US20050087477A1 - Circulating fluid bed reactor system - Google Patents

Circulating fluid bed reactor system Download PDF

Info

Publication number
US20050087477A1
US20050087477A1 US10/995,869 US99586904A US2005087477A1 US 20050087477 A1 US20050087477 A1 US 20050087477A1 US 99586904 A US99586904 A US 99586904A US 2005087477 A1 US2005087477 A1 US 2005087477A1
Authority
US
United States
Prior art keywords
catalyst
reaction zone
reactor
impingement plate
fluid bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/995,869
Inventor
James Lattner
Jeffrey Smith
Rathna Davuluri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/995,869 priority Critical patent/US20050087477A1/en
Publication of US20050087477A1 publication Critical patent/US20050087477A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1845Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised
    • B01J8/1863Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with particles moving upwards while fluidised followed by a downward movement outside the reactor and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0065Separating solid material from the gas/liquid stream by impingement against stationary members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/14Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts
    • C10G11/18Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with preheated moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00663Concentration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S208/00Mineral oils: processes and products
    • Y10S208/01Automatic control

Definitions

  • This invention is in the field of circulating fluid bed reactors.
  • Circulating fluid bed reactors have a variety of uses in commercial scale chemical processing. For example, circulating fluid bed reactors are used in catalytic cracking processes.
  • U.S. Pat. No. 4,035,284 discloses a circulating fluid bed reactor system having a reaction zone that has a hydrocarbon residence time of 0.5 to 10 seconds.
  • the reaction product is initially separated from the catalyst exiting the reaction zone by contacting plates that extend from the exit of the reaction zone.
  • U.S. Pat. No. 4,664,888 discloses a circulating fluid bed reactor system having a reaction zone that has a hydrocarbon residence time of 0.2 to 10 seconds. At the exit of the reaction zone is a separation device for separating catalyst from product. The device is semicircular and designed to use centrifugal force to separate the catalyst from the product.
  • Circulating fluid bed reactors are also likely to be used in the commercial scale operation of converting methanol or dimethyl ether to olefins.
  • Currently little is known about how to operate these types of reaction systems at commercial scale.
  • highly active molecular sieve catalysts will be used, and the ability to control such systems will be very important.
  • This invention provides the ability to control various parameters independently in continuous commercial scale reactors.
  • the invention provides a method for adjusting catalyst holdup in a circulating fluid bed reactor. The method involves flowing vapor feed and catalyst through a reaction zone of a circulating fluid bed reactor to convert the vapor feed to a vapor product.
  • the vapor product and the catalyst are contacted with a separation means to separate the catalyst from the product, and the position of the separation means is adjusted to increase or decrease catalyst holdup within the reaction zone while maintaining a substantially constant catalyst circulation rate through the reaction zone.
  • the reaction zone is operated at a weight hourly space velocity of from about 2 hr ⁇ 1 to about 1000 hr ⁇ 1 .
  • the weight hourly space velocity can be adjusted by increasing or decreasing catalyst hold up while keeping feed flow substantially constant.
  • the vapor feed and catalyst are initially contacted and flowed through the reaction zone at a catalyst to feed weight ratio of from about 2:1 to about 100:1.
  • catalyst hold up can be adjusted without substantially impacting catalyst to feed ratio.
  • the invention is useful for a variety of circulating fluid bed reactors having a variety of flow regimes.
  • Useful flow regimes include a vapor flow rate through the reaction zone of from about 2 m/sec. to about 50 m/sec.
  • the invention also includes a circulating fluid bed reactor.
  • the reactor includes a reaction zone having an inlet and outlet; and a separation means apart from the reaction zone outlet for increasing or decreasing catalyst holdup within the reaction zone while maintaining substantially constant catalyst circulation rate through the reaction zone.
  • the separation means is an impingement plate, and the impingement plate is coupled to a means for increasing or decreasing distance between the impingement plate and an outlet of the reaction zone.
  • FIG. 1 is an overall view of a circulating fluid bed reactor, incorporating a riser type reaction zone
  • FIG. 2A is a concave shaped impingement plate
  • FIG. 2B is a flat impingement plate having lipped ends
  • FIG. 2C is a conical shaped impingement plate.
  • catalyst and feed flow through the reactor, and the feed is converted by contact with the catalyst to a product.
  • the amount of catalyst that is contained within the reaction zone of a circulating fluid bed reactor is generally referred to as catalyst holdup.
  • This invention provides the ability to independently adjust catalyst holdup in a circulating fluid bed reactor. Specifically, the invention provides a means for adjusting catalyst hold up in the reaction zone of a circulating fluid bed reactor while maintaining substantially constant catalyst circulation rate through the reaction zone. This means that product quality is predominantly affected by change in catalyst hold up rather than catalyst circulation rate.
  • catalyst circulation rate be maintained within plus or minus 25% of its rate prior to catalyst hold up adjustment.
  • catalyst circulation rate is to be maintained within plus or minus 15% of its rate prior to catalyst bold up adjustment; more preferably within about plus or minus 10%.
  • the ability to adjust catalyst hold up independently of catalyst circulation rate provides an advantage of having the ability to maintain a conversion level as catalyst activity or feed rates change. This ability is particularly advantageous when operating with new and highly active catalysts, and allows the ability to adjust ongoing operations parameters when catalyst is changed during operation.
  • vapor feed and catalyst are input to a reaction zone of a circulating fluid bed reactor.
  • the feed and catalyst flow through the reaction zone, with the feed and catalyst contacting one another, and the feed being converted into product.
  • the converted feed and catalyst exit the reaction zone through at least one exit, and are separated by contacting a separation means.
  • the separation means can be of conventional shape or type. However, the separation means has the ability to be moved during operation to change the exit configuration of the reaction zone, thereby affecting catalyst hold up. This means that movement of the separation means either increases or decreases the amount of catalyst in the reaction zone at a given period of time.
  • the ability to control catalyst hold up also provides an ability to control weight hourly space velocity (WHSV) while maintaining a substantially constant feed flow.
  • WHSV weight hourly space velocity
  • the ability to control WHSV is important to the extent that too high a WHSV can result in a low conversion of feed to product and too high can result in “over-conversion.” Over-conversion is typically involves keeping desired product in contact with catalyst for an extended period of time such that substantial side reactions occur.
  • the reactor is operated so that feed contacts catalyst at a weight hourly space velocity (WHSV) of from about 2 hr ⁇ 1 to about 1000 hr ⁇ 1 , preferably from about 10 hr ⁇ 1 to about 1000 hr ⁇ 1 , and most preferably in the range of from about 20 hr ⁇ 1 to about 500 hr ⁇ 1 .
  • WHSV is defined herein as the weight of oxygenate, and hydrocarbon which may optionally be in the feed, per hour per weight of the molecular sieve content of the catalyst.
  • the catalyst or the feedstock may contain materials, which act as inerts or diluents, the WHSV is calculated on the weight basis of the feed desired to be converted and the amount of active catalytic ingredients contained in the catalyst.
  • Catalyst circulation rate is the amount of catalyst that flows into and out of the reaction zone of the circulating fluid bed reactor.
  • the amount of catalyst that is flowed into and out of the reaction zone is dependent upon the amount of feed that is to be reacted. Too much catalyst relative to the amount of feed contacted can result in over-conversion. Too little catalyst can result in too low a conversion. It is desirable in this invention that catalyst circulation rate be operated so as to obtain a weight ratio of catalyst to feed flowing to the reaction zone of from about 2:1 to about 100:1, preferably from about 3:1 to about 80:1; more preferably from about 5:1 to about 50:1; and most preferably from about 10:1 to about 40:1. These catalyst to feed ratios can also be referred to as catalyst to oil ratios.
  • the invention is suited to a wide range of vapor velocity flow through the reaction zone.
  • a suitable vapor flow rate through the reaction zone is from about 1 m/sec. to about 50 m/sec.
  • a flow rate of about 2 m/sec. to about 40 m/sec. is preferred, with a flow rate of about 3 m/sec. to about 40 m/sec. being more preferred, and a flow rate of about 5 m/sec. to about 30 m/sec. being most preferred.
  • the invention is particularly suited to commercial scale reaction systems that use highly active catalysts.
  • Such systems include catalytic cracking of oil compositions and catalytic conversion of oxygenate compositions to olefins.
  • Catalysts that are used in such systems are highly active zeolite and non-zeolite molecular sieves.
  • Highly active zeolites include those containing ZSM-type zeolites.
  • Highly active non-zeolites include silicoaluminophosphate (SAPO) molecular sieves.
  • SAPO silicoaluminophosphate
  • Suitable silicoaluminophosphate molecular sieves include SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal containing forms thereof, and mixtures thereof.
  • SAPO-18, SAPO-34, SAPO-35, SAPO-44, and SAPO-47 particularly SAPO-18 and SAPO-34, including the metal containing forms thereof, and mixtures thereof.
  • the term mixture is synonymous 5 with combination and is considered a composition of matter having two or more components in varying proportions, regardless of their physical state.
  • Aluminophosphate (ALPO) molecular sieve can also be included in the catalyst composition.
  • Aluminophosphate molecular sieves are crystalline microporous oxides which can have an AlPO 4 framework. They can have additional elements within the framework, typically have uniform pore dimensions ranging from about 3 angstroms to about 10 angstroms, and are capable of making size selective separations of molecular species. More than two dozen structure types have been reported, including zeolite topological analogues. A more detailed description of the background and synthesis of aluminophosphates is found in U.S. Pat. No. 4,310,440, which is incorporated herein by reference in its entirety.
  • Preferred ALPO structures are ALPO-5, ALPO-11, ALPO-18, ALPO-31, ALPO-34, ALPO-36, ALPO-37, and ALPO-46.
  • the ALPOs can also include a metal substituent in its framework.
  • the metal is selected from the group consisting of magnesium, manganese, zinc, cobalt, and mixtures thereof. These materials preferably exhibit adsorption, ion-exchange and/or catalytic properties similar to aluminosilicate, aluminophosphate and silica aluminophosphate molecular sieve compositions. Members of this class and their preparation are described in U.S. Pat. No. 4,567,029, incorporated herein by reference in its entirety.
  • ALPOs are particularly advantageous when combined with SAPO molecular sieves. They can be separately mixed with the SAPO molecular sieves, combined in a common matrix, or formed as an intergrowth material with the SAPO.
  • the circulating fluid bed reactor of the invention functions as a reactor for converting oxygenate containing compositions to olefins.
  • the oxygenate compositions comprises at least one organic compound which contains at least one oxygen atom, such as aliphatic alcohols, ethers, carbonyl compounds (aldehydes, ketones, carboxylic acids, carbonates, esters and the like).
  • the oxygenate is an alcohol
  • the alcohol can include an aliphatic moiety having from 1 to 10 carbon atoms, more preferably from 1 to 4 carbon atoms.
  • Representative alcohols include but are not necessarily limited to lower straight and branched chain aliphatic alcohols and their unsaturated counterparts.
  • oxygenate compounds include, but are not limited to: methanol; ethanol; n-propanol; isopropanol; C 4 -C 20 alcohols; methyl ethyl ether; dimethyl ether; diethyl ether; di-isopropyl ether; formaldehyde; dimethyl carbonate; dimethyl ketone; acetic acid; and mixtures thereof.
  • Preferred oxygenate compounds are methanol, dimethyl ether, or a mixture thereof.
  • the oxygenate conversion process can generally be carried out at a wide range of temperatures.
  • An effective operating temperature range can be from about 200° C. to 700° C., preferably from about 300° C. to 600° C., more preferably from about 350° C. to 550° C.
  • the formation of the desired olefin products may become markedly slow.
  • the process may not form an optimum amount of product.
  • An advantage of this invention is that catalyst hold up in the reaction zone can be independently controlled by controlling the exit configuration of the reaction zone.
  • the exit can be controlled during operation, or between operation cycles without having to retrofit the reactor design.
  • This type of control can be accomplished by providing a separation means which can be adjusted so as to change the distance between the separation means and the exit of the reaction zone.
  • the plate can be of a variety of shapes, but should be adjustable so that it can be moved to change the distance between the point of impact of the plate and the exit point of the reaction zone.
  • the distance between the exit of the riser and the impingement plate should be adjustable between 5% and 200% of the riser diameter.
  • the distance should be between 10% and 150% of the riser diameter, and most preferably between 15% and 100% of the riser diameter.
  • FIG. 1 depicts a dual riser type reactor 10 .
  • Feed and catalyst are injected into a riser inlets 12 , 12 ′, and flow through risers 14 , 14 ′.
  • the risers act as the reaction zone.
  • separation means 18 , 18 ′ are shown as impingement plates.
  • the impingement plates are substantially flat meaning that the defines a planar region.
  • the plates are oriented over the riser exits and are generally perpendicular to the axis of the riser meaning that the plates are either perpendicular to the axis of the riser or no more than about 10° from perpendicular.
  • a portion of the separated catalyst can be removed from the reactor system and sent to a regenerator. This is desirable to remove carbonaceous material (i.e., coke) that builds on the catalyst during operation. Essentially, the coke is burned from the catalyst in the regenerator and the regenerated catalyst is sent back to the reactor for further contact with feed.
  • the regenerated catalyst can be injected into riser inlets 12 , 12 ′ injected into circulation lines 24 , 24 ′, or injected directly into risers 14 , 14 ′.
  • Product that is separated after contact with separation means 18 , 18 ′ moves upwardly to exit the reactor.
  • the product flows through cyclone separation means 26 to remove catalyst not initially removed by separation means 18 , 18 ′.
  • the product exits the cyclone separation means 26 , eventually leaving the reactor housing 20 through exit port.
  • the distance between impingement plates 18 , 18 ′ and riser exits 16 , 16 ′ are independently controlled by control means 30 , 30 ′.
  • Control means 30 , 30 ′ are connected to impingement plates 18 , 18 ′ by shafts 32 , 32 ′.
  • the control means are operated such that the shafts move the impingement plates either toward or away from the riser exits. This movement affects catalyst hold up in the risers while catalyst circulation through the risers remains substantially constant. Feed flow rate through the risers can also be independently controlled as desired.
  • FIGS. 2A-2C show alternative embodiments of the shape of the impingement plate.
  • FIG. 2A shows a concave shape, as oriented toward the riser exits.
  • FIG. 2B shows an impingement plate that is substantially flat and having lipped ends.
  • FIG. 2C shows an impingement plate with a conical projection.

Abstract

This invention is to a circulating fluid bed reactor that is designed so as to have the ability to adjust catalyst holdup within the reaction zone of the reactor while maintaining substantially constant catalyst circulation rate through the reaction zone. The ability to adjust catalyst hold up independently of catalyst circulation rate provides an advantage of having the ability to maintain a constant conversion level as catalyst activity or feed rates change.

Description

    FIELD OF THE INVENTION
  • This invention is in the field of circulating fluid bed reactors.
  • BACKGROUND OF THE INVENTION
  • Circulating fluid bed reactors have a variety of uses in commercial scale chemical processing. For example, circulating fluid bed reactors are used in catalytic cracking processes.
  • The design of circulating fluid bed reactors have become of particular importance in fluid catalytic cracking processes with the advent of highly active catalytic cracking catalysts. A concern in designing such reactors is the ability to quickly and effectively separate reacted products from active catalyst within the reaction zone.
  • U.S. Pat. No. 4,035,284, for example, discloses a circulating fluid bed reactor system having a reaction zone that has a hydrocarbon residence time of 0.5 to 10 seconds. The reaction product is initially separated from the catalyst exiting the reaction zone by contacting plates that extend from the exit of the reaction zone.
  • U.S. Pat. No. 4,664,888 discloses a circulating fluid bed reactor system having a reaction zone that has a hydrocarbon residence time of 0.2 to 10 seconds. At the exit of the reaction zone is a separation device for separating catalyst from product. The device is semicircular and designed to use centrifugal force to separate the catalyst from the product.
  • Circulating fluid bed reactors are also likely to be used in the commercial scale operation of converting methanol or dimethyl ether to olefins. Currently, little is known about how to operate these types of reaction systems at commercial scale. However, it is likely that highly active molecular sieve catalysts will be used, and the ability to control such systems will be very important.
  • In operating highly active catalyst systems, limited ability to control the operation of commercial scale reactor systems is available. Known systems are typically designed to accommodate a certain content of catalyst and a certain throughput of feed. In general, the ability to control the amount of catalyst in the reaction zone is intimately associated with the amount of catalyst that can be circulated through the system, and the amount of feed that can flow through the reactor. In systems that use new and/or highly active catalysts, it would be advantageous to have the ability to independently control such parameters so as to enhance the ability to produce the desired product.
  • SUMMARY OF THE INVENTION
  • This invention provides the ability to control various parameters independently in continuous commercial scale reactors. Specifically, the invention provides a method for adjusting catalyst holdup in a circulating fluid bed reactor. The method involves flowing vapor feed and catalyst through a reaction zone of a circulating fluid bed reactor to convert the vapor feed to a vapor product. The vapor product and the catalyst are contacted with a separation means to separate the catalyst from the product, and the position of the separation means is adjusted to increase or decrease catalyst holdup within the reaction zone while maintaining a substantially constant catalyst circulation rate through the reaction zone.
  • In one embodiment, the reaction zone is operated at a weight hourly space velocity of from about 2 hr−1 to about 1000 hr−1. According to the invention, the weight hourly space velocity can be adjusted by increasing or decreasing catalyst hold up while keeping feed flow substantially constant.
  • In another embodiment, the vapor feed and catalyst are initially contacted and flowed through the reaction zone at a catalyst to feed weight ratio of from about 2:1 to about 100:1. According to the invention, catalyst hold up can be adjusted without substantially impacting catalyst to feed ratio.
  • The invention is useful for a variety of circulating fluid bed reactors having a variety of flow regimes. Useful flow regimes include a vapor flow rate through the reaction zone of from about 2 m/sec. to about 50 m/sec.
  • The invention also includes a circulating fluid bed reactor. The reactor includes a reaction zone having an inlet and outlet; and a separation means apart from the reaction zone outlet for increasing or decreasing catalyst holdup within the reaction zone while maintaining substantially constant catalyst circulation rate through the reaction zone. In one embodiment, the separation means is an impingement plate, and the impingement plate is coupled to a means for increasing or decreasing distance between the impingement plate and an outlet of the reaction zone.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments of the overall invention are shown in the attached drawings, wherein:
  • FIG. 1 is an overall view of a circulating fluid bed reactor, incorporating a riser type reaction zone;
  • FIG. 2A is a concave shaped impingement plate;
  • FIG. 2B is a flat impingement plate having lipped ends; and
  • FIG. 2C is a conical shaped impingement plate.
  • DETAILED DESCRIPTION OF THE INVENTION
  • In a circulating fluid bed reactor, catalyst and feed flow through the reactor, and the feed is converted by contact with the catalyst to a product. The amount of catalyst that is contained within the reaction zone of a circulating fluid bed reactor is generally referred to as catalyst holdup.
  • This invention provides the ability to independently adjust catalyst holdup in a circulating fluid bed reactor. Specifically, the invention provides a means for adjusting catalyst hold up in the reaction zone of a circulating fluid bed reactor while maintaining substantially constant catalyst circulation rate through the reaction zone. This means that product quality is predominantly affected by change in catalyst hold up rather than catalyst circulation rate. When catalyst hold up is changed, it is desirable that catalyst circulation rate be maintained within plus or minus 25% of its rate prior to catalyst hold up adjustment. Preferably catalyst circulation rate is to be maintained within plus or minus 15% of its rate prior to catalyst bold up adjustment; more preferably within about plus or minus 10%.
  • The ability to adjust catalyst hold up independently of catalyst circulation rate provides an advantage of having the ability to maintain a conversion level as catalyst activity or feed rates change. This ability is particularly advantageous when operating with new and highly active catalysts, and allows the ability to adjust ongoing operations parameters when catalyst is changed during operation.
  • According to the invention, vapor feed and catalyst are input to a reaction zone of a circulating fluid bed reactor. The feed and catalyst flow through the reaction zone, with the feed and catalyst contacting one another, and the feed being converted into product.
  • The converted feed and catalyst exit the reaction zone through at least one exit, and are separated by contacting a separation means. The separation means can be of conventional shape or type. However, the separation means has the ability to be moved during operation to change the exit configuration of the reaction zone, thereby affecting catalyst hold up. This means that movement of the separation means either increases or decreases the amount of catalyst in the reaction zone at a given period of time.
  • The ability to control catalyst hold up, also provides an ability to control weight hourly space velocity (WHSV) while maintaining a substantially constant feed flow. The ability to control WHSV is important to the extent that too high a WHSV can result in a low conversion of feed to product and too high can result in “over-conversion.” Over-conversion is typically involves keeping desired product in contact with catalyst for an extended period of time such that substantial side reactions occur.
  • Desirably, the reactor is operated so that feed contacts catalyst at a weight hourly space velocity (WHSV) of from about 2 hr−1 to about 1000 hr−1, preferably from about 10 hr−1 to about 1000 hr−1, and most preferably in the range of from about 20 hr−1 to about 500 hr−1. WHSV is defined herein as the weight of oxygenate, and hydrocarbon which may optionally be in the feed, per hour per weight of the molecular sieve content of the catalyst. Because the catalyst or the feedstock may contain materials, which act as inerts or diluents, the WHSV is calculated on the weight basis of the feed desired to be converted and the amount of active catalytic ingredients contained in the catalyst.
  • Catalyst circulation rate is the amount of catalyst that flows into and out of the reaction zone of the circulating fluid bed reactor. The amount of catalyst that is flowed into and out of the reaction zone is dependent upon the amount of feed that is to be reacted. Too much catalyst relative to the amount of feed contacted can result in over-conversion. Too little catalyst can result in too low a conversion. It is desirable in this invention that catalyst circulation rate be operated so as to obtain a weight ratio of catalyst to feed flowing to the reaction zone of from about 2:1 to about 100:1, preferably from about 3:1 to about 80:1; more preferably from about 5:1 to about 50:1; and most preferably from about 10:1 to about 40:1. These catalyst to feed ratios can also be referred to as catalyst to oil ratios.
  • The invention is suited to a wide range of vapor velocity flow through the reaction zone. A suitable vapor flow rate through the reaction zone is from about 1 m/sec. to about 50 m/sec. A flow rate of about 2 m/sec. to about 40 m/sec. is preferred, with a flow rate of about 3 m/sec. to about 40 m/sec. being more preferred, and a flow rate of about 5 m/sec. to about 30 m/sec. being most preferred.
  • The invention is particularly suited to commercial scale reaction systems that use highly active catalysts. Such systems include catalytic cracking of oil compositions and catalytic conversion of oxygenate compositions to olefins. Catalysts that are used in such systems are highly active zeolite and non-zeolite molecular sieves. Highly active zeolites include those containing ZSM-type zeolites. Highly active non-zeolites include silicoaluminophosphate (SAPO) molecular sieves.
  • Suitable silicoaluminophosphate molecular sieves include SAPO-5, SAPO-8, SAPO-11, SAPO-16, SAPO-17, SAPO-18, SAPO-20, SAPO-31, SAPO-34, SAPO-35, SAPO-36, SAPO-37, SAPO-40, SAPO-41, SAPO-42, SAPO-44, SAPO-47, SAPO-56, the metal containing forms thereof, and mixtures thereof. Preferred are SAPO-18, SAPO-34, SAPO-35, SAPO-44, and SAPO-47, particularly SAPO-18 and SAPO-34, including the metal containing forms thereof, and mixtures thereof. As used herein, the term mixture is synonymous 5 with combination and is considered a composition of matter having two or more components in varying proportions, regardless of their physical state.
  • An aluminophosphate (ALPO) molecular sieve can also be included in the catalyst composition. Aluminophosphate molecular sieves are crystalline microporous oxides which can have an AlPO4 framework. They can have additional elements within the framework, typically have uniform pore dimensions ranging from about 3 angstroms to about 10 angstroms, and are capable of making size selective separations of molecular species. More than two dozen structure types have been reported, including zeolite topological analogues. A more detailed description of the background and synthesis of aluminophosphates is found in U.S. Pat. No. 4,310,440, which is incorporated herein by reference in its entirety. Preferred ALPO structures are ALPO-5, ALPO-11, ALPO-18, ALPO-31, ALPO-34, ALPO-36, ALPO-37, and ALPO-46.
  • The ALPOs can also include a metal substituent in its framework. Preferably, the metal is selected from the group consisting of magnesium, manganese, zinc, cobalt, and mixtures thereof. These materials preferably exhibit adsorption, ion-exchange and/or catalytic properties similar to aluminosilicate, aluminophosphate and silica aluminophosphate molecular sieve compositions. Members of this class and their preparation are described in U.S. Pat. No. 4,567,029, incorporated herein by reference in its entirety.
  • ALPOs are particularly advantageous when combined with SAPO molecular sieves. They can be separately mixed with the SAPO molecular sieves, combined in a common matrix, or formed as an intergrowth material with the SAPO.
  • In one embodiment, the circulating fluid bed reactor of the invention functions as a reactor for converting oxygenate containing compositions to olefins. The oxygenate compositions comprises at least one organic compound which contains at least one oxygen atom, such as aliphatic alcohols, ethers, carbonyl compounds (aldehydes, ketones, carboxylic acids, carbonates, esters and the like). When the oxygenate is an alcohol, the alcohol can include an aliphatic moiety having from 1 to 10 carbon atoms, more preferably from 1 to 4 carbon atoms. Representative alcohols include but are not necessarily limited to lower straight and branched chain aliphatic alcohols and their unsaturated counterparts. Examples of suitable oxygenate compounds include, but are not limited to: methanol; ethanol; n-propanol; isopropanol; C4-C20 alcohols; methyl ethyl ether; dimethyl ether; diethyl ether; di-isopropyl ether; formaldehyde; dimethyl carbonate; dimethyl ketone; acetic acid; and mixtures thereof. Preferred oxygenate compounds are methanol, dimethyl ether, or a mixture thereof.
  • The oxygenate conversion process can generally be carried out at a wide range of temperatures. An effective operating temperature range can be from about 200° C. to 700° C., preferably from about 300° C. to 600° C., more preferably from about 350° C. to 550° C. At the lower end of the temperature range, the formation of the desired olefin products may become markedly slow. At the upper end of the temperature range, the process may not form an optimum amount of product.
  • An advantage of this invention is that catalyst hold up in the reaction zone can be independently controlled by controlling the exit configuration of the reaction zone. The exit can be controlled during operation, or between operation cycles without having to retrofit the reactor design. This type of control can be accomplished by providing a separation means which can be adjusted so as to change the distance between the separation means and the exit of the reaction zone.
  • One type of separation means that can be used in this invention is a moveable impingement plate. The plate can be of a variety of shapes, but should be adjustable so that it can be moved to change the distance between the point of impact of the plate and the exit point of the reaction zone. The distance between the exit of the riser and the impingement plate should be adjustable between 5% and 200% of the riser diameter. Preferably, the distance should be between 10% and 150% of the riser diameter, and most preferably between 15% and 100% of the riser diameter.
  • One type of circulating fluid bed reactor embodied by the concept of this invention is shown in FIG. 1, which depicts a dual riser type reactor 10. Feed and catalyst are injected into a riser inlets 12, 12′, and flow through risers 14, 14′. In this embodiments, the risers act as the reaction zone.
  • As the feed and catalyst flow through risers 14, 14′, the feed is converted to product. The product and catalyst exit the risers though riser exits 16, 16′ and impact separation means 18, 18′. In this embodiment, separation means 18, 18′ are shown as impingement plates. The impingement plates are substantially flat meaning that the defines a planar region. The plates are oriented over the riser exits and are generally perpendicular to the axis of the riser meaning that the plates are either perpendicular to the axis of the riser or no more than about 10° from perpendicular.
  • After contact with the separation means, separated catalyst drops into the reactor housing 20, and into a downcomer 22. Catalyst in the downcomer 22 can then be sent back to the risers 14, 14′ by way of circulation lines 24, 24′. The catalyst can then contact additional feed that is injected into riser inlets 12, 12′.
  • Although not shown in the drawings, a portion of the separated catalyst can be removed from the reactor system and sent to a regenerator. This is desirable to remove carbonaceous material (i.e., coke) that builds on the catalyst during operation. Essentially, the coke is burned from the catalyst in the regenerator and the regenerated catalyst is sent back to the reactor for further contact with feed. The regenerated catalyst can be injected into riser inlets 12, 12′ injected into circulation lines 24, 24′, or injected directly into risers 14, 14′.
  • Product that is separated after contact with separation means 18, 18′ moves upwardly to exit the reactor. In this embodiment, the product flows through cyclone separation means 26 to remove catalyst not initially removed by separation means 18, 18′. The product exits the cyclone separation means 26, eventually leaving the reactor housing 20 through exit port.
  • The distance between impingement plates 18, 18′ and riser exits 16, 16′ are independently controlled by control means 30, 30′. Control means 30, 30′ are connected to impingement plates 18, 18′ by shafts 32, 32′. The control means are operated such that the shafts move the impingement plates either toward or away from the riser exits. This movement affects catalyst hold up in the risers while catalyst circulation through the risers remains substantially constant. Feed flow rate through the risers can also be independently controlled as desired.
  • FIGS. 2A-2C show alternative embodiments of the shape of the impingement plate. FIG. 2A shows a concave shape, as oriented toward the riser exits. FIG. 2B shows an impingement plate that is substantially flat and having lipped ends. FIG. 2C shows an impingement plate with a conical projection.
  • Having now fully described this invention, it will be appreciated by those skilled in the art that the invention can be performed within a wide range of parameters within what is claimed, without departing from the spirit and scope of the invention.

Claims (9)

1-9. (canceled)
10. A circulating fluid bed reactor comprising:
a reaction having an inlet and outlet; and
a separation means apart from the reaction zone outlet for increasing or decreasing catalyst holdup within the reaction zone while maintaining substantially constant catalyst circulation rate through the reaction zone.
11. The reactor of claim 10, wherein the separation means is an impingement plate, and the impingement plate is coupled to a means for increasing or decreasing distance between the impingement plate and an outlet of the reaction zone.
12. The reactor of claim 11, wherein the impingement plate is concave with respect to the outlet of the reaction zone.
13. The reactor of claim 12, wherein the impingement plate is substantially flat.
14. The reactor of claim 13, wherein the impingement plate is substantially flat and has distended ends.
15. The reactor of claim 14, wherein the impingement plate has a conical contact section.
16. The reactor of claim 11, wherein the means for increasing or decreasing distance from the impingement plate and the outlet of the reaction zone is an actuator.
17. The reactor of claim 16, wherein the actuator and impingement plate are coupled together by a shaft.
US10/995,869 2001-08-31 2004-11-23 Circulating fluid bed reactor system Abandoned US20050087477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/995,869 US20050087477A1 (en) 2001-08-31 2004-11-23 Circulating fluid bed reactor system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/943,821 US6846405B2 (en) 2001-08-31 2001-08-31 Circulating fluid bed reactor system
US10/995,869 US20050087477A1 (en) 2001-08-31 2004-11-23 Circulating fluid bed reactor system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/943,821 Division US6846405B2 (en) 2001-08-31 2001-08-31 Circulating fluid bed reactor system

Publications (1)

Publication Number Publication Date
US20050087477A1 true US20050087477A1 (en) 2005-04-28

Family

ID=25480318

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/943,821 Expired - Fee Related US6846405B2 (en) 2001-08-31 2001-08-31 Circulating fluid bed reactor system
US10/995,869 Abandoned US20050087477A1 (en) 2001-08-31 2004-11-23 Circulating fluid bed reactor system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/943,821 Expired - Fee Related US6846405B2 (en) 2001-08-31 2001-08-31 Circulating fluid bed reactor system

Country Status (2)

Country Link
US (2) US6846405B2 (en)
WO (1) WO2003020409A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040104149A1 (en) * 1999-08-20 2004-06-03 Lomas David A. Controllable volume reactor and process
US7169293B2 (en) * 1999-08-20 2007-01-30 Uop Llc Controllable space velocity reactor and process
US6869521B2 (en) * 2002-04-18 2005-03-22 Uop Llc Process and apparatus for upgrading FCC product with additional reactor with thorough mixing
US6866771B2 (en) * 2002-04-18 2005-03-15 Uop Llc Process and apparatus for upgrading FCC product with additional reactor with catalyst recycle
FR2877671B1 (en) 2004-11-09 2008-10-17 Inst Francais Du Petrole DEVICE AND METHOD FOR CATALYTIC CRACKING OF TWO SEPARATE HYDROCARBON LOADS
US8455708B2 (en) 2010-03-17 2013-06-04 Chevron U.S.A. Inc. Flexible production of alkylate gasoline and distillate

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355380A (en) * 1965-07-27 1967-11-28 Exxon Research Engineering Co Controlling catalyst holdup in conversion of hydrocarbons
US3644199A (en) * 1970-05-27 1972-02-22 Standard Oil Co Control of contact time in transport reactors
US3957443A (en) * 1973-03-26 1976-05-18 Texaco Inc. Fluid catalytic cracking of hydrocarbon
US3959117A (en) * 1973-03-26 1976-05-25 Texaco Inc. Fluid catalytic cracking of hydrocarbons
US4035284A (en) * 1973-07-18 1977-07-12 Mobil Oil Corporation Method and system for regenerating fluidizable catalyst particles
US4219407A (en) * 1978-01-20 1980-08-26 Mobil Oil Corporation Fluid cracking process and the method for separating a suspension discharged from a riser cracking zone
US4495063A (en) * 1981-05-13 1985-01-22 Ashland Oil, Inc. Carbometallic oil conversion with ballistic separation
US4664888A (en) * 1985-06-27 1987-05-12 Texaco Inc. Fluid catalytic cracking catalyst-vapor separator
US4875993A (en) * 1987-02-11 1989-10-24 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for the catalytic cracking of hydrocarbon charges
US4963328A (en) * 1987-01-15 1990-10-16 Mobil Oil Corporation Short contact time fluid catalytic cracking apparatus
US5430222A (en) * 1991-10-04 1995-07-04 Total Raffinage Distribution S.A. Apparatus for the catalytic cracking in the fluid state of hydrocarbon feedstocks
US5552120A (en) * 1991-12-06 1996-09-03 Uop FCC apparatus with enclosed vented riser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB211848A (en) 1923-02-24 1924-05-29 Sulzer Ag Improvements in or relating to multistage axial flow pumps
GB2111848A (en) * 1981-12-21 1983-07-13 Hydrocarbon Research Inc Coal hydrogenation process and apparatus having increased solids retention in ebullated bed reactor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355380A (en) * 1965-07-27 1967-11-28 Exxon Research Engineering Co Controlling catalyst holdup in conversion of hydrocarbons
US3644199A (en) * 1970-05-27 1972-02-22 Standard Oil Co Control of contact time in transport reactors
US3957443A (en) * 1973-03-26 1976-05-18 Texaco Inc. Fluid catalytic cracking of hydrocarbon
US3959117A (en) * 1973-03-26 1976-05-25 Texaco Inc. Fluid catalytic cracking of hydrocarbons
US4035284A (en) * 1973-07-18 1977-07-12 Mobil Oil Corporation Method and system for regenerating fluidizable catalyst particles
US4219407A (en) * 1978-01-20 1980-08-26 Mobil Oil Corporation Fluid cracking process and the method for separating a suspension discharged from a riser cracking zone
US4495063A (en) * 1981-05-13 1985-01-22 Ashland Oil, Inc. Carbometallic oil conversion with ballistic separation
US4664888A (en) * 1985-06-27 1987-05-12 Texaco Inc. Fluid catalytic cracking catalyst-vapor separator
US4963328A (en) * 1987-01-15 1990-10-16 Mobil Oil Corporation Short contact time fluid catalytic cracking apparatus
US4875993A (en) * 1987-02-11 1989-10-24 Compagnie De Raffinage Et De Distribution Total France Process and apparatus for the catalytic cracking of hydrocarbon charges
US5430222A (en) * 1991-10-04 1995-07-04 Total Raffinage Distribution S.A. Apparatus for the catalytic cracking in the fluid state of hydrocarbon feedstocks
US5552120A (en) * 1991-12-06 1996-09-03 Uop FCC apparatus with enclosed vented riser

Also Published As

Publication number Publication date
US20030044327A1 (en) 2003-03-06
US6846405B2 (en) 2005-01-25
WO2003020409A1 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
EP1263700B2 (en) Process to control conversion of c4+ and heavier stream to lighter products in oxygenate conversion reactions
CN1321953C (en) Reducing temperature differences within the regenerator of an oxygenate to olefin process
US7465845B2 (en) Increasing ethylene and/or propylene production in an oxygenate to olefins reaction systems
EP1765746B1 (en) Process for producing olefins
US20060149109A1 (en) Converting methanol and ethanol to light olefins
EP1664243B1 (en) Selectively removing undesirably sized catalyst particles from a reaction system
AU783368B2 (en) Catalytic production of olefins at high methanol partial pressures
EP2238216B1 (en) Method of circulating catalyst between a catalyst regenerator and an external catalyst cooler
US20070037692A1 (en) Method for stabilizing catalyst activity during MTO unit operation
US6987208B2 (en) Process for removing oxygenates from an olefinic stream
US6846405B2 (en) Circulating fluid bed reactor system
US7084319B2 (en) Catalyst fluidization in oxygenate to olefin reaction systems
US7057083B2 (en) Catalyst pretreatment with C4-C7 olefins in an oxygenate to olefins reaction system
JP5462991B2 (en) Method for converting oxygenates to olefins
US7132581B2 (en) Catalyst pretreatment with aldehyde in an oxygenate to olefins reaction system
EP1702026B1 (en) Method of operating a riser reactor
WO2018111456A1 (en) Method for oxygenate conversion in a fluid catalytic cracker

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION