such as phosphorus is introduced thereinto by an ion implantation method so as to obtain a predetermined sheet resistance value.
  • Next, as shown in FIG. 14C, an impurity such as BF2 is selectively introduced by an ion implantation method such that a predetermined region has a predetermined sheet resistance value. An impurity such as phosphorus with a high concentration is selectively introduced such that a predetermined region of the polysilicon layer 805 has a low resistance. Then, the polysilicon layer 805 is processed by etching into a predetermined shape to form a gate electrode 806 with a low resistance and polysilicon resistors 807 having high resistance regions 809. The respective polysilicon resistors 807 are located to match with the P well regions 802 formed in the previous process. Then, a P-type impurity such as BF2 is introduced by an ion implantation method to form a source region 810 and a drain region 811 of a P-type transistor and low resistance regions 808 of the polysilicon resistors 807. Here, although the N-type transistor is not shown, as in the case of the P-type transistor, an N-type impurity such as phosphorus is introduced by an ion implantation method to form the source region and the drain region of the transistor.
  • Next, as shown in FIG. 14D, an intermediate insulating film 812 made of PSG, NSG, or the like is deposited at about 8000 angstroms, and subsequently contact holes 813 are formed therein.
  • Next, as shown in FIG. 14E, an aluminum layer 814 having a thickness of about 1 μm as a wiring is deposited by a sputtering method, and then patterned into a predetermined shape. At this time, the aluminum layers 814 connected with the low resistance regions 808 in the ends of the respective polysilicon resistors 807 are arranged on the respective polysilicon resistors 807. Further, although not shown, the aluminum layers 814 are connected with the P well regions 802 located under the respective polysilicon resistors 807 through the field oxide film 803.
  • Next, as shown in FIG. 14F, a protective film 815 made of a silicon nitride film and having a thickness of about 8000 angstroms is formed. In addition, although not shown, a portion of the protective film 815 is removed to provide a region of a bonding pad and the like. By the above processes, the semiconductor device having the polysilicon resistors according to the present invention is completed.
  • FIGS. 15A to 15F are schematic cross sectional views representing other embodiment of a semiconductor device manufacturing method according to the present invention.
  • In FIG. 15A, after a light N-type silicon substrate 801 is prepared and a P-type impurity is selectively introduced thereinto by an ion implantation method, a heat treatment is performed to form a separated and independent P well region 802. The surface concentration of the P well region 802 is about 1E16 atoms/cm3. Here, it is different from the embodiment described in FIGS. 14A to 14F that the P well region 802 are not necessarily formed in a region in which polysilicon resistors are to be formed by a later process. Next, a field oxide film 803 having a thickness of about 8000 angstroms is selectively formed by the. LOCOS method. Next, after a gate oxide film 804 is formed, a channel dope for a predetermined threshold control is performed. Further, a polysilicon layer 805 is deposited with a thickness of about 4000 angstroms by a CVD method. Then, the impurity such as phosphorus with a high concentration is introduced such that the polysilicon layer 805 has a low resistance.
  • Next, as shown in FIG. 15B, the polysilicon layer 805 is processed by etching into a predetermined shape to form a gate electrode 806 with a low resistance and low resistance polysilicon layers 901.
  • Next, as shown in FIG. 15C, a first insulating film 902 is formed by a thermal oxidation method, a CVD method, or the like. The first insulating film 902 is made of a multilayer film including a silicon oxide film or a silicon nitride film.
  • Next, as shown in FIG. 15D, polysilicon is deposited with a thickness of 1000 angstroms, and then the impurity such as BF2 is introduced by an ion implantation method so as to obtain a predetermined sheet resistance. Subsequently, after patterning into a predetermined shape, the P-type impurity such as BF2 is introduced by an ion implantation method to simultaneously form low resistance regions 808 and a source region 810 and a drain region 811 of a P-type transistor. Thus, polysilicon resistors 807 each having a high resistance region 809 sandwiched between the low resistance regions 808 can be formed. Here, the respective polysilicon resistors 807 are formed on the independent low resistance polysilicon layers 901 through the first insulating film 902. Also, although the N-type transistor region is not shown, as in the case of the P-type transistor, the N-type impurity such as phosphorus is introduced by an ion implantation method to form the source region and the drain region of the transistor.
  • Next, as shown in FIG. 15E, an intermediate insulating film 812 made of PSG, NSG, or the like is deposited at about 8000 angstroms, and subsequently contact holes 813 are formed therein. At this time, common contact holes 903 are formed such that the low resistance regions 808 of the polysilicon resistors 807 and the low resistance polysilicon layers 901 can be connected with each other.
  • Next, as shown in FIG. 15F, a lamination film of Ti/TiN as barrier metals is deposited at about 1500 angstroms by a sputtering method. Thereafter, an aluminum layer 814 having a thickness of about 1 μm as a wiring is deposited and then patterned into a predetermined shape. At this time, the aluminum layers 814 for connecting the low resistance regions 808 located in the ends of the respective polysilicon resistors 807 with the low resistance polysilicon layers 901 located under the polysilicon resistors 807 through the first insulating film 902 through the common contact holes 903 are arranged on the respective polysilicon resistors 807. Next, a protective film 815 made of a silicon nitride film and having a thickness of about 8000 angstroms is formed. In addition, although not shown, a portion of the protective film 815 is removed to provide a region of a bonding pad and the like. By the above processes, the semiconductor device having the polysilicon resistors according to the present invention is completed.
  • As described above, according to the present invention, when the potential of the respective polysilicon resistors is made to be equal to the potentials of conductors located over and under the respective polysilicon resistors, the resistance values of the polysilicon resistors are accurately kept in the bleeder resistance circuit. Thus, the bleeder resistance circuit having an accurate voltage dividing ratio and high precision can be realized. At this time, when the film thickness of the polysilicon resistors is 2000 angstroms or thinner and the impurity introduced into the polysilicon resistors is made to be the P-type, the variation in the resistance values of the polysilicon resistors can be reduced and the bleeder resistance circuit having higher precision can be realized. Further, when the film thickness of the polysilicon resistors in the bleeder resistance circuit is thinned, the temperature coefficient of the resistance value can be reduced. In particular, when the film thickness is 1000 angstroms or thinner, the extremely small temperature coefficient of 3000 ppm/° C. or less can be obtained with the sheet resistance value of about 10 kiloohms/square. Therefore, there is an effect that the bleeder resistance circuit in which a wide temperature range and high voltage dividing precision can be obtained can be formed with an occupation area smaller than that in case of a conventional method.
  • In the voltage detector and the voltage regulator according to the present invention, the voltage dividing can be made with high precision. Thus, the yield of the product as the IC can be improved and the product with higher precision can be manufactured. Also, in order to suppress a consumption current of the IC, the resistance value of the entire bleeder resistance circuit is made to be a high resistance of megaohm order or higher in many cases. At this time, in order to keep constant precision, the bleeder resistance circuit is structured by combining very narrow shaped resistors, and thus, a wide area is required. In the voltage detector, it is not uncommon for the bleeder resistance circuit to occupy a half or more of the area of the entire IC chip. Since the variation in the resistance value of the respective resistors is small in the bleeder resistance circuit according to the present invention, the constant precision can be obtained by using the resistors with a short shape. Thus, the occupation area of the bleeder resistance circuit can be reduced, and this largely contributes to the reduction in the area of the entire IC chip.
  • In accordance with the semiconductor device manufacturing method according to present invention, there is an effect that the above semiconductor device can be formed without using a special process and largely increasing the number of processes.

Claims (3)

1-31. (canceled)
32. A method of manufacturing a semiconductor device, comprising the steps of:
preparing a silicon substrate to form a plurality of selectively separated and independent well regions by an ion implantation method;
selectively forming a field oxide film by the LOCOS method in the surface of the silicon substrate;
forming a gate oxide film, performing a channel dope for a predetermined threshold control, depositing a polysilicon layer by a CVD method, and selectively introducing an impurity into the polysilicon layer by an ion implantation method so as to obtain a predetermined sheet resistance value;
after selectively introducing an impurity such as phosphorus with a high concentration into the polysilicon layer such that a predetermined region of the polysilicon layer has a low resistance, processing the polysilicon layer by etching into a predetermined shape such that a gate electrode with a low resistance and a plurality of polysilicon resistors each having a high resistance region are matched with the well regions, and locating the gate electrode and the polysilicon resistors;
introducing an N-type impurity such as phosphorus by an ion implantation method to form a source region and a drain region of an N-type transistor;
introducing a P-type impurity by an ion implantation method to form a source region and a drain region of a P-type transistor and a low resistance region of each of the polysilicon resistors;
depositing an intermediate insulating film, and subsequently forming a contact hole;
depositing an aluminum layer as a wiring by a sputtering method, and then patterning the aluminum layer such that the aluminum layer connected with the low resistance region in one end of each of the polysilicon resistors and each of the well regions is located on each of the polysilicon resistors; and
forming a protective film, and removing a portion of the protective film to provide a region of a bonding pad and the like.
33. A method of manufacturing a semiconductor device, comprising the steps of:
preparing a silicon substrate to form a plurality of selectively separated and independent well regions by an ion implantation method, and selectively forming a field oxide film by the LOCOS method;
after forming a gate oxide film, performing a channel dope for a predetermined threshold control, depositing a first polysilicon layer by a CVD method, and introducing an impurity such as phosphorus with a high concentration into the first polysilicon layer such that the first polysilicon layer has a low resistance;
processing the first polysilicon layer by etching into a predetermined shape to form a gate electrode with a low resistance and a plurality of low resistance polysilicon layers;
forming a first insulating film by a thermal oxidation method or a CVD method;
depositing a second polysilicon layer with a film thickness thinner than that of the first polysilicon layer, and introducing an impurity into the second polysilicon layer by an ion implantation method so as to obtain a predetermined sheet resistance value;
patterning the second polysilicon layer such that a plurality of polysilicon resistors using the second polysilicon layer are formed on the independent low resistance polysilicon layers through the first insulating film;
introducing an N-type impurity by an ion implantation method to form a source region and a drain region of a P-type transistor together with a low resistance region in a portion of each of the polysilicon resistors;
depositing an intermediate insulating film, and forming a common contact hole such that the low resistance region of each of the polysilicon resistors and each of the low resistance polysilicon layers can be connected with each other through the common contact hole;
depositing an aluminum layer as a wiring by a sputtering method, and patterning the aluminum layer such that the aluminum layer for connecting, the low resistance region in one end of each of the polysilicon resistors, with each of the low resistance polysilicon layers located under each of the polysilicon resistors through the first insulating film, through the common contact hole, is located on each of the polysilicon resistors; and
forming a protective film, and removing a portion of the protective film to provide a region of a bonding pad and the like.
US11/004,786 2000-08-30 2004-12-03 Semiconductor device and method of manufacturing the same Abandoned US20050106830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/004,786 US20050106830A1 (en) 2000-08-30 2004-12-03 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-260803 2000-08-30
JP2000260803A JP2002076281A (en) 2000-08-30 2000-08-30 Semiconductor device and method of manufacturing the same
US09/916,527 US6844599B2 (en) 2000-08-30 2001-07-27 Semiconductor device and method of manufacturing the same
US11/004,786 US20050106830A1 (en) 2000-08-30 2004-12-03 Semiconductor device and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/916,527 Division US6844599B2 (en) 2000-08-30 2001-07-27 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
US20050106830A1 true US20050106830A1 (en) 2005-05-19

Family

ID=18748757

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/916,527 Expired - Lifetime US6844599B2 (en) 2000-08-30 2001-07-27 Semiconductor device and method of manufacturing the same
US11/004,786 Abandoned US20050106830A1 (en) 2000-08-30 2004-12-03 Semiconductor device and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/916,527 Expired - Lifetime US6844599B2 (en) 2000-08-30 2001-07-27 Semiconductor device and method of manufacturing the same

Country Status (5)

Country Link
US (2) US6844599B2 (en)
JP (1) JP2002076281A (en)
KR (2) KR20020018148A (en)
CN (1) CN1307719C (en)
TW (1) TW516045B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080203532A1 (en) * 2007-02-26 2008-08-28 Seiko Instruments Inc. Semiconductor device and method of manufacturing the same
US20090039423A1 (en) * 2007-08-09 2009-02-12 Sony Corporation Semiconductor device and method of manufacturing the same
US20140240080A1 (en) * 2013-02-26 2014-08-28 Seiko Instruments Inc. Fuse circuit and semiconductor integrated circuit device
CN104465766A (en) * 2013-09-16 2015-03-25 英飞凌科技股份有限公司 Semiconductor Device and a Method for Forming a Semiconductor Device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532568B1 (en) * 2000-10-30 2003-03-11 Delphi Technologies, Inc. Apparatus and method for conditioning polysilicon circuit elements
US7408218B2 (en) * 2001-12-14 2008-08-05 Renesas Technology Corporation Semiconductor device having plural dram memory cells and a logic circuit
CN100365786C (en) * 2002-12-31 2008-01-30 上海贝岭股份有限公司 Detecting method of silicon material quality in dielectrode integrated circuit
JP4609985B2 (en) * 2004-06-30 2011-01-12 ルネサスエレクトロニクス株式会社 Semiconductor chip, method for manufacturing the same, and semiconductor device
US7253074B2 (en) * 2004-11-05 2007-08-07 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Temperature-compensated resistor and fabrication method therefor
JP4880939B2 (en) 2005-07-29 2012-02-22 セイコーインスツル株式会社 Semiconductor device
JP5008543B2 (en) 2007-12-18 2012-08-22 セイコーインスツル株式会社 Semiconductor device
JP2009266868A (en) * 2008-04-22 2009-11-12 Oki Semiconductor Co Ltd Mosfet and manufacturing method of mosfet
US8159040B2 (en) * 2008-05-13 2012-04-17 International Business Machines Corporation Metal gate integration structure and method including metal fuse, anti-fuse and/or resistor
JP2010182954A (en) 2009-02-06 2010-08-19 Seiko Instruments Inc Semiconductor device
DE102010016556A1 (en) * 2009-04-24 2010-11-25 Intersil Americas Inc., Milpitas Digital-to-analog-converter, has memory for storing digital information representing control voltages, and auxiliary-digital-analog-converter receiving information from memory and generating voltages for voltage sources
JP5029654B2 (en) * 2009-05-27 2012-09-19 株式会社デンソー Electronic control device
JP2012174999A (en) * 2011-02-23 2012-09-10 Asahi Kasei Electronics Co Ltd Semiconductor device and manufacturing method of the same
DE102011100779B4 (en) * 2011-05-06 2022-10-06 Texas Instruments Deutschland Gmbh Electronic device and method of manufacturing an electronic device
JP2013122947A (en) * 2011-12-09 2013-06-20 Seiko Instruments Inc Semiconductor device manufacturing method
KR20130139103A (en) * 2012-06-12 2013-12-20 페어차일드코리아반도체 주식회사 Resistive device and method of manufacturing the same
US9553139B2 (en) * 2015-01-30 2017-01-24 Semiconductor Components Industries, Llc Semiconductor component and method of manufacture
US10643990B2 (en) * 2018-02-28 2020-05-05 Globalfoundries Singapore Pte. Ltd. Ultra-high voltage resistor
EP3598505B1 (en) * 2018-07-19 2023-02-15 Mitsubishi Electric R&D Centre Europe B.V. Temperature estimation of a power semiconductor device
CN110767711B (en) * 2019-02-28 2022-05-06 云谷(固安)科技有限公司 OLED array substrate, display panel and display device
JP7361567B2 (en) 2019-10-25 2023-10-16 ローム株式会社 electronic components

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202281A (en) * 1991-02-12 1993-04-13 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing silicon semiconductor acceleration sensor devices
US5490106A (en) * 1993-09-14 1996-02-06 Nec Corporation Semiconductor read only memory device with memory cells implemented by inverted thin film transistors
US5554873A (en) * 1994-05-23 1996-09-10 Texas Instruments Incorporated Semiconductor device having polysilicon resistor with low temperature coefficient
US5970338A (en) * 1995-08-28 1999-10-19 Siemens Aktiengesellschaft Method of producing an EEPROM semiconductor structure
US6146945A (en) * 1998-01-30 2000-11-14 Seiko Instruments Inc. Method for manufacturing a semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940008374B1 (en) * 1991-09-03 1994-09-12 금성일렉트론 주식회사 Metal wiring method of semiconductor device
CA2093111C (en) * 1993-03-31 1997-03-18 Thomas W. Macelwee High value resistive load for an integrated circuit
KR960009209A (en) * 1994-08-19 1996-03-22 이토 기요시 Semiconductor integrated circuit
JP3279453B2 (en) * 1995-03-20 2002-04-30 シャープ株式会社 Non-volatile random access memory
JP3526701B2 (en) * 1995-08-24 2004-05-17 セイコーインスツルメンツ株式会社 Semiconductor device
JP2000021896A (en) * 1998-07-03 2000-01-21 Sony Corp Manufacture of semiconductor device
US6372585B1 (en) * 1998-09-25 2002-04-16 Texas Instruments Incorporated Semiconductor device method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202281A (en) * 1991-02-12 1993-04-13 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing silicon semiconductor acceleration sensor devices
US5490106A (en) * 1993-09-14 1996-02-06 Nec Corporation Semiconductor read only memory device with memory cells implemented by inverted thin film transistors
US5554873A (en) * 1994-05-23 1996-09-10 Texas Instruments Incorporated Semiconductor device having polysilicon resistor with low temperature coefficient
US5970338A (en) * 1995-08-28 1999-10-19 Siemens Aktiengesellschaft Method of producing an EEPROM semiconductor structure
US6146945A (en) * 1998-01-30 2000-11-14 Seiko Instruments Inc. Method for manufacturing a semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080203532A1 (en) * 2007-02-26 2008-08-28 Seiko Instruments Inc. Semiconductor device and method of manufacturing the same
US8648442B2 (en) * 2007-02-26 2014-02-11 Seiko Instruments Inc. Semiconductor device and method of manufacturing the same
KR101480187B1 (en) * 2007-02-26 2015-01-07 세이코 인스트루 가부시키가이샤 Semiconductor device and method of manufacturing the same
US20090039423A1 (en) * 2007-08-09 2009-02-12 Sony Corporation Semiconductor device and method of manufacturing the same
US8436424B2 (en) * 2007-08-09 2013-05-07 Sony Corporation Semiconductor device and method of manufacturing the same
US20140240080A1 (en) * 2013-02-26 2014-08-28 Seiko Instruments Inc. Fuse circuit and semiconductor integrated circuit device
US10283303B2 (en) * 2013-02-26 2019-05-07 Ablic Inc. Fuse circuit and semiconductor integrated circuit device
CN104465766A (en) * 2013-09-16 2015-03-25 英飞凌科技股份有限公司 Semiconductor Device and a Method for Forming a Semiconductor Device

Also Published As

Publication number Publication date
US6844599B2 (en) 2005-01-18
KR100878924B1 (en) 2009-01-15
JP2002076281A (en) 2002-03-15
CN1340829A (en) 2002-03-20
KR20020018148A (en) 2002-03-07
CN1307719C (en) 2007-03-28
KR20080095227A (en) 2008-10-28
TW516045B (en) 2003-01-01
US20020047183A1 (en) 2002-04-25

Similar Documents

Publication Publication Date Title
US6844599B2 (en) Semiconductor device and method of manufacturing the same
US6369409B1 (en) Semiconductor device and method of manufacturing the same
US6727556B2 (en) Semiconductor device and a method of manufacturing thereof
US5406447A (en) Capacitor used in an integrated circuit and comprising opposing electrodes having barrier metal films in contact with a dielectric film
US6420227B1 (en) Semiconductor integrated circuit device and process for manufacture of the same
JP3243151B2 (en) Method for manufacturing semiconductor device
US6759729B1 (en) Temperature insensitive resistor in an IC chip
JPH09116027A (en) Semiconductor device and manufacture thereof
US6777754B2 (en) Semiconductor device and method of manufacturing the same
US5594269A (en) Resistive load for integrated circuit devices
JPH07235616A (en) Semiconductor device and manufacture thereof
US20020096739A1 (en) Semiconductor device
US6274422B1 (en) Method for manufacturing a semiconductor device
US5327000A (en) Semiconductor device interconnected to analog IC driven by high voltage
US6653688B2 (en) Semiconductor device
KR100493587B1 (en) Semiconductor device and its manufacturing method
JP3019038B2 (en) Semiconductor device
US6376896B1 (en) Semiconductor device having thin film resistor and method of manufacturing the same
US20040029332A1 (en) Semiconductor device and method of manufacturing the same
JPH05326841A (en) Manufacture of semiconductor device
JPH03198366A (en) Semiconductor integrated circuit
JPH05211284A (en) Semiconductor integrated circuit
JPH0666427B2 (en) Method for manufacturing MOS semiconductor integrated circuit device
JP2004071787A (en) Semiconductor device
JPH07176691A (en) Fabrication of semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION