US20050097603A1 - Three dimensional light electronic programming guide - Google Patents
Three dimensional light electronic programming guide Download PDFInfo
- Publication number
- US20050097603A1 US20050097603A1 US11/001,447 US144704A US2005097603A1 US 20050097603 A1 US20050097603 A1 US 20050097603A1 US 144704 A US144704 A US 144704A US 2005097603 A1 US2005097603 A1 US 2005097603A1
- Authority
- US
- United States
- Prior art keywords
- epg
- displaying
- planes
- polyhedron
- objects
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04815—Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/20—Drawing from basic elements, e.g. lines or circles
- G06T11/206—Drawing of charts or graphs
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/41—Structure of client; Structure of client peripherals
- H04N21/426—Internal components of the client ; Characteristics thereof
- H04N21/42653—Internal components of the client ; Characteristics thereof for processing graphics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/4508—Management of client data or end-user data
- H04N21/4532—Management of client data or end-user data involving end-user characteristics, e.g. viewer profile, preferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/454—Content or additional data filtering, e.g. blocking advertisements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/475—End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data
- H04N21/4755—End-user interface for inputting end-user data, e.g. personal identification number [PIN], preference data for defining user preferences, e.g. favourite actors or genre
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/482—End-user interface for program selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/482—End-user interface for program selection
- H04N21/4821—End-user interface for program selection using a grid, e.g. sorted out by channel and broadcast time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/482—End-user interface for program selection
- H04N21/4826—End-user interface for program selection using recommendation lists, e.g. of programs or channels sorted out according to their score
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/83—Generation or processing of protective or descriptive data associated with content; Content structuring
- H04N21/84—Generation or processing of descriptive data, e.g. content descriptors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/16—Analogue secrecy systems; Analogue subscription systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/048—Indexing scheme relating to G06F3/048
- G06F2203/04802—3D-info-object: information is displayed on the internal or external surface of a three dimensional manipulable object, e.g. on the faces of a cube that can be rotated by the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/04—Indexing scheme for image data processing or generation, in general involving 3D image data
Definitions
- the invention relates to the field of creating electronic programming guides (EPGs) for television viewing. More specifically, the invention relates to providing a three dimensional EPG.
- EPGs electronic programming guides
- EPGs Electronic Programming Guides
- Currently available EPGs typically display program information, such as which programs are on what channels, and when those programs will be shown.
- program information such as which programs are on what channels, and when those programs will be shown.
- these EPGs scroll past the screen at a specified rate, making navigation frustrating.
- These EPGs are usually displayed on one channel of a cable television system and do not allow for interactivity.
- Newer digital EPGs allow a user to interact using their remote control or other means. These EPGs allow users to scan the program selections and seek out programs which they want to view, and do allow some interaction by the user. However, they are still quite simple, and generally not very attractive.
- Digital EPGs also typically require a set top box (STB) to be attached to a user's television.
- STB set top box
- the STB contains hardware and software necessary to process the EPG and the user's input, and also to descramble certain cable channels.
- EPGs have been simple two-dimensional (2D) text-oriented Electronic Programming Guides. They typically display only one text size and very limited graphics. In general the use of graphics is mostly limited to character-based graphics, capable of drawing boxes, outlines, fields, etc. What is needed is a more interactive and dynamic EPG that can be used on the current generation of STBs.
- the present invention provides a method and an apparatus for displaying an Electronic Programming Guide (EPG) having a reduced graphics hardware requirement and capable of three-dimensional graphics.
- EPG Electronic Programming Guide
- the method includes displaying a virtual mesh comprising independent objects situated in a set of parallel planes.
- the mesh can be displayed in a full three dimensional perspective view.
- hardware requirements may be further reduced if a three dimensional isometric view is utilized. The user can then navigate the mesh, and programs can be positioned in the mesh based on predetermined criteria.
- FIG. 1 a illustrates a three dimensional object as generated by a three dimensional graphics pipeline
- FIG. 1 b illustrates a pixel array
- FIG. 1 c illustrates a pixel array bound to a parallelogram
- FIG. 1 d illustrates a pixel array bound to a trapezoid
- FIG. 1 e illustrates a three dimensional object with a perspective view
- FIG. 1 f illustrates a three dimensional object with an isometric view
- FIG. 2 illustrates an isometric three-dimensional Electronic Programming Guide (EPG) according to one embodiment
- FIG. 3 illustrates a category list according to one embodiment
- FIG. 4 illustrates the position of an EPG relative to a television screen according to one embodiment
- FIG. 5 illustrates a system having a readable medium with instructions stored thereon according to one embodiment.
- One embodiment provides a method and apparatus for displaying an Electronic Programming Guide (EPG) with a reduced hardware requirement.
- EPG Electronic Programming Guide
- the invention describe herein is sometimes referred to as 3D EPG “Light.”
- the arrangement and method of displaying the EPG will reduce the hardware requirements of the STB, to further allow current STBs to display the described EPG.
- a STB In order to display a 3D EPG, a STB typically requires a 3D graphics pipeline. Either a hardware accelerated 3D graphics pipeline or a software-only 3D graphics pipeline may be used.
- a hardware-accelerated 3D graphics pipeline has the advantage of faster processing because it has dedicated hardware that handles calculations that would otherwise be performed by the central processing unit (CPU).
- CPU central processing unit
- a software-only pipeline is typically slower than a hardware-accelerated pipeline because the CPU must handle graphics processing.
- a software pipeline does not require dedicated 3D graphics hardware, and thus is less expensive and can easily be adapted to currently available STBs that do not already have 3D hardware acceleration.
- FIG. 1 a illustrates the construction of a 3D object using a 3D pipeline.
- a 3D graphics pipeline either hardware or software, operates as a subsystem of a larger computer system that may be part of, for example, a STB.
- a 3D graphics pipeline creates a 3D object by first receiving data describing the object from the larger system. The data includes coordinates describing a geometric surface, and pixel arrays.
- a geometric surface 2 is created from polygons 4 . For example, in FIG. 1 a, a baseball bat is constructed from triangles.
- a pixel array is in essence a graphic image displayed on a computer system. After the geometric surface is created, the pixel array is bound to the surface. By binding the array to the geometric surface, the 3D pipeline effectively covers the surface with the array. For example, the array corresponding to the object in FIG. 1 a would contain a bitmapped image resembling wood. The array would then be bound to the geometric surface, and it would resemble a baseball bat.
- Reference point 6 is the point from where a viewer sees the object. Reference point 6 can be moved to give different views of the object.
- FIG. 1 b is an example of a pixel array.
- a pixel is essentially a point of light on a display.
- a display is made up of a grid of pixels, each representing a specific color. The pixels are arranged to create an image on the display.
- Pixel arrays are image files that are typically rectangular in shape and defined by the number of pixels long by the number of pixels wide.
- Pixel array 10 is a grid of 9 ⁇ 9 pixels. In pixel array 10 , there are two colors, black pixels 12 and white pixels 14 . Pixel array 10 resembles a house.
- a graphics pipeline could bind pixel array 10 to the square. If the square were the same size as the pixel array, the pixel array could be bound to the square by simply placing the pixels within the square. This operation requires minimal processing. Were the square larger or smaller than the pixel array, the pipeline would have to add or remove pixels, or “resize” the pixel array, to approximate the size of the square. Resizing a pixel array still requires only a small amount of processing.
- Rhomboidal pixel array 20 is an example of a bit shift of pixel array 10 .
- the leftmost column of pixels remains in its place, and the column to the right is shifted up one or more pixels. Each successive column to the right is shifted a certain number of pixels until the rightmost column has been moved.
- bitshifting only requires rearrangement of pixels, it too is a relatively minor burden on a graphics subsystem.
- Trapezoidal pixel array 30 is an example of binding pixel array 10 to a trapezoid. This type of operation requires a greater amount of processing than either resizing or bitshifting, and can become burdensome on a system that does not have a hardware accelerated graphics pipeline.
- FIG. 1 e is an example of a three dimensional object with a perspective view.
- the lines of a 3D object such as perspective cube 40 will appear to converge upon a vanishing point 42 .
- a perspective view requires processing in addition to the processing necessary to create a 3D object. This is because many of the surfaces of an object with a perspective view, such as top 44 , will be trapezoidal. As explained above, when binding a rectangular pixel array to a trapezoidal surface, extensive processing will be required. Additionally, many of the surfaces in a perspective view will also need to be bitshifted, which further increases the necessary amount of processing.
- FIG. 1 f is an example of a three dimensional object with an isometric view.
- a 3D object such as isometric cube 46 appears uniform, and does not seem to disappear at a vanishing point.
- parallel lines will always look parallel with an isometric view, while in a perspective view they will appear to converge.
- rhomboids such as top 48 .
- binding a pixel array to a rhomboid requires only that a 3D graphics pipeline bitshifts the pixels, a relatively undemanding process.
- an EPG that has an isometric view will provide more acceptable performance with a software pipeline.
- a software pipeline may be desirable because it can be easily adapted to current set top boxes.
- FIG. 2 illustrates an exemplary EPG according to one embodiment.
- the EPG includes virtual mesh 100 for displaying television programming information.
- a user may navigate through virtual mesh 100 to find desired television programs.
- Virtual mesh 100 is a polyhedron.
- a polyhedron is a three dimensional object, such as a cube or a pyramid, that is essentially a solid bounded by polygons.
- Virtual mesh 100 is also a geometric object (see e.g., FIG. 1 a, element 2 ) constructed from independent objects 101 , and three planes 102 - 104 . There are relatively few elements to process in virtual mesh 100 when compared to a typical geometric object.
- a geometric object such as geometric surface 2
- geometric surface 2 generally comprises many polygons 4 in order to create a smooth, realistic looking surface.
- a typical scene displayed by a hardware accelerated 3D graphics pipeline contains many geometric objects which all require a significant amount of processing. Even a few geometric objects may comprise several hundred polygons which all require binding bitmap images to their surfaces.
- the EPG described below comprises only dozens of surfaces that are mostly stationary. Compared to the typical application which requires a 3D graphics pipeline, the number of elements of the here enumerated EPG is quite small. The simplicity of this EPG is one factor that reduces the amount of processing required by the EPG, and allows it to be implemented on current set top boxes (STBs).
- STBs set top boxes
- Virtual mesh 100 can be displayed either with an isometric view or in a full 3D perspective view. As explained above, if virtual mesh 100 is displayed in a perspective view, a hardware-accelerated 3-D pipeline may be required. Displaying virtual mesh 100 with an isometric view may allow the implementation of the EPG on an STB exclusive of a hardware accelerated 3D graphics pipeline.
- One advantage of the current invention is that new set top boxes may not be required, which may allow this new EPG to be brought to market more quickly and less expensively.
- Virtual mesh 100 is constructed of individual mesh lines, which give the mesh its shape and its structure. As shown in FIG. 2 , virtual mesh 100 has the shape of a cube, but it is clear that virtual mesh 100 may also be in the shape of other polyhedrons.
- the mesh lines are arranged as to create a set of columns and rows, in which television programming information can be displayed.
- virtual mesh 100 is a group of lines displayed on a video screen configured so that objects 101 may be displayed within the mesh.
- objects 101 represent individual television programs.
- Independent objects 101 are arranged as to make navigation of the mesh simple, and to bring to the user's attention those programs in which they may be interested.
- Virtual mesh 100 is further a virtual 3-D view of three parallel planes 102 , 103 and 104 housing at least one independent object 101 positioned in virtual mesh 100 .
- Virtual mesh 100 is further aligned along three axes, the x-axis, the y-axis and the z-axis. As shown in FIG. 2 , planes 102 , 103 , and 104 are aligned along the z-axis.
- planes 102 - 104 are rectangular and parallel.
- the first plane 102 creates the face of mesh 100
- the second plane 103 bisects mesh 100
- the third plane 104 creates the backing of mesh 100 .
- the three planes house objects 101 so as to give the appearance of a table of television listings.
- Each plane may have its own color and form.
- plane 102 can be assigned the color red, and thus its mesh lines are red.
- Plane 103 can be assigned the color blue, and thus its mesh lines are blue, and
- plane 104 can be assigned the color green, which means its mesh lines are green.
- objects 101 are not a part of virtual mesh 100 ; they are merely situated within the mesh 100 .
- Each of the program elements 101 is a fully independent object that may be manipulated by the EPG independent of virtual mesh 100 .
- Objects 101 further comprise one or more interactive surfaces. Interactive surfaces may be acted upon by the user to create a desired result, such as selecting a new channel.
- Objects 101 may be arranged in planes 102 , 103 , 104 according to user selected categories.
- the three planes shown represent levels of preference, and specifically represent the categories “preferred,” “neutral,” and “don't prefer.” However, any alternative number of categories greater than one could be used.
- the first plane 102 represents the “preferred” category
- the second plane 103 represents the “neutral” category
- the third plane 104 represents the “don't prefer” category.
- planes 102 , 103 and 104 that are parallel with a rectangular shape, and objects 101 that are rectangular
- the program listings could be displayed in various different forms.
- An object 101 could be a pictogram that graphically displays the type of programming represented by that object.
- the program listing of a baseball game could appear in a virtual 3-D shape of a baseball bat, or a baseball (not shown).
- the planes need not be parallel and aligned along the z-axis. Any variety of shapes, sizes, and alignments of listings and listing planes could be created within the scope of the invention.
- the top plane of virtual mesh 100 formed by the x and y axes of the three planes is a Time Plane. It has time numerals 105 a through n, the first two of which are shown as “9:00” and “9:30”. Time lines 106 a through 106 n extend along the z axis from front to back, as seen in FIG. 2 , across planes 102 , 103 , and 104 .
- the numbers and the time lines may also be a distinctive color, such as, for example, yellow or gold.
- Mesh rows 108 a through 108 n represent channels, and columns 110 a through 110 n represent times. Names identifying channels are listed in the first column 110 a. The rows corresponding to a specific channel listed in column 110 a further list the programs on that channel at different times. For example, row 108 b contains listings for the channel “ABC” 111 .
- Virtual mesh 100 can contain all available channels from a service provider or can contain a subset of channels selected by interest group or by certain other criteria.
- the selection criteria may be either user-selectable or pre-selected by the provider.
- a user may navigate the mesh using a remote control device attached to a set-top box (not shown).
- a user navigates mesh 100 by moving a cursor or highlight bar throughout the mesh. For example, in FIG. 2 , row 108 b is highlighted by highlight bar 112 , which indicates to the user that they have currently selected that channel. In FIG. 2 , the selected channel is ABC 111 . Because row 108 b is highlighted, a semi-transparent colored band extends from the front row to the back to indicate the location of the elements.
- the cursor 114 is currently highlighting element 116 , which is an object that represents the user's currently selected program, the news. In one embodiment, because the news 116 is currently selected, the full title of the program “ABC Evening News” is displayed on sign 120 . Sign 120 is placed on top of the mesh and displays details of the selected program. The user may move cursor 114 throughout the mesh 100 to select and preview different television programs. In addition to showing the selected element on table 120 , a further enhancement in one embodiment could pull that show to the front and display it hovering in front of the mesh 100 .
- the news 114 is in the first plane 102 because the user has designated newscasts as a preferred television program.
- the programs matching certain criteria are displayed in the first plane 102 , indicating shows of the highest interest, the second plane 103 indicating shows of neutral interest, or displayed in the third plane 104 , indicating shows of the lowest interest.
- planes 102 , 103 , and 104 are described above as representing level of interest, it is clear than a variety of criterias may be used to determine which programs are listed in which planes.
- Johnny Sitcom 122 is set back into the second plane 103 , “neutral,” because the user has given sitcoms a “neutral” preference setting.
- Womantalk 124 is set back into the third plane 104 , or “not preferred.”
- the user views virtual mesh 100 from the front.
- Program listings in the front plane 102 appear to be at the front of the screen.
- Program listings in the middle plane 103 appear to be set back from the front of the screen, and program listings in the back plane 104 appear to be set further back than program listings in plane 103 .
- the programs that the user wishes to view are displayed more prominently, so that the user's attention will be immediately drawn to them. This increases the ease of use of the EPG and creates an attractive visual effect.
- the EPG may contain any number of planes, such as only two, representing interested and not interested, or four or five planes, for varying levels of interest.
- multiple users on the same set-top box may have different preferential profiles and may accordingly assign different categories to different preference levels.
- the reduced number of elements that comprise the above described EPG helps to reduce the hardware requirements. Compared to most geometric objects processed by 3D pipelines, virtual mesh 100 and independent objects 101 are quite simple, and therefore will not require a great deal of processing to display. Additionally, the number of objects that comprise the EPG is also comparatively few, and thus there is less processing required.
- FIG. 3 illustrates an example of a category list where all categories of the various available programs are shown.
- List 200 has two columns.
- Column 201 lists categories and column 202 shows the interest level assignment of each category. Either a user-selectable or preassigned value is assigned to each category. These values are then used by the system to tie the shows falling into each category to the correct planes 102 through 104 .
- sports programs are given an interest level 1 , and would therefore be in the first plane 102 .
- sitcoms are assigned interest level 2 , and would be set in the second plane 103 .
- late night shows are given interest level 3 , and would be set in the third plane, 104 .
- FIG. 4 shows virtual mesh 100 as seen on a television screen.
- the angle between the top line and the perpendicular, as viewed on a 2-D screen is between 90 and 97 degrees.
- the embodiment shown in FIG. 4 is exemplary. Other arrangements may be chosen without affecting the functionality of the EPG.
- the method of displaying an EPG in three dimensions can be stored in the memory of a computer system (e.g., set top box, video recorders, etc.) as a set of instructions to be executed, as shown by way of example in FIG. 5 .
- the instructions to display an EPG in three dimensions as described above could alternatively be stored on other forms of machine-readable medium, including magnetic and optical disks.
- the method of the present invention could be stored on machine-readable mediums, such as magnetic disks or optical disks, which are accessible via a disk drive (or computer-readable medium drive).
- the instructions can be downloaded into a computing device over a data network in a form of compiled and linked version.
- the logic to perform the methods as discussed above could be implemented in additional computer and/or machine readable mediums, such as discrete hardware components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
- LSI's large-scale integrated circuits
- ASIC's application-specific integrated circuits
- firmware such as electrically erasable programmable read-only memory (EEPROM's)
- EEPROM's electrically erasable programmable read-only memory
- electrical, optical, acoustical and other forms of propagated signals e.g., carrier waves, infrared signals, digital signals, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computer Graphics (AREA)
- Computer Hardware Design (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
- This application claims priority under 35 U.S.C. §119(e) from provisional patent application, entitled “Three Dimensional EPG”, Ser. No. 60/203,128 filed on May 8, 2000.
- The invention relates to the field of creating electronic programming guides (EPGs) for television viewing. More specifically, the invention relates to providing a three dimensional EPG.
- Electronic Programming Guides (EPGs) allow a viewer to receive information about programs being shown on their cable television system. Currently available EPGs typically display program information, such as which programs are on what channels, and when those programs will be shown. Typically, because there is more information than can be displayed on the television at once, these EPGs scroll past the screen at a specified rate, making navigation frustrating. These EPGs are usually displayed on one channel of a cable television system and do not allow for interactivity.
- Newer digital EPGs allow a user to interact using their remote control or other means. These EPGs allow users to scan the program selections and seek out programs which they want to view, and do allow some interaction by the user. However, they are still quite simple, and generally not very attractive.
- Digital EPGs also typically require a set top box (STB) to be attached to a user's television. The STB contains hardware and software necessary to process the EPG and the user's input, and also to descramble certain cable channels.
- Most EPGs have been simple two-dimensional (2D) text-oriented Electronic Programming Guides. They typically display only one text size and very limited graphics. In general the use of graphics is mostly limited to character-based graphics, capable of drawing boxes, outlines, fields, etc. What is needed is a more interactive and dynamic EPG that can be used on the current generation of STBs.
- The present invention provides a method and an apparatus for displaying an Electronic Programming Guide (EPG) having a reduced graphics hardware requirement and capable of three-dimensional graphics. In one embodiment the method includes displaying a virtual mesh comprising independent objects situated in a set of parallel planes. The mesh can be displayed in a full three dimensional perspective view. In an alternative embodiment, hardware requirements may be further reduced if a three dimensional isometric view is utilized. The user can then navigate the mesh, and programs can be positioned in the mesh based on predetermined criteria.
- The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, in which:
-
FIG. 1 a illustrates a three dimensional object as generated by a three dimensional graphics pipeline; -
FIG. 1 b illustrates a pixel array; -
FIG. 1 c illustrates a pixel array bound to a parallelogram; -
FIG. 1 d illustrates a pixel array bound to a trapezoid; -
FIG. 1 e illustrates a three dimensional object with a perspective view; -
FIG. 1 f illustrates a three dimensional object with an isometric view; -
FIG. 2 illustrates an isometric three-dimensional Electronic Programming Guide (EPG) according to one embodiment; -
FIG. 3 illustrates a category list according to one embodiment; -
FIG. 4 illustrates the position of an EPG relative to a television screen according to one embodiment; and -
FIG. 5 illustrates a system having a readable medium with instructions stored thereon according to one embodiment. - One embodiment provides a method and apparatus for displaying an Electronic Programming Guide (EPG) with a reduced hardware requirement. In the following description, for purposes of explanation, specific details are set forth to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that these specific details are not required in order to practice the present invention.
- Commonly assigned U.S. patent application Ser. No. 09/488,361, filed Jan. 16, 2000, introduced a three-dimensional (3D) EPG which allows for a much more configurable and user friendly interface than previous two dimensional (2D) EPGs.
- The invention describe herein is sometimes referred to as 3D EPG “Light.” The arrangement and method of displaying the EPG will reduce the hardware requirements of the STB, to further allow current STBs to display the described EPG.
- In order to display a 3D EPG, a STB typically requires a 3D graphics pipeline. Either a hardware accelerated 3D graphics pipeline or a software-only 3D graphics pipeline may be used. A hardware-accelerated 3D graphics pipeline has the advantage of faster processing because it has dedicated hardware that handles calculations that would otherwise be performed by the central processing unit (CPU). A software-only pipeline is typically slower than a hardware-accelerated pipeline because the CPU must handle graphics processing. However, a software pipeline does not require dedicated 3D graphics hardware, and thus is less expensive and can easily be adapted to currently available STBs that do not already have 3D hardware acceleration.
- The following is meant to be a short description of a 3D graphics pipeline. The commonly assigned U.S. patent application Ser. No. 09/488,361, describes 3D accelerator technology in more detail, and is incorporated herein by reference.
-
FIG. 1 a illustrates the construction of a 3D object using a 3D pipeline. A 3D graphics pipeline, either hardware or software, operates as a subsystem of a larger computer system that may be part of, for example, a STB. A 3D graphics pipeline creates a 3D object by first receiving data describing the object from the larger system. The data includes coordinates describing a geometric surface, and pixel arrays. Ageometric surface 2 is created frompolygons 4. For example, inFIG. 1 a, a baseball bat is constructed from triangles. - A pixel array is in essence a graphic image displayed on a computer system. After the geometric surface is created, the pixel array is bound to the surface. By binding the array to the geometric surface, the 3D pipeline effectively covers the surface with the array. For example, the array corresponding to the object in
FIG. 1 a would contain a bitmapped image resembling wood. The array would then be bound to the geometric surface, and it would resemble a baseball bat. - Once the image is bound, the 3D pipeline displays the image from a
reference point 6.Reference point 6 is the point from where a viewer sees the object.Reference point 6 can be moved to give different views of the object. -
FIG. 1 b is an example of a pixel array. A pixel is essentially a point of light on a display. A display is made up of a grid of pixels, each representing a specific color. The pixels are arranged to create an image on the display. Pixel arrays are image files that are typically rectangular in shape and defined by the number of pixels long by the number of pixels wide.Pixel array 10 is a grid of 9×9 pixels. Inpixel array 10, there are two colors,black pixels 12 andwhite pixels 14.Pixel array 10 resembles a house. - As an example, consider that there is a simple geometric surface consisting of a single polygon, a square. A graphics pipeline could bind
pixel array 10 to the square. If the square were the same size as the pixel array, the pixel array could be bound to the square by simply placing the pixels within the square. This operation requires minimal processing. Were the square larger or smaller than the pixel array, the pipeline would have to add or remove pixels, or “resize” the pixel array, to approximate the size of the square. Resizing a pixel array still requires only a small amount of processing. - Now, consider binding the pixel array to a rhomboid, such as
rhomboid 18 inFIG. 1 c. If the lines of the rhomboid had the same dimensions as the pixel array, you could bit shift the pixel array.Rhomboidal pixel array 20 is an example of a bit shift ofpixel array 10. Inrhomboidal pixel array 20, the leftmost column of pixels remains in its place, and the column to the right is shifted up one or more pixels. Each successive column to the right is shifted a certain number of pixels until the rightmost column has been moved. As bitshifting only requires rearrangement of pixels, it too is a relatively minor burden on a graphics subsystem. - If you wanted to bind the pixel array to a trapezoid, such as
trapezoid 28 inFIG. 1 d, you might need to compress some areas of the array, while you might need to expand others. A pixel array is compressed when certain pixels are removed to make the image smaller, and is expanded when pixels are added to make the image larger. As a result, different areas of the image may be compressed or expanded at different rates.Trapezoidal pixel array 30 is an example ofbinding pixel array 10 to a trapezoid. This type of operation requires a greater amount of processing than either resizing or bitshifting, and can become burdensome on a system that does not have a hardware accelerated graphics pipeline. -
FIG. 1 e is an example of a three dimensional object with a perspective view. When displayed with a perspective view, the lines of a 3D object such asperspective cube 40 will appear to converge upon a vanishing point 42. A perspective view requires processing in addition to the processing necessary to create a 3D object. This is because many of the surfaces of an object with a perspective view, such as top 44, will be trapezoidal. As explained above, when binding a rectangular pixel array to a trapezoidal surface, extensive processing will be required. Additionally, many of the surfaces in a perspective view will also need to be bitshifted, which further increases the necessary amount of processing. -
FIG. 1 f is an example of a three dimensional object with an isometric view. With an isometric view, a 3D object such asisometric cube 46 appears uniform, and does not seem to disappear at a vanishing point. In other words, parallel lines will always look parallel with an isometric view, while in a perspective view they will appear to converge. - Some rectangular surfaces in an isometric view become rhomboids, such as
top 48. As explained above inFIG. 1 d, binding a pixel array to a rhomboid requires only that a 3D graphics pipeline bitshifts the pixels, a relatively undemanding process. Thus, an EPG that has an isometric view will provide more acceptable performance with a software pipeline. As a result, a software pipeline may be desirable because it can be easily adapted to current set top boxes. -
FIG. 2 illustrates an exemplary EPG according to one embodiment. As shown the EPG includesvirtual mesh 100 for displaying television programming information. A user may navigate throughvirtual mesh 100 to find desired television programs. -
Virtual mesh 100 is a polyhedron. A polyhedron is a three dimensional object, such as a cube or a pyramid, that is essentially a solid bounded by polygons.Virtual mesh 100 is also a geometric object (see e.g.,FIG. 1 a, element 2) constructed fromindependent objects 101, and three planes 102-104. There are relatively few elements to process invirtual mesh 100 when compared to a typical geometric object. - A geometric object, such as
geometric surface 2, generally comprisesmany polygons 4 in order to create a smooth, realistic looking surface. In addition, with a typical scene displayed by a hardware accelerated 3D graphics pipeline contains many geometric objects which all require a significant amount of processing. Even a few geometric objects may comprise several hundred polygons which all require binding bitmap images to their surfaces. - In contrast to most geometric objects, the EPG described below comprises only dozens of surfaces that are mostly stationary. Compared to the typical application which requires a 3D graphics pipeline, the number of elements of the here enumerated EPG is quite small. The simplicity of this EPG is one factor that reduces the amount of processing required by the EPG, and allows it to be implemented on current set top boxes (STBs).
-
Virtual mesh 100 can be displayed either with an isometric view or in a full 3D perspective view. As explained above, ifvirtual mesh 100 is displayed in a perspective view, a hardware-accelerated 3-D pipeline may be required. Displayingvirtual mesh 100 with an isometric view may allow the implementation of the EPG on an STB exclusive of a hardware accelerated 3D graphics pipeline. One advantage of the current invention is that new set top boxes may not be required, which may allow this new EPG to be brought to market more quickly and less expensively. -
Virtual mesh 100 is constructed of individual mesh lines, which give the mesh its shape and its structure. As shown inFIG. 2 ,virtual mesh 100 has the shape of a cube, but it is clear thatvirtual mesh 100 may also be in the shape of other polyhedrons. The mesh lines are arranged as to create a set of columns and rows, in which television programming information can be displayed. - As shown in
FIG. 2 ,virtual mesh 100 is a group of lines displayed on a video screen configured so thatobjects 101 may be displayed within the mesh. In one embodiment, objects 101 represent individual television programs.Independent objects 101 are arranged as to make navigation of the mesh simple, and to bring to the user's attention those programs in which they may be interested. -
Virtual mesh 100 is further a virtual 3-D view of threeparallel planes independent object 101 positioned invirtual mesh 100.Virtual mesh 100 is further aligned along three axes, the x-axis, the y-axis and the z-axis. As shown inFIG. 2 ,planes - In one embodiment, planes 102-104 are rectangular and parallel. The
first plane 102 creates the face ofmesh 100, thesecond plane 103 bisectsmesh 100, and thethird plane 104 creates the backing ofmesh 100. The three planes houseobjects 101 so as to give the appearance of a table of television listings. - Each plane may have its own color and form. For example,
plane 102 can be assigned the color red, and thus its mesh lines are red.Plane 103 can be assigned the color blue, and thus its mesh lines are blue, andplane 104 can be assigned the color green, which means its mesh lines are green. - In one embodiment, objects 101 are not a part of
virtual mesh 100; they are merely situated within themesh 100. Each of theprogram elements 101 is a fully independent object that may be manipulated by the EPG independent ofvirtual mesh 100.Objects 101 further comprise one or more interactive surfaces. Interactive surfaces may be acted upon by the user to create a desired result, such as selecting a new channel. -
Objects 101 may be arranged inplanes FIG. 2 , thefirst plane 102 represents the “preferred” category, thesecond plane 103 represents the “neutral” category and thethird plane 104 represents the “don't prefer” category. - Although one embodiment shows
planes object 101 could be a pictogram that graphically displays the type of programming represented by that object. For example, the program listing of a baseball game could appear in a virtual 3-D shape of a baseball bat, or a baseball (not shown). Additionally, the planes need not be parallel and aligned along the z-axis. Any variety of shapes, sizes, and alignments of listings and listing planes could be created within the scope of the invention. - The top plane of
virtual mesh 100, formed by the x and y axes of the three planes is a Time Plane. It hastime numerals 105 a through n, the first two of which are shown as “9:00” and “9:30”.Time lines 106 a through 106 n extend along the z axis from front to back, as seen inFIG. 2 , acrossplanes -
Mesh rows 108 a through 108 n represent channels, andcolumns 110 a through 110 n represent times. Names identifying channels are listed in thefirst column 110 a. The rows corresponding to a specific channel listed incolumn 110 a further list the programs on that channel at different times. For example,row 108 b contains listings for the channel “ABC” 111. -
Virtual mesh 100 can contain all available channels from a service provider or can contain a subset of channels selected by interest group or by certain other criteria. The selection criteria may be either user-selectable or pre-selected by the provider. - A user may navigate the mesh using a remote control device attached to a set-top box (not shown). A user navigates
mesh 100 by moving a cursor or highlight bar throughout the mesh. For example, inFIG. 2 ,row 108 b is highlighted byhighlight bar 112, which indicates to the user that they have currently selected that channel. InFIG. 2 , the selected channel isABC 111. Becauserow 108 b is highlighted, a semi-transparent colored band extends from the front row to the back to indicate the location of the elements. - The
cursor 114 is currently highlightingelement 116, which is an object that represents the user's currently selected program, the news. In one embodiment, because thenews 116 is currently selected, the full title of the program “ABC Evening News” is displayed onsign 120. Sign 120 is placed on top of the mesh and displays details of the selected program. The user may movecursor 114 throughout themesh 100 to select and preview different television programs. In addition to showing the selected element on table 120, a further enhancement in one embodiment could pull that show to the front and display it hovering in front of themesh 100. - In the example illustration of
FIG. 2 , thenews 114 is in thefirst plane 102 because the user has designated newscasts as a preferred television program. Based on selected interest categories, the programs matching certain criteria are displayed in thefirst plane 102, indicating shows of the highest interest, thesecond plane 103 indicating shows of neutral interest, or displayed in thethird plane 104, indicating shows of the lowest interest. Althoughplanes - Furthermore, in the example shown in
FIG. 2 ,Johnny Sitcom 122 is set back into thesecond plane 103, “neutral,” because the user has given sitcoms a “neutral” preference setting.Womantalk 124 is set back into thethird plane 104, or “not preferred.” - The user views
virtual mesh 100 from the front. Program listings in thefront plane 102 appear to be at the front of the screen. Program listings in themiddle plane 103 appear to be set back from the front of the screen, and program listings in theback plane 104 appear to be set further back than program listings inplane 103. In one embodiment, the programs that the user wishes to view are displayed more prominently, so that the user's attention will be immediately drawn to them. This increases the ease of use of the EPG and creates an attractive visual effect. - Although this example of one embodiment shows three planes, the EPG may contain any number of planes, such as only two, representing interested and not interested, or four or five planes, for varying levels of interest. In yet another embodiment, multiple users on the same set-top box may have different preferential profiles and may accordingly assign different categories to different preference levels.
- The reduced number of elements that comprise the above described EPG helps to reduce the hardware requirements. Compared to most geometric objects processed by 3D pipelines,
virtual mesh 100 andindependent objects 101 are quite simple, and therefore will not require a great deal of processing to display. Additionally, the number of objects that comprise the EPG is also comparatively few, and thus there is less processing required. -
FIG. 3 illustrates an example of a category list where all categories of the various available programs are shown.List 200 has two columns.Column 201 lists categories andcolumn 202 shows the interest level assignment of each category. Either a user-selectable or preassigned value is assigned to each category. These values are then used by the system to tie the shows falling into each category to thecorrect planes 102 through 104. - In
FIG. 3 , for example, sports programs are given aninterest level 1, and would therefore be in thefirst plane 102. Likewise, sitcoms are assignedinterest level 2, and would be set in thesecond plane 103. And, late night shows are giveninterest level 3, and would be set in the third plane, 104. - Multiple customized tables can be programmed for different users, so when a user identifies himself, the EPG rearranges shows within the mesh accordingly. By pushing back certain shows and also making their entries visibly smaller than those in the foreground, shows of lesser interest are de-emphasized.
-
FIG. 4 showsvirtual mesh 100 as seen on a television screen. In one embodiment, the angle between the top line and the perpendicular, as viewed on a 2-D screen, is between 90 and 97 degrees. The embodiment shown inFIG. 4 is exemplary. Other arrangements may be chosen without affecting the functionality of the EPG. - The method of displaying an EPG in three dimensions, as described above, can be stored in the memory of a computer system (e.g., set top box, video recorders, etc.) as a set of instructions to be executed, as shown by way of example in
FIG. 5 . In addition, the instructions to display an EPG in three dimensions as described above could alternatively be stored on other forms of machine-readable medium, including magnetic and optical disks. For example, the method of the present invention could be stored on machine-readable mediums, such as magnetic disks or optical disks, which are accessible via a disk drive (or computer-readable medium drive). Further, the instructions can be downloaded into a computing device over a data network in a form of compiled and linked version. - Alternatively, the logic to perform the methods as discussed above, could be implemented in additional computer and/or machine readable mediums, such as discrete hardware components as large-scale integrated circuits (LSI's), application-specific integrated circuits (ASIC's), firmware such as electrically erasable programmable read-only memory (EEPROM's); and electrical, optical, acoustical and other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
- The embodiments above have been described in sufficient detail with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts may be resorted without departing from the spirit and scope of the embodiments as claimed. Accordingly, the scope is defined by the appended claims rather than the forgoing descriptions of embodiments.
Claims (41)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/001,447 US7322009B2 (en) | 2000-05-08 | 2004-12-01 | Three dimensional light electronic programming guide |
US11/970,847 US7610552B2 (en) | 2000-05-08 | 2008-01-08 | Three dimensional light electronic programming guide |
US12/561,753 US20100077434A1 (en) | 2000-05-08 | 2009-09-17 | Three Dimensional Light Electronic Programming Guide |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20312800P | 2000-05-08 | 2000-05-08 | |
US09/665,367 US6836274B1 (en) | 2000-05-08 | 2000-09-19 | Three dimensional light electronic programming guide |
US11/001,447 US7322009B2 (en) | 2000-05-08 | 2004-12-01 | Three dimensional light electronic programming guide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/665,367 Continuation US6836274B1 (en) | 2000-05-08 | 2000-09-19 | Three dimensional light electronic programming guide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/970,847 Continuation US7610552B2 (en) | 2000-05-08 | 2008-01-08 | Three dimensional light electronic programming guide |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050097603A1 true US20050097603A1 (en) | 2005-05-05 |
US7322009B2 US7322009B2 (en) | 2008-01-22 |
Family
ID=33518725
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/665,367 Expired - Lifetime US6836274B1 (en) | 2000-05-08 | 2000-09-19 | Three dimensional light electronic programming guide |
US11/001,447 Expired - Lifetime US7322009B2 (en) | 2000-05-08 | 2004-12-01 | Three dimensional light electronic programming guide |
US11/970,847 Expired - Lifetime US7610552B2 (en) | 2000-05-08 | 2008-01-08 | Three dimensional light electronic programming guide |
US12/561,753 Abandoned US20100077434A1 (en) | 2000-05-08 | 2009-09-17 | Three Dimensional Light Electronic Programming Guide |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/665,367 Expired - Lifetime US6836274B1 (en) | 2000-05-08 | 2000-09-19 | Three dimensional light electronic programming guide |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/970,847 Expired - Lifetime US7610552B2 (en) | 2000-05-08 | 2008-01-08 | Three dimensional light electronic programming guide |
US12/561,753 Abandoned US20100077434A1 (en) | 2000-05-08 | 2009-09-17 | Three Dimensional Light Electronic Programming Guide |
Country Status (1)
Country | Link |
---|---|
US (4) | US6836274B1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020035726A1 (en) * | 2000-04-17 | 2002-03-21 | Corl Mark T. | Information descriptor and extended information descriptor data structures for digital television signals |
US20020176372A1 (en) * | 2001-05-15 | 2002-11-28 | Tetsuya Ichikawa | Broadcast receiver |
US20040103432A1 (en) * | 2002-11-25 | 2004-05-27 | Barrett Peter T. | Three-dimensional program guide |
US20040100484A1 (en) * | 2002-11-25 | 2004-05-27 | Barrett Peter T. | Three-dimensional television viewing environment |
US20070107015A1 (en) * | 2005-09-26 | 2007-05-10 | Hisashi Kazama | Video contents display system, video contents display method, and program for the same |
US20070199021A1 (en) * | 2006-02-17 | 2007-08-23 | Samsung Electronics Co., Ltd. | Three-dimensional electronic programming guide providing apparatus and method |
US20070245380A1 (en) * | 2001-02-27 | 2007-10-18 | Gary Dommer | Representation of EPG programming information |
US20080320393A1 (en) * | 2007-06-19 | 2008-12-25 | Verizon Data Services Inc. | Program guide 3d zoom |
US20080320515A1 (en) * | 2007-06-24 | 2008-12-25 | Microsoft Corporation | Self-organizing media content |
US20090106705A1 (en) * | 2007-10-22 | 2009-04-23 | Sony Computer Entertainment Inc. | Data Management Apparatus And Method For Organizing Data Elements Into Multiple Categories For Display |
US20090109224A1 (en) * | 2007-10-26 | 2009-04-30 | Sony Corporation | Display control apparatus and method, program, and recording media |
US20100043028A1 (en) * | 2007-09-25 | 2010-02-18 | Neil Cormican | Multi-directional movement |
US20110023066A1 (en) * | 2009-07-27 | 2011-01-27 | Samsung Electronics Co., Ltd. | Method and apparatus for generating 3-dimensional image datastream including additional information for reproducing 3-dimensional image, and method and apparatus for receiving the 3-dimensional image datastream |
US20110145860A1 (en) * | 2009-12-15 | 2011-06-16 | Yuan Wei | Information processing apparatus, information processing method and program |
US20110161882A1 (en) * | 2009-12-31 | 2011-06-30 | Verizon Patent And Licensing, Inc. | User interface enhancements for media content access systems and methods |
US8677413B2 (en) | 2000-04-17 | 2014-03-18 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20140259072A1 (en) * | 2013-03-11 | 2014-09-11 | Wistron Corporation | Method for providing an electronic program guide, multimedia reproduction system, and computer readable storage medium |
US9197925B2 (en) | 2011-12-13 | 2015-11-24 | Google Technology Holdings LLC | Populating a user interface display with information |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020083468A1 (en) * | 2000-11-16 | 2002-06-27 | Dudkiewicz Gil Gavriel | System and method for generating metadata for segments of a video program |
US20030084445A1 (en) * | 2001-10-30 | 2003-05-01 | Paul Pilat | Method of enhancing awareness of a data cell in a grid |
US20050005295A1 (en) * | 2003-06-19 | 2005-01-06 | Chu Hui-Ling | 2-Dimension channel coding system |
US8046714B2 (en) * | 2005-03-17 | 2011-10-25 | Clarion Co., Ltd. | Method, program and device for displaying menu |
KR101402943B1 (en) * | 2007-08-16 | 2014-06-03 | 삼성전자주식회사 | Apparatus and method for browsing content |
US20090276806A1 (en) * | 2008-05-01 | 2009-11-05 | At&T Intellectual Property, Lp | Systems and Methods for Identifying Content |
US8970669B2 (en) * | 2009-09-30 | 2015-03-03 | Rovi Guides, Inc. | Systems and methods for generating a three-dimensional media guidance application |
KR101737832B1 (en) * | 2010-02-05 | 2017-05-29 | 엘지전자 주식회사 | A method for providing an user interface and a digital broadcast receiver |
WO2011112982A2 (en) * | 2010-03-12 | 2011-09-15 | Kocks Peter F | Systems and methods for organizing and displaying electronic media content |
US8803655B2 (en) * | 2010-05-11 | 2014-08-12 | Universal Electronics Inc. | System and methods for enhanced remote control functionality |
US8443300B2 (en) | 2010-08-24 | 2013-05-14 | Ebay Inc. | Three dimensional navigation of listing information |
US11237695B2 (en) * | 2012-10-12 | 2022-02-01 | Sling Media L.L.C. | EPG menu with a projected 3D image |
JP2016528585A (en) * | 2013-06-14 | 2016-09-15 | トムソン ライセンシングThomson Licensing | Method and system for automatically resizing a window in response to a user action |
KR102521343B1 (en) * | 2016-04-25 | 2023-04-13 | 엘지전자 주식회사 | Display device and operating method thereof |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4621259A (en) * | 1982-03-25 | 1986-11-04 | International Standard Electric Corporation | Consumer electronics equipment combination consisting of a television receiver and of a video recording and/or reproducing apparatus |
US5243418A (en) * | 1990-11-27 | 1993-09-07 | Kabushiki Kaisha Toshiba | Display monitoring system for detecting and tracking an intruder in a monitor area |
US5414773A (en) * | 1993-08-19 | 1995-05-09 | News Datacom Ltd. | CATV systems |
US5479268A (en) * | 1990-09-10 | 1995-12-26 | Starsight Telecast Inc. | User interface for television schedule system |
US5485197A (en) * | 1990-09-28 | 1996-01-16 | Ictv, Inc. | Carousel display |
US5532754A (en) * | 1989-10-30 | 1996-07-02 | Starsight Telecast Inc. | Background television schedule system |
US5550576A (en) * | 1995-04-17 | 1996-08-27 | Starsight Telecast Incorporated | Method and apparatus for merging television program schedule information received from multiple television schedule information sources |
US5704837A (en) * | 1993-03-26 | 1998-01-06 | Namco Ltd. | Video game steering system causing translation, rotation and curvilinear motion on the object |
US5724492A (en) * | 1995-06-08 | 1998-03-03 | Microsoft Corporation | Systems and method for displaying control objects including a plurality of panels |
US5737028A (en) * | 1995-11-01 | 1998-04-07 | International Business Machines Corporation | Previous channel listing with cursor controlled user interface for television video displays |
US5751282A (en) * | 1995-06-13 | 1998-05-12 | Microsoft Corporation | System and method for calling video on demand using an electronic programming guide |
US5808613A (en) * | 1996-05-28 | 1998-09-15 | Silicon Graphics, Inc. | Network navigator with enhanced navigational abilities |
US5818441A (en) * | 1995-06-15 | 1998-10-06 | Intel Corporation | System and method for simulating two-way connectivity for one way data streams |
US5828945A (en) * | 1995-04-17 | 1998-10-27 | Starsight Telecast, Inc. | Merging multi-source information in a television system |
US5841563A (en) * | 1996-08-21 | 1998-11-24 | Bell Communications Research, Inc. | Method and system for efficient optical transmission of NTSC video |
US5900915A (en) * | 1997-03-18 | 1999-05-04 | Thomson Consumer Electronics, Inc. | HD to SD guide converter for electronic television schedule system |
US5926168A (en) * | 1994-09-30 | 1999-07-20 | Fan; Nong-Qiang | Remote pointers for interactive televisions |
US5929849A (en) * | 1996-05-02 | 1999-07-27 | Phoenix Technologies, Ltd. | Integration of dynamic universal resource locators with television presentations |
US5940073A (en) * | 1996-05-03 | 1999-08-17 | Starsight Telecast Inc. | Method and system for displaying other information in a TV program guide |
US5956456A (en) * | 1995-07-10 | 1999-09-21 | Lg Electronics Inc. | Apparatus and method for displaying guide program data from a cassette tape |
US5977964A (en) * | 1996-06-06 | 1999-11-02 | Intel Corporation | Method and apparatus for automatically configuring a system based on a user's monitored system interaction and preferred system access times |
US5999167A (en) * | 1996-11-08 | 1999-12-07 | Stephen A. Marsh | Cursor control device |
US5999187A (en) * | 1996-06-28 | 1999-12-07 | Resolution Technologies, Inc. | Fly-through computer aided design method and apparatus |
US6002403A (en) * | 1996-04-30 | 1999-12-14 | Sony Corporation | Graphical navigation control for selecting applications on visual walls |
US6029195A (en) * | 1994-11-29 | 2000-02-22 | Herz; Frederick S. M. | System for customized electronic identification of desirable objects |
US6043818A (en) * | 1996-04-30 | 2000-03-28 | Sony Corporation | Background image with a continuously rotating and functional 3D icon |
US6061055A (en) * | 1997-03-21 | 2000-05-09 | Autodesk, Inc. | Method of tracking objects with an imaging device |
US6075575A (en) * | 1995-10-02 | 2000-06-13 | Starsight Telecast, Inc. | Remote control device and method for using television schedule information |
US6078348A (en) * | 1996-06-17 | 2000-06-20 | Starsight Telecast Inc. | Television schedule system with enhanced features |
US6081271A (en) * | 1997-05-23 | 2000-06-27 | International Business Machines Corporation | Determining view point on objects automatically in three-dimensional workspace from other environmental objects in a three-dimensional workspace |
US6205485B1 (en) * | 1997-03-27 | 2001-03-20 | Lextron Systems, Inc | Simulcast WEB page delivery using a 3D user interface system |
US6233389B1 (en) * | 1998-07-30 | 2001-05-15 | Tivo, Inc. | Multimedia time warping system |
US6243039B1 (en) * | 1998-04-21 | 2001-06-05 | Mci Communications Corporation | Anytime/anywhere child locator system |
US6271831B1 (en) * | 1997-04-03 | 2001-08-07 | Universal Electronics Inc. | Wireless control and pointer system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6034678A (en) * | 1991-09-10 | 2000-03-07 | Ictv, Inc. | Cable television system with remote interactive processor |
JPH09307827A (en) * | 1996-05-16 | 1997-11-28 | Sharp Corp | Channel selection device |
JPH1093880A (en) | 1996-09-12 | 1998-04-10 | Hitachi Ltd | Three-dimensional display program guide generation device |
US6043825A (en) * | 1997-06-19 | 2000-03-28 | The United States Of America As Represented By The National Security Agency | Method of displaying 3D networks in 2D with out false crossings |
IL125141A0 (en) | 1998-06-29 | 1999-01-26 | Nds Ltd | Advanced television system |
US6205582B1 (en) * | 1997-12-09 | 2001-03-20 | Ictv, Inc. | Interactive cable television system with frame server |
US6421067B1 (en) * | 2000-01-16 | 2002-07-16 | Isurftv | Electronic programming guide |
US7312796B1 (en) * | 2000-05-08 | 2007-12-25 | Jlb Ventures Llc | Perpendicular view three dimensional electronic programming guide |
-
2000
- 2000-09-19 US US09/665,367 patent/US6836274B1/en not_active Expired - Lifetime
-
2004
- 2004-12-01 US US11/001,447 patent/US7322009B2/en not_active Expired - Lifetime
-
2008
- 2008-01-08 US US11/970,847 patent/US7610552B2/en not_active Expired - Lifetime
-
2009
- 2009-09-17 US US12/561,753 patent/US20100077434A1/en not_active Abandoned
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4621259A (en) * | 1982-03-25 | 1986-11-04 | International Standard Electric Corporation | Consumer electronics equipment combination consisting of a television receiver and of a video recording and/or reproducing apparatus |
US5532754A (en) * | 1989-10-30 | 1996-07-02 | Starsight Telecast Inc. | Background television schedule system |
US5479268A (en) * | 1990-09-10 | 1995-12-26 | Starsight Telecast Inc. | User interface for television schedule system |
US6167188A (en) * | 1990-09-10 | 2000-12-26 | Starsight Telecast, Inc. | User interface for television schedule system |
US5485197A (en) * | 1990-09-28 | 1996-01-16 | Ictv, Inc. | Carousel display |
US5243418A (en) * | 1990-11-27 | 1993-09-07 | Kabushiki Kaisha Toshiba | Display monitoring system for detecting and tracking an intruder in a monitor area |
US5704837A (en) * | 1993-03-26 | 1998-01-06 | Namco Ltd. | Video game steering system causing translation, rotation and curvilinear motion on the object |
US5414773A (en) * | 1993-08-19 | 1995-05-09 | News Datacom Ltd. | CATV systems |
US5926168A (en) * | 1994-09-30 | 1999-07-20 | Fan; Nong-Qiang | Remote pointers for interactive televisions |
US6029195A (en) * | 1994-11-29 | 2000-02-22 | Herz; Frederick S. M. | System for customized electronic identification of desirable objects |
US5923362A (en) * | 1995-04-17 | 1999-07-13 | Starsight Telecast, Inc. | Merging multi-source information in a television system |
US5550576A (en) * | 1995-04-17 | 1996-08-27 | Starsight Telecast Incorporated | Method and apparatus for merging television program schedule information received from multiple television schedule information sources |
US5684525A (en) * | 1995-04-17 | 1997-11-04 | Starsight Telecast Incorporated | Merging multi-source information in a television system |
US6072983A (en) * | 1995-04-17 | 2000-06-06 | Starsight Telecast, Inc. | Merging multi-source information in a television system |
US5828945A (en) * | 1995-04-17 | 1998-10-27 | Starsight Telecast, Inc. | Merging multi-source information in a television system |
US5724492A (en) * | 1995-06-08 | 1998-03-03 | Microsoft Corporation | Systems and method for displaying control objects including a plurality of panels |
US5751282A (en) * | 1995-06-13 | 1998-05-12 | Microsoft Corporation | System and method for calling video on demand using an electronic programming guide |
US5818441A (en) * | 1995-06-15 | 1998-10-06 | Intel Corporation | System and method for simulating two-way connectivity for one way data streams |
US5956456A (en) * | 1995-07-10 | 1999-09-21 | Lg Electronics Inc. | Apparatus and method for displaying guide program data from a cassette tape |
US6075575A (en) * | 1995-10-02 | 2000-06-13 | Starsight Telecast, Inc. | Remote control device and method for using television schedule information |
US5737028A (en) * | 1995-11-01 | 1998-04-07 | International Business Machines Corporation | Previous channel listing with cursor controlled user interface for television video displays |
US6002403A (en) * | 1996-04-30 | 1999-12-14 | Sony Corporation | Graphical navigation control for selecting applications on visual walls |
US6043818A (en) * | 1996-04-30 | 2000-03-28 | Sony Corporation | Background image with a continuously rotating and functional 3D icon |
US5929849A (en) * | 1996-05-02 | 1999-07-27 | Phoenix Technologies, Ltd. | Integration of dynamic universal resource locators with television presentations |
US5940073A (en) * | 1996-05-03 | 1999-08-17 | Starsight Telecast Inc. | Method and system for displaying other information in a TV program guide |
US5808613A (en) * | 1996-05-28 | 1998-09-15 | Silicon Graphics, Inc. | Network navigator with enhanced navigational abilities |
US5977964A (en) * | 1996-06-06 | 1999-11-02 | Intel Corporation | Method and apparatus for automatically configuring a system based on a user's monitored system interaction and preferred system access times |
US6078348A (en) * | 1996-06-17 | 2000-06-20 | Starsight Telecast Inc. | Television schedule system with enhanced features |
US5999187A (en) * | 1996-06-28 | 1999-12-07 | Resolution Technologies, Inc. | Fly-through computer aided design method and apparatus |
US5841563A (en) * | 1996-08-21 | 1998-11-24 | Bell Communications Research, Inc. | Method and system for efficient optical transmission of NTSC video |
US5999167A (en) * | 1996-11-08 | 1999-12-07 | Stephen A. Marsh | Cursor control device |
US5900915A (en) * | 1997-03-18 | 1999-05-04 | Thomson Consumer Electronics, Inc. | HD to SD guide converter for electronic television schedule system |
US6061055A (en) * | 1997-03-21 | 2000-05-09 | Autodesk, Inc. | Method of tracking objects with an imaging device |
US6205485B1 (en) * | 1997-03-27 | 2001-03-20 | Lextron Systems, Inc | Simulcast WEB page delivery using a 3D user interface system |
US6271831B1 (en) * | 1997-04-03 | 2001-08-07 | Universal Electronics Inc. | Wireless control and pointer system |
US6081271A (en) * | 1997-05-23 | 2000-06-27 | International Business Machines Corporation | Determining view point on objects automatically in three-dimensional workspace from other environmental objects in a three-dimensional workspace |
US6243039B1 (en) * | 1998-04-21 | 2001-06-05 | Mci Communications Corporation | Anytime/anywhere child locator system |
US6233389B1 (en) * | 1998-07-30 | 2001-05-15 | Tivo, Inc. | Multimedia time warping system |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8650594B2 (en) | 2000-04-17 | 2014-02-11 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8959551B2 (en) | 2000-04-17 | 2015-02-17 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20050283801A1 (en) * | 2000-04-17 | 2005-12-22 | Corl Mark T | Information descriptor and extended information descriptor data structures for digital television signals |
US20080134247A1 (en) * | 2000-04-17 | 2008-06-05 | Corl Mark T | Information descriptor and extended information descriptor data structures for digital television signals |
US20080134246A1 (en) * | 2000-04-17 | 2008-06-05 | Corl Mark T | Information descriptor and extended information descriptor data structures for digital television signals |
US9414097B2 (en) | 2000-04-17 | 2016-08-09 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9288512B2 (en) | 2000-04-17 | 2016-03-15 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9277286B2 (en) | 2000-04-17 | 2016-03-01 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9118957B2 (en) | 2000-04-17 | 2015-08-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9118979B2 (en) | 2000-04-17 | 2015-08-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9084019B2 (en) | 2000-04-17 | 2015-07-14 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9032439B1 (en) | 2000-04-17 | 2015-05-12 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9027055B1 (en) | 2000-04-17 | 2015-05-05 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US9015760B2 (en) | 2000-04-17 | 2015-04-21 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8997152B2 (en) | 2000-04-17 | 2015-03-31 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8990860B2 (en) | 2000-04-17 | 2015-03-24 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8973041B2 (en) | 2000-04-17 | 2015-03-03 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8677411B2 (en) | 2000-04-17 | 2014-03-18 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8973043B2 (en) | 2000-04-17 | 2015-03-03 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US7877770B2 (en) | 2000-04-17 | 2011-01-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US7877769B2 (en) | 2000-04-17 | 2011-01-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US7877771B2 (en) * | 2000-04-17 | 2011-01-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US7877773B2 (en) | 2000-04-17 | 2011-01-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US7877772B2 (en) | 2000-04-17 | 2011-01-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8973044B2 (en) | 2000-04-17 | 2015-03-03 | LG Elecetonics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US7917926B2 (en) | 2000-04-17 | 2011-03-29 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8667535B2 (en) | 2000-04-17 | 2014-03-04 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20110145864A1 (en) * | 2000-04-17 | 2011-06-16 | Corl Mark T | Information descriptor and extended information descriptor data structures for digital television signals |
US8973042B2 (en) | 2000-04-17 | 2015-03-03 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8959550B2 (en) | 2000-04-17 | 2015-02-17 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8959549B2 (en) | 2000-04-17 | 2015-02-17 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20050283802A1 (en) * | 2000-04-17 | 2005-12-22 | Corl Mark T | Information descriptor and extended information descriptor data structures for digital television signals |
US8949897B2 (en) | 2000-04-17 | 2015-02-03 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8949896B2 (en) | 2000-04-17 | 2015-02-03 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8484683B2 (en) | 2000-04-17 | 2013-07-09 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8510777B2 (en) | 2000-04-17 | 2013-08-13 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8949898B2 (en) | 2000-04-17 | 2015-02-03 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8931007B2 (en) | 2000-04-17 | 2015-01-06 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8635648B1 (en) | 2000-04-17 | 2014-01-21 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8931005B2 (en) | 2000-04-17 | 2015-01-06 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8640169B1 (en) | 2000-04-17 | 2014-01-28 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8646004B1 (en) | 2000-04-17 | 2014-02-04 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8931004B2 (en) | 2000-04-17 | 2015-01-06 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8931006B2 (en) | 2000-04-17 | 2015-01-06 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20100005491A1 (en) * | 2000-04-17 | 2010-01-07 | Corl Mark T | Information descriptor and extended information descriptor data structures for digital television signals |
US8677413B2 (en) | 2000-04-17 | 2014-03-18 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8677412B2 (en) | 2000-04-17 | 2014-03-18 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8683523B2 (en) | 2000-04-17 | 2014-03-25 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8695040B2 (en) | 2000-04-17 | 2014-04-08 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8695039B2 (en) | 2000-04-17 | 2014-04-08 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8782705B2 (en) | 2000-04-17 | 2014-07-15 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8925013B2 (en) | 2000-04-17 | 2014-12-30 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20020035726A1 (en) * | 2000-04-17 | 2002-03-21 | Corl Mark T. | Information descriptor and extended information descriptor data structures for digital television signals |
US8925012B2 (en) | 2000-04-17 | 2014-12-30 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US8918813B2 (en) | 2000-04-17 | 2014-12-23 | Lg Electronics Inc. | Information descriptor and extended information descriptor data structures for digital television signals |
US20070245380A1 (en) * | 2001-02-27 | 2007-10-18 | Gary Dommer | Representation of EPG programming information |
US20020176372A1 (en) * | 2001-05-15 | 2002-11-28 | Tetsuya Ichikawa | Broadcast receiver |
US20040103432A1 (en) * | 2002-11-25 | 2004-05-27 | Barrett Peter T. | Three-dimensional program guide |
US7511710B2 (en) * | 2002-11-25 | 2009-03-31 | Microsoft Corporation | Three-dimensional program guide |
US20040100484A1 (en) * | 2002-11-25 | 2004-05-27 | Barrett Peter T. | Three-dimensional television viewing environment |
US20110239252A1 (en) * | 2005-09-26 | 2011-09-29 | Kabushiki Kaisha Toshiba | Video Contents Display System, Video Contents Display Method, and Program for the Same |
US20070107015A1 (en) * | 2005-09-26 | 2007-05-10 | Hisashi Kazama | Video contents display system, video contents display method, and program for the same |
US7979879B2 (en) * | 2005-09-26 | 2011-07-12 | Kabushiki Kaisha Toshiba | Video contents display system, video contents display method, and program for the same |
US8613018B2 (en) | 2006-02-17 | 2013-12-17 | Samsung Electronics Co., Ltd. | Three-dimensional electronic programming guide providing apparatus and method |
US20090241146A1 (en) * | 2006-02-17 | 2009-09-24 | Samsung Electronics Co., Ltd. | Three-dimensional electronic programming guide providing apparatus and method |
US20070199021A1 (en) * | 2006-02-17 | 2007-08-23 | Samsung Electronics Co., Ltd. | Three-dimensional electronic programming guide providing apparatus and method |
US8832553B2 (en) * | 2007-06-19 | 2014-09-09 | Verizon Patent And Licensing Inc. | Program guide 3D zoom |
US20080320393A1 (en) * | 2007-06-19 | 2008-12-25 | Verizon Data Services Inc. | Program guide 3d zoom |
US7987484B2 (en) * | 2007-06-24 | 2011-07-26 | Microsoft Corporation | Managing media content with a self-organizing map |
US20080320515A1 (en) * | 2007-06-24 | 2008-12-25 | Microsoft Corporation | Self-organizing media content |
US8302132B2 (en) | 2007-09-25 | 2012-10-30 | Nds Limited | Multi-directional movement |
US9027059B2 (en) | 2007-09-25 | 2015-05-05 | Cisco Technology, Inc. | Multi directional movement |
EP2528346A2 (en) | 2007-09-25 | 2012-11-28 | Nds Limited | Video enabled multidirectional movement through content |
US20100043028A1 (en) * | 2007-09-25 | 2010-02-18 | Neil Cormican | Multi-directional movement |
US9015633B2 (en) * | 2007-10-22 | 2015-04-21 | Sony Corporation | Data management apparatus and method for organizing data elements into multiple categories for display |
US20090106705A1 (en) * | 2007-10-22 | 2009-04-23 | Sony Computer Entertainment Inc. | Data Management Apparatus And Method For Organizing Data Elements Into Multiple Categories For Display |
US20090109224A1 (en) * | 2007-10-26 | 2009-04-30 | Sony Corporation | Display control apparatus and method, program, and recording media |
US8593484B2 (en) * | 2007-10-26 | 2013-11-26 | Sony Corporation | Display control apparatus and method, program, and recording media for display of a list of program information using three axes |
US20110023066A1 (en) * | 2009-07-27 | 2011-01-27 | Samsung Electronics Co., Ltd. | Method and apparatus for generating 3-dimensional image datastream including additional information for reproducing 3-dimensional image, and method and apparatus for receiving the 3-dimensional image datastream |
US9392256B2 (en) * | 2009-07-27 | 2016-07-12 | Samsung Electronics Co., Ltd. | Method and apparatus for generating 3-dimensional image datastream including additional information for reproducing 3-dimensional image, and method and apparatus for receiving the 3-dimensional image datastream |
US20110145860A1 (en) * | 2009-12-15 | 2011-06-16 | Yuan Wei | Information processing apparatus, information processing method and program |
US8789098B2 (en) * | 2009-12-15 | 2014-07-22 | Sony Corporation | Information processing apparatus, information processing method and program |
US20110161882A1 (en) * | 2009-12-31 | 2011-06-30 | Verizon Patent And Licensing, Inc. | User interface enhancements for media content access systems and methods |
US8640052B2 (en) * | 2009-12-31 | 2014-01-28 | Verizon Patent And Licensing Inc. | User interface enhancements for media content access systems and methods |
US9197925B2 (en) | 2011-12-13 | 2015-11-24 | Google Technology Holdings LLC | Populating a user interface display with information |
US20140259072A1 (en) * | 2013-03-11 | 2014-09-11 | Wistron Corporation | Method for providing an electronic program guide, multimedia reproduction system, and computer readable storage medium |
US9143837B2 (en) * | 2013-03-11 | 2015-09-22 | Wistron Corporation | Method for providing an electronic program guide, multimedia reproduction system, and computer readable storage medium |
Also Published As
Publication number | Publication date |
---|---|
US20080163300A1 (en) | 2008-07-03 |
US7610552B2 (en) | 2009-10-27 |
US20100077434A1 (en) | 2010-03-25 |
US6836274B1 (en) | 2004-12-28 |
US7322009B2 (en) | 2008-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7610552B2 (en) | Three dimensional light electronic programming guide | |
US7975399B2 (en) | Perpendicular view three dimensional electronic programming guide | |
US7503003B2 (en) | Electronic programming guide | |
US8601510B2 (en) | User interface for interactive digital television | |
US7873972B2 (en) | Method and apparatus for generating a mosaic style electronic program guide | |
KR101190462B1 (en) | Scaling and layout methods and systems for handling one-to-many objects | |
KR100806057B1 (en) | Video sample rate conversion to achieve 3-D effects | |
US20080141172A1 (en) | Multimedia Player And Method Of Displaying On-Screen Menu | |
US9083915B2 (en) | 3D electronic program guide | |
US20040100486A1 (en) | Method and system for image editing using a limited input device in a video environment | |
US8793732B2 (en) | Universal programming system and method for electronic programming guide | |
US8601511B2 (en) | Providing an interactive electronic programmimg guide with a layout that is defined based on objects | |
WO2002025626A1 (en) | Three dimensional light electronic programming guide | |
US8336069B1 (en) | Method and system for adaptive electronic programming guide | |
US20030002057A1 (en) | Image processing system and method, and computer-readable recording medium | |
US7106338B1 (en) | Method and system for optimal usage of memory for storing scheduling and guiding data in 3D-enabled EPG | |
WO2001082594A1 (en) | Universal programming system and method for electronic programming guide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EAGLE NEW MEDIA INVESTMENTS, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIKINIS, DAN;REEL/FRAME:018858/0989 Effective date: 20070206 |
|
AS | Assignment |
Owner name: EAGLE NEW MEDIA INVESTMENTS, LLC, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KIKINIS, DAN;REEL/FRAME:019012/0915 Effective date: 20070206 |
|
AS | Assignment |
Owner name: JLB VENTURES LLC, DISTRICT OF COLUMBIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EAGLE NEW MEDIA INVESTMENTS, LLC;REEL/FRAME:019511/0863 Effective date: 20070222 Owner name: JLB VENTURES LLC,DISTRICT OF COLUMBIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EAGLE NEW MEDIA INVESTMENTS, LLC;REEL/FRAME:019511/0863 Effective date: 20070222 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |