US20050092435A1 - Processing device, electrode, electrode plate, and processing method - Google Patents

Processing device, electrode, electrode plate, and processing method Download PDF

Info

Publication number
US20050092435A1
US20050092435A1 US10/948,338 US94833804A US2005092435A1 US 20050092435 A1 US20050092435 A1 US 20050092435A1 US 94833804 A US94833804 A US 94833804A US 2005092435 A1 US2005092435 A1 US 2005092435A1
Authority
US
United States
Prior art keywords
gas
provided
shower head
processing
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/948,338
Inventor
Kazuichi Hayashi
Kouichi Yatsuda
Masafumi Urakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JPJP2002-89076 priority Critical
Priority to JP2002089076A priority patent/JP4128383B2/en
Priority to PCT/JP2003/003769 priority patent/WO2003081657A1/en
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to US10/948,338 priority patent/US20050092435A1/en
Assigned to TOKYO ELECTRON LIMITED reassignment TOKYO ELECTRON LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAYASHI, KAZUICHI, URAKAWA, MASAFUMI, YATSUDA, KOUICHI
Publication of US20050092435A1 publication Critical patent/US20050092435A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Abstract

A processing gas fed from a gas feed pipe (8) through a gas introducing port (9) flows first into an outer annular gas flow channel (20 a), where it is circumferentially diffused, and then into an inner annular gas flow channel (20 b) via a passageway (23), and from this inner annular gas flow channel (20 b) it flows into a gas diffusion gap (7) in the back surface of a shower head (6) via a gas feed hole 25. Thereafter, the processing gas is diffused in the gas diffusion gap (7) and delivered from gas delivery holes (5) to a semiconductor wafer (W). This makes it possible to improve the uniformity of in-plane process, as compared with the prior art, and to make a uniform process.

Description

    TECHNICAL FIELD
  • The present invention relates to a processing device, an electrode, an electrode plate, and a processing method, including a detection mechanism for optically detecting the processed state of a substrate to be processed.
  • BACKGROUND ART
  • Conventionally, in the art of fabrication of semiconductor devices, for example, a processing device is frequently used in order to form the fine circuit structure of a semiconductor device. This processing device generates plasma from a processing gas, so as to perform a process on a desired portion of the semiconductor device by the action of the plasma.
  • In recent years, a processing device has been developed that includes a detection mechanism for optically detecting the processed state of a substrate to be processed, for example, the thickness of a layer to be etched, or the like, and performs a process on the substrate while detecting the layer thickness or the like, thereby performing the process to a desired result.
  • FIG. 6 schematically shows the structure of this processing device. As shown in FIG. 6, this processing device includes a cylindrical vacuum chamber that is formed of aluminum, for example, in such a manner that the chamber can be closed airtight. The vacuum chamber forms a processing room.
  • In the vacuum chamber 1, a placing table (suscepter) 2 is provided for supporting approximately horizontally a semiconductor wafer W as a substrate to be processed in such a manner that the surface to be processed faces upward. The placing table 2 also serves as a lower electrode and is connected to a radio frequency power supply 4 via a matching box 3. This placing table 2 is typically provided with an electrostatic chuck (not shown) for absorbing and holding the semiconductor wafer W, a temperature control system (not shown) for controlling the temperature of the semiconductor wafer W to be at a predetermined temperature, and the like.
  • On the other hand, a shower head 6 is provided on the ceiling of the vacuum chamber 1 above the placing table 2. The head 6 includes a plurality of gas delivery holes 5 that face the placing surface of the placing table 2 on which the semiconductor wafer W is to be placed. On the back of the shower head 6, a gas diffusion gap 7 is provided.
  • The ceiling of the vacuum chamber 1 is provided with a gas introducing port 9, to which a gas feed pipe 8 is connected. Under the gas introducing port 9 a circular groove 9 a, having a larger diameter than that of the gas introducing port 9, is provided to be in communication with the gas introducing port 9. A baffle plate 11, in the form of a circular disk having a plurality of gas feed holes 10 provided therein, as shown in FIG. 7, is arranged to close the lower opening of the circular groove 9 a.
  • Thus, a predetermined processing gas supplied from the gas feed pipe 8 is introduced into the gas diffusion gap 7 on the back of the shower head 6. The processing gas is introduced from the gas introducing port 9 through the gas feed holes 10 of the baffle plate 11. The processing gas thus introduced is diffused within the gas diffusion gap 7, and is then delivered as uniformly as possible from the respective gas delivery holes 5 toward the semiconductor wafer W.
  • Moreover, light transmitting windows 12 and 13 formed by light transmitting members are provided at the center of the shower head 6, and in a corresponding region of the ceiling of the vacuum chamber 1, respectively. Through the light transmitting windows 12 and 13, the processed state (layer thickness) of the semiconductor wafer W can be detected by a detection mechanism provided outside the vacuum chamber 1, for example, a layer-thickness detection mechanism 14. The layer-thickness detection mechanism 14 is provided with a driving mechanism 14 a for moving the layer-thickness detection mechanism 14 so as to be able to measure the layer thickness in a desired portion of a semiconductor chip.
  • At the bottom of the vacuum chamber 1 is provided an exhaust port 15, connected to a vacuum exhaust mechanism, which is not shown. Thus, the atmosphere in the vacuum chamber 1 can be set to a predetermined vacuum atmosphere. In addition, in the outside of the sidewall of the vacuum chamber 1, an annular magnetic field generation mechanism 16 is provided. This magnetic field generation mechanism 16 can generate a predetermined magnetic field within the vacuum chamber 1. The magnetic field generation mechanism 16 is provided with a not-shown driving mechanism that can rotate the magnetic field generation mechanism 16 around the vacuum chamber 1.
  • Thus, a processing device having the aforementioned structure is arranged to uniformly supply a processing gas toward the semiconductor wafer W by distributing the processing gas introduced from the gas introducing port 9 by the components such as the baffle plate 11, the gas diffusion gap 7, and the shower head 6.
  • However, as described above, in the processing device provided with the layer-thickness detection mechanism 14 for detecting a thickness of a layer on the semiconductor wafer W, or the like, it is necessary to detect the thickness of the layer at the center of the semiconductor wafer W. Thus, the light transmitting windows 12 and 13 for the layer-thickness detection mechanism 14 have to be arranged at the center of the vacuum chamber 1. Consequently the gas introducing port 9 has to be arranged away from the center of the vacuum chamber 1. This makes the process rate of a semiconductor wafer W faster in the region directly below the gas introducing port 9 than in other regions, thus degrading in-plane uniformity of the process.
  • Moreover, since the light transmitting windows 12 and 13 are provided above the central portion of the semiconductor wafer W, the processing gas cannot be supplied toward the semiconductor wafer W in this region. Thus, the process rate in the central portion of the semiconductor wafer W tends to become lower than that in other regions. This further degrades the in-plane uniformity of the process.
  • DISCLOSURE OF THE INVENTION
  • Therefore, it is an object of the present invention to provide a processing device, an electrode, an electrode plate, and a processing method that can improve in-plane uniformity of a process as compared with a conventional technique, and can perform the process uniformly.
  • According to the present invention, a processing device comprises: a processing room for accommodating a substrate to be processed to perform a predetermined process; a placing table provided in the processing room, the substrate to be processed being placed on the placing table; a gas introducing port to which a gas feed pipe is connected; a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes; a gas diffusion gap, provided on an opposite side of the shower head to the placing face, for diffusing a processing gas and delivering the processing gas into the processing room via the gas delivery holes; a light transmitting window provided to be located at a center of the shower head; a detection mechanism for optically detecting a processed state of the substrate to be processed via the light transmitting window; and an annular gas flow channel, formed to be annular with its center located on an axis that is perpendicular to an upper surface of the placing table and passes through the light transmitting window, for diffusing the processing gas introduced from the gas introducing port and then supplying the processing gas to the gas diffusion gap.
  • The processing device of the present invention is characterized in that the processing device described above further comprises an annular baffle plate provided on a side of the annular gas flow channel that is a closer side to the gas diffusion gap, the annular baffle plate having a plurality of gas feed holes.
  • The processing device of the present invention is characterized in that the annular gas flow channel, in the processing device described above, includes an outer annular gas flow channel and an inner annular gas flow channel that is in communication with the outer annular gas flow channel.
  • The processing device of the present invention is characterized in that, in the processing device described above, the gas introducing port is connected to one of the outer annular gas flow channel and the inner annular gas flow channel, and the gas feed holes are provided in a region of the annular baffle plate that corresponds to the other of the outer annular gas flow channel and the inner annular gas flow channel.
  • The processing device of the present invention is characterized in that the light transmitting window, in the processing device described above, includes gas delivery holes.
  • The processing device of the present invention is characterized in that, in the processing device described above, the gas delivery holes provided in the light transmitting window are formed with a diameter and a pitch that are the same as those of the gas delivery holes provided in the shower head.
  • The processing device of the present invention is characterized in that the processing device described above is configured to perform the process on the substrate to be processed while an arranged direction of the gas delivery holes provided in the light transmitting window is inclined at a predetermined angle with respect to an arranged direction of semiconductor chips formed on the substrate to be processed.
  • According to the present invention, a processing device comprises: a processing room for accommodating a substrate to be processed to perform a predetermined process; a placing table provided in the processing room, the substrate to be processed being placed on the placing table; a shower head, provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes; a light transmitting window provided to be located at a center of the shower head; a detection mechanism for optically detecting a processed state of the substrate to be processed via the light transmitting window; and gas delivery holes provided in the light transmitting window, wherein a direction of the gas delivery holes formed in the shower head and a direction of the gas delivery holes formed in the light transmitting window are the same and are set in such a manner that all the gas delivery holes in the shower head and all the gas delivery holes in the light transmitting window face the placing face.
  • The processing device of the present invention is characterized in that, in the processing device described above, the gas delivery holes provided in the light transmitting window are formed with a diameter and a pitch that are the same as those of the gas delivery holes provided in the shower head.
  • The processing device of the present invention is characterized in that the processing device described above is configured to perform the process on the substrate to be processed while an arranged direction of the gas delivery holes provided in the light transmitting window is inclined at a predetermined angle with respect to an arranged direction of semiconductor chips formed on the substrate to be processed.
  • According to the present invention, an electrode is provided in a processing device including: a processing room for accommodating a substrate to be processed, to perform a predetermined process; and a placing table provided in the processing room, the substrate to be processed being placed on the placing table. The electrode comprises: a gas introducing port to which a gas feed pipe is connected; a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes; a gas diffusion gap, provided on an opposite side of the shower head to the placing face, for diffusing a processing gas and delivering the processing gas into the processing room via the gas delivery holes; a light transmitting window, provided to be located at a center of the shower head, for optically detecting a processed state of the substrate to be processed; and an annular gas flow channel, formed to be annular with its center located on an axis that is perpendicular to an upper surface of the placing table and passes through the light transmitting window, for diffusing the processing gas introduced from the gas introducing port and then supplying the processing gas to the gas diffusion gap.
  • According to the present invention, an electrode plate is provided in a processing device that includes: a processing room for accommodating a substrate to be processed, to perform a predetermined process; a placing table provided in the processing room, the substrate to be processed being placed on the placing table; a gas introducing port to which a gas feed pipe is connected; a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes; a gas diffusion gap, provided on an opposite side of the shower head to the placing face, for diffusing a processing gas and delivering the processing gas into the processing room via the gas delivery holes; a light transmitting window provided to be located at a center of the shower head; a detection mechanism for optically detecting a processed state of the substrate to be processed via the light transmitting window; and an annular gas flow channel, formed to be annular with its center located on an axis that is perpendicular to an upper surface of the placing table and passes through the light transmitting window, for diffusing the processing gas introduced from the gas introducing port and then supplying the processing gas to the gas diffusion gap, wherein the electrode plate is arranged to cover a surface of the shower head and to be attachable to and detachable from the shower head freely, the surface of the shower head being opposed to the placing face.
  • According to the present invention, a processing method uses a processing device that includes: a processing room for accommodating a substrate to be processed to perform a predetermined process; a placing table provided in the processing room, the substrate to be processed being placed on the placing table; a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes; and a detection mechanism for optically detecting a processed state of the substrate to be processed via a light transmitting window provided to be located at a center of the shower head, the light transmitting window having gas delivery holes provided therein, wherein a direction of the gas delivery holes formed in the shower head and a direction of the gas delivery holes formed in the light transmitting window are the same and are set in such a manner that all the gas delivery holes in the shower head and all the gas delivery holes in the light transmitting window face the placing face and wherein the process is performed on the substrate to be processed while an arranged direction of the gas delivery holes provided in the light transmitting window is inclined at a predetermined angle with respect to an arranged direction of semiconductor chips formed on the substrate to be processed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically shows the configuration of a processing device according to an embodiment of the present invention.
  • FIG. 2 shows a main part of the processing device shown in FIG. 1.
  • FIG. 3 shows a main part of the processing device shown in FIG. 1.
  • FIG. 4 is a diagram of a positional relationship between chips on a semiconductor wafer and gas delivery holes.
  • FIG. 5 is a diagram of a positional relationship between the chips on the semiconductor wafer and the gas delivery holes according to a desired embodiment of the present invention.
  • FIG. 6 schematically shows the configuration of a conventional processing device.
  • FIG. 7 shows a main part of the processing device shown in FIG. 6.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • Embodiments of the present invention are now described in detail with reference to the drawings. FIG. 1 schematically shows the configuration of a processing device according to an embodiment where the present invention is applied to an etching process. In FIG. 1, the same parts as those appearing in FIG. 6 are labeled with the same reference numerals, while the redundant description is omitted.
  • As shown in FIG. 1, in the processing device of the present embodiment, an annular gas groove 22 is formed on an inner side face of a cover 1 a. This cover 1 a is in the form of a circular disk that closes the upper opening of a cylindrical vacuum chamber 1 in an airtight manner, and forms the ceiling of the vacuum chamber 1. Under the annular gas groove 22 is provided an annular baffle plate 21 which is formed to be annular, as shown in FIG. 2. Thus, an annular gas flow channel 20 for etching gas is formed between the annular groove 22 and the annular baffle plate 21. An upper electrode of the processing device is formed by the circular disk-like cover 1 a and a shower head 6 that includes an electrode plate 6 a and an electrode supporting body 6 b. The electrode plate 6 a is provided to cover the surface of the electrode that faces a placing table 2. The electrode plate 6 a can be freely attached to, and detached from, the electrode. Thus, when the electrode plate 6 a is consumed as a consequence of plasma etching or the like, it is possible to replace only the electrode plate 6 a by detaching the electrode plate 6 a from the electrode supporting body 6 b.
  • The aforementioned annular gas flow channel 20 is arranged in such a manner that light transmitting windows 12 and 13 are located at the center of the annular gas flow channel 20, i.e., they are arranged concentrically with respect to the annular gas flow channel 20. In other words, the annular gas flow channel 20 is formed with its center located on an axis that is perpendicular to the upper surface of the placing table 2, and passes through the light transmitting windows 12 and 13.
  • The annular gas flow channel 20 has a double groove structure formed by an outer annular gas flow channel 20 a, and an inner annular gas flow channel 20 b, both concentrically formed to be in close proximity with each other. A convex portion 24 is provided between the outer annular gas flow channel 20 a and the inner annular gas flow channel 20 b, forming in conjunction with the annular baffle plate 21 a passageway 23 therebetween.
  • A gas introducing port 9 is provided in a region where the outer annular gas flow channel 20 a is present, and is connected to a gas feed pipe 8. Additionally, a plurality of gas feed holes 25 are provided in a region of the annular baffle plate 21 that corresponds to the inner annular gas flow channel 20 b. The relationship of positions between the gas introducing port 9 and the gas feed holes 25 may be reversed, for example, in such a manner that the gas introducing port 9 to which the gas feed pipe 8 is connected is provided in a region of the inner annular gas flow channel 20 b, while the gas feed holes 25 are provided in a region of the annular baffle plate 21 that corresponds to the outer annular gas flow channel 20 a.
  • The gas feed holes 25 are provided on the annular baffle plate 21 in a circumferential direction, and with a predetermined pitch. In the present embodiment, the gas feed holes 25 are staggered in two lines, as shown in FIG. 2. Please note that the arrangement, the number and the like, of the gas feed holes 25 can be determined in any manner as long as a processing gas can be supplied from the gas feed holes 25 as uniformly as possible.
  • Moreover, in the present embodiment the annular gas flow channel 20 has a double groove structure, formed by the outer annular gas flow channel 20 a and the inner annular gas flow channel 20 b, and with the passageway 23 provided therebetween as described above. However, in a case where gas can be sufficiently diffused within the annular gas flow channel 20 due to a relationship with conductance and the like of the gas feed hole 25 provided in the annular baffle plate 21, the annular gas flow channel 20 may be formed by a single annular gas flow channel instead of the above double groove structure.
  • Furthermore, in the present embodiment, one of the light transmitting windows 12 and 13 provided for a layer-thickness detection mechanism 14, i.e., the light transmitting window 12 provided in the shower head 6, is provided with a plurality of gas delivery holes 26.
  • As shown in FIG. 3, those gas delivery holes 26 are provided with a diameter and a pitch that are the same as those of the gas delivery holes 5 provided in the shower head 6. In the region around the center of a semiconductor wafer W, the processing gas is supplied toward the semiconductor wafer W through those gas delivery holes 26.
  • In the present embodiment the positions of the gas delivery holes 26, and the alignment direction of the semiconductor wafer W when the semiconductor wafer W is placed on the placing table 2, are controlled in such a manner that the arranged direction of the gas delivery holes 26 (shown with the arrow A in FIG. 3) is inclined at a predetermined angle θ with respect to the arranged direction of semiconductor chips on the semiconductor wafer W (shown with the arrow B in FIG. 3).
  • In the present embodiment, in which the processing device has the aforementioned configuration, the processing gas supplied from the gas feed pipe 8 through the gas introducing port 9 first flows into the outer annular gas flow channel 20 a. It is then diffused within the outer annular gas flow channel 20 a along its circumferential direction. Then, the processing gas enters the inner annular gas flow channel 20 b, via the passageway 23, and then enters the gas diffusion gap 7 on the back side of the shower head 6 through the gas feed holes 25.
  • Thus, at the time when the processing gas has entered the gas diffusion gap 7, the processing gas has been already diffused along the annular gas flow channel 20 to some extent. Moreover, the processing gas is delivered through the respective gas delivery holes 5 toward the semiconductor wafer W while the processing gas is also diffused within the gas diffusion gap 7. Therefore, it is possible to uniformly supply the sufficiently diffused processing gas to the semiconductor wafer W.
  • In addition, when the processing gas is supplied to the semiconductor wafer W, the supply of processing gas is performed not only through the gas delivery holes 5 provided in the shower head 6 but also through the gas delivery holes 26 provided in the light transmitting window 12. Therefore, even in the central region of the semiconductor wafer W, it is possible to uniformly supply the processing gas as for other regions of the semiconductor wafer W.
  • Furthermore, the positions of the gas delivery holes 26, and the alignment direction of the semiconductor wafer W when the semiconductor wafer W is placed on the placing table 2, are controlled in such a manner that the arranged direction of the gas delivery holes 26 forms a predetermined angle θ with respect to the arranged direction of the semiconductor chips on the semiconductor wafer W. Thus, during measurement of a thickness of a layer on the semiconductor wafer W is by layer-thickness detection mechanism 14, even if the optical path of light for thickness measurement by the layer-thickness detection mechanism 14 overlaps the gas outlet 26, thereby preventing the thickness measurement, it is possible to move the layer-thickness detection mechanism 14 by a driving mechanism 14 a and perform the thickness measurement on an adjacent semiconductor chip or the like, on the semiconductor wafer W.
  • On the other hand, a case is considered in which the arranged direction of the gas delivery holes 26 is coincident with the arranged direction of the semiconductor chips on the semiconductor wafer W. In this case, if the pitch of the gas delivery holes 26 is the same as that of the semiconductor chips on the semiconductor wafer W, when the layer-thickness detection mechanism 14 is moved by the driving mechanism 14 a to an adjacent semiconductor chip so as to perform the thickness measurement for the adjacent semiconductor chip, the gas outlet 26 may still overlap the portion of the adjacent semiconductor chip to be measured. Once again the thickness measurement will be prevented. FIG. 4 shows that state, wherein 31 denotes a single semiconductor chip on the semiconductor wafer W.
  • The aforementioned relationship, between the arranged direction of the gas delivery holes 26 and the arranged direction of the semiconductor chips on the semiconductor wafer W, can be solved by arranging in advance an alignment direction of the semiconductor wafer W, which is placed on the placing table 2, away from the fixed arranged direction of the gas delivery holes 26, as shown in FIG. 5. Moreover, in a case where the alignment direction of the semiconductor wafer W placed on the placing table 2 has been already determined, that relationship can also be solved by fixing the shower head 6 in advance in such a manner that the arranged direction of the gas delivery holes 26 is inclined at a predetermined angle with respect to the arranged direction of the semiconductor chips on the semiconductor wafer W.
  • The driving mechanism 14 a is a mechanism for driving and moving the layer-thickness detection mechanism 14. The driving mechanism 14 a and the layer-thickness detection mechanism 14 have to be moved from a space above the vacuum chamber 1 to a predetermined escape position when, for example, maintenance or the like is performed. Thus, the driving mechanism 14 a is configured to be movable in a Z direction (vertical direction) and an X direction (horizontal direction), as shown with arrows in FIG. 1, by a Z-direction moving mechanism and an X-direction moving mechanism respectively (both not shown).
  • When the driving mechanism 14 a and the layer-thickness detection mechanism 14 are moved from a measurement position above the vacuum chamber 1 to the escape position, it is necessary to move them upward (in the Z direction) and then in the horizontal direction (in the X direction), otherwise they may come in contact with the surrounding structure. Similarly, when the driving mechanism 14 a and the layer-thickness detection mechanism 14 are moved from the escape position to the measurement position located above the vacuum chamber 1, it is necessary to first move them in the horizontal direction (in the X direction) and then move them downward (in the Z direction), otherwise they may come in contact with the surrounding structure.
  • Thus, the Z-direction and X-direction moving mechanisms mentioned above are each provided with a stopper mechanism. They are configured in such a manner that the stopper mechanism of the Z-direction moving mechanism is unlocked, so as to allow the driving mechanism 14 a and the layer-thickness detection mechanism 14 to move in Z direction, when they reach a predetermined position on the X-direction moving mechanism (i.e. above the measurement position). The stopper mechanism of the X direction moving mechanism is unlocked so as to allow the driving mechanism 14 a and the layer-thickness detection mechanism 14 to move in the X direction when they reach a predetermined position on the Z-direction moving mechanism (i.e. a position at which they have been moved up).
  • Next, a procedure for etching using the aforementioned processing device is described. First, a gate valve (not shown) is opened and a semiconductor wafer W is carried into the vacuum chamber 1 by a transfer mechanism, or the like, through the gate valve. The semiconductor wafer W is placed on the placing table 2. Then, the semiconductor wafer W is attracted and held on the placing table 2 by an electrostatic chuck or the like (not shown). After the transfer mechanism has been moved to the outside of the vacuum chamber 1, the gate valve is closed.
  • Then, the vacuum chamber 1 is evacuated through the exhaust port 15 by a vacuum pump (not shown).
  • After the inside of the vacuum chamber 1 has reached a predetermined degree of vacuum, a predetermined processing gas is introduced, at a predetermined flow rate, into the vacuum chamber 1 through the gas feed pipe 8. The inside of the vacuum chamber 1 is maintained at a predetermined pressure, for example, 1.33 to 133 Pa (10 to 1000 mTorr).
  • In this state, a radio frequency power at a predetermined frequency, for example a frequency of 13.56 MHz, is supplied to the placing table 2 from the radio frequency power supply 4.
  • In this case, because of the application of radio frequency power to the placing table 2 serving as a lower electrode, a radio frequency electric field is generated in the processing space between the shower head 6 serving as an upper electrode and the placing table 2. Also, a magnetic field is generated by the magnetic field generation mechanism 16. In this state, a process using plasma can be performed.
  • During the etching process, the processing gas is uniformly supplied to the entire semiconductor wafer W, as described above. Thus, the etching process is performed uniformly for the entire surface of the semiconductor wafer W.
  • The etching process is performed while the thickness of a predetermined layer, on a predetermined portion around the center of the semiconductor wafer W, is measured. When the measured thickness reaches a predetermined thickness and therefore it has been detected that a predetermined etching process has been done, the supply of the radio frequency power from the radio frequency power supply 4 is stopped so as to halt the etching process. Then, the semiconductor wafer W is carried out from the vacuum chamber 1 in a reverse procedure to the aforementioned carry-in procedure.
  • As described above, in the present embodiment, even in a case where the light transmitting windows 12 and 13 for the layer-thickness detection mechanism 14 are provided at the center of the processing device, it is possible to uniformly supply the processing gas to the entire surface of the semiconductor wafer W. Thus, it is possible to uniformly perform a process on the entire surface of the semiconductor wafer W.
  • The processing device that supplies the radio frequency power to the placing table 2 serving as the lower electrode has been described in the above embodiment. However, the present invention is not limited thereto. For example, the present invention can be also applied to a type of processing device that supplies the radio frequency power to the upper electrode, and to a type of processing device that applies a radio frequency voltage to both the upper and lower electrodes. Moreover, the present invention can be applied not only to an etching apparatus and an etching method but also to a plasma CVD apparatus and a plasma CVD processing method.
  • As described above, according to the processing device, electrode, electrode plate, and processing method of the present invention, the in-plane uniformity of the process can be improved as compared with a conventional technique. Thus, the process can be performed uniformly.
  • Industrial Applicability
  • A processing device, an electrode, an electrode plate, and a processing method according to the present invention can be used in the semiconductor manufacturing industry that manufactures semiconductor devices, and the like.
  • Thus, the present invention has an industrial applicability.

Claims (13)

1. A processing device comprising:
a processing room for accommodating a substrate to be processed to perform a predetermined process;
a placing table provided in the processing room, the substrate to be processed being placed on the placing table;
a gas introducing port to which a gas feed pipe is connected;
a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes;
a gas diffusion gap, provided on an opposite side of the shower head to the placing face, for diffusing a processing gas and delivering the processing gas into the processing room via the gas delivery holes;
a light transmitting window provided to be located at a center of the shower head;
a detection mechanism for optically detecting a processed state of the substrate to be processed via the light transmitting window; and
an annular gas flow channel, formed to be annular with its center located on an axis that is perpendicular to an upper surface of the placing table and passes through the light transmitting window, for diffusing the processing gas introduced from the gas introducing port and then supplying the processing gas to the gas diffusion gap.
2. The processing device according to claim 1, further comprising an annular baffle plate provided on a side of the annular gas flow channel that is a closer side to the gas diffusion gap, the annular baffle plate having a plurality of gas feed holes.
3. The processing device according to claim 2, wherein
the annular gas flow channel comprises an outer annular gas flow channel and an inner annular gas flow channel that is in communication with the outer annular gas flow channel.
4. The processing device according to claim 3, wherein
the gas introducing port is connected to one of the outer annular gas flow channel and the inner annular gas flow channel, and the gas feed holes are provided in a region of the annular baffle plate that corresponds to the other of the outer annular gas flow channel and the inner annular gas flow channel.
5. The processing device according to claim 1, wherein the light transmitting window comprises gas delivery holes.
6. The processing device according to claim 5, wherein the gas delivery holes provided in the light transmitting window are formed with a diameter and a pitch that are the same as those of the gas delivery holes provided in the shower head.
7. The processing device according to claim 5, wherein
the processing device is configured to perform the process on the substrate to be processed while an arranged direction of the gas delivery holes provided in the light transmitting window is inclined at a predetermined angle with respect to an arranged direction of semiconductor chips formed on the substrate to be processed.
8. A processing device comprising:
a processing room for accommodating a substrate to be processed to perform a predetermined process;
a placing table provided in the processing room, the substrate to be processed being placed on the placing table;
a shower head, provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes;
a light transmitting window provided to be located at a center of the shower head;
a detection mechanism for optically detecting a processed state of the substrate to be processed via the light transmitting window; and
gas delivery holes provided in the light transmitting window, wherein a direction of the gas delivery holes formed in the shower head and a direction of the gas delivery holes formed in the light transmitting window are the same and are set in such a manner that all the gas delivery holes in the shower head and all the gas delivery holes in the light transmitting window face the placing face.
9. The processing device according to claim 8, wherein
the gas delivery holes provided in the light transmitting window are formed with a diameter and a pitch that are the same as those of the gas delivery holes provided in the shower head.
10. The processing device according to claim 8, wherein
the processing device is configured to perform the process on the substrate to be processed while an arranged direction of the gas delivery holes provided in the light transmitting window is inclined at a predetermined angle with respect to an arranged direction of semiconductor chips formed on the substrate to be processed.
11. An electrode provided in a processing device including: a processing room for accommodating a substrate to be processed, to perform a predetermined process; and a placing table provided in the processing room, the substrate to be processed being placed on the placing table, the electrode comprising:
a gas introducing port to which a gas feed pipe is connected;
a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes;
a gas diffusion gap, provided on an opposite side of the shower head to the placing face, for diffusing a processing gas and delivering the processing gas into the processing room via the gas delivery holes;
a light transmitting window, provided to be located at a center of the shower head, for optically detecting a processed state of the substrate to be processed; and
an annular gas flow channel, formed to be annular with its center located on an axis that is perpendicular to an upper surface of the placing table and passes through the light transmitting window, for diffusing the processing gas introduced from the gas introducing port and then supplying the processing gas to the gas diffusion gap.
12. An electrode plate provided in a processing device that includes:
a processing room for accommodating a substrate to be processed, to perform a predetermined process;
a placing table provided in the processing room, the substrate to be processed being placed on the placing table;
a gas introducing port to which a gas feed pipe is connected;
a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes;
a gas diffusion gap, provided on an opposite side of the shower head to the placing face, for diffusing a processing gas and delivering the processing gas into the processing room via the gas delivery holes;
a light transmitting window provided to be located at a center of the shower head;
a detection mechanism for optically detecting a processed state of the substrate to be processed via the light transmitting window; and
an annular gas flow channel, formed to be annular with its center located on an axis that is perpendicular to an upper surface of the placing table and passes through the light transmitting window, for diffusing the processing gas introduced from the gas introducing port and then supplying the processing gas to the gas diffusion gap,
wherein the electrode plate is arranged to cover a surface of the shower head and to be attachable to and detachable from the shower head freely, the surface of the shower head being opposed to the placing face.
13. A processing method using a processing device that includes:
a processing room for accommodating a substrate to be processed to perform a predetermined process;
a placing table provided in the processing room, the substrate to be processed being placed on the placing table;
a shower head provided above the placing table to be opposed to a placing face of the placing table, the shower head having a plurality of gas delivery holes; and
a detection mechanism for optically detecting a processed state of the substrate to be processed via a light transmitting window provided to be located at a center of the shower head, the light transmitting window having gas delivery holes provided therein, wherein a direction of the gas delivery holes formed in the shower head and a direction of the gas delivery holes formed in the light transmitting window are the same and are set in such a manner that all the gas delivery holes in the shower head and all the gas delivery holes in the light transmitting window face the placing face,
wherein the process is performed on the substrate to be processed while an arranged direction of the gas delivery holes provided in the light transmitting window is inclined at a predetermined angle with respect to an arranged direction of semiconductor chips formed on the substrate to be processed.
US10/948,338 2002-03-27 2004-09-24 Processing device, electrode, electrode plate, and processing method Abandoned US20050092435A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JPJP2002-89076 2002-03-27
JP2002089076A JP4128383B2 (en) 2002-03-27 2002-03-27 Processing apparatus and processing method
PCT/JP2003/003769 WO2003081657A1 (en) 2002-03-27 2003-03-27 Treating device, electrode, electrode plate, and treating method
US10/948,338 US20050092435A1 (en) 2002-03-27 2004-09-24 Processing device, electrode, electrode plate, and processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/948,338 US20050092435A1 (en) 2002-03-27 2004-09-24 Processing device, electrode, electrode plate, and processing method
US12/754,372 US8038835B2 (en) 2002-03-27 2010-04-05 Processing device, electrode, electrode plate, and processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003769 Continuation WO2003081657A1 (en) 2002-03-27 2003-03-27 Treating device, electrode, electrode plate, and treating method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/754,372 Continuation US8038835B2 (en) 2002-03-27 2010-04-05 Processing device, electrode, electrode plate, and processing method

Publications (1)

Publication Number Publication Date
US20050092435A1 true US20050092435A1 (en) 2005-05-05

Family

ID=28449486

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/948,338 Abandoned US20050092435A1 (en) 2002-03-27 2004-09-24 Processing device, electrode, electrode plate, and processing method
US12/754,372 Expired - Fee Related US8038835B2 (en) 2002-03-27 2010-04-05 Processing device, electrode, electrode plate, and processing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/754,372 Expired - Fee Related US8038835B2 (en) 2002-03-27 2010-04-05 Processing device, electrode, electrode plate, and processing method

Country Status (4)

Country Link
US (2) US20050092435A1 (en)
JP (1) JP4128383B2 (en)
AU (1) AU2003227235A1 (en)
WO (1) WO2003081657A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070039548A1 (en) * 2005-08-18 2007-02-22 David Johnson Optical emission interferometry for PECVD using a gas injection hole
US20070131354A1 (en) * 2005-12-13 2007-06-14 Kenetsu Yokogawa Plasma processing apparatus
US20090159211A1 (en) * 2007-12-19 2009-06-25 Hitachi High-Technologies Corporation Plasma processing apparatus
US20100236717A1 (en) * 2006-06-20 2010-09-23 Sosul Co., Ltd. Plasma Etching Chamber
US20110022215A1 (en) * 2006-06-07 2011-01-27 Lam Research Corporation Apparatus to detect fault conditions of a plasma processing reactor
US20140020834A1 (en) * 2006-05-03 2014-01-23 Applied Materials, Inc. Apparatus for etching high aspect ratio features

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
KR101110080B1 (en) * 2009-07-08 2012-03-13 주식회사 유진테크 Method for processing substrate
CN102763198B (en) * 2009-09-25 2015-05-06 应用材料公司 Method and apparatus for high efficiency gas dissociation in inductive coupled plasma reactor
US8845806B2 (en) * 2010-10-22 2014-09-30 Asm Japan K.K. Shower plate having different aperture dimensions and/or distributions
JP5773731B2 (en) * 2011-05-02 2015-09-02 株式会社アルバック Vacuum processing equipment
US9793148B2 (en) 2011-06-22 2017-10-17 Asm Japan K.K. Method for positioning wafers in multiple wafer transport
US10364496B2 (en) 2011-06-27 2019-07-30 Asm Ip Holding B.V. Dual section module having shared and unshared mass flow controllers
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US8946830B2 (en) 2012-04-04 2015-02-03 Asm Ip Holdings B.V. Metal oxide protective layer for a semiconductor device
US9558931B2 (en) 2012-07-27 2017-01-31 Asm Ip Holding B.V. System and method for gas-phase sulfur passivation of a semiconductor surface
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US9021985B2 (en) 2012-09-12 2015-05-05 Asm Ip Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
US9324811B2 (en) 2012-09-26 2016-04-26 Asm Ip Holding B.V. Structures and devices including a tensile-stressed silicon arsenic layer and methods of forming same
US9640416B2 (en) 2012-12-26 2017-05-02 Asm Ip Holding B.V. Single-and dual-chamber module-attachable wafer-handling chamber
US9484191B2 (en) 2013-03-08 2016-11-01 Asm Ip Holding B.V. Pulsed remote plasma method and system
US9589770B2 (en) 2013-03-08 2017-03-07 Asm Ip Holding B.V. Method and systems for in-situ formation of intermediate reactive species
US8993054B2 (en) 2013-07-12 2015-03-31 Asm Ip Holding B.V. Method and system to reduce outgassing in a reaction chamber
US9018111B2 (en) 2013-07-22 2015-04-28 Asm Ip Holding B.V. Semiconductor reaction chamber with plasma capabilities
US9793115B2 (en) 2013-08-14 2017-10-17 Asm Ip Holding B.V. Structures and devices including germanium-tin films and methods of forming same
US9240412B2 (en) 2013-09-27 2016-01-19 Asm Ip Holding B.V. Semiconductor structure and device and methods of forming same using selective epitaxial process
US9556516B2 (en) 2013-10-09 2017-01-31 ASM IP Holding B.V Method for forming Ti-containing film by PEALD using TDMAT or TDEAT
US10179947B2 (en) 2013-11-26 2019-01-15 Asm Ip Holding B.V. Method for forming conformal nitrided, oxidized, or carbonized dielectric film by atomic layer deposition
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US9447498B2 (en) 2014-03-18 2016-09-20 Asm Ip Holding B.V. Method for performing uniform processing in gas system-sharing multiple reaction chambers
US9404587B2 (en) 2014-04-24 2016-08-02 ASM IP Holding B.V Lockout tagout for semiconductor vacuum valve
KR20170005072A (en) * 2014-05-16 2017-01-11 어플라이드 머티어리얼스, 인코포레이티드 Showerhead design
US9543180B2 (en) 2014-08-01 2017-01-10 Asm Ip Holding B.V. Apparatus and method for transporting wafers between wafer carrier and process tool under vacuum
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR20160059810A (en) 2014-11-19 2016-05-27 에이에스엠 아이피 홀딩 비.브이. Method of depositing thin film
KR20160076208A (en) 2014-12-22 2016-06-30 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US9478415B2 (en) 2015-02-13 2016-10-25 Asm Ip Holding B.V. Method for forming film having low resistance and shallow junction depth
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10043661B2 (en) 2015-07-13 2018-08-07 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US9899291B2 (en) 2015-07-13 2018-02-20 Asm Ip Holding B.V. Method for protecting layer by forming hydrocarbon-based extremely thin film
US10083836B2 (en) 2015-07-24 2018-09-25 Asm Ip Holding B.V. Formation of boron-doped titanium metal films with high work function
US10087525B2 (en) 2015-08-04 2018-10-02 Asm Ip Holding B.V. Variable gap hard stop design
US9647114B2 (en) 2015-08-14 2017-05-09 Asm Ip Holding B.V. Methods of forming highly p-type doped germanium tin films and structures and devices including the films
US9711345B2 (en) 2015-08-25 2017-07-18 Asm Ip Holding B.V. Method for forming aluminum nitride-based film by PEALD
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US9909214B2 (en) 2015-10-15 2018-03-06 Asm Ip Holding B.V. Method for depositing dielectric film in trenches by PEALD
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US10322384B2 (en) 2015-11-09 2019-06-18 Asm Ip Holding B.V. Counter flow mixer for process chamber
US9455138B1 (en) 2015-11-10 2016-09-27 Asm Ip Holding B.V. Method for forming dielectric film in trenches by PEALD using H-containing gas
US9905420B2 (en) 2015-12-01 2018-02-27 Asm Ip Holding B.V. Methods of forming silicon germanium tin films and structures and devices including the films
US9607837B1 (en) 2015-12-21 2017-03-28 Asm Ip Holding B.V. Method for forming silicon oxide cap layer for solid state diffusion process
US9735024B2 (en) 2015-12-28 2017-08-15 Asm Ip Holding B.V. Method of atomic layer etching using functional group-containing fluorocarbon
US9627221B1 (en) 2015-12-28 2017-04-18 Asm Ip Holding B.V. Continuous process incorporating atomic layer etching
US9754779B1 (en) 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10343920B2 (en) 2016-03-18 2019-07-09 Asm Ip Holding B.V. Aligned carbon nanotubes
US9892913B2 (en) 2016-03-24 2018-02-13 Asm Ip Holding B.V. Radial and thickness control via biased multi-port injection settings
US10087522B2 (en) 2016-04-21 2018-10-02 Asm Ip Holding B.V. Deposition of metal borides
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
KR20170129475A (en) 2016-05-17 2017-11-27 에이에스엠 아이피 홀딩 비.브이. Method of forming metal interconnection and method of fabricating semiconductor device using the same
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US9793135B1 (en) 2016-07-14 2017-10-17 ASM IP Holding B.V Method of cyclic dry etching using etchant film
KR20180012727A (en) 2016-07-27 2018-02-06 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10177025B2 (en) 2016-07-28 2019-01-08 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10090316B2 (en) 2016-09-01 2018-10-02 Asm Ip Holding B.V. 3D stacked multilayer semiconductor memory using doped select transistor channel
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
US9916980B1 (en) 2016-12-15 2018-03-13 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10283353B2 (en) 2017-03-29 2019-05-07 Asm Ip Holding B.V. Method of reforming insulating film deposited on substrate with recess pattern
US10103040B1 (en) 2017-03-31 2018-10-16 Asm Ip Holding B.V. Apparatus and method for manufacturing a semiconductor device
USD830981S1 (en) 2017-04-07 2018-10-16 Asm Ip Holding B.V. Susceptor for semiconductor substrate processing apparatus
US10312055B2 (en) 2017-07-26 2019-06-04 Asm Ip Holding B.V. Method of depositing film by PEALD using negative bias
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10236177B1 (en) 2017-08-22 2019-03-19 ASM IP Holding B.V.. Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10290508B1 (en) 2017-12-05 2019-05-14 Asm Ip Holding B.V. Method for forming vertical spacers for spacer-defined patterning
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5746875A (en) * 1994-09-16 1998-05-05 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
US5975912A (en) * 1994-06-03 1999-11-02 Materials Research Corporation Low temperature plasma-enhanced formation of integrated circuits
US6159297A (en) * 1996-04-25 2000-12-12 Applied Materials, Inc. Semiconductor process chamber and processing method
US6287980B1 (en) * 1999-04-22 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Plasma processing method and plasma processing apparatus
US6758941B1 (en) * 1999-06-02 2004-07-06 Tokyo Electron Limited Plasma processing unit, window member for plasma processing unit and electrode plate for plasma processing unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294938A (en) * 1985-10-22 1987-05-01 Toshiba Corp Photo exciting surface processor
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
JPH06120177A (en) * 1992-10-09 1994-04-28 Fujitsu Ltd Method of dry etching and apparatus used in same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975912A (en) * 1994-06-03 1999-11-02 Materials Research Corporation Low temperature plasma-enhanced formation of integrated circuits
US5746875A (en) * 1994-09-16 1998-05-05 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
US6159297A (en) * 1996-04-25 2000-12-12 Applied Materials, Inc. Semiconductor process chamber and processing method
US6287980B1 (en) * 1999-04-22 2001-09-11 Mitsubishi Denki Kabushiki Kaisha Plasma processing method and plasma processing apparatus
US6758941B1 (en) * 1999-06-02 2004-07-06 Tokyo Electron Limited Plasma processing unit, window member for plasma processing unit and electrode plate for plasma processing unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070039548A1 (en) * 2005-08-18 2007-02-22 David Johnson Optical emission interferometry for PECVD using a gas injection hole
US7833381B2 (en) * 2005-08-18 2010-11-16 David Johnson Optical emission interferometry for PECVD using a gas injection hole
US20070131354A1 (en) * 2005-12-13 2007-06-14 Kenetsu Yokogawa Plasma processing apparatus
US20090301655A1 (en) * 2005-12-13 2009-12-10 Kenetsu Yokogawa Plasma Processing Apparatus
US20140020834A1 (en) * 2006-05-03 2014-01-23 Applied Materials, Inc. Apparatus for etching high aspect ratio features
US9991109B2 (en) * 2006-05-03 2018-06-05 Applied Materials, Inc. Apparatus for etching high aspect ratio features
CN105185729A (en) * 2006-05-03 2015-12-23 应用材料公司 Vacuum Processing Chamber Suitable For Etching High Aspect Ratio Features And Components Of Same
US20110022215A1 (en) * 2006-06-07 2011-01-27 Lam Research Corporation Apparatus to detect fault conditions of a plasma processing reactor
US20100236717A1 (en) * 2006-06-20 2010-09-23 Sosul Co., Ltd. Plasma Etching Chamber
US8083888B2 (en) * 2007-12-19 2011-12-27 Hitachi High-Technologies Corporation Plasma processing apparatus
US20090159211A1 (en) * 2007-12-19 2009-06-25 Hitachi High-Technologies Corporation Plasma processing apparatus

Also Published As

Publication number Publication date
JP2003282533A (en) 2003-10-03
AU2003227235A1 (en) 2003-10-08
US20100230386A1 (en) 2010-09-16
JP4128383B2 (en) 2008-07-30
US8038835B2 (en) 2011-10-18
WO2003081657A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
KR100756107B1 (en) Film forming device
US6514347B2 (en) Apparatus and method for plasma treatment
US7862683B2 (en) Chamber dry cleaning
CN201054347Y (en) Underlay supporter suitable for etching high horizontal-vertical ratio structure
US20170229293A1 (en) Systems and methods for internal surface conditioning in plasma processing equipment
US7540923B2 (en) Shower head structure for processing semiconductor
US6797109B2 (en) Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates
US9184028B2 (en) Dual plasma volume processing apparatus for neutral/ion flux control
US8216380B2 (en) Gap maintenance for opening to process chamber
TWI480949B (en) Substrate handling device and sprinkler
US20110198034A1 (en) Gas distribution showerhead with coating material for semiconductor processing
US8920596B2 (en) Plasma processing apparatus
US5895530A (en) Method and apparatus for directing fluid through a semiconductor processing chamber
US20120164834A1 (en) Variable-Density Plasma Processing of Semiconductor Substrates
KR101109299B1 (en) Apparatus to improve wafer temperature uniformity for face-up wet processing
KR100624273B1 (en) Plasma processing apparatus
KR100898195B1 (en) Cathode liner and processing chamber having same
US8869742B2 (en) Plasma processing chamber with dual axial gas injection and exhaust
US5919332A (en) Plasma processing apparatus
US20070187363A1 (en) Substrate processing apparatus and substrate processing method
US20060005856A1 (en) Reduction of reactive gas attack on substrate heater
CN100375261C (en) Plasma treatment appts. focusing ring and base
KR0129663B1 (en) Method and apparatus for etching process
US20030019428A1 (en) Chemical vapor deposition chamber
US20040216844A1 (en) Blocker plate by-pass for remote plasma clean

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ELECTRON LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAYASHI, KAZUICHI;YATSUDA, KOUICHI;URAKAWA, MASAFUMI;REEL/FRAME:016147/0647;SIGNING DATES FROM 20041112 TO 20041119

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION