US20050054677A1 - Process for preparing amine-substituted benzofurans - Google Patents
Process for preparing amine-substituted benzofurans Download PDFInfo
- Publication number
- US20050054677A1 US20050054677A1 US10/946,192 US94619204A US2005054677A1 US 20050054677 A1 US20050054677 A1 US 20050054677A1 US 94619204 A US94619204 A US 94619204A US 2005054677 A1 US2005054677 A1 US 2005054677A1
- Authority
- US
- United States
- Prior art keywords
- formula
- compound
- group
- cyanophenyl
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 150000001907 coumarones Chemical class 0.000 title abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 168
- 238000000034 method Methods 0.000 claims abstract description 59
- 150000003839 salts Chemical class 0.000 claims abstract description 17
- 150000001412 amines Chemical group 0.000 claims abstract description 16
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 74
- -1 bromo, chloro, 4-cyanophenyl Chemical group 0.000 claims description 62
- 125000000217 alkyl group Chemical group 0.000 claims description 49
- 125000003118 aryl group Chemical group 0.000 claims description 45
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 claims description 43
- 125000001072 heteroaryl group Chemical group 0.000 claims description 43
- 239000003153 chemical reaction reagent Substances 0.000 claims description 37
- 125000001424 substituent group Chemical group 0.000 claims description 35
- 229910052763 palladium Inorganic materials 0.000 claims description 31
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical group CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 claims description 30
- 125000004414 alkyl thio group Chemical group 0.000 claims description 24
- 125000003545 alkoxy group Chemical group 0.000 claims description 23
- 125000000623 heterocyclic group Chemical group 0.000 claims description 22
- 125000004183 alkoxy alkyl group Chemical group 0.000 claims description 21
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 21
- 125000004438 haloalkoxy group Chemical group 0.000 claims description 21
- 125000001188 haloalkyl group Chemical group 0.000 claims description 21
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 21
- 125000006350 alkyl thio alkyl group Chemical group 0.000 claims description 20
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 claims description 20
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 claims description 20
- LQZMLBORDGWNPD-UHFFFAOYSA-N N-iodosuccinimide Chemical compound IN1C(=O)CCC1=O LQZMLBORDGWNPD-UHFFFAOYSA-N 0.000 claims description 18
- 229910052736 halogen Inorganic materials 0.000 claims description 18
- 150000002367 halogens Chemical group 0.000 claims description 18
- 125000001246 bromo group Chemical group Br* 0.000 claims description 17
- 239000003054 catalyst Substances 0.000 claims description 16
- 230000002140 halogenating effect Effects 0.000 claims description 15
- 125000003709 fluoroalkyl group Chemical group 0.000 claims description 14
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 claims description 14
- 125000003386 piperidinyl group Chemical group 0.000 claims description 14
- 125000000719 pyrrolidinyl group Chemical group 0.000 claims description 14
- 229910002666 PdCl2 Inorganic materials 0.000 claims description 13
- OTJZCIYGRUNXTP-UHFFFAOYSA-N but-3-yn-1-ol Chemical compound OCCC#C OTJZCIYGRUNXTP-UHFFFAOYSA-N 0.000 claims description 10
- 229940043279 diisopropylamine Drugs 0.000 claims description 10
- 229910001507 metal halide Inorganic materials 0.000 claims description 9
- 150000005309 metal halides Chemical class 0.000 claims description 9
- 229910052702 rhenium Inorganic materials 0.000 claims description 9
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 claims description 8
- 229910021595 Copper(I) iodide Inorganic materials 0.000 claims description 8
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical group CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 8
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 claims description 8
- 125000002346 iodo group Chemical group I* 0.000 claims description 8
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical group I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 claims description 7
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 6
- LBLYYCQCTBFVLH-UHFFFAOYSA-M toluenesulfonate group Chemical group C=1(C(=CC=CC1)S(=O)(=O)[O-])C LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 claims description 6
- 239000007983 Tris buffer Substances 0.000 claims description 5
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 claims description 5
- RBYGDVHOECIAFC-UHFFFAOYSA-L acetonitrile;palladium(2+);dichloride Chemical compound [Cl-].[Cl-].[Pd+2].CC#N.CC#N RBYGDVHOECIAFC-UHFFFAOYSA-L 0.000 claims description 4
- 229910052794 bromium Inorganic materials 0.000 claims description 4
- ISZGNNPTDCJIIS-UHFFFAOYSA-N 2-iodoisoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(I)C(=O)C2=C1 ISZGNNPTDCJIIS-UHFFFAOYSA-N 0.000 claims description 3
- 229910014265 BrCl Inorganic materials 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 3
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 3
- CODNYICXDISAEA-UHFFFAOYSA-N bromine monochloride Chemical compound BrCl CODNYICXDISAEA-UHFFFAOYSA-N 0.000 claims description 3
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 3
- VBTQNRFWXBXZQR-UHFFFAOYSA-N n-bromoacetamide Chemical compound CC(=O)NBr VBTQNRFWXBXZQR-UHFFFAOYSA-N 0.000 claims description 3
- UULXSTDDDXOTIY-UHFFFAOYSA-N n-iodoacetamide Chemical compound CC(=O)NI UULXSTDDDXOTIY-UHFFFAOYSA-N 0.000 claims description 2
- JGBZTJWQMWZVNX-UHFFFAOYSA-N palladium;tricyclohexylphosphane Chemical compound [Pd].C1CCCCC1P(C1CCCCC1)C1CCCCC1.C1CCCCC1P(C1CCCCC1)C1CCCCC1 JGBZTJWQMWZVNX-UHFFFAOYSA-N 0.000 claims description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical group OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052740 iodine Inorganic materials 0.000 claims 1
- KFHYZKCRXNRKRC-MRXNPFEDSA-N abt-239 Chemical compound C[C@@H]1CCCN1CCC1=CC2=CC(C=3C=CC(=CC=3)C#N)=CC=C2O1 KFHYZKCRXNRKRC-MRXNPFEDSA-N 0.000 abstract description 17
- 239000003446 ligand Substances 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 description 47
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 44
- 239000000203 mixture Substances 0.000 description 34
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 33
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 32
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 26
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 24
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 24
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 21
- 239000002585 base Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- 0 *CCC1=CC2=C(C=CC(*)=C2)O1 Chemical compound *CCC1=CC2=C(C=CC(*)=C2)O1 0.000 description 17
- 239000002253 acid Substances 0.000 description 17
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 16
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 16
- 229940011051 isopropyl acetate Drugs 0.000 description 16
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 16
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 13
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 12
- 238000005160 1H NMR spectroscopy Methods 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 11
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- RGHPCLZJAFCTIK-RXMQYKEDSA-N (R)-2-methylpyrrolidine Chemical compound C[C@@H]1CCCN1 RGHPCLZJAFCTIK-RXMQYKEDSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- KUFFULVDNCHOFZ-UHFFFAOYSA-N CC1=CC=C(O)C(C)=C1 Chemical compound CC1=CC=C(O)C(C)=C1 KUFFULVDNCHOFZ-UHFFFAOYSA-N 0.000 description 8
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 125000004214 1-pyrrolidinyl group Chemical group [H]C1([H])N(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 7
- 125000004533 benzofuran-5-yl group Chemical group O1C=CC2=C1C=CC(=C2)* 0.000 description 7
- 229910000027 potassium carbonate Inorganic materials 0.000 description 7
- CEBAHYWORUOILU-UHFFFAOYSA-N (4-cyanophenyl)boronic acid Chemical compound OB(O)C1=CC=C(C#N)C=C1 CEBAHYWORUOILU-UHFFFAOYSA-N 0.000 description 6
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 6
- AVAOHVDRAKDFRF-NUBCRITNSA-N 2,3-dihydroxybutanedioic acid;(2r)-2-methylpyrrolidine Chemical compound C[C@@H]1CCCN1.OC(=O)C(O)C(O)C(O)=O AVAOHVDRAKDFRF-NUBCRITNSA-N 0.000 description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000012267 brine Substances 0.000 description 6
- STOASOOVVADOKH-UHFFFAOYSA-N but-3-ynyl 4-methylbenzenesulfonate Chemical compound CC1=CC=C(S(=O)(=O)OCCC#C)C=C1 STOASOOVVADOKH-UHFFFAOYSA-N 0.000 description 6
- 239000000543 intermediate Substances 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- NISULOSDVFYWIH-NUFNRNBZSA-N (2r,3r)-2,3-dihydroxybutanedioic acid;4-[2-[2-[(2r)-2-methylpyrrolidin-1-yl]ethyl]-1-benzofuran-5-yl]benzonitrile Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O.C[C@@H]1CCCN1CCC1=CC2=CC(C=3C=CC(=CC=3)C#N)=CC=C2O1 NISULOSDVFYWIH-NUFNRNBZSA-N 0.000 description 5
- RGHPCLZJAFCTIK-YFKPBYRVSA-N (2s)-2-methylpyrrolidine Chemical compound C[C@H]1CCCN1 RGHPCLZJAFCTIK-YFKPBYRVSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 239000007832 Na2SO4 Substances 0.000 description 5
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 5
- LCSNDSFWVKMJCT-UHFFFAOYSA-N dicyclohexyl-(2-phenylphenyl)phosphane Chemical group C1CCCCC1P(C=1C(=CC=CC=1)C=1C=CC=CC=1)C1CCCCC1 LCSNDSFWVKMJCT-UHFFFAOYSA-N 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 229910052938 sodium sulfate Inorganic materials 0.000 description 5
- 239000011975 tartaric acid Substances 0.000 description 5
- RGHPCLZJAFCTIK-UHFFFAOYSA-N 2-methylpyrrolidine Chemical compound CC1CCCN1 RGHPCLZJAFCTIK-UHFFFAOYSA-N 0.000 description 4
- VBHLNRSQUBMORV-UHFFFAOYSA-N 4-[2-(2-hydroxyethyl)-1-benzofuran-5-yl]benzonitrile Chemical compound C=1C=C2OC(CCO)=CC2=CC=1C1=CC=C(C#N)C=C1 VBHLNRSQUBMORV-UHFFFAOYSA-N 0.000 description 4
- GZFGOTFRPZRKDS-UHFFFAOYSA-N 4-bromophenol Chemical compound OC1=CC=C(Br)C=C1 GZFGOTFRPZRKDS-UHFFFAOYSA-N 0.000 description 4
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 4
- IWDCLRJOBJJRNH-UHFFFAOYSA-N CC1=CC=C(O)C=C1 Chemical compound CC1=CC=C(O)C=C1 IWDCLRJOBJJRNH-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000012065 filter cake Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000010898 silica gel chromatography Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 4
- AHYBDZZDZWZAIN-UHFFFAOYSA-N 2-[5-(4-cyanophenyl)-1-benzofuran-2-yl]ethyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCCC1=CC2=CC(C=3C=CC(=CC=3)C#N)=CC=C2O1 AHYBDZZDZWZAIN-UHFFFAOYSA-N 0.000 description 3
- GGJLASJZXUIMAG-UHFFFAOYSA-N 4-(4-hydroxy-3-iodophenyl)benzonitrile Chemical compound C1=C(I)C(O)=CC=C1C1=CC=C(C#N)C=C1 GGJLASJZXUIMAG-UHFFFAOYSA-N 0.000 description 3
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000005620 boronic acid group Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 125000003373 pyrazinyl group Chemical group 0.000 description 3
- 125000003226 pyrazolyl group Chemical group 0.000 description 3
- ABMYEXAYWZJVOV-UHFFFAOYSA-N pyridin-3-ylboronic acid Chemical compound OB(O)C1=CC=CN=C1 ABMYEXAYWZJVOV-UHFFFAOYSA-N 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 125000000714 pyrimidinyl group Chemical group 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000009518 sodium iodide Nutrition 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 125000005147 toluenesulfonyl group Chemical group C=1(C(=CC=CC1)S(=O)(=O)*)C 0.000 description 3
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 description 3
- VTKKXXQRBFNDRN-LLVKDONJSA-N (2r)-1-[2-(5-bromo-1-benzofuran-2-yl)ethyl]-2-methylpyrrolidine Chemical compound C[C@@H]1CCCN1CCC1=CC2=CC(Br)=CC=C2O1 VTKKXXQRBFNDRN-LLVKDONJSA-N 0.000 description 2
- PDVFSPNIEOYOQL-UHFFFAOYSA-N (4-methylphenyl)sulfonyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OS(=O)(=O)C1=CC=C(C)C=C1 PDVFSPNIEOYOQL-UHFFFAOYSA-N 0.000 description 2
- IANQTJSKSUMEQM-UHFFFAOYSA-N 1-benzofuran Chemical compound C1=CC=C2OC=CC2=C1 IANQTJSKSUMEQM-UHFFFAOYSA-N 0.000 description 2
- AVAOHVDRAKDFRF-UHFFFAOYSA-N 2,3-dihydroxybutanedioic acid;2-methylpyrrolidine Chemical compound CC1CCCN1.OC(=O)C(O)C(O)C(O)=O AVAOHVDRAKDFRF-UHFFFAOYSA-N 0.000 description 2
- 125000004777 2-fluoroethyl group Chemical group [H]C([H])(F)C([H])([H])* 0.000 description 2
- LZPWAYBEOJRFAX-UHFFFAOYSA-N 4,4,5,5-tetramethyl-1,3,2$l^{2}-dioxaborolane Chemical compound CC1(C)O[B]OC1(C)C LZPWAYBEOJRFAX-UHFFFAOYSA-N 0.000 description 2
- ZRMIETZFPZGBEB-UHFFFAOYSA-N 4-(4-hydroxyphenyl)benzonitrile Chemical compound C1=CC(O)=CC=C1C1=CC=C(C#N)C=C1 ZRMIETZFPZGBEB-UHFFFAOYSA-N 0.000 description 2
- KFHYZKCRXNRKRC-INIZCTEOSA-N 4-[2-[2-[(2s)-2-methylpyrrolidin-1-yl]ethyl]-1-benzofuran-5-yl]benzonitrile Chemical compound C[C@H]1CCCN1CCC1=CC2=CC(C=3C=CC(=CC=3)C#N)=CC=C2O1 KFHYZKCRXNRKRC-INIZCTEOSA-N 0.000 description 2
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 description 2
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- VAZOFFWXCJFRNF-UHFFFAOYSA-N CC1=CC2=C(C=C1)OC(CCO)=C2 Chemical compound CC1=CC2=C(C=C1)OC(CCO)=C2 VAZOFFWXCJFRNF-UHFFFAOYSA-N 0.000 description 2
- DNOOPEASXYPJPM-UHFFFAOYSA-N CCCC1=CC2=C(C=CC(C)=C2)O1 Chemical compound CCCC1=CC2=C(C=CC(C)=C2)O1 DNOOPEASXYPJPM-UHFFFAOYSA-N 0.000 description 2
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- HVVNJUAVDAZWCB-YFKPBYRVSA-N [(2s)-pyrrolidin-2-yl]methanol Chemical compound OC[C@@H]1CCCN1 HVVNJUAVDAZWCB-YFKPBYRVSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 2
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 125000004216 fluoromethyl group Chemical group [H]C([H])(F)* 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000001786 isothiazolyl group Chemical group 0.000 description 2
- 125000000842 isoxazolyl group Chemical group 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229940098779 methanesulfonic acid Drugs 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- RIVIDPPYRINTTH-UHFFFAOYSA-N n-ethylpropan-2-amine Chemical compound CCNC(C)C RIVIDPPYRINTTH-UHFFFAOYSA-N 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 125000001715 oxadiazolyl group Chemical group 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 2
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 2
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 125000005493 quinolyl group Chemical group 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 229940095064 tartrate Drugs 0.000 description 2
- 125000003831 tetrazolyl group Chemical group 0.000 description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 125000004306 triazinyl group Chemical group 0.000 description 2
- 125000001425 triazolyl group Chemical group 0.000 description 2
- WJKHJLXJJJATHN-UHFFFAOYSA-N triflic anhydride Chemical compound FC(F)(F)S(=O)(=O)OS(=O)(=O)C(F)(F)F WJKHJLXJJJATHN-UHFFFAOYSA-N 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- NTVFDRLNCQVBCW-SECBINFHSA-N (2r)-1-but-3-ynyl-2-methylpyrrolidine Chemical compound C[C@@H]1CCCN1CCC#C NTVFDRLNCQVBCW-SECBINFHSA-N 0.000 description 1
- SVNFYWQLDGHXHN-NUBCRITNSA-N (2r)-2-methylpyrrolidine;hydrobromide Chemical compound Br.C[C@@H]1CCCN1 SVNFYWQLDGHXHN-NUBCRITNSA-N 0.000 description 1
- FIARMZDBEGVMLV-UHFFFAOYSA-N 1,1,2,2,2-pentafluoroethanolate Chemical group [O-]C(F)(F)C(F)(F)F FIARMZDBEGVMLV-UHFFFAOYSA-N 0.000 description 1
- ZWNCJCPLPUBNCZ-UHFFFAOYSA-N 1,2-dimethoxyethane;hydrate Chemical compound O.COCCOC ZWNCJCPLPUBNCZ-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- AVAOHVDRAKDFRF-JEDNCBNOSA-N 2,3-dihydroxybutanedioic acid;(2s)-2-methylpyrrolidine Chemical compound C[C@H]1CCCN1.OC(=O)C(O)C(O)C(O)=O AVAOHVDRAKDFRF-JEDNCBNOSA-N 0.000 description 1
- 125000003660 2,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- CBURFCSPYDRJQA-UHFFFAOYSA-N 2-(5-bromo-1-benzofuran-2-yl)ethanol Chemical compound BrC1=CC=C2OC(CCO)=CC2=C1 CBURFCSPYDRJQA-UHFFFAOYSA-N 0.000 description 1
- TUKDTNBGKFZIGD-UHFFFAOYSA-N 2-(5-bromo-1-benzofuran-2-yl)ethyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCCC1=CC2=CC(Br)=CC=C2O1 TUKDTNBGKFZIGD-UHFFFAOYSA-N 0.000 description 1
- WMCKMBIRRGZGLE-UHFFFAOYSA-N 2-(fluoromethyl)pyrrolidine Chemical compound FCC1CCCN1 WMCKMBIRRGZGLE-UHFFFAOYSA-N 0.000 description 1
- URWMFRYGXSHPRV-UHFFFAOYSA-N 2-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]acetonitrile Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=C(CC#N)C=C1 URWMFRYGXSHPRV-UHFFFAOYSA-N 0.000 description 1
- YAKODSHNCZYDPB-UHFFFAOYSA-N 2-[4-[[3-[3-benzoyl-8-(trifluoromethyl)quinolin-4-yl]phenoxy]methyl]phenyl]acetic acid Chemical compound C1=CC(CC(=O)O)=CC=C1COC1=CC=CC(C=2C3=CC=CC(=C3N=CC=2C(=O)C=2C=CC=CC=2)C(F)(F)F)=C1 YAKODSHNCZYDPB-UHFFFAOYSA-N 0.000 description 1
- MARXMDRWROUXMD-UHFFFAOYSA-N 2-bromoisoindole-1,3-dione Chemical group C1=CC=C2C(=O)N(Br)C(=O)C2=C1 MARXMDRWROUXMD-UHFFFAOYSA-N 0.000 description 1
- JFZLDRUSMYBXRI-UHFFFAOYSA-N 2-ethylpyrrolidine Chemical compound CCC1CCCN1 JFZLDRUSMYBXRI-UHFFFAOYSA-N 0.000 description 1
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- UXIULWIJWDJDQD-UHFFFAOYSA-N 4-bromo-2-iodophenol Chemical compound OC1=CC=C(Br)C=C1I UXIULWIJWDJDQD-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-N 4-hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 description 1
- WSRGGSAGSUEJKQ-UHFFFAOYSA-N 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidine Chemical compound O1C(C)(C)C(C)(C)OB1C1=CN=CN=C1 WSRGGSAGSUEJKQ-UHFFFAOYSA-N 0.000 description 1
- PXRKCOCTEMYUEG-UHFFFAOYSA-N 5-aminoisoindole-1,3-dione Chemical compound NC1=CC=C2C(=O)NC(=O)C2=C1 PXRKCOCTEMYUEG-UHFFFAOYSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 description 1
- 208000036864 Attention deficit/hyperactivity disease Diseases 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- LRHPLDYGYMQRHN-UHFFFAOYSA-N Butanol Natural products CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 1
- PXWILTWRGBPLPE-UHFFFAOYSA-N C.CC1=CC(C)=C(O)C=C1.CC1=CC=C(O)C=C1.CN1C(=O)CCC1=O.II.I[IH]I Chemical compound C.CC1=CC(C)=C(O)C=C1.CC1=CC=C(O)C=C1.CN1C(=O)CCC1=O.II.I[IH]I PXWILTWRGBPLPE-UHFFFAOYSA-N 0.000 description 1
- JGGTYXHXAVUIGF-UHFFFAOYSA-N CC1=C(O)C=CC(Br)=C1.CC1=CC(C)=C(O)C=C1 Chemical compound CC1=C(O)C=CC(Br)=C1.CC1=CC(C)=C(O)C=C1 JGGTYXHXAVUIGF-UHFFFAOYSA-N 0.000 description 1
- HBEUTSYMOMVYMH-UHFFFAOYSA-N CC1=CC2=C(C=C1)OC(CCO)=C2.OCCC1=CC2=C(C=CC(Br)=C2)O1 Chemical compound CC1=CC2=C(C=C1)OC(CCO)=C2.OCCC1=CC2=C(C=CC(Br)=C2)O1 HBEUTSYMOMVYMH-UHFFFAOYSA-N 0.000 description 1
- ZNPPZPSWFNASQK-UHFFFAOYSA-N CC1=CC=C(S(=O)(=O)OCCC2=CC3=C(C=CC(Br)=C3)O2)C=C1.CC1=CC=C(S(=O)(=O)OCCC2=CC3=C(C=CC(C)=C3)O2)C=C1 Chemical compound CC1=CC=C(S(=O)(=O)OCCC2=CC3=C(C=CC(Br)=C3)O2)C=C1.CC1=CC=C(S(=O)(=O)OCCC2=CC3=C(C=CC(C)=C3)O2)C=C1 ZNPPZPSWFNASQK-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000007445 Chromatographic isolation Methods 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 239000012359 Methanesulfonyl chloride Substances 0.000 description 1
- 238000007006 Miyaura reaction Methods 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000001343 alkyl silanes Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000000538 analytical sample Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- NWCHELUCVWSRRS-UHFFFAOYSA-N atrolactic acid Chemical compound OC(=O)C(O)(C)C1=CC=CC=C1 NWCHELUCVWSRRS-UHFFFAOYSA-N 0.000 description 1
- 208000015802 attention deficit-hyperactivity disease Diseases 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000006583 body weight regulation Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000004218 chloromethyl group Chemical group [H]C([H])(Cl)* 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- IZDROVVXIHRYMH-UHFFFAOYSA-N methanesulfonic anhydride Chemical compound CS(=O)(=O)OS(C)(=O)=O IZDROVVXIHRYMH-UHFFFAOYSA-N 0.000 description 1
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- DYXKUMACGJLDGE-UHFFFAOYSA-N methyl 4-[[3-[3-benzoyl-8-(trifluoromethyl)quinolin-4-yl]phenoxy]methyl]benzoate Chemical compound C1=CC(C(=O)OC)=CC=C1COC1=CC=CC(C=2C3=CC=CC(=C3N=CC=2C(=O)C=2C=CC=CC=2)C(F)(F)F)=C1 DYXKUMACGJLDGE-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- ISOKSVZBBCWLED-UHFFFAOYSA-N n,2-diiodoacetamide Chemical group ICC(=O)NI ISOKSVZBBCWLED-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000003705 neurological process Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- WXHIJDCHNDBCNY-UHFFFAOYSA-N palladium dihydride Chemical compound [PdH2] WXHIJDCHNDBCNY-UHFFFAOYSA-N 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- KXJJSKYICDAICD-UHFFFAOYSA-N quinolin-8-ylboronic acid Chemical compound C1=CN=C2C(B(O)O)=CC=CC2=C1 KXJJSKYICDAICD-UHFFFAOYSA-N 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000004187 tetrahydropyran-2-yl group Chemical group [H]C1([H])OC([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 238000007070 tosylation reaction Methods 0.000 description 1
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 1
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/04—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/49—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C255/53—Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and hydroxy groups bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/78—Benzo [b] furans; Hydrogenated benzo [b] furans
- C07D307/79—Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
- C07D307/81—Radicals substituted by nitrogen atoms not forming part of a nitro radical
Definitions
- the present invention relates to processes for preparing amine-substituted benzofuran compounds, and more particularly, 4-(2- ⁇ 2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl ⁇ -1-benzofuran-5-yl)benzonitrile and salts thereof, as well as intermediates in such processes.
- the compounds have demonstrated activity as histamine-3 receptor ligands.
- H 3 receptor ligands provide useful-compounds for pharmaceutical products.
- H 3 receptor ligands can be used for treatment of disorders related to cardiovascular processes, memory processes, such as Alzheimer's disease and attention-deficit hyperactivity disorder, neurological processes, cancer, sleep processes, and weight regulation, among other conditions.
- One particular compound having the structure and the IUPAC name 4-(2- ⁇ 2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl ⁇ -1-benzofuran-5-yl)benzonitrile, demonstrates promising activity for use as a pharmaceutically active H 3 -receptor ligand.
- the compound has demonstrated promising activity for enhancing learning and cognition.
- the compound, related derivatives thereof, and processes for preparing the compound and derivatives are described in commonly-owned copending U.S. patent applications Ser. Nos. 09/810,648, filed Mar. 16, 2001; 10/044,495, filed Jan. 11, 2002; and 10/081,207, filed Feb. 22, 2002.
- Previous processes for preparing 2-(2-aminoethyl)-substituted benzofuran compounds generally involve halogenation of a starting phenol by treatment with sodium iodide and sodium hypochlorite, preferably in the presence of a base. The resulting iodinated phenol is subsequently converted into a functionalized benzofuran and the desired amine is appended. Many steps of the previous processes required chromatographic isolation and purification of intermediate compounds to provide a material possessing suitable qualities of purity and economy for the preparation of a pharmaceutical compound.
- the invention relates to a process for preparing compounds of the formula (I) or a salt thereof, wherein
- the process comprises treating a compound of formula (II) wherein R A is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, and the phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, with a halogenating reagent selected from halogenating agents of the formula wherein X is bromo or iodo, N-iodoacetamide, N-bromoacetamide, N-iodophthalimide, N-bromophthalimide, iodine, bromine, ICl, IBr, BrCl, or an alkaline iodide or bro
- Compounds of formula (IV) are treated with a sulfonating reagent to provide a compound of formula (V) wherein R B represents a toluenesulfonate, methanesulfonate, or trifluoromethanesulfonate group.
- compounds of formula (III) are treated with a toluenesulfonyl butanol to provide (V), wherein R B represents a toluenesulfonate group, directly.
- Compounds of formula (V) are treated with an amine reagent, preferably selected from the group consisting of pyrrolidine and piperidine, wherein the pyrrolidine or piperidine is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl to provide compounds of formula (VI), wherein R A is bromo, chloro, 4-cyanophenyl, aryl, or heteroaryl.
- an amine reagent preferably selected from the group consisting of pyrrolidine and piperidine, wherein the pyrrolidine or piperidine is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl to provide compounds of formula (VI), wherein R A is bromo, chloro, 4-cyanophenyl, aryl, or heteroaryl.
- the phenyl moiety of 4-cyanophenyl and aryl and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- R A in a compound of formula (VI) is 4-cyanophenyl, aryl, or heteroaryl, the reaction provides compounds within the scope of formula (I).
- the invention relates to a process for preparing compounds of formula (I), as defined above, comprising at least the step of treating a compound of the formula: wherein R A1 is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, and the phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, and X is bromo or iodo, with a compound of formula (VII) wherein A is a heterocyclic group selected from the group consisting of pyrrolidinyl and piperidinyl, and the heterocyclic group can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group
- the reaction is carried out using a palladium catalyst, metal halide, and base
- the palladium catalyst can be a palladium(0) or a palladium(II) catalyst, for example, tetrakis(triphenylphosphine)palladium, tris(dibenzylideneacetate)dipalladium, PdCl 2 (Ph 3 P) 2 , and the like.
- the invention relates to a process for preparing a compound useful in the preparation of 2-(2-aminoethyl)-substituted benzofuran compounds demonstrating activity as H 3 -receptor ligands.
- the process comprises the step of treating a compound of formula (II) wherein R A is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, as previously defined, with a halogenating reagent of the formula: wherein X is bromo or iodo, to provide a compound of formula (III) wherein R A is as described for compounds of formula (II).
- reaction is particularly useful in preparing a compound of formula (III) wherein X is iodo or bromo and R A is 4-cyanophenyl, which can be used in preparing 2-(2-aminoethyl)-substituted benzofuran compounds, particularly 4-(2- ⁇ 2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl ⁇ -1-benzofuran-5-yl)benzonitrile.
- fluoroalkyl as used herein, means at least one fluorine atom is attached to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of fluoroalkyl include, but are not limited to, fluoromethyl, 2-fluoroethyl, trifluoromethyl, 2,2,2-trifluoroethyl, and pentafluoroethyl.
- alkoxy refers to an alkyl group, as defined herein, appended to the parent molecular moiety through an oxy moiety, as defined herein.
- Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
- alkoxyalkyl refers to an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of alkoxyalkyl include, but are not limited to, tert-butoxymethyl, 2-ethoxyethyl, 2-methoxyethyl and methoxymethyl.
- alkyl refers to a straight or branched chain hydrocarbon containing from 1 to 10 carbon atoms, and preferably 1 to 6 carbon atoms.
- Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl and n-decyl.
- alkylthio refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom, as defined herein.
- Representative examples of alkylthio include, but are not limited to, methylsulfanyl, ethylsulfanyl, tert-butylsulfanyl and hexylsulfanyl.
- alkylthioalkyl refers to an alkylthio group, as defined herein, appended to the parent molecular moiety through an alkyl group.
- the alkylthio group typically is appended to the alkyl group via a sulfur atom.
- Representative examples of alkylthio include, but are not limited to, methylsulfanylmethyl, ethylsulfanylmethyl, tert-butylsulfanylmethyl and hexylsulfanylmethyl.
- aryl refers to a phenyl ring substituted with 0, 1, 2, 3, or 4-substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylcarbonyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, and haloalkyl.
- aryl include, but are not limited to, 4-cyanophenyl, 4-chlorophenyl, 4-methylphenyl, 4-phenylethanone, 4-trifluoromethylphenyl, 4-trifluormethoxyphenyl, and the like.
- cyano refers to a —CN group.
- haloalkoxy refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein.
- Representative examples of haloalkoxy include, but are not limited to, chloromethoxy, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.
- haloalkyl refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
- Representative examples of haloalkyl include, but are not limited to, chloromethyl, fluoromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
- heteroaryl refers to an aromatic five- or six-membered ring wherein 1, 2, 3, or 4 heteroatoms are independently selected from N, O, or S.
- the five-membered rings can have two double bonds or-are a tautomer of a 5-membered ring having two double bonds.
- the six-membered rings have three double bonds or are a tautomer of a 6-membered ring having three double bonds.
- heteroaryl also includes bicyclic systems wherein the aromatic five- or six-membered ring is fused to a phenyl group.
- heteroaryl include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, oxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, quinolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, and triazinyl.
- heteroaryl groups of the present invention are substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, and haloalkyl.
- heterocycle refers to a saturated five- or six-membered ring containing a nitrogen atom.
- the heterocycle can be substituted with 0, 1, 2, 3, or 4 substituents selected from alkyl and fluoroalkyl.
- Representative examples of heterocycle include, but are not limited to, 2-methylpyrrolidinyl, 2-fluoromethylpyrrolidinyl, pyrrolidinyl, and piperidinyl.
- hydroxy refers to an —OH group.
- the invention provides processes for preparing amine-substituted benzofuran derivatives and, more particularly, 2-(2-aminoethyl)-substituted benzofuran compounds.
- the compounds prepared by the processes of the invention can have the formula (I), wherein A is a heterocycle selected from pyrrolidinyl or piperidinyl, wherein the heterocyclic group is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl; and R 1 is 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl of 4-cyanophenyl and aryl, or the heteroaryl, is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- Such compounds have demonstrated activity
- the heterocyclic group for A is a saturated nitrogen ring, and preferably contains five or six members, including the nitrogen atom.
- rings represented by the group A in a compound of formula (I) include, but are not limited to, pyrrolidinyl and piperidinyl.
- the heterocyclic group, particularly the pyrrolidinyl group also can be substituted with substituents on the ring, for example, alkyl, fluoroalkyl, and the like.
- substituted heterocyclic groups are 2-methylpyrrolidinyl, including (2R)-2-methylpyrrolidine and (2S)-2-methylpyrrolidine, 2-ethylpyrrolidinyl, and the like.
- the preferred heterocyclic group for A in a compound of formula (I) is (2R)-2-methylpyrrolidine.
- the heteroaryl group in compounds of formula (I), as represented by R 1 represents an aromatic five- or six-membered ring wherein 1, 2, 3, or 4 heteroatoms are independently selected from N, O, or S.
- the five-membered rings have two double bonds or are tautomers of five-membered rings with two double bounds.
- the six-membered rings have three double bonds or are tautomers of six-membered rings having three double bonds.
- the invention also contemplates heteroaryl groups wherein the aromatic five- or six-membered ring is fused to a phenyl group.
- heteroaryl groups suitable for compounds of formula (I) include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, oxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, quinolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, triazinyl, and the like.
- the preferred heteroaryl groups are pyrimidinyl, pyrazinyl, and pyrazolyl.
- heteroaryl groups of the present invention can be substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- the aryl group in compounds of formula (I), as represented by R 1 can include, but are not limited phenyl groups substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylcarbonyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylcarbonyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- Examples of aryl include, but are not limited to, 4-cyanophenyl, 4-chlorophenyl, 4-methylphenyl, 4-phenylethanone, 4-trifluoromethylphenyl, 4-trifluormethoxyphenyl, and the like.
- compounds of formula (II) can be treated with a halogenating reagent to provide a compound of formula (III).
- Compounds of formula (II) are those wherein R A represents bromo, 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl portion of 4-cyanophenyl, the aryl, or the heteroaryl group can be substituted with various substituents.
- suitable substituents can include, for example, alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- the compound of formula (II) is purchased commercially or prepared from commercially available 4-bromophenol.
- 4-bromophenol can be treated with heteroarylboronic acids or heteroaryl boronate esters and a palladium complex and a phosphine in the presence of a base to provide suitable starting materials for the process, wherein R A is 4-cyanophenyl or heteroaryl.
- Examples of palladium complexes suitable for preparing a compound of formula (II) include, but are not limited to, tetrakis(triphenylphosphine)palladium(0) and palladium acetate.
- the phosphine can include, but is not limited to, 2-(dicyclohexylphosphino)biphenyl and 2-(dicyclohexylphosphino)biphenyl.
- the reaction is carried out in the presence of a base for example, sodium carbonate or potassium phosphate, at above room temperature.
- Examples of more specific conditions for accomplishing the reaction include treating the 4-bromophenol with a heteroarylboronic acid, tetrakis(triphenylphosphine)palladium(0) and 2-(dicyclohexylphosphino)biphenyl in a solvent mixture of water and 1,2-dimethoxyethane, isopropyl alcohol, or toluene, at about 40° C. to about 100° C.
- the reaction typically is accomplished in about 1 to about 36 hours.
- Examples of commercially available heteroarylboronic acids are 4-cyanophenyl boronic acid, pyridine-3-boronic acid, and the like.
- halogenating reagent selected from N-iodosuccinimide or N-bromosuccinimide and an acid as shown in Scheme 1.
- Alternative halogenating agents include, but are not limited to, N-iodoacetamide, N-bromoacetamide, N-iodophthalimide, N-bromopthalimide, iodine, bromine, ICl, IBr, BrCl, an alkaline iodide or bromide with an oxidant such as with NaI and hydrogen peroxide.
- the amount of halogenating reagent suitable for the reaction can include from about 1 to about 3 molar equivalents relative to the amount of compound having the formula (II).
- a preferred amount of halogenating reagent is from about 0.90 to about 1 molar equivalent of the succinimide.
- about 1 mole of halogenating reagent is used for each mole of the compound of formula (II).
- the reaction is accomplished in an organic solvent or in a weak acid in the presence of a catalytic amount of strong acid.
- a specific example of a suitable solvent is acetonitrile.
- a weak acid suitable for the reaction is acetic acid in the presence of a strong acid, for example, sulfuric acid, trifluoroacetic acid, and trifluoromethanesulfonic acid.
- a strong acid for example, sulfuric acid, trifluoroacetic acid, and trifluoromethanesulfonic acid.
- N-iodosuccinimide is reacted with the compound of formula (II) in acetic acid in the presence of a stronger acid, such as sulfuric acid, while maintaining the reaction at or below room temperature, for example at or less than 27° C.
- a preferred amount of concentrated sulfuric acid is from about 0.025 to about 0.075 molar equivalents, relative to the starting material of formula (II). The preferred amount of sulfuric acid is about 0.05 equivalents.
- the preferred alkynol is 3-butyn-1-ol, but compounds that provide alcohols equivalent to the 3-butyn-1-ol also can be used, for example alkynes that include protected forms of 3-butyn-1-ol, R p OCH 2 CH 2 C ⁇ CH, where the R p is a protecting group.
- Typical protecting groups are described for instance in Green and Wuts, “Protecting Groups in Organic Synthesis”, 3rd edition, published by John Wiley and Sons, New York (1999), and which may be appended onto the 3-butyn-1-ol, and subsequently removed by the methods therein. In this case, removal of the protecting group R p in the product will generate compounds of structure (IV).
- Examples of specific protecting groups represented by R p include, but are not limited to, triethylsilyl, acetyl, benzoyl, and tetrahydropyran-2-yl. Typically, from about 1 to about 2 equivalents of the alkynol are used relative to one mole of the compound of formula (II).
- suitable palladium sources include, but are not limited to, palladium(II) acetate, tetrakis(triphenylphosphine)palladium, and tris(dibenzylideneacetate)dipalladium.
- the preferred palladium catalyst is palladium (II) acetate.
- a phosphine suitable for the reaction can be triphenylphosphine.
- Other examples of phosphines suitable for the reaction can include, triphenylphosphine, bis(diphenylphosphine)methane, bis(diphenylphosphine)ethane, tri(o-tolyl)phosphine, and the like.
- the ratio of palladium catalyst to phosphine generally ranges from about 1:1 to about 1:8 relative to the palladium source. Preferably, about two molar equivalents of phosphine are used for one mole of the palladium source.
- a useful metal halide is copper(I) iodide.
- Alternative and additional halides can include, but are not limited to, copper(I) bromide.
- the amount of metal halide used ranges from about 1:1 to about 1:2 relative to the phosphine.
- the reaction preferably is carried out in the presence of a base.
- Suitable bases include, but are not limited to, diisopropylamine, diethylamine, dipropylamine, triethylamine, isopropylethylamine, pyrrolidine, or piperidine, in a solvent including, but not limited to, isopropyl acetate to provide compounds of formula (IV).
- the compound of formula (IV) can be isolated and separated by column chromatography, it is not necessary to isolate or purify the product to provide a useful starting material for the hydroxy protection step of preparing a compound of formula (V), which follows.
- Compounds of formula (IV) can be treated with a sulfonating reagent in basic conditions to provide compounds of formula (V).
- the sulfonating reagent provides a toluenesulfonyl group to activate the hydroxy group of a compound of formula (IV) as shown in Scheme 1.
- suitable sulfonating reagents can include, but are not limited to, para-toluensulfonic chloride and para-toluenesulfonic anhydride.
- Alternative sulfonating agents also can provide similarly reactive and useful products related to compounds of formula (V) when reacted with compounds of formula (IV).
- Such sulfonating agents can include, but are not limited to, methane sulfonic anhydride, methane sulfonyl chloride, and triflic anhydride, wherein the toluenesulfonyl moiety of a compound of formula (V) is replaced with a methansulfonyl or trifluoromethanesulfonyl group.
- Basic conditions to accomplish the reaction include, for example, treating the compound of formula (IV) with N,N-dimethylaminopyridine and a base.
- Suitable bases for the reaction can include, for example, triethylamine, pyridine, and the like. The preferred base is triethylamine.
- Suitable solvents for the reaction typically are aprotic solvents, for example acetonitrile, tetrahydrofuran, dichloromethane, and the like.
- the sulfonating reagent is reacted with the compound of formula (IV) in a range of from about 1:1 to about 1:5 molar equivalents, relative to the compound of formula (IV). Preferably, about 3 molar equivalents of sulfonating reagent are used for each mole of the compound of formula (IV).
- the reaction can be carried out in at least room temperature. Typically, the reaction will be accomplished in from about 1 to 2 hours.
- the product of formula (V) can be, but need not be, isolated and purified according to conventional methods for use in reaction attaching the amine.
- the preferred reagent is a cyclic amine reagent, for example pyrrolidine or piperidine.
- the reaction can be accomplished in a solvent, for example, acetonitrile, ethanol, methanol, isopropyl alcohol or a mixture thereof.
- the pyrrolidine or piperidine reagent can include 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl.
- Suitable amine reagents can be provided as the amine compound, for example, 2-methylpyrrolidine, or as a salt of the amine compound, such as 2-methylpyrrolidine tartrate.
- Suitable amine reagents include, but are not limited to, 2-methylpyrrolidine, 2-ethylpyrrolidine, 2-fluoromethylpyrrolidine, and the salts thereof.
- suitable salts of the amine reagent include, but are not limited to, tartrate, lactate, chloride, and succinate salts.
- the reaction typically is accomplished in the presence of a weak base, for example, potassium carbonate, and the like.
- the preferred amine reagent for the reaction is pyrrolidine, including the (2R)-2-methylpyrrolidine enantiomer and the (2S)-2-methylpyrrolidine enantiomer. The more preferred enantiomer is (2R)-2-methylpyrrolidine.
- the invention provides processes for preparing amine-substituted benzofuran compounds as shown below in Scheme 2.
- 3-butynyl-4-methylbenzenesulfonate is reacted with an amine reagent of formula AH, wherein A represents a heterocyclic group selected from pyrrolidinyl or piperidinyl.
- A represents a heterocyclic group selected from pyrrolidinyl or piperidinyl.
- the pyrrolidinyl group or the piperidinyl group can be substituted as previously described for the compound of formula (I).
- the 3-butynyl-4-methylbenzenesulfonate, or 3-butynyl-4-toluenesulfonate is prepared by treating 3-butyn-1-ol with a sulfonating reagent including, but not limited to, para-toluensulfonic chloride or para-toluenesulfonic anhydride, and a base.
- bases for the reaction can include, but not is limited to, triethylamine, as previously described.
- Suitable solvents for the reaction can include, but is not limited to, acetonitrile, tetrahydrofuran, or mixtures thereof.
- the conditions for the reaction are similar to those previously described for the protection of the compound of formula (IV) in Scheme 1, from which a compound of formula (V) is obtained.
- 3-Butynyl-4-methylbenzenesulfonate can be treated with the amine reagent in an aprotic solvent, preferably in the presence of base, to provide compounds of formula (VII).
- the reaction conditions are similar to those described for providing compounds of formula (VI) in Scheme 1.
- the preferred base is potassium carbonate.
- the preferred solvent for the reaction includes, but is not limited to, acetonitrile, ethanol, methanol, isopropyl alcohol or a mixture thereof.
- the reaction is carried out at above room temperature, for example in a temperature of from about 80° C. to about 100° C.
- the preferred temperature for the reaction is about 85° C.
- the amine reagents also are similar to those previously described for coupling the amine group to compounds of formula (V) in Scheme 1.
- the preferred amine reagent is 2-methylpyrrolidine and, more particularly, the 2-methylpyrrolidine tartrate salt.
- Compounds of formula (VII) can be treated with compounds of formula (III-a), wherein R A1 is bromo or 4-cyanophenyl and the phenyl of 4-cyanophenyl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, to provide compounds of formula (VI-a), wherein R A1 is as defined for compounds of formula (III-a).
- the reaction is accomplished in a manner similar to the conditions described for the preparation of a compound of formula (IV) as previously described.
- the reaction is accomplished in the presence of a palladium catalyst, preferably a Pd(0) or Pd(II) catalyst in combination with a phosphine ligand for the palladium.
- a palladium catalyst preferably a Pd(0) or Pd(II) catalyst in combination with a phosphine ligand for the palladium.
- the reaction is carried out using a metal halide and a base.
- palladium catalysts can include, for example, Pd(Ph 3 P) 4 , Pd(dba), Pd 2 (dba) 3 , Pd(Pcy 3 ) 2 , Pd(dppe), Pd(dppf), PdCl 2 (Ph 3 P) 2 , PdCl 2 (dppf) 2 , PdCl 2 (dppe) 2 , and PdCl 2 (CH 3 CN) 2 .
- Pd(Ph 3 P) 4 for tetrakis(triphenylphosphine)palladium
- Pd(dba) for (dibenzylideneacetate)palladium
- Pd 2 (dba) 3 for tris(dibenzylideneacetate)dipalladium
- Pd(Pcy 3 ) 2 for bis(tricyclohexylphosphine)palladium
- Pd(dppe) for (2-(diphenylphosphino)ethyl)palladium
- Pd(dppf) for (1,1′-bis(diphenylphosphino)ferrocene)palladium
- PdCl 2 (Ph 3 P) 2 for bis(triphenylphosphine)dichloropalladium
- PdCl 2 (dppf) 2 for bis(1,1′-bis(diphenylphosphino)ferrocene)
- preferred palladium sources include, but are not limited to, tetrakis(triphenylphosphine)palladium, tris(dibenzylideneacetate)dipalladium, and PdCl 2 (Ph 3 P) 2 .
- the palladium catalyst is PdCl 2 (Ph 3 P) 2 .
- Suitable phosphine ligands that can be coordinated with the palladium catalyst are, for example, triphenylphosphine, bis(diphenylphosphine)methane, bis(diphenylphosphine)ethane, tri(o-tolyl)phosphine, and the like.
- the reaction may, but need not, include the use of a phosphine ligand, depending on the palladium catalyst used.
- palladium catalysts already coordinated with a phosphine ligand are not used in combination with additional phosphine ligands.
- Suitable bases for the reaction can include, but are not limited to, diisopropylamine, diethylamine, dipropylamine, triethylamine, isopropylethylamine, pyrrolidine, piperidine, or mixtures thereof.
- the preferred base is diisopropylamine.
- Suitable solvents for the reaction can include, but are not limited to, acetonitrile, ethyl acetate, isopropyl acetate, tetrahydrofuran, and mixtures thereof. The preferred solvent is acetonitrile.
- the amine of formula (VII) is reacted with the compound of formula (III-a) in an amount of from about 1:1 to about 1:3 molar equivalents, relative to the compound of formula (III-a). It is preferred that two molar equivalents of amine are reacted with one molar equivalent of a compound of formula (III-a). Under the preferred conditions, the reaction is carried out with copper(I) iodide in diisopropylamine in the presence of a PdCl 2 (Ph 3 P) 2 catalyst.
- the phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, and haloalkyl, as previously described for compounds of formula (I). More particularly, the process is preferred for compounds wherein R 1 is 4-cyanophenyl.
- Boronic acid esters of formula (VIII-a) also can be substituted for boronic acids of formula (VIII) (R e O)(R f O)B—R, (VIII-a).
- the R e and R f in compounds of formula (VIII-a) are alkyl, or alternatively R e and R f taken together to form a ring, preferably a C 1 -C 6 ring, wherein the ring can be substituted with 0, 1, 2, 3, or 4 alkyl or aryl groups and R 1 is as defined for compounds of formula (VIII).
- suitable compounds of formula (VIII-a) include, but are not limited to, (CH 3 O) 2 BPh, (4-cyanomethylphenyl)boronic acid, pinacol ester (CombiBlocks Inc., San Diego).
- Boronic acids of formula (VIII) are commercially available or can be prepared by methods well known to those skilled in the art of synthetic organic chemistry.
- Takagi et al. (Tetrahedron Letters, (2002) 43, 5649-5651) describe preparing heteroaryl pinacolborane esters of formula (VIII-a) using heteroaromatic compounds and reaction with bis(pinacolborane) in the presence of an iridium catalysis of IrCl[COD]2-(4,4′-di-t-butyl-2,2′-bipyridine) in octane.
- boronic acids include, but are not limited to, 4-cyanophenylboronic acid, pyridine-3-boronic acid, pyrimidine-5-boronic acid pinacol ester, and the like.
- the preferred boronic acid is 4-cyanophenylboronic acid.
- R A2 in compounds of formula (III-c), (IV-c), and (V-c) and R 1 in compounds of formula (I) in Schemes 3-6 represent a 4-cyanophenyl group, aryl, or a heteroaryl group.
- the process of the invention is particularly beneficial for compounds wherein R A2 or R 1 is 4-cyanophenyl.
- compounds of formula (VI) wherein R A is 4-cyanophenyl, aryl, or heteroaryl and A is as previously defined can be, but need not be, isolated and purified to provide compounds of formula (I).
- the compound of formula (VI) or (VI-a) can be isolated and purified, typically by chromatographic methods, using conventional methods in the art to provide a desired compound.
- Examples of conventional methods for isolating and purifying compounds of formula (VI) or (VI-a) can include, but are not limited to, chromatography on solid supports such as silica gel, alumina, or silica derivatized with alkylsilane groups, by recrystallization at high or low temperature with an optional pretreatment with activated carbon, thin-layer chromatography, distillation at various pressures, sublimation under vacuum, and trituration, as described for instance in “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), by Furniss, Hannaford, Smith, and Tatchell, pub. Longman Scientific & Technical, Essex CM20 2JE, England.
- a compound of formula (VI) can be treated with an acid to form a desired salt.
- a compound of formula (VI) or (VI-a) is reacted with an acid at above room temperature to provide the desired salt.
- acids suitable for the reaction include, but are not limited to, tartaric acid, lactic acid, succinic acid, as well as mandelic, atrolactic, methanesulfonic, hydrochloric, hydrobromic, phosphoric, sulfuric, citric, or hydroxybutyric acid, and the like.
- a preferred acid is tartaric acid and, more specifically, (L)-tartaric acid.
- the reaction is accomplished at above room temperature.
- the reaction is carried out in a temperature of from about 50° C. to about 75° C.
- the preferred temperature for the reaction is about 60° C.
- the desired salt can be isolated by filtration in pure form. The recrystallization procedure may be repeated to afford product of even higher purity.
- the processes of the invention are particularly useful for preparing 4-(2- ⁇ 2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl ⁇ -1-benzofuran-5-yl)benzonitrile and salts thereof.
- a particular example of a process for preparing 4-(2- ⁇ 2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl ⁇ -1-benzofuran-5-yl)benzonitrile, and salts thereof, comprises the steps of:
- Yet another aspect of the invention relates to preparing a compound of formula (III), which provides useful intermediates in the preparation of amine-substituted benzofuran derivatives described herein.
- Such process comprises the step of reacting a phenol of formula (II) with a suitable halogenating reagent, as shown in Scheme 7, below.
- Yet another aspect of the invention relates to compounds of formula (V), wherein R B is toluenesulfonate, particularly wherein R A is 4-cyanophenyl, and compounds of formulae (I), (III), (VI), and (VI-a) prepared by the processes described above.
- Still yet another aspect of the invention relates to a compound of the formula (IX), wherein X is bromo or iodo and R c is 4-cyanophenyl, wherein the phenyl portion of 4-cyanophenyl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- R c is 4-cyanophenyl without additional subsituents on the phenyl moiety.
- the compound can be used as an intermediate or starting material for preparing compounds of formula (I), which also is contemplated as an aspect of the invention.
- (2R)-2-Methylpyrrolidine tartrate was prepared by the resolution of racemic (+/ ⁇ ) 2-methylpyrrolidine with L-tartaric acid (which is also called (2R,3R)-(+)-tartaric acid, Chemical Abstracts number 87-694, available from Aldrich Chemical Co., Milwaukee, Wis.) using enantioselective recrystallization procedures as described by William Gaffield, et al. in Tetrahedron, 37:1861-1869 (1981), or in Karrer and Ehrhardt in Helv. Chim. Acta, 34: 2202, 2208 (1951).
- L-tartaric acid which is also called (2R,3R)-(+)-tartaric acid, Chemical Abstracts number 87-694, available from Aldrich Chemical Co., Milwaukee, Wis.
- (2R)-2-methylpyrrolidine hydrobromide also is a suitable source of (2R)-2-methylpyrrolidine, and was prepared from L-prolinol (which also called (S)-(+)-pyrrolidinemethanol, Chemical Abstracts number 23356-96-9, Aldrich Chemical Co., Milwaukee, Wis.) using the procedure described by Nijhuis, Walter H. N., et al., J. Org. Chem., 54(1): 209-216, 214 (1989). Other procedures describing the synthesis of R-2-methylpyrrolidine and salts thereof can be found in Andres, Jose M., et al. Eur. J. Org. Chem., 9:1719-1726 (2000); and Elworthy, Todd R.; Meyers, A. I., Tetrahedron, 50(20): 6089-6096 (1994).
- (2S)-2-Methylpyrrolidine can be substituted for (2R)-2-methylpyrrolidine in the experimental procedures provided herein.
- the (2S)-2-methylpyrrolidine can be prepared by procedures described in Kim, Mahn-Joo, et al., Bioorg. Med. Chem. Lett. 6(1):71-76 (1996).
- Example 1A The product from Example 1A (3.1 kg, 9.68 mol) in isopropyl acetate (49.2 kg) was purged with N 2 for about 10 minutes and then cooled to about 15° C.
- the mixture was treated with palladium(II) acetate (22 g, 0.10 mol), triphenylphosphine, (51 g, 0.19 mol), copper(I) iodide (38 g, 0.19 mol), and 3-butyn-1-ol (0.91 kg, 12.59 moles) while continuing to purge with N 2 .
- the mixture was then treated with diisopropylamine (1.97 kg, 19.37 mol), by addition over about 30 minutes. After 2 hours, the suspension was heated to about 40° C.
- reaction mixture was cooled to room temperature and filtered through a pad of Celite®.
- the pad was washed with isopropyl acetate (12 kg) and the filtrate was washed with 5% NaHCO 3 solution and then washed with water.
- the organic layer was then distilled to dryness.
- the residue (2.03 kg, 80% assayed yield) was carried onto the tosylation step.
- a small sample was purified by silica gel chromatography.
- Example 1B The product from Example 1B (2.03 kg, 7.71 mol) in acetonitrile (31.8 kg) was treated in succession with triethylamine (1.86 kg, 18.34 mol), 4-(dimethylamino)pyridine 0.10 kg, 0.87 mol), and p-toluenesulfonyl chloride (3.50 kg, 17.99 mol). After stirring at room temperature for about 5 hours, the reaction mixture was distilled to a minimum volume and treated with isopropyl alcohol (24.1 kg). The suspension was heated at about 30° C. for 1 hour, then cooled to about 5° C., filtered, and the filter cake was washed with isopropyl alcohol (5.20 kg). The solid was dried at 50° C.
- Potassium carbonate powder (2.28 kg, 16.5 mol, 325 mesh) and milled (2R)-2-methylpyrrolidine tartrate (1.78 kg, 7.48 mol) were combined in acetonitrile (37.4 kg) and heated at 55° C. with agitation for 36 hours.
- the mixture was chilled to about 25° C., and the product from Example 1C (2.07 kg, 4.98 mol) was added to the mixture in portions.
- the reaction mixture was heated at 65° C. with agitation for about 48 hours.
- the mixture was cooled to about 25° C., filtered, and the filtrate was concentrated to a volume of about 10 L.
- the mixture was partitioned between toluene (32.3 kg) and 5% NaHCO 3 solution (23.7 kg).
- the organic phase was separated and washed with 5% NaHCO 3 solution (23.7 kg).
- the organic phase was then extracted with a mixture of CH 3 SO 3 H:N-methylpyrrolidinone:H 2 O (10:20:70 v/v/v) (32 kg, 8.0 kg respectively).
- the extract was treated with isopropyl acetate (32.5 kg) and the pH adjusted to about 12 with 50% NaOH solution (about 4.9 kg) at about 30° C.
- the organic phase was separated and the aqueous phase was extracted with isopropyl acetate (IPAC) (6.0 kg).
- IPAC isopropyl acetate
- the organic phases were combined, washed with 5% NaHCO 3 (33 kg ⁇ 3), distilled water (33 kg ⁇ 2), distilled to a volume of about 10 L, and chased with IPAC (15.6 kg) to about 10 L.
- the mixture was diluted with isopropyl alcohol (14.5 kg) and concentrated to 10 L. Additional 14.5 kg of isopropyl alcohol was added and the solution concentrated to a volume of 10 L.
- the solution was treated with active carbon (Darco KB-B, 0.125 kg) and heated at 30° C. with stirring for 1 hour.
- the mixture was filtered through a pad of Celite® and the Celite® washed with isopropyl alcohol (6.3 kg). The filtrate (about 13 kg) was used directly in the next step (1.17 kg).
- Example 1D The solution from Example 1D was diluted with absolute ethanol (5.0 kg), heated at 65° C., and treated with a solution of (L)-tartaric acid (0.56 kg, 3.73 mol) in absolute ethanol (8.0 kg) slowly. The mixture was cooled to about 25° C., agitated for about 16 hours, cooled to 0° C. for 2 hours, and filtered. The filter cake was washed with isopropyl alcohol (5.0 kg), dried at 60° C. for about 24 hours to provide 1.46 kg of the title compound as a solid (61% isolated yield from the tosylate).
- a sealed pressure tube was charged potassium carbonate powder (18.4 g, 133.2 mmol, 325 mesh), milled (2R)-2-methylpyrrolidine tartrate (20.9 g, 88.8 mmol), 3-butynyl 4-methylbenzenesulfonate (15.7 mL, 88.8 mmol), and acetonitrile (105 mL).
- the mixture was heated at 85° C. and stirred for 16 hours. The completion of the reaction was monitored by gas chromatography until all the tosylate was consumed.
- the reaction mixture was cooled to room temperature, diluted with CH 3 CN (50 mL), and filtered. The filtrate was used in the next step without further purification.
- GC-MS m/z 138 (M+H) + .
- Example 2A The solution from Example 2A (3.02 g, 22.0 mmol) in CH 3 CN (49.5 mL) was purged with nitrogen and treated with the product from Example 1A (3.21 g, 10.0 mmol), CuI (38 mg, 0.2 mmol), PdCl 2 (Ph 3 P) 2 (70 mg, 0.2 mmol), and diisopropylamine (8.4 ml, 60 mmol). The mixture was stirred at room temperature under nitrogen until reaction was near complete by HPLC. The reaction mixture was concentrated to about 30 mL, treated with toluene (100 mL), washed with 5% NaHCO 3 (2 ⁇ 100 mL), and 10% NH 4 CI (2 ⁇ 100 mL).
- the organic layer was separated, filtered through a pad of Celite®, and extracted with (CH 3 SO 3 H:N-methylpyrrolidinone:H 2 O, 10:20:70) (2 ⁇ 100 mL).
- the aqueous layer was extracted with IPAC (2 ⁇ 100 mL), basified with 50% NaOH, and extracted with IPAC (2 ⁇ 100).
- the organic layer was washed with 5% NaHCO 3 (2 ⁇ 100 mL), 25% brine (100 mL), and treated with active carbon, silica gel (6.0 g), and Na 2 SO 3 (1.0 g). The mixture was stirred at room temperature for 1 hour and filtered. The filtrate was concentrated to dryness to provide the title compound.
- (2R)-2-Methylpyrrolidine tartrate (1.17 g, 5.0 mmol), and potassium carbonate (1.38 g, 10.0 mmol) were combined in acetonitrile (20 mL) and heated at 60° C. for 1 hour.
- the mixture was treated with 3-butynyl 4-methylbenzenesulfonate (673 mg, 3.0 mmol) and heated at about 60° C. overnight.
- the mixture was cooled to about 5° C. and filtered.
- the mixture was treated with the product from Example 3A (300 mg, 1.0 mmol), diisopropylamine (1.20 g, 11.8 mmol), dichlorobis(triphenylphosphine)palladium (II) (35.1 mg, 0.05 mmol), and copper iodide (38.0 mg, 0.20 mmol). After stirring overnight at about 30° C., the mixture was concentrated to dryness. The residue in ethyl acetate (20 mL) was washed with 5% NaHCO 3 (20 mL ⁇ 2) and 25% brine (25 mL). The organic phase was separated, dried over anhydrous Na 2 SO 4 , filtered, and the filtrate concentrated to dryness to provide the title compound.
- Example 3A The product from Example 3A (14.95 g, 50 mmol), palladium(II) acetate (0.11 g, 0.5 mmol), triphenylphosphine (0.26 g, 1.0 mmol), and copper(I) iodide (0.19 g, 1.0 mmol) were combined in isopropyl acetate (100 mL). Nitrogen gas was bubbled through the reaction mixture for about 15 minutes. The mixture was treated with 3-butyn-1-ol (5.6 mL, 75.0 mmol) stirred briefly and then treated with diisopropylamine (42 mL, 300 mmol) slowly over about 10 minutes. After stirring for 2 hours at about 22° C., the mixture was heated at about 60° C.
- the reaction mixture was filtered through a pad of Celite® ( ⁇ 5 g) and the Celite® was washed with isopropyl acetate ( ⁇ 30 mL). The filtrate was washed with saturated NaHCO 3 solution (100 mL, 2 ⁇ ), 10% Na 2 S 2 O 3 solution (100 mL, 2 ⁇ ), brine (50 mL), dried over Na 2 SO 4 , and distilled to dryness. The residue was purified by silica gel column chromatography to provide the title compound (8.7 g, 72% yield).
- Example 4A The product from Example 4A (1.21 g, 5.0 mmol), 4-dimethylaminopyridine (0.06 g, 0.5 mmol), and triethylamine (1.5 mL, 10.5 mmol) were combined in dichloromethane (20 mL) stirred briefly and treated with para-toluenesulfonyl chloride (1.91 g, 10.0 mmol) in dichloromethane (2 mL) over about 5 minutes. After stirring at about 22° C. for 3 hours, the mixture was then washed with saturated NaHCO 3 solution (20 mL, 2 ⁇ ), brine (20 mL), dried over Na 2 SO 4 , and distilled to dryness.
- (2R)-2-Methylpyrrolidine tartrate (0.70 g, 3.0 mmol) and potassium carbonate (0.82 g, 6.0 mmol) were combined in acetonitrile (12 mL).
- the slurry was heated at 60° C. for 1 hour, treated with the product from Example 4B (790 mg, 2.0 mmol).
- the mixture was heated at about 60° C. for 6 hours, cooled to 25° C., and diluted with toluene (30 mL).
- the aqueous solution was adjusted to pH about 12 with 50% NaOH and extracted with IPAC (45 mL).
- the organic phase was washed with 5% NaHCO 3 (50 mL ⁇ 3), water (50 mL, 2 ⁇ ), dried over MgSO 4 , filtered, and the filtrate was concentrated to dryness to provide 375 mg (60%) of the title compound.
- the title compound can be prepared using the procedure described in Example 3C.
- Example 4A The product from Example 4A (241 mg, 1.0 mmol), 4-cyanophenylboronic acid (221 mg, 1.5 mmol), tetrakis(triphenylphosphine) palladium (0) (57.5 mg, 0.05 mmol), 2-(dicyclohexyl phosphino)biphenyl (35.0 mg, 0.10 mmol), and sodium carbonate (160 mg, 1.5 mmol) were combined in 1,2-dimethoxyethane (16 mL) and water (6 mL) and heated at 80° C. overnight. The mixture was allowed to cool to room temperature and diluted with ethyl acetate (30 mL).
- Example Compound Reagent Reference 7 5- ⁇ 2-[2-(2(R)-methyl- 2-pyrimidinone-5-boronic Matrix Scientific, pyrrolidin-1-yl)-ethyl]- acid Columbia, SC, USA benzofuran-5-yl ⁇ -1H- pyrimidin-2-one 8 5- ⁇ 2-[2-(2(R)-methyl- 1H-pyrimidine-2,4-dione- Specs, Fleminglaan, the pyrrolidin-1-yl)-ethyl]- 5-boranic acid Netherlands benzofuran-5-yl ⁇ -1H- pyrimidine-2,4-dione 9 3- ⁇ 2-[2-(2(R)-methyl- pyridine-3-boronic acid CAS #1692-25-7
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plural Heterocyclic Compounds (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention relates to processes for preparing amine substituted benzofurans, and more particularly 4-(2{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile, and salts thereof. Compounds prepared by the processes of the invention have demonstrated activity as histamine-3 receptor ligands.
Description
- 1. Field of the Invention
- The present invention relates to processes for preparing amine-substituted benzofuran compounds, and more particularly, 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile and salts thereof, as well as intermediates in such processes. The compounds have demonstrated activity as histamine-3 receptor ligands.
- 2. Description of Related Technology
- Benzofuran derivatives, particularly amine-substituted benzofuran derivatives such as 2-(2-aminoethyl)-substituted benzofuran compounds, have demonstrated activity as histamine-3 (H3) receptor ligands. Histamine-3 receptor ligands provide useful-compounds for pharmaceutical products. For example, H3 receptor ligands can be used for treatment of disorders related to cardiovascular processes, memory processes, such as Alzheimer's disease and attention-deficit hyperactivity disorder, neurological processes, cancer, sleep processes, and weight regulation, among other conditions. One particular compound, having the structure
and the IUPAC name 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile, demonstrates promising activity for use as a pharmaceutically active H3-receptor ligand. The compound has demonstrated promising activity for enhancing learning and cognition. The compound, related derivatives thereof, and processes for preparing the compound and derivatives are described in commonly-owned copending U.S. patent applications Ser. Nos. 09/810,648, filed Mar. 16, 2001; 10/044,495, filed Jan. 11, 2002; and 10/081,207, filed Feb. 22, 2002. - Previous processes for preparing 2-(2-aminoethyl)-substituted benzofuran compounds generally involve halogenation of a starting phenol by treatment with sodium iodide and sodium hypochlorite, preferably in the presence of a base. The resulting iodinated phenol is subsequently converted into a functionalized benzofuran and the desired amine is appended. Many steps of the previous processes required chromatographic isolation and purification of intermediate compounds to provide a material possessing suitable qualities of purity and economy for the preparation of a pharmaceutical compound. Although such processes provide beneficial methods for preparing amine-substituted benzofuran compounds, and particularly, 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile, it would be beneficial to provide processes for preparing such compounds while reducing or eliminating isolation and purification steps and/or increasing reaction product yield. Such processes would provide for efficient, beneficial preparation of high-grade pharmaceutical compounds.
- Accordingly, there remains a need to provide improved processes for making amine-substituted benzofurans. It would be beneficial to provide a process for preparing 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile, in particular, and salts thereof.
-
-
- A is heterocycle selected from pyrrolidinyl or piperidinyl, wherein the heterocycle is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl; and
- R1 is 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl of 4-cyanophenyl, aryl, or heteroaryl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- The process comprises treating a compound of formula (II)
wherein RA is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, and the phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, with a halogenating reagent selected from halogenating agents of the formula
wherein X is bromo or iodo, N-iodoacetamide, N-bromoacetamide, N-iodophthalimide, N-bromophthalimide, iodine, bromine, ICl, IBr, BrCl, or an alkaline iodide or bromide with an oxidant, such as NaI and hydrogen peroxide, to provide a compound of formula (III)
wherein RA and X are as previously defined. -
- Compounds of formula (IV) are treated with a sulfonating reagent to provide a compound of formula (V)
wherein RB represents a toluenesulfonate, methanesulfonate, or trifluoromethanesulfonate group. In addition, compounds of formula (III) are treated with a toluenesulfonyl butanol to provide (V), wherein RB represents a toluenesulfonate group, directly. - Compounds of formula (V) are treated with an amine reagent, preferably selected from the group consisting of pyrrolidine and piperidine, wherein the pyrrolidine or piperidine is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl to provide compounds of formula (VI),
wherein RA is bromo, chloro, 4-cyanophenyl, aryl, or heteroaryl. The phenyl moiety of 4-cyanophenyl and aryl and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl. Wherein RA in a compound of formula (VI) is 4-cyanophenyl, aryl, or heteroaryl, the reaction provides compounds within the scope of formula (I). - Compounds of formula (III), (IV), (V), or (VI) wherein RA is bromo or chloro, can be treated with a boronic acid reagent of formula (VIII)
(HO)2B—R1 (VIII)
or a boronate ester compound of the formula (VIII-a)
(ReO)(RfO)B—R1 (VIII-a),
wherein R1 is 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl of 4-cyanophenyl, the aryl, and the heteroaryl are substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl; and Re and Rf are each independently alkyl or Re and Rf are taken together to form a ring, wherein the ring is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl or aryl, which can be substituted as previously described for compounds of formula (I), to provide the corresponding product wherein RA is replaced by a substituent represented by R1. Wherein RA in a compound of formula (VI) is bromo or chloro, the reaction provides compounds within the scope of formula (I). - In another embodiment, the invention relates to a process for preparing compounds of formula (I), as defined above, comprising at least the step of treating a compound of the formula:
wherein RA1 is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, and the phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, and X is bromo or iodo, with a compound of formula (VII)
wherein A is a heterocyclic group selected from the group consisting of pyrrolidinyl and piperidinyl, and the heterocyclic group can be substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl, to provide a compound of formula (VI-a)
wherein A and RA1 are as defined for compounds of formula (VII) and (III-a), respectively. Typically, the reaction is carried out using a palladium catalyst, metal halide, and base, wherein the palladium catalyst can be a palladium(0) or a palladium(II) catalyst, for example, tetrakis(triphenylphosphine)palladium, tris(dibenzylideneacetate)dipalladium, PdCl2(Ph3P)2, and the like. - Compounds of formula (VI-a), wherein RA1 is bromo or chloro, can be treated with a compound of formula (VIII)
(HO)2B—R1 (VIII),
or a compound of formula (VIII-a)
(ReO)(RfO)B—R1 (VIII-a),
wherein R1, Re and Rf are as previously described, to provide compounds of formula (I). Particularly, it is preferred that R1 is 4-cyanophenyl. Compounds of formula (VI-a), wherein RA1 is 4-cyanophenyl, aryl, or heteroaryl, are within the scope of compounds of formula (I), as previously described. - In yet another aspect, the invention relates to a process for preparing a compound useful in the preparation of 2-(2-aminoethyl)-substituted benzofuran compounds demonstrating activity as H3-receptor ligands. The process comprises the step of treating a compound of formula (II)
wherein RA is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, as previously defined, with a halogenating reagent of the formula:
wherein X is bromo or iodo, to provide a compound of formula (III)
wherein RA is as described for compounds of formula (II). The reaction is particularly useful in preparing a compound of formula (III) wherein X is iodo or bromo and RA is 4-cyanophenyl, which can be used in preparing 2-(2-aminoethyl)-substituted benzofuran compounds, particularly 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile. - The processes, and compounds prepared by the processes, including intermediate compounds, are further described herein.
- A number of terms are used herein to designate particular elements of the present invention. When so used, the following meanings are intended.
- The term “fluoroalkyl” as used herein, means at least one fluorine atom is attached to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of fluoroalkyl include, but are not limited to, fluoromethyl, 2-fluoroethyl, trifluoromethyl, 2,2,2-trifluoroethyl, and pentafluoroethyl.
- The term “alkoxy,” as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through an oxy moiety, as defined herein. Representative examples of alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, tert-butoxy, pentyloxy, and hexyloxy.
- The term “alkoxyalkyl,” as used herein, refers to an alkoxy group, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of alkoxyalkyl include, but are not limited to, tert-butoxymethyl, 2-ethoxyethyl, 2-methoxyethyl and methoxymethyl.
- The term “alkyl,” as used herein, refers to a straight or branched chain hydrocarbon containing from 1 to 10 carbon atoms, and preferably 1 to 6 carbon atoms. Representative examples of alkyl include, but are not limited to, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, 3-methylhexyl, 2,2-dimethylpentyl, 2,3-dimethylpentyl, n-heptyl, n-octyl, n-nonyl and n-decyl.
- The term “alkylthio,” as used herein, refers to an alkyl group, as defined herein, appended to the parent molecular moiety through a sulfur atom, as defined herein. Representative examples of alkylthio include, but are not limited to, methylsulfanyl, ethylsulfanyl, tert-butylsulfanyl and hexylsulfanyl.
- The term “alkylthioalkyl,” as used herein, refers to an alkylthio group, as defined herein, appended to the parent molecular moiety through an alkyl group. The alkylthio group typically is appended to the alkyl group via a sulfur atom. Representative examples of alkylthio include, but are not limited to, methylsulfanylmethyl, ethylsulfanylmethyl, tert-butylsulfanylmethyl and hexylsulfanylmethyl.
- The term “aryl,” as used herein, refers to a phenyl ring substituted with 0, 1, 2, 3, or 4-substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylcarbonyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, and haloalkyl. Examples of aryl include, but are not limited to, 4-cyanophenyl, 4-chlorophenyl, 4-methylphenyl, 4-phenylethanone, 4-trifluoromethylphenyl, 4-trifluormethoxyphenyl, and the like.
- The term “cyano,” as used herein, refers to a —CN group.
- The term “haloalkoxy,” as used herein, refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkoxy group, as defined herein. Representative examples of haloalkoxy include, but are not limited to, chloromethoxy, 2-fluoroethoxy, trifluoromethoxy, and pentafluoroethoxy.
- The term “haloalkyl,” as used herein, refers to at least one halogen, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Representative examples of haloalkyl include, but are not limited to, chloromethyl, fluoromethyl, 2-fluoroethyl, trifluoromethyl, pentafluoroethyl, and 2-chloro-3-fluoropentyl.
- The term “heteroaryl,” as used herein, refers to an aromatic five- or six-membered ring wherein 1, 2, 3, or 4 heteroatoms are independently selected from N, O, or S. The five-membered rings can have two double bonds or-are a tautomer of a 5-membered ring having two double bonds. The six-membered rings have three double bonds or are a tautomer of a 6-membered ring having three double bonds. The term “heteroaryl” also includes bicyclic systems wherein the aromatic five- or six-membered ring is fused to a phenyl group. Representative examples of heteroaryl include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, oxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, quinolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, and triazinyl. The heteroaryl groups of the present invention are substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, and haloalkyl.
- The term “heterocycle” or “heterocyclic group”, as used herein, refers to a saturated five- or six-membered ring containing a nitrogen atom. The heterocycle can be substituted with 0, 1, 2, 3, or 4 substituents selected from alkyl and fluoroalkyl. Representative examples of heterocycle include, but are not limited to, 2-methylpyrrolidinyl, 2-fluoromethylpyrrolidinyl, pyrrolidinyl, and piperidinyl.
- The term “hydroxy”, as used herein, refers to an —OH group.
- The invention provides processes for preparing amine-substituted benzofuran derivatives and, more particularly, 2-(2-aminoethyl)-substituted benzofuran compounds. The compounds prepared by the processes of the invention can have the formula (I),
wherein A is a heterocycle selected from pyrrolidinyl or piperidinyl, wherein the heterocyclic group is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl; and R1 is 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl of 4-cyanophenyl and aryl, or the heteroaryl, is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl. Such compounds have demonstrated activity as H3-receptor ligands. - The heterocyclic group for A is a saturated nitrogen ring, and preferably contains five or six members, including the nitrogen atom. Examples of rings represented by the group A in a compound of formula (I) include, but are not limited to, pyrrolidinyl and piperidinyl. The heterocyclic group, particularly the pyrrolidinyl group, also can be substituted with substituents on the ring, for example, alkyl, fluoroalkyl, and the like. Examples of substituted heterocyclic groups are 2-methylpyrrolidinyl, including (2R)-2-methylpyrrolidine and (2S)-2-methylpyrrolidine, 2-ethylpyrrolidinyl, and the like. The preferred heterocyclic group for A in a compound of formula (I) is (2R)-2-methylpyrrolidine.
- The heteroaryl group in compounds of formula (I), as represented by R1, represents an aromatic five- or six-membered ring wherein 1, 2, 3, or 4 heteroatoms are independently selected from N, O, or S. Typically, the five-membered rings have two double bonds or are tautomers of five-membered rings with two double bounds. Typically, the six-membered rings have three double bonds or are tautomers of six-membered rings having three double bonds. The invention also contemplates heteroaryl groups wherein the aromatic five- or six-membered ring is fused to a phenyl group. Examples of heteroaryl groups suitable for compounds of formula (I) include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, oxazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrazolyl, pyrrolyl, quinolyl, tetrazolyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, triazinyl, and the like. The preferred heteroaryl groups are pyrimidinyl, pyrazinyl, and pyrazolyl.
- The heteroaryl groups of the present invention can be substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- The aryl group in compounds of formula (I), as represented by R1, can include, but are not limited phenyl groups substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylcarbonyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl. Examples of aryl include, but are not limited to, 4-cyanophenyl, 4-chlorophenyl, 4-methylphenyl, 4-phenylethanone, 4-trifluoromethylphenyl, 4-trifluormethoxyphenyl, and the like.
- The compounds are described, inter alia, in commonly-owned copending U.S. patent applications Ser. Nos. 09/810,648, filed Mar. 16, 2001; 10/044,495, filed Jan. 11, 2002; and 10/081,207, filed Feb. 22, 2002, each of which is incorporated by reference herein. The processes of the invention particularly are useful for preparing 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile having the structure
and salts thereof including, but not limited to, tartrate salts, for example (L)-tartrate. - Examples of processes of the invention are described herein in the following Schemes 1-7. The Schemes are intended to illustrate a process of the invention and are not meant to limit the scope of the invention in any way. Isomeric forms of compounds described in the Schemes also are contemplated and considered within the scope of the invention.
-
- As shown in Scheme 1, compounds of formula (II) can be treated with a halogenating reagent to provide a compound of formula (III). Compounds of formula (II) are those wherein RA represents bromo, 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl portion of 4-cyanophenyl, the aryl, or the heteroaryl group can be substituted with various substituents. Examples of suitable substituents can include, for example, alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl.
- Typically, the compound of formula (II) is purchased commercially or prepared from commercially available 4-bromophenol. For example, 4-bromophenol can be treated with heteroarylboronic acids or heteroaryl boronate esters and a palladium complex and a phosphine in the presence of a base to provide suitable starting materials for the process, wherein RA is 4-cyanophenyl or heteroaryl. Examples of palladium complexes suitable for preparing a compound of formula (II) include, but are not limited to, tetrakis(triphenylphosphine)palladium(0) and palladium acetate. The phosphine can include, but is not limited to, 2-(dicyclohexylphosphino)biphenyl and 2-(dicyclohexylphosphino)biphenyl. Preferably, the reaction is carried out in the presence of a base for example, sodium carbonate or potassium phosphate, at above room temperature. Examples of more specific conditions for accomplishing the reaction include treating the 4-bromophenol with a heteroarylboronic acid, tetrakis(triphenylphosphine)palladium(0) and 2-(dicyclohexylphosphino)biphenyl in a solvent mixture of water and 1,2-dimethoxyethane, isopropyl alcohol, or toluene, at about 40° C. to about 100° C. The reaction typically is accomplished in about 1 to about 36 hours. Examples of commercially available heteroarylboronic acids are 4-cyanophenyl boronic acid, pyridine-3-boronic acid, and the like.
- Compounds of formula (II), wherein RA represents bromo, chloro, 4-cyanophenyl, or heteroaryl, as described above, can be treated with a halogenating reagent selected from N-iodosuccinimide or N-bromosuccinimide and an acid as shown in Scheme 1. Alternative halogenating agents include, but are not limited to, N-iodoacetamide, N-bromoacetamide, N-iodophthalimide, N-bromopthalimide, iodine, bromine, ICl, IBr, BrCl, an alkaline iodide or bromide with an oxidant such as with NaI and hydrogen peroxide. The amount of halogenating reagent suitable for the reaction can include from about 1 to about 3 molar equivalents relative to the amount of compound having the formula (II). A preferred amount of halogenating reagent is from about 0.90 to about 1 molar equivalent of the succinimide. Preferably, about 1 mole of halogenating reagent is used for each mole of the compound of formula (II). Preferably, the reaction is accomplished in an organic solvent or in a weak acid in the presence of a catalytic amount of strong acid. A specific example of a suitable solvent is acetonitrile. A weak acid suitable for the reaction is acetic acid in the presence of a strong acid, for example, sulfuric acid, trifluoroacetic acid, and trifluoromethanesulfonic acid. Particularly, N-iodosuccinimide is reacted with the compound of formula (II) in acetic acid in the presence of a stronger acid, such as sulfuric acid, while maintaining the reaction at or below room temperature, for example at or less than 27° C. A preferred amount of concentrated sulfuric acid is from about 0.025 to about 0.075 molar equivalents, relative to the starting material of formula (II). The preferred amount of sulfuric acid is about 0.05 equivalents.
- Compounds of formula (III), wherein X is bromo or iodo and RA is as defined above, for example of formula (II), can be treated with an alkynol or a toluenesulfonyl alkynol, to provide benzofuran derivatives of formulae (IV) or (V), respectively. The coupling reaction is accomplished using a palladium source, a phosphine ligand for the palladium, and a metal halide in the presence of a base. The preferred alkynol is 3-butyn-1-ol, but compounds that provide alcohols equivalent to the 3-butyn-1-ol also can be used, for example alkynes that include protected forms of 3-butyn-1-ol, RpOCH2CH2C≡CH, where the Rp is a protecting group. Typical protecting groups are described for instance in Green and Wuts, “Protecting Groups in Organic Synthesis”, 3rd edition, published by John Wiley and Sons, New York (1999), and which may be appended onto the 3-butyn-1-ol, and subsequently removed by the methods therein. In this case, removal of the protecting group Rp in the product will generate compounds of structure (IV). Examples of specific protecting groups represented by Rp include, but are not limited to, triethylsilyl, acetyl, benzoyl, and tetrahydropyran-2-yl. Typically, from about 1 to about 2 equivalents of the alkynol are used relative to one mole of the compound of formula (II). Examples of suitable palladium sources include, but are not limited to, palladium(II) acetate, tetrakis(triphenylphosphine)palladium, and tris(dibenzylideneacetate)dipalladium. The preferred palladium catalyst is palladium (II) acetate.
- A phosphine suitable for the reaction can be triphenylphosphine. Other examples of phosphines suitable for the reaction can include, triphenylphosphine, bis(diphenylphosphine)methane, bis(diphenylphosphine)ethane, tri(o-tolyl)phosphine, and the like. The ratio of palladium catalyst to phosphine generally ranges from about 1:1 to about 1:8 relative to the palladium source. Preferably, about two molar equivalents of phosphine are used for one mole of the palladium source.
- A useful metal halide is copper(I) iodide. Alternative and additional halides can include, but are not limited to, copper(I) bromide. Typically, the amount of metal halide used ranges from about 1:1 to about 1:2 relative to the phosphine. The reaction preferably is carried out in the presence of a base. Suitable bases include, but are not limited to, diisopropylamine, diethylamine, dipropylamine, triethylamine, isopropylethylamine, pyrrolidine, or piperidine, in a solvent including, but not limited to, isopropyl acetate to provide compounds of formula (IV). Although the compound of formula (IV) can be isolated and separated by column chromatography, it is not necessary to isolate or purify the product to provide a useful starting material for the hydroxy protection step of preparing a compound of formula (V), which follows.
- Compounds of formula (IV) can be treated with a sulfonating reagent in basic conditions to provide compounds of formula (V). Preferably, the sulfonating reagent provides a toluenesulfonyl group to activate the hydroxy group of a compound of formula (IV) as shown in Scheme 1. Examples of suitable sulfonating reagents can include, but are not limited to, para-toluensulfonic chloride and para-toluenesulfonic anhydride. Alternative sulfonating agents also can provide similarly reactive and useful products related to compounds of formula (V) when reacted with compounds of formula (IV). Such sulfonating agents can include, but are not limited to, methane sulfonic anhydride, methane sulfonyl chloride, and triflic anhydride, wherein the toluenesulfonyl moiety of a compound of formula (V) is replaced with a methansulfonyl or trifluoromethanesulfonyl group. Basic conditions to accomplish the reaction include, for example, treating the compound of formula (IV) with N,N-dimethylaminopyridine and a base. Suitable bases for the reaction can include, for example, triethylamine, pyridine, and the like. The preferred base is triethylamine. Suitable solvents for the reaction typically are aprotic solvents, for example acetonitrile, tetrahydrofuran, dichloromethane, and the like. Typically, the sulfonating reagent is reacted with the compound of formula (IV) in a range of from about 1:1 to about 1:5 molar equivalents, relative to the compound of formula (IV). Preferably, about 3 molar equivalents of sulfonating reagent are used for each mole of the compound of formula (IV). The reaction can be carried out in at least room temperature. Typically, the reaction will be accomplished in from about 1 to 2 hours. The product of formula (V) can be, but need not be, isolated and purified according to conventional methods for use in reaction attaching the amine.
- Compounds of formula (V) can be reacted with an amine reagent to provide compounds of formula (VI). The preferred reagent is a cyclic amine reagent, for example pyrrolidine or piperidine. The reaction can be accomplished in a solvent, for example, acetonitrile, ethanol, methanol, isopropyl alcohol or a mixture thereof. The pyrrolidine or piperidine reagent can include 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl. Suitable amine reagents can be provided as the amine compound, for example, 2-methylpyrrolidine, or as a salt of the amine compound, such as 2-methylpyrrolidine tartrate. Examples of suitable amine reagents include, but are not limited to, 2-methylpyrrolidine, 2-ethylpyrrolidine, 2-fluoromethylpyrrolidine, and the salts thereof. Examples of suitable salts of the amine reagent include, but are not limited to, tartrate, lactate, chloride, and succinate salts. The reaction typically is accomplished in the presence of a weak base, for example, potassium carbonate, and the like. The preferred amine reagent for the reaction is pyrrolidine, including the (2R)-2-methylpyrrolidine enantiomer and the (2S)-2-methylpyrrolidine enantiomer. The more preferred enantiomer is (2R)-2-methylpyrrolidine.
-
- As shown in Scheme 2, 3-butynyl-4-methylbenzenesulfonate is reacted with an amine reagent of formula AH, wherein A represents a heterocyclic group selected from pyrrolidinyl or piperidinyl. The pyrrolidinyl group or the piperidinyl group can be substituted as previously described for the compound of formula (I).
- Typically, the 3-butynyl-4-methylbenzenesulfonate, or 3-butynyl-4-toluenesulfonate, is prepared by treating 3-butyn-1-ol with a sulfonating reagent including, but not limited to, para-toluensulfonic chloride or para-toluenesulfonic anhydride, and a base. Examples of bases for the reaction can include, but not is limited to, triethylamine, as previously described. Suitable solvents for the reaction can include, but is not limited to, acetonitrile, tetrahydrofuran, or mixtures thereof. The conditions for the reaction are similar to those previously described for the protection of the compound of formula (IV) in Scheme 1, from which a compound of formula (V) is obtained.
- 3-Butynyl-4-methylbenzenesulfonate can be treated with the amine reagent in an aprotic solvent, preferably in the presence of base, to provide compounds of formula (VII). The reaction conditions are similar to those described for providing compounds of formula (VI) in Scheme 1. Particularly, the preferred base is potassium carbonate. The preferred solvent for the reaction includes, but is not limited to, acetonitrile, ethanol, methanol, isopropyl alcohol or a mixture thereof. Typically, the reaction is carried out at above room temperature, for example in a temperature of from about 80° C. to about 100° C. The preferred temperature for the reaction is about 85° C. The amine reagents also are similar to those previously described for coupling the amine group to compounds of formula (V) in Scheme 1. The preferred amine reagent is 2-methylpyrrolidine and, more particularly, the 2-methylpyrrolidine tartrate salt.
- Compounds of formula (VII) can be treated with compounds of formula (III-a), wherein RA1 is bromo or 4-cyanophenyl and the phenyl of 4-cyanophenyl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, to provide compounds of formula (VI-a), wherein RA1 is as defined for compounds of formula (III-a). The reaction is accomplished in a manner similar to the conditions described for the preparation of a compound of formula (IV) as previously described. The reaction is accomplished in the presence of a palladium catalyst, preferably a Pd(0) or Pd(II) catalyst in combination with a phosphine ligand for the palladium. Typically the reaction is carried out using a metal halide and a base. Examples of palladium catalysts can include, for example, Pd(Ph3P)4, Pd(dba), Pd2(dba)3, Pd(Pcy3)2, Pd(dppe), Pd(dppf), PdCl2(Ph3P)2, PdCl2(dppf)2, PdCl2(dppe)2, and PdCl2(CH3CN)2. As used herein, the preceding designations are intended to refer to the following: Pd(Ph3P)4 for tetrakis(triphenylphosphine)palladium, Pd(dba) for (dibenzylideneacetate)palladium, Pd2(dba)3 for tris(dibenzylideneacetate)dipalladium, Pd(Pcy3)2 for bis(tricyclohexylphosphine)palladium, Pd(dppe) for (2-(diphenylphosphino)ethyl)palladium, Pd(dppf) for (1,1′-bis(diphenylphosphino)ferrocene)palladium, PdCl2(Ph3P)2 for bis(triphenylphosphine)dichloropalladium, PdCl2(dppf)2 for bis(1,1′-bis(diphenylphosphino)ferrocene)palladium, PdCl2(dppe)2 for bis(2-(diphenylphosphino)ethyl)dichloropalladium, and PdCl2(CH3CN)2 for dichlorobis(acetonitrile)palladium. More specifically, preferred palladium sources include, but are not limited to, tetrakis(triphenylphosphine)palladium, tris(dibenzylideneacetate)dipalladium, and PdCl2(Ph3P)2. Preferably, the palladium catalyst is PdCl2(Ph3P)2.
- Suitable phosphine ligands that can be coordinated with the palladium catalyst are, for example, triphenylphosphine, bis(diphenylphosphine)methane, bis(diphenylphosphine)ethane, tri(o-tolyl)phosphine, and the like. The reaction may, but need not, include the use of a phosphine ligand, depending on the palladium catalyst used. Typically, palladium catalysts already coordinated with a phosphine ligand are not used in combination with additional phosphine ligands.
- Although copper(I) chloride and copper(I) bromide may be suitable, the preferred metal halide is copper(I) iodide. Suitable bases for the reaction can include, but are not limited to, diisopropylamine, diethylamine, dipropylamine, triethylamine, isopropylethylamine, pyrrolidine, piperidine, or mixtures thereof. The preferred base is diisopropylamine. Suitable solvents for the reaction can include, but are not limited to, acetonitrile, ethyl acetate, isopropyl acetate, tetrahydrofuran, and mixtures thereof. The preferred solvent is acetonitrile. Typically, the amine of formula (VII) is reacted with the compound of formula (III-a) in an amount of from about 1:1 to about 1:3 molar equivalents, relative to the compound of formula (III-a). It is preferred that two molar equivalents of amine are reacted with one molar equivalent of a compound of formula (III-a). Under the preferred conditions, the reaction is carried out with copper(I) iodide in diisopropylamine in the presence of a PdCl2(Ph3P)2 catalyst.
- One with skill in the art may understand that compounds of formulae (III), (III-a), (IV), (V), (VI), and (VI-a), wherein RA or RA1 is bromo or chloro, can be treated with a boronic acid of the formula:
(HO)2B—R1 (VIII),
wherein R1 is 4-cyanophenyl, aryl, or heteroaryl, to provide a corresponding compound of each respective formula, wherein RA is 4-cyanophenyl, aryl, or heteroaryl. The phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl can be substituted with 0, 1, 2, 3, or 4 substituents independently selected from alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, and haloalkyl, as previously described for compounds of formula (I). More particularly, the process is preferred for compounds wherein R1 is 4-cyanophenyl. - Boronic acid esters of formula (VIII-a) also can be substituted for boronic acids of formula (VIII)
(ReO)(RfO)B—R, (VIII-a).
The Re and Rf in compounds of formula (VIII-a) are alkyl, or alternatively Re and Rf taken together to form a ring, preferably a C1-C6 ring, wherein the ring can be substituted with 0, 1, 2, 3, or 4 alkyl or aryl groups and R1 is as defined for compounds of formula (VIII). Examples of suitable compounds of formula (VIII-a) include, but are not limited to, (CH3O)2BPh, (4-cyanomethylphenyl)boronic acid, pinacol ester (CombiBlocks Inc., San Diego). - Boronic acids of formula (VIII) are commercially available or can be prepared by methods well known to those skilled in the art of synthetic organic chemistry. For example, Takagi et al. (Tetrahedron Letters, (2002) 43, 5649-5651) describe preparing heteroaryl pinacolborane esters of formula (VIII-a) using heteroaromatic compounds and reaction with bis(pinacolborane) in the presence of an iridium catalysis of IrCl[COD]2-(4,4′-di-t-butyl-2,2′-bipyridine) in octane. Other methods have been described wherein aryl halides and triflates and heteroaryl halides and triflates are reacted with alkyl lithiums or Grignard reagents, treated with trialkylborate esters, and then treated with acid to produce compounds of the formula (VIII) or (VIII-a). See, for example, B. T. O'Neill, et al. Organic Letters (2000), 2, 4201; M. D. Sindkhedkar, et al. Tetrahedron (2001), 57, 2991; W. C. Black, et al. Journal of Medicinal Chemistry (1999), 42, 1274; Letsinger; Dandegaonker; J. Amer. Chem. Soc. (1959), 81, 498, 501; Carroll, F. Ivy, et al. J. Med. Chem. (2001) 2229-2237. Another well-known method is the Miyaura reaction described in: Ishiyama, Tatsuo; Ishida, Kousaku; Miyaura, Norio; Tetrahedron (2001) 9813-9816, in which aryl and heteroaryl halides are reacted with bis(pinacolborane), KOAc, and Pd2dba3 and tris-cyclohexylphosphine or PdCl2dppf (Ishiyama, et al. Tetrahedron (2001) 9813-9816). Examples of suitable boronic acids include, but are not limited to, 4-cyanophenylboronic acid, pyridine-3-boronic acid, pyrimidine-5-boronic acid pinacol ester, and the like. The preferred boronic acid is 4-cyanophenylboronic acid. The reaction provides the corresponding compound wherein the bromo substituent is replaced with a 4-cyanophenyl, aryl, or heteroaryl, as shown below:
-
- In addition, compounds of formula (VI)
wherein RA is 4-cyanophenyl, aryl, or heteroaryl and A is as previously defined can be, but need not be, isolated and purified to provide compounds of formula (I). In one aspect, the compound of formula (VI) or (VI-a) can be isolated and purified, typically by chromatographic methods, using conventional methods in the art to provide a desired compound. - Examples of conventional methods for isolating and purifying compounds of formula (VI) or (VI-a) can include, but are not limited to, chromatography on solid supports such as silica gel, alumina, or silica derivatized with alkylsilane groups, by recrystallization at high or low temperature with an optional pretreatment with activated carbon, thin-layer chromatography, distillation at various pressures, sublimation under vacuum, and trituration, as described for instance in “Vogel's Textbook of Practical Organic Chemistry”, 5th edition (1989), by Furniss, Hannaford, Smith, and Tatchell, pub. Longman Scientific & Technical, Essex CM20 2JE, England.
- Alternatively, and more preferably, a compound of formula (VI) can be treated with an acid to form a desired salt. For example, a compound of formula (VI) or (VI-a) is reacted with an acid at above room temperature to provide the desired salt. Examples of acids suitable for the reaction include, but are not limited to, tartaric acid, lactic acid, succinic acid, as well as mandelic, atrolactic, methanesulfonic, hydrochloric, hydrobromic, phosphoric, sulfuric, citric, or hydroxybutyric acid, and the like. A preferred acid is tartaric acid and, more specifically, (L)-tartaric acid. Typically, the reaction is accomplished at above room temperature. Preferably, the reaction is carried out in a temperature of from about 50° C. to about 75° C. The preferred temperature for the reaction is about 60° C. After cooling, the desired salt can be isolated by filtration in pure form. The recrystallization procedure may be repeated to afford product of even higher purity.
- The processes of the invention are particularly useful for preparing 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile and salts thereof. A particular example of a process for preparing 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile, and salts thereof, comprises the steps of:
-
- (a) treating 4′-hydroxy-1,1′-biphenyl-4-carbonitrile with N-iodosuccinimide and an acid, such as sulfuric acid, to provide 4′-hydroxy-3′-iodo-1,1′-biphenyl-4-carbonitrile;
- (b) treating 4′-hydroxy-3′-iodo-1,1′-biphenyl-4-carbonitrile with 3-butyn-1-ol, a palladium source with a phosphine for the palladium and a metal halide in the presence of a base, for example using palladium(II) acetate, triphenylphosphine, copper(I) iodide in the presence of diisopropylamine, in isopropyl acetate to provide 4-[2-(2-hydroxyethyl)-1-benzofuran-5-yl]benzonitrile;
- (c) reacting 4-[2-(2-hydroxyethyl)-1-benzofuran-5-yl]benzonitrile with para-toluenesulfonyl chloride and N,N-dimethylaminopyridine, in the presence of a base, such as triethylamine, to provide 2-[5-(4-cyanophenyl)-1-benzofuran-2-yl]ethyl 4-methylbenzenesulfonate; and
- (d) treating 2-[5-(4-cyanophenyl)-1-benzofuran-2-yl]ethyl 4-methylbenzenesulfonate with (2R)-2-methylpyrrolidine, preferably in the presence of potassium carbonate and in an acetonitrile solvent, to provide 4-(2-{2-[(2R)-2-methyl-1-pyrrolidinyl]ethyl}-1-benzofuran-5-yl)benzonitrile.
- Yet another aspect of the invention relates to preparing a compound of formula (III), which provides useful intermediates in the preparation of amine-substituted benzofuran derivatives described herein. Such process comprises the step of reacting a phenol of formula (II) with a suitable halogenating reagent, as shown in Scheme 7, below.
- As shown in Scheme 7, compounds of formula (II) wherein RA is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, as previously described with compounds of formula (II) can be reacted with a halogenating reagent selected from N-bromosuccinimide and N-iodosuccinimide. The reagents and conditions are as described for preparing compounds of formula (III) according to Scheme 1. The compound of formula (III) suitably can be used to prepare compounds of formula (I), for example by processes described herein.
- Yet another aspect of the invention relates to compounds of formula (V), wherein RB is toluenesulfonate, particularly wherein RA is 4-cyanophenyl, and compounds of formulae (I), (III), (VI), and (VI-a) prepared by the processes described above.
- Still yet another aspect of the invention relates to a compound of the formula (IX),
wherein X is bromo or iodo and Rc is 4-cyanophenyl, wherein the phenyl portion of 4-cyanophenyl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl. Preferably, Rc is 4-cyanophenyl without additional subsituents on the phenyl moiety. The compound can be used as an intermediate or starting material for preparing compounds of formula (I), which also is contemplated as an aspect of the invention. - The processes of the invention, and intermediates and products prepared by the processes, can be better understood in connection with the following examples, which are merely intended to illustrate the invention and should not be construed to limit the invention in any way.
- (2R)-2-Methylpyrrolidine tartrate was prepared by the resolution of racemic (+/−) 2-methylpyrrolidine with L-tartaric acid (which is also called (2R,3R)-(+)-tartaric acid, Chemical Abstracts number 87-694, available from Aldrich Chemical Co., Milwaukee, Wis.) using enantioselective recrystallization procedures as described by William Gaffield, et al. in Tetrahedron, 37:1861-1869 (1981), or in Karrer and Ehrhardt in Helv. Chim. Acta, 34: 2202, 2208 (1951). (2R)-2-methylpyrrolidine hydrobromide also is a suitable source of (2R)-2-methylpyrrolidine, and was prepared from L-prolinol (which also called (S)-(+)-pyrrolidinemethanol, Chemical Abstracts number 23356-96-9, Aldrich Chemical Co., Milwaukee, Wis.) using the procedure described by Nijhuis, Walter H. N., et al., J. Org. Chem., 54(1): 209-216, 214 (1989). Other procedures describing the synthesis of R-2-methylpyrrolidine and salts thereof can be found in Andres, Jose M., et al. Eur. J. Org. Chem., 9:1719-1726 (2000); and Elworthy, Todd R.; Meyers, A. I., Tetrahedron, 50(20): 6089-6096 (1994).
- (2S)-2-Methylpyrrolidine can be substituted for (2R)-2-methylpyrrolidine in the experimental procedures provided herein. The (2S)-2-methylpyrrolidine can be prepared by procedures described in Kim, Mahn-Joo, et al., Bioorg. Med. Chem. Lett. 6(1):71-76 (1996).
- 4′-Hydroxy-1,1′-biphenyl-4-carbonitrile (2.15 kg, 10.90 mol), purchased from Takeda Chemical Industries, Tokyo, Japan, and N-iodosuccinimide (2.4 kg, 97% pure, 10.36 mmol) were combined in acetic acid (17.2 L) at room temperature under nitrogen. The suspension was treated with sulfuric acid (290 mL) slowly maintaining the temperature below 27° C. The reaction was stirred at room temperature and the reaction progress was monitored by HPLC. The reaction mixture was treated with distilled water (35 L) while maintaining the temperature below 30° C. After stirring at room temperature for 1 hour, the solid was filtered and the filter cake was washed with distilled water (32 L) to afford a solid. The solid was dried under reduced pressure at 60° C. for 48 hours to provide the title compound. MS (ESI−) (M−H)− 320; 1H-NMR (DMSO-d6) δ 10.75 (1H, s), 8.05 (1H, d, J=2.3 Hz), 7.83 (2H, m), 7.80 (2H, m), 7.62 (1H, dd, J=6.1, 8.5 Hz), 7.00 (1H, d, J=8.5 Hz); 13C-NMR (DMSO-d6) δ 156.84, 142.55, 136.63, 132.27, 130.52, 127.91, 126.36, 118.54, 114.96, 108.89, 85.32.
- The product from Example 1A (3.1 kg, 9.68 mol) in isopropyl acetate (49.2 kg) was purged with N2 for about 10 minutes and then cooled to about 15° C. The mixture was treated with palladium(II) acetate (22 g, 0.10 mol), triphenylphosphine, (51 g, 0.19 mol), copper(I) iodide (38 g, 0.19 mol), and 3-butyn-1-ol (0.91 kg, 12.59 moles) while continuing to purge with N2. The mixture was then treated with diisopropylamine (1.97 kg, 19.37 mol), by addition over about 30 minutes. After 2 hours, the suspension was heated to about 40° C. After about 8 hours, the reaction mixture was cooled to room temperature and filtered through a pad of Celite®. The pad was washed with isopropyl acetate (12 kg) and the filtrate was washed with 5% NaHCO3 solution and then washed with water. The organic layer was then distilled to dryness. The residue (2.03 kg, 80% assayed yield) was carried onto the tosylation step. A small sample was purified by silica gel chromatography. 1H NMR (CDCl3 at 400 MHz) δ 1.81 (t, 1H), 3.07 (t, 2H), 4.01 (q, 2H), 6.56 (s, 1H) 7.41-7.50 (m, 2H), 7.67 (m, 5H); 13C NMR (CDCl3 at 100 MHz) δ 32.3, 60.6, 103.6, 110.1, 111.2, 118.8, 119.0, 122.8, 127.6, 129.3, 132.2, 133.8, 145.8, 154.6, 157.0 with 2 peaks overlapping.
- The product from Example 1B (2.03 kg, 7.71 mol) in acetonitrile (31.8 kg) was treated in succession with triethylamine (1.86 kg, 18.34 mol), 4-(dimethylamino)pyridine 0.10 kg, 0.87 mol), and p-toluenesulfonyl chloride (3.50 kg, 17.99 mol). After stirring at room temperature for about 5 hours, the reaction mixture was distilled to a minimum volume and treated with isopropyl alcohol (24.1 kg). The suspension was heated at about 30° C. for 1 hour, then cooled to about 5° C., filtered, and the filter cake was washed with isopropyl alcohol (5.20 kg). The solid was dried at 50° C. to provide 2.59 kg (80% yield) of the title compound. MS-DCI (M+NH4)+ m/z at 435; 1H NMR (CDCl3 at 400 MHz) δ 2.38 (s, 3H), 3.15 (t, 2H), 4.38 (t, 2H), 6.50 (s, 1H) 7.18-7.24 (m, 2H), 7.37-7.46 (m, 2H), 7.67-7.74 (m, 7H); 13C NMR (CDCl3 at 100 MHz) δ 21.9, 28.9, 67.2, 104.4, 110.3, 111.2, 118.7, 119.2, 123.0, 127.5, 127.6, 129.0, 129.4, 132.2, 132.4, 133.9, 144.4, 145.7, 154.1, 154.5.
- Potassium carbonate powder (2.28 kg, 16.5 mol, 325 mesh) and milled (2R)-2-methylpyrrolidine tartrate (1.78 kg, 7.48 mol) were combined in acetonitrile (37.4 kg) and heated at 55° C. with agitation for 36 hours. The mixture was chilled to about 25° C., and the product from Example 1C (2.07 kg, 4.98 mol) was added to the mixture in portions. The reaction mixture was heated at 65° C. with agitation for about 48 hours. The mixture was cooled to about 25° C., filtered, and the filtrate was concentrated to a volume of about 10 L. The mixture was partitioned between toluene (32.3 kg) and 5% NaHCO3 solution (23.7 kg). The organic phase was separated and washed with 5% NaHCO3 solution (23.7 kg). The organic phase was then extracted with a mixture of CH3SO3H:N-methylpyrrolidinone:H2O (10:20:70 v/v/v) (32 kg, 8.0 kg respectively). The extract was treated with isopropyl acetate (32.5 kg) and the pH adjusted to about 12 with 50% NaOH solution (about 4.9 kg) at about 30° C. After stirring, the organic phase was separated and the aqueous phase was extracted with isopropyl acetate (IPAC) (6.0 kg). The organic phases were combined, washed with 5% NaHCO3 (33 kg×3), distilled water (33 kg×2), distilled to a volume of about 10 L, and chased with IPAC (15.6 kg) to about 10 L. The mixture was diluted with isopropyl alcohol (14.5 kg) and concentrated to 10 L. Additional 14.5 kg of isopropyl alcohol was added and the solution concentrated to a volume of 10 L. The solution was treated with active carbon (Darco KB-B, 0.125 kg) and heated at 30° C. with stirring for 1 hour. The mixture was filtered through a pad of Celite® and the Celite® washed with isopropyl alcohol (6.3 kg). The filtrate (about 13 kg) was used directly in the next step (1.17 kg).
- The solution from Example 1D was diluted with absolute ethanol (5.0 kg), heated at 65° C., and treated with a solution of (L)-tartaric acid (0.56 kg, 3.73 mol) in absolute ethanol (8.0 kg) slowly. The mixture was cooled to about 25° C., agitated for about 16 hours, cooled to 0° C. for 2 hours, and filtered. The filter cake was washed with isopropyl alcohol (5.0 kg), dried at 60° C. for about 24 hours to provide 1.46 kg of the title compound as a solid (61% isolated yield from the tosylate). Mp 152-154° C.; 1H-NMR (DMSO-d6) δ 7.8-8.0 (5H, m), 7.62 (2H, m), 6.80 (1H, s), 4.10 (2H, s), 3.40 (2H, m), 3.25 (2H, m), 2.95 (2H, m), 2.70 (1H, q), 2.02 (1 H, m), 1.80 (2H, m), 1.48 (2H, m), 1.22 (3H, d, J=6.6 Hz); 13C-NMR (DMSO-d6) 174.3, 157.6, 154.6, 145.4, 133.6, 133.0, 129.5, 127.9, 123.2, 119.5, 119.1, 111.5, 109.7, 103.7, 72.3, 61.3, 52.5, 50.1, 31.5, 25.7, 21.1, 16.8; Anal: C26H28N2O7.½H2O; Calc'd C%=63.80, H%=5.93, N%=5.72, O%=24.53; Found. 63.55, 5.60, 5.64, 25.18.
- A sealed pressure tube was charged potassium carbonate powder (18.4 g, 133.2 mmol, 325 mesh), milled (2R)-2-methylpyrrolidine tartrate (20.9 g, 88.8 mmol), 3-butynyl 4-methylbenzenesulfonate (15.7 mL, 88.8 mmol), and acetonitrile (105 mL). The mixture was heated at 85° C. and stirred for 16 hours. The completion of the reaction was monitored by gas chromatography until all the tosylate was consumed. The reaction mixture was cooled to room temperature, diluted with CH3CN (50 mL), and filtered. The filtrate was used in the next step without further purification. GC-MS m/z 138 (M+H)+.
- The solution from Example 2A (3.02 g, 22.0 mmol) in CH3CN (49.5 mL) was purged with nitrogen and treated with the product from Example 1A (3.21 g, 10.0 mmol), CuI (38 mg, 0.2 mmol), PdCl2(Ph3P)2 (70 mg, 0.2 mmol), and diisopropylamine (8.4 ml, 60 mmol). The mixture was stirred at room temperature under nitrogen until reaction was near complete by HPLC. The reaction mixture was concentrated to about 30 mL, treated with toluene (100 mL), washed with 5% NaHCO3 (2×100 mL), and 10% NH4CI (2×100 mL). The organic layer was separated, filtered through a pad of Celite®, and extracted with (CH3SO3H:N-methylpyrrolidinone:H2O, 10:20:70) (2×100 mL). The aqueous layer was extracted with IPAC (2×100 mL), basified with 50% NaOH, and extracted with IPAC (2×100). The organic layer was washed with 5% NaHCO3 (2×100 mL), 25% brine (100 mL), and treated with active carbon, silica gel (6.0 g), and Na2SO3 (1.0 g). The mixture was stirred at room temperature for 1 hour and filtered. The filtrate was concentrated to dryness to provide the title compound.
- The product from Example 2B in isopropyl alcohol (IPA) (32 mL) and ethanol (12 mL) was treated with a solution of (L)-tartaric acid (1.0 g in 20 mL of EtOH) and heated at 60° C. The mixture was allowed to cool to room temperature and stirred overnight. The mixture was cooled at 0° C. for 2 hours, filtered, and the filter cake dried at 65° C. under reduced pressure overnight to provide the title compound as a solid. Mp 152-154° C.; 99% pure by HPLC; 1H-NMR (DMSO-d6) δ 7.8-8.0 (5H, m), 7.62 (2H, m), 6.80 (1H, s), 4.10 (2H, s), 3.40 (2H, m), 3.25 (2H, m), 2.95 (2H, m), 2.70 (1H, q), 2.02 (1H, m), 1.80 (2H, m), 1.48 (2H, m), 1.22 (3H, d, J=6.6 Hz); 13C-NMR (DMSO-d6) δ 174.3, 157.6, 154.6, 145.4, 133.6, 133.0, 129.5, 127.9, 123.2, 119.5, 119.1, 111.5, 109.7, 103.7, 72.3, 61.3, 52.5, 50.1, 31.5, 25.7, 21.1, 16.8.
- 4-Bromophenol (51.9 g, 0.30 mol) and N-iodosuccinimide (67.5 g, 0.30 mol) were combined in acetic acid (360 mL). The mixture was stirred briefly, treated with concentrated sulfuric acid (5 mL, 0.09 mol) and stirred at about 22° C. overnight. The mixture was poured into water (about 800 mL) with stirring to precipitate the product. The suspension was stirred for about 1 hour and filtered. The wet cake was washed with water (50 mL, 2×) and dried under reduced pressure at about 50° C. (80.9 g, 90%). MS-DEI (M+H)+ m/z at 298; 1H NMR (CDCl3 at 400 MHz) δ 5.28 (s, 1H), 6.86 (d, 1H), 7.33 (dd, 1H), 7.75 (d, 1H); 13C NMR (CDCl3 at 100 MHz) δ 86.0, 112.8, 116.0, 132.7, 139.4, 153.7.
- (2R)-2-Methylpyrrolidine tartrate (1.17 g, 5.0 mmol), and potassium carbonate (1.38 g, 10.0 mmol) were combined in acetonitrile (20 mL) and heated at 60° C. for 1 hour. The mixture was treated with 3-butynyl 4-methylbenzenesulfonate (673 mg, 3.0 mmol) and heated at about 60° C. overnight. The mixture was cooled to about 5° C. and filtered. The mixture was treated with the product from Example 3A (300 mg, 1.0 mmol), diisopropylamine (1.20 g, 11.8 mmol), dichlorobis(triphenylphosphine)palladium (II) (35.1 mg, 0.05 mmol), and copper iodide (38.0 mg, 0.20 mmol). After stirring overnight at about 30° C., the mixture was concentrated to dryness. The residue in ethyl acetate (20 mL) was washed with 5% NaHCO3 (20 mL×2) and 25% brine (25 mL). The organic phase was separated, dried over anhydrous Na2SO4, filtered, and the filtrate concentrated to dryness to provide the title compound. MS (esi): 308, 310 (M+H)+; 1H-NMR (CDCl3) δ 7.58 (1H, d, J=1.7 Hz), 7.27 (2H, m), 6.38 (1H, s), 3.20 (2H, m), 2.95 (2H, m), 2.43 (1H, m), 2.28 (1H, m), 2.19 (1H, q, J=8.8 Hz), 1.95 (1H, m), 1.75 (2H, m), 1.42 (1H, m), 1.13 (3H, d, J=6.2 Hz); 13C-NMR (CDCl3) δ158.8, 152.9, 130.6, 125.7, 122.6, 115.2, 111.9, 101.8, 60.0, 53.9, 51.9, 32.9, 28.4, 22.0, 19.3.
- The product from Example 3B (116 mg, 0.375 mmol), 4-cyanophenylboronic acid (83 mg, 0.56 mmol), tetrakis(triphenylphosphine)palladium (0) (43.3 mg, 0.0375 mmol), 2-(dicyclohexylphosphino)biphenyl (26.2 mg, 0.075 mmol), and sodium carbonate (60 mg, 0.57 mmol) were combined in 1,2-dimethoxyethane (6 mL) and water (2 mL). The reaction mixture was heated at 80° C. for 5 hours, allowed to cool to room temperature, and diluted with ethyl acetate (15 mL). The mixture was washed with 5% NaHCO3, 25% brine, dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated to dryness. The residue was purified by silica gel column chromatography to provide the free base (92 mg), which was converted to the corresponding (L)-tartrate (58 mg, 32% yield); mp: 156-157° C. (uncorrected); MS (esi): 331 (M+1); 1H-NMR (DMSO-d6) δ 7.90 (5H, m), 7.62 (2H, m), 6.79 (1H, s), 4.10 (2H, s), 3.40 (2H, m), 3.08 (2H, m), 2.90 (2H, m), 2.63 (1H, q, J=8.8 Hz), 2.02 (1H, m), 1.80 (2H, m), 1.43 (1H, m), 1.20 (3H, d, J=6.3 Hz); 13C-NMR (DMSO-d6) δ 173.1, 156.7, 153.7, 144.6, 132.8, 132.2, 128.8, 127.2, 122.5, 118.9, 118.5, 110.9, 109.1, 103.2, 71.7, 61.0, 52.5, 50.1, 31.6, 26.0, 21.2, 17.1.
- The product from Example 3A (14.95 g, 50 mmol), palladium(II) acetate (0.11 g, 0.5 mmol), triphenylphosphine (0.26 g, 1.0 mmol), and copper(I) iodide (0.19 g, 1.0 mmol) were combined in isopropyl acetate (100 mL). Nitrogen gas was bubbled through the reaction mixture for about 15 minutes. The mixture was treated with 3-butyn-1-ol (5.6 mL, 75.0 mmol) stirred briefly and then treated with diisopropylamine (42 mL, 300 mmol) slowly over about 10 minutes. After stirring for 2 hours at about 22° C., the mixture was heated at about 60° C. for about 6 hours and then cooled to about 22° C. The reaction mixture was filtered through a pad of Celite® (˜5 g) and the Celite® was washed with isopropyl acetate (˜30 mL). The filtrate was washed with saturated NaHCO3 solution (100 mL, 2×), 10% Na2S2O3 solution (100 mL, 2×), brine (50 mL), dried over Na2SO4, and distilled to dryness. The residue was purified by silica gel column chromatography to provide the title compound (8.7 g, 72% yield). MS DCI (M+NH4)+ m/z at 258, 260; 1H NMR (CDCl3 at 400 MHz) δ 3.03 (m, 2H), 3.98 (m, 2H), 6.45 (m, 1H), 7.25-7.32 (m, 2H), 7.60 (d, 1H); 13C NMR (CDCl3 at 100 MHz) δ 32.2, 60.6, 103.0, 112.1, 115.4, 122.8, 126.1, 130.4, 153.1, 157.0.
- The product from Example 4A (1.21 g, 5.0 mmol), 4-dimethylaminopyridine (0.06 g, 0.5 mmol), and triethylamine (1.5 mL, 10.5 mmol) were combined in dichloromethane (20 mL) stirred briefly and treated with para-toluenesulfonyl chloride (1.91 g, 10.0 mmol) in dichloromethane (2 mL) over about 5 minutes. After stirring at about 22° C. for 3 hours, the mixture was then washed with saturated NaHCO3 solution (20 mL, 2×), brine (20 mL), dried over Na2SO4, and distilled to dryness. The residue in acetonitrile (˜5 mL) was heated at 50° C. to effect dissolution, allowed to cool to room temperature slowly, and then cooled to about 0° C. The slurry was filtered and the obtained solid dried under reduced pressure at 40° C. to provide the title compound (0.95 g, 48% yield). MS-DCI (M+NH4)+ observed m/z at 412, 414; 1H NMR (CDCl3 at 400 MHz) δ 2.38 (s, 3H), 3.11 (m, 2H), 4.35 (m, 2H), 6.35 (m, 1H), 7.1-7.18 (m, 3H), 7.27 (dd, 1H), 7.56 (d, 1H), 7.64-7.67 (m, 2H); 13C NMR (CDCl3 at 100 MHz) δ 21.9, 28.8, 67.1, 103.7, 112.0, 115.5, 122.9, 126.3, 127.4, 129.4, 130.1, 132.3, 144.4, 153.0, 154.2 with 2 peaks overlapping.
- (2R)-2-Methylpyrrolidine tartrate (0.70 g, 3.0 mmol) and potassium carbonate (0.82 g, 6.0 mmol) were combined in acetonitrile (12 mL). The slurry was heated at 60° C. for 1 hour, treated with the product from Example 4B (790 mg, 2.0 mmol). The mixture was heated at about 60° C. for 6 hours, cooled to 25° C., and diluted with toluene (30 mL). The mixture was washed with 5% NaHCO3 (40 mL×2) and extracted with H2O:N-methylpyrrolidinone:MSA (methanesulfonic acid)=70:20:10 (30 mL). The aqueous solution was adjusted to pH about 12 with 50% NaOH and extracted with IPAC (45 mL). The organic phase was washed with 5% NaHCO3 (50 mL×3), water (50 mL, 2×), dried over MgSO4, filtered, and the filtrate was concentrated to dryness to provide 375 mg (60%) of the title compound. MS (esi): 308, 31 0 (M+H)+; 1H-NMR (CDCl3) δ 7.58 (1H, d, J=1.7 Hz), 7.27 (2H, m), 6.38 (1H, s), 3.20 (2H, m), 2.95 (2H, m), 2.43 (1H, m), 2.28 (1H, m), 2.19 (1H, q, J=8.8 Hz), 1.95 (1H, m), 1.75 (2H, m), 1.42 (1H, m), 1.13 (3H, d, J=6.2 Hz); 13C-NMR (CDCl3) δ 158.8, 152.9, 130.6, 125.7, 122.6, 115.2, 111.9, 101.8, 60.0, 53.9, 51.9, 32.9, 28.4, 22.0, 19.3.
- The title compound can be prepared using the procedure described in Example 3C.
- The product from Example 4A (241 mg, 1.0 mmol), 4-cyanophenylboronic acid (221 mg, 1.5 mmol), tetrakis(triphenylphosphine) palladium (0) (57.5 mg, 0.05 mmol), 2-(dicyclohexyl phosphino)biphenyl (35.0 mg, 0.10 mmol), and sodium carbonate (160 mg, 1.5 mmol) were combined in 1,2-dimethoxyethane (16 mL) and water (6 mL) and heated at 80° C. overnight. The mixture was allowed to cool to room temperature and diluted with ethyl acetate (30 mL). The mixture was washed with 5% NaHCO3, 25% brine, dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated to dryness. The residue was purified by silica gel column chromatography to provide 197 mg (75%) of the title compound. An analytical sample was crystallized from diethyl ether; mp; MS-DCI-NH3: 281 (M+NH4)+; 1H-NMR (CDCl3) δ 7.68 (5H, m), 7.51 (1H, d, J=8.5Hz), 7.44 (1H, dd, J=8.5, 1.9 Hz), 6.57 (1H, s), 4.02 (2H, q, J=5.8 Hz), 3.07 (2H, t, J=5.8Hz) 1.70 (1H, t, J=5.8Hz), 13C-NMR (CDCl3) δ 156.9, 154.6, 145.8, 133.9, 132.2, 129.3, 127.6, 122.8, 119.0, 118.8, 111.2, 110.2, 103.7, 60.7, 32.3.
- 4-{2-[2-(2(S)-Methyl-pyrrolidin-1-yl)-ethyl]-benzofuran-5-yl}-benzonitrile can be prepared by the method described in Examples 2A and 2B, except that (S)-2-methylpyrrolidine tartrate is used in the place of (2R)-2-methylpyrrolidine tartrate in step 2A.
- The following compounds can be prepared by using the methods described in Example 3c, but substituting the corresponding boronic acid and boronic acid ester compounds in place of 4-cyanophenylboronic acid as shown below in Table 1.
TABLE 1 Commercial Source, Chemical Abstracts Number or Literature Example Compound Reagent Reference 7 5-{2-[2-(2(R)-methyl- 2-pyrimidinone-5-boronic Matrix Scientific, pyrrolidin-1-yl)-ethyl]- acid Columbia, SC, USA benzofuran-5-yl}-1H- pyrimidin-2-one 8 5-{2-[2-(2(R)-methyl- 1H-pyrimidine-2,4-dione- Specs, Fleminglaan, the pyrrolidin-1-yl)-ethyl]- 5-boranic acid Netherlands benzofuran-5-yl}-1H- pyrimidine-2,4-dione 9 3-{2-[2-(2(R)-methyl- pyridine-3-boronic acid CAS #1692-25-7, pyrrolidin-1-yl)-ethyl]- Frontier Scientific, Inc., benzofuran-5-yl}- Logan, UT, USA pyridine 10 8-{2-[2-(2(R)-methyl- 8-quinoline boronic acid CAS #86-58-8, Matrix pyrrolidin-1-yl)-ethyl]- Scientific, Columbia, SC, benzofuran-5-yl}- USA quinoline 11 2,4-dimethoxy-5-{2-[2- 2,4-dimethoxypyrimidine- CAS #89641-18-9, (2(R)-methyl-pyrrolidin- 5-boronic acid Frontier Scientific, Inc., 1-yl)-ethyl]-benzofuran- Logan, UT, USA 5-yl}-pyrimidine 12 2-methoxy-5-{2-[2-(2(R)- 2-methoxy-5-pyridine Digital Specialty methyl-pyrrolidin-1-yl)- boronic acid Chemicals, Dublin, NH, ethyl]-benzofuran-5-yl}- USA pyridine 13 3-{2-[2-(2(R)-methyl- 3-quinoline boronic acid Digital Specialty pyrrolidin-1-yl)-ethyl]- Chemicals, Dublin, NH, benzofuran-5-yl}- USA quinoline 14 5-{2-[2-(2(R)-methyl- pyrimidine-5-boronic acid Gronowitz, S.; pyrrolidin-1-yl)-ethyl]- Hoernfeldt, A. B.; benzofuran-5-yl}- Kristjansson, V.; Musil, T. pyrimidine On the synthesis of various thienyl- and selenienylpyrimidines. Chem. Scr. (1986), 26(2), 305-9. 15 5-{2-[2-(2(R)-methyl- pyrimidine-5-boronic acid, Umemoto, Kazuhiko; pyrrolidin-1-yl)-ethyl]- pinacol ester Tsukui, Hitoshi; benzofuran-5-yl}- Kusukawa, Takahiro; pyrimidine Biradha, Kumar; Fujita, Makoto; Angew. Chem. Int. Ed.; 40; 14; 2001; 2620-2622. - Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications are within the purview of the invention and can be made without departing from the spirit and scope thereof. The foregoing detailed descriptions are merely illustrative of the invention and are not intended to limit the scope of the invention, which is defined solely by the scope of the appended claims.
Claims (15)
1. A process for preparing a compound of formula (I):
or a salt thereof, wherein
(HO)2B—R1 (VIII),
(ReO)(RfO)B—R1 (VIII-a),
A is heterocycle selected from pyrrolidinyl or piperidinyl, wherein the heterocycle is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl; and
R1 is 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl of 4-cyanophenyl, the aryl, or the heteroaryl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl;
the process comprising the steps of:
(1a) treating a compound of formula (II),
wherein RA is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, and the phenyl portion of the 4-cyanophenyl, the aryl, and the heteroaryl are substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, with a halogenating reagent selected from the group consisting of N-bromosuccinimide, N-iodosuccinimide, N-iodoacetamide, N-bromoacetamide, N-iodophthalimide, N-bromopthalimide, iodine, bromine, ICl, IBr, and BrCl, to provide a compound of formula (III),
wherein X is Br or I;
(1b) treating the compound of formula (III) with 3-butyn-1-ol to provide a compound of formula (IV),
(1c) treating the compound of formula (IV) with a sulfonating reagent to provide a compound of formula (V),
wherein RB is toluenesulfonate, methanesulfonate, or trifluoromethansulfonate, and
(1d) treating the compound of formula (V) with an amine reagent, selected from the group consisting of pyrrolidinyl and piperidinyl, wherein the pyrrolidinyl or piperidinyl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl, to provide the compound of formula (VI),
wherein A is as defined above for a compound of formula (I), and
(1e) further treating the compound of formula (V), wherein RA is bromo or chloro, with a compound of formula (VIII),
(HO)2B—R1 (VIII),
or a compound of formula (VIII-a),
(ReO)(RfO)B—R1 (VIII-a),
wherein R1 is 4-cyanophenyl, aryl, or heteroaryl, wherein the phenyl of 4-cyanophenyl, the aryl, or the heteroaryl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl; and Re and Rf are each independently alkyl or Re and Rf are taken together to form a ring, wherein the ring is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl or aryl.
2. The process according to claim 1 wherein R1 is 4-cyanophenyl.
3. The process according to claim 2 wherein the halogenating reagent in step (1a) is N-bromosuccinimide or N-iodosuccinimide.
4. The process according to claim 1 wherein A is (2R)-2-methylpyrrolidinyl.
5. The process according to claim 1 wherein RB in a compound of formula (V) represents a toluenesulfonate group.
6. A process for preparing a compound of formula (I):
or a salt thereof, wherein
(HO)2B—R, (VIII),
(ReO)(RfO)B—R1 (VIII-a),
A is heterocyclic group selected from pyrrolidinyl or piperidinyl, wherein the heterocycle is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl; and
R1 is 4-cyanophenyl;
the process comprising the steps of:
(6a) treating a compound of formula (III-a),
wherein RA1 is selected from the group consisting of bromo, chloro, 4-cyanophenyl; with a compound of formula (VII),
wherein A is a heterocylic group selected from the group consisting of pyrrolidinyl and piperidinyl, said heterocyclic group substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl, to provide a compound of formula (VI-a),
wherein RA1 and A are as defined above; and
(6b) further treating the compound of formula (VI-a), wherein RA1 is bromo or chloro, with a compound of formula (VIII),
(HO)2B—R, (VIII),
or a compound of formula (VIII-a),
(ReO)(RfO)B—R1 (VIII-a),
wherein R1 is 4-cyanophenyl; and Re and Rf are each independently alkyl or Re and Rf are taken together to form a ring, wherein the ring is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl or aryl.
7. The process according to claim 6 wherein the compound of formula (III-a) in step 6a is reacted with the compound of formula (VII) and a palladium catalyst, metal halide, and base, wherein the palladium catalyst is selected from the group consisting of tetrakis(triphenylphosphine)palladium, (dibenzylideneacetate)palladium, (tris(dibenzylideneacetate)dipalladium, bis(tricyclohexylphosphine)palladium, (2-(diphenylphosphino)ethyl)palladium, (1,1′-bis(diphenylphosphino)ferrocene)palladium, bis(triphenylphosphine)dichloropalladium, bis(1,1′-bis(diphenylphosphino)ferrocene)palladium, bis(2-(diphenylphosphino)ethyl)dichloropalladium, and PdCl2(CH3CN)2.
8. The process according to claim 7 wherein the palladium catalyst is bis(triphenylphosphine)dichloropalladium (PdCl2(Ph3P)2).
9. The process according to claim 7 wherein the metal halide is copper(I) iodide and the base is diisopropylamine.
10. The process according to claim 6 wherein A is (2R)-2-methylpyrrolidinyl.
11. A process for preparing a compound of the formula:
wherein X is bromo or iodo and RA is selected from the group consisting of bromo, chloro, 4-cyanophenyl, aryl, and heteroaryl, wherein the phenyl portion of 4-cyanophenyl, the aryl, or the heteroaryl group is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl, comprising the step of treating a compound of the formula (II),
wherein RA is as previously defined, with a halogenating reagent of the formula:
wherein X is bromo or iodo to provide a compound of the formula (III).
12. The process according to claim 11 further comprising the step for preparing a compound of formula (I):
or a salt thereof, wherein
A is heterocyclic group selected from pyrrolidinyl or piperidinyl, wherein the heterocycle is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkyl and fluoroalkyl; and
R1 is 4-cyanophenyl wherein the phenyl of 4-cyanophenyl is substituted with 0, 1, 2, 3, or 4 substituents selected from the group consisting of alkoxy, alkoxyalkyl, alkyl, alkylthio, alkylthioalkyl, cyano, haloalkoxy, halogen, and haloalkyl; by chemically processing a compound of formula (III).
13. The process according to claim 11 wherein the halogenating reagent is N-iodosuccinimide.
14. Compounds prepared according to the processes of claims 1, 6, and 11.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/946,192 US20050054677A1 (en) | 2002-09-16 | 2004-09-21 | Process for preparing amine-substituted benzofurans |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US41121002P | 2002-09-16 | 2002-09-16 | |
| US10/654,897 US6822101B2 (en) | 2002-09-16 | 2003-09-05 | Process for preparing amine-substituted benzofurans |
| US10/946,192 US20050054677A1 (en) | 2002-09-16 | 2004-09-21 | Process for preparing amine-substituted benzofurans |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/654,897 Division US6822101B2 (en) | 2002-09-16 | 2003-09-05 | Process for preparing amine-substituted benzofurans |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050054677A1 true US20050054677A1 (en) | 2005-03-10 |
Family
ID=32684929
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/654,897 Expired - Fee Related US6822101B2 (en) | 2002-09-16 | 2003-09-05 | Process for preparing amine-substituted benzofurans |
| US10/946,192 Abandoned US20050054677A1 (en) | 2002-09-16 | 2004-09-21 | Process for preparing amine-substituted benzofurans |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/654,897 Expired - Fee Related US6822101B2 (en) | 2002-09-16 | 2003-09-05 | Process for preparing amine-substituted benzofurans |
Country Status (1)
| Country | Link |
|---|---|
| US (2) | US6822101B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7244852B2 (en) * | 2003-02-27 | 2007-07-17 | Abbott Laboratories | Process for preparing 2-methylpyrrolidine and specific enantiomers thereof |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE59303178D1 (en) | 1992-04-28 | 1996-08-14 | Thomae Gmbh Dr K | Tritiated fibrinogen receptor antagonists, their use and methods for their preparation |
| FR2729147A1 (en) | 1995-01-11 | 1996-07-12 | Adir | NOVEL ALKYL CYCLIC (HETERO) COMPOUNDS, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM |
| EP2258694A1 (en) | 2001-03-16 | 2010-12-08 | Abbott Laboratories | Amines as histamine-3 receptor ligands and their therapeutic applications |
| US20020183309A1 (en) | 2001-03-16 | 2002-12-05 | Cowart Marlon D. | Novel amines as histamine-3 receptor ligands and their therapeutic applications |
| WO2003059342A1 (en) | 2002-01-11 | 2003-07-24 | Abbott Laboratories | Histamine-3 receptor ligands for diabetic conditions |
-
2003
- 2003-09-05 US US10/654,897 patent/US6822101B2/en not_active Expired - Fee Related
-
2004
- 2004-09-21 US US10/946,192 patent/US20050054677A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US6822101B2 (en) | 2004-11-23 |
| US20040133007A1 (en) | 2004-07-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11542245B2 (en) | Preparative process | |
| Yoshizumi et al. | Copper-mediated direct arylation of benzoazoles with aryl iodides | |
| US20040186296A1 (en) | Process to produce derivatives from uk-2a derivatives | |
| Nagao et al. | Asymmetric trifluoromethylation of ketones with (trifluoromethyl) trimethylsilane catalyzed by chiral quaternary ammonium phenoxides | |
| CN109776422A (en) | Chiral 1,3- diaryl imidazole salt carbene precursor, its synthetic method, metal salt complex and application | |
| WO2018126898A1 (en) | Thienopyrimidine derivative, preparation method therefor, and application thereof in manufacturing of antitumor drugs | |
| CN108558692B (en) | A kind of preparation method of amide compound | |
| CN108473428B (en) | A kind of preparation method of pyridine derivative compound and its intermediate and crystal form | |
| US6822101B2 (en) | Process for preparing amine-substituted benzofurans | |
| CN115397807B (en) | Process for preparing substituted enamine compounds | |
| US20040054185A1 (en) | Process for preparing amine-substituted benzofurans | |
| TW200531958A (en) | Method for producing aminophenol compounds | |
| US6271418B1 (en) | Process for preparing (hetero) aromatic substituted benzene derivatives | |
| WO2004024707A2 (en) | Process for preparing amine type substituted benzofurans | |
| Cattoën et al. | Synthesis of highly modular bis (oxazoline) ligands by Suzuki cross-coupling and evaluation as catalytic ligands | |
| US8633321B2 (en) | Synthesis of (4-fluoro-3-piperidin-4-yl-benzyl)-carbamic acid tert-butyl ester and intermediates thereof | |
| US7595417B2 (en) | Cyanation of aromatic halides | |
| JP2017144424A (en) | Catalyst, method for forming amide bond, and method for producing amide compound | |
| CN116063216B (en) | Palladium catalyzed decarboxylation [3+2] cycloaddition reaction | |
| Zhou et al. | Palladium-catalyzed direct mono-α-arylation of α-fluoroketones with aryl halides or phenyl triflate | |
| JP7700399B1 (en) | Selective synthesis of single axially chiral compounds | |
| CN105102415B (en) | Method for Improving Optical Purity of 2-Hydroxycarboxylic Acid or Its Derivatives | |
| WO2001030771A1 (en) | Thiazolidinedione derivatives | |
| CN111377867B (en) | Intermediate for synthesizing 2- (1-alkyl-1H-pyrazol-4-yl) morpholine and preparation method and application thereof | |
| Chen et al. | A facile synthesis of β-allenyl furanimines via Pd-catalyzed cyclization of 2, 3-allenamides with propargylic carbonates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |





































