US20050043521A1 - Phage antibodies - Google Patents

Phage antibodies Download PDF

Info

Publication number
US20050043521A1
US20050043521A1 US10/910,547 US91054704A US2005043521A1 US 20050043521 A1 US20050043521 A1 US 20050043521A1 US 91054704 A US91054704 A US 91054704A US 2005043521 A1 US2005043521 A1 US 2005043521A1
Authority
US
United States
Prior art keywords
cells
target cells
phage particles
method according
phage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/910,547
Inventor
Leon Terstappen
Ton Logtenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Vaccines and Prevention BV
Original Assignee
Janssen Vaccines and Prevention BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US48363395A priority Critical
Priority to US93289297A priority
Priority to US09/085,072 priority patent/US6265150B1/en
Priority to US09/865,048 priority patent/US6858384B2/en
Application filed by Janssen Vaccines and Prevention BV filed Critical Janssen Vaccines and Prevention BV
Priority to US10/910,547 priority patent/US20050043521A1/en
Publication of US20050043521A1 publication Critical patent/US20050043521A1/en
Application status is Abandoned legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)

Abstract

Peripheral blood leucocytes incubated with a semi-synthetic phage antibody library and fluorochrome-labeled CD3 and CD20 antibodies were used to isolate human single chain Fv antibodies specific for subsets of blood leucocytes by flow cytometry. Isolated phage antibodies showed exclusive binding to the subpopulation used for selection or displayed additional binding to a restricted population of other cells in the mixture. At least two phage antibodies appeared to display hithereto unknown staining patterns of B lineage cells. This approach provides a subtractive procedure to rapidly obtain human antibodies against known and novel surface antigens in their native configuration, expressed on phenotypically defined subpopulations of cells. Importantly, this approach does not depend on immunization procedures or the necessity to repeatedly construct phage antibody libraries.

Description

  • This application is a continuation of application Ser. No. 09/085,072, which is a continuation-in-part of application Ser. No. 08/932,892 filed Sep. 18, 1997, which is a File-Wrapper-Continuation of Ser. No. 08/483,633 filed Jun. 7, 1995, both of which are incorporated herein by reference.
  • BACKGROUND OF THE INVENTION
  • The construction of libraries of fragments of antibody molecules that are expressed on the surface of filamentous bacteriophage and the selection of phage antibodies (Phabs) by binding to antigens have been recognized as powerful means of generating new tools for research and clinical applications. This technology, however, has been mainly used to generate Phabs specific for purified antigens that are available in sufficient quantities of solid-phase dependent selection procedures. The effectiveness of such Phabs in biochemical and functional assays varies; typically, the procedure used to select Phabs determines their utility.
  • Typically, many antigens of interest are not available in pure form in very large quantities. This clearly limits the utility of Phabs in binding such materials for research and clinical applications. Further, the utility of Phabs in such applications is directly proportional to the purity of the antigens and purification methods to assure the specificity of the isolate Phabs. Human monoclonal antibodies that bind to native cell surface structures are expected to have broad application in therapeutic and diagnostic procedures. An important extension of phage antibody display technology would be a strategy for the direct selection of specific antibodies against antigens expressed on the surface of subpopulations of cells present in a heterogenous mixture. Ideally, such antibodies would be derived from a single highly-diverse library containing virtually every conceivable antibody specificity.
  • SUMMARY OF INVENTION
  • A library was constructed from 49 human germline VH genes fused to a JH4 gene and partly randomized CDR3 regions varying in length between 6 and 15 amino acids. The CDR3 regions were designated to contain short stretches of fully randomized amino acid residues flanked by regions of limited variability. Residues in the latter portion of CDR3 were selected based on their frequent occurrence in CDRs (complementarity-determining regions) of natural antibody molecules, random CDR3 with an increased frequency of clones producing functional antigen binding sites. The synthetic VH segments were combined with seven different VL genes and expressed as geneIII-scFv fragments on the surface of phage, resulting in a library of 3.6×108 clones. This library was used to isolate monoclonal phage antibodies (MoPhabs) to a variety of different structures (haptens, proteins and polysaccharides) by selection on solid phase-bound antigen.
  • Further, MoPhabs were also isolated by flow cytometry, resulting in MoPhabs specific for subpopulations of cells present in a heterogenous mixture. These antibodies detect known and novel structures on various populations of blood and fetal bone marrow cells.
  • DETAILED DESCRIPTION OF INVENTION
  • The phage antibodies of the instant invention are obtained from a library of phage antibodies which possess specificity for a plurality of antigens. In practice, such libraries can be obtained from a variety of sources or constructed by known methods. A method particularly useful for constructing such libraries is described in paper by G. Winter, et al., Annual Reviews of Immunology, 12, 433-455 (1994), which is incorporated by references.
  • The library is then admixed with the antigens (as used herein, antigen shall be inclusive of haptens and antigen analogs) of interest and the phage antibodies bound to these antigens are then isolated. The procedure may be repeated until a population of phage antibodies having the desired specificity(ies) is obtained, and the isolated phage antibodies may then be cloned by conventional methods known to those in the art.
  • In a preferred embodiment, the phage antibody library is admixed with a cell mixture labeled with a fluorescent labeled antigen, or a plurality of antigens each labeled with a different fluorescent label, and sorted by flow cytometry. Preferred labels include phycoerythrin (PE), PerCP, and fluorescein isothiocyanate (FITC). The phage antibodies bound to cells, thus obtained, can be eluted. The phage antibodies (phages that express antibody specificities of interest) can then be cloned by conventional techniques to obtain a plurality of phage antibodies having high specificity for single antigens.
  • EXAMPLES
  • The following examples illustrate certain preferred embodiments of the instant invention, but are not intended to be illustrative of all embodiments.
  • Example 1 Library Construction
  • The semi-synthetic Phab library was constructed essentially as described in Hoogenboom and Winter, J. Mol. Biol. 227, 381-388 (1992) and Nissim et al. EMBO 13, 692-698 (1994). Briefly, degenerate oligonucleotides were used to add synthetic CDR3 regions to a collection of 49 previously cloned germline VH genes. Subsequently, these in vitro ‘rearranged’ VH genes were cloned into a collection of pHENI phagemid-derived vectors containing 7 different light chain V regions, fused in frame to the gene encoding the phage minor capsid protein geneIII. Introduction of these constructs into bacteria results, in the presence of helper phage, in the expression of scFv antibody fragments as geneIII fusion proteins on the surface of bacteriophage.
  • Plasmid DNA containing the Vκ3 gene expressed in EBV-transformed cell line was amplified with primers Vκ3LINK and Jκ4B to introduce Ncol and Xhol restriction sites and the (G4S) linker sequence. Amplified product was cloned into the pHEN1 phagemid vector using NcoI and XhoI resulting in pHEN1-Vκ3. Total RNA was isolated from fetal bone marrow B lymphocytes, converted to cDNA by oligo-dT priming and amplified by PCR using Vκ1, Vκ2, Vκ4, Vλ1 and Vλ2 gene family-specific primers. All PCR reactions were carried out in a volume of 50 μl with 250 μM dNTPs, 20 pmol of each primer and 0.2 units of Taq DNA polymerase (Supertaq, HT biotechnology Ltd. Cambridge, UK) in the manufacturer recommended buffer. PCR reactions consisted of 25 cycles of 1 minute at 94° C. 1 minute at 58° C. and 2 minutes at 72° C.). PCR amplified products were digested with SacI and NotI and ligated in the pHENI-Vκ3 vector digested with the same enzymes. This resulted in the construction of 7 pHEN1-derived vectors, each containing a rearranged member of the Vκ1, Vκ2, Vκ3, Vκ4, Vλ1, Vλ2 and Vλ3 gene families, the scFv linker and restriction sites XhoI and NcoI for cloning of the heavy chain library. Nucleotide sequences of the VL genes appear in the EMBL, Genbank and DDBJ Nucleotide Sequence Databases under accession numbers X83616 and X83712-X83714.
  • PCR primers were designed to fuse a bank of 49 germline VH genes (Tomlinson et al., J. Mol. Biol. 227, 776-798 (1992)) to CDR3 regions, varying in length from 6 to 15 residues, and a JH4 gene segment. Template, consisting of 0.5 ng of a mixture of plasmids encoding genes from a single VH gene family, was amplified using the VH family based primers VHBackSfi (Marks et al., J. Mol. Biol. 222, 581-597 (1991)) and one of the CDR3 primers. PCR products of each amplification encoding a differently-sized HCDR3 loop were digested with XhoI and NcoI and cloned into the pHEN1-Vλ1 vector. This resulted in a phagemid library of 1.2×108 clones. Plasmid DNA from this library was digested with XhoI-NcoI and the synthetic VH regions were cloned into the other pHENI-light chain vectors, resulting in seven libraries, each varying in size between 2×107 and 1.2×108 clones. The seven libraries were rescued individually (Marks et al., EMBO 12, 725-734 (1993)) using helper phage VCS-M13 (Stratagene) and finally combined to form a single library of 3.6×108 clones.
  • Example 2 Selection of Phage Antibodies
  • The phages were panned for binding to antigen-coated immunotubes (Nunc Maxisorp; Marks et al. J. Mol. Biol. 222, 581-597 (1991) using the following antigens: dinitrophenol (DNP) coupled to BSA, tetanus toxoid (TTX), tyraminated Group B Streptococcal type III capsular polysaccharide (GBS), human surfactant protein A (spA; Hawgood, Pulmonary Surfactant: From Molecular Biology to Clinical Practice. Elsevier Science Publishers, pp. 33-54 (1992), human thyroglobulin (Tg; Logtenberg et al., J. Immunol. 136, 1236-1240 (1986)), human Von Willebrand Factor (VWF), human VWF fragment A2, a purified human IgG paraprotein, a recombinant protein corresponding to the HMG domain of T cell-specific transcription factor TCF-1 (HMG, van Houte et al, J. Biol. Chem. 268, 18083 (1993), a deletion mutant of the epithelial glycoprotein EGP-2 (δEGP-2; Helfrich et al., Int. J. Cancer, Suppl. 8, 1. (1994), the extracellular portion of human ICAM-1, (Hippenmeyer et al. Bio. Technology 11, 1037 (1993), an uncharacterized DNA binding protein isolated from a cDNA library and expressed as a maltose binding protein (MBP) fusion protein (BLT1/MBP), and the human homeobox protein PBX1a (Monica et al. Mol. Cell. Biol. 11, 6149-6157 (1991). All antigens were coated overnight at room temperature at a concentration of 10 ug/ml in PBS (DNP-BSA, GBS, Tg, VW, A2, TTX, ICAM-1, BLT1/MBP, PBX1a) or 50 mM NaHC03 pH 9.6 (IgG, spA, HMG, δEGP-2).
  • To target selection of Phabs to a desired portion of a molecule, phage selections were performed on solid phase-bound BLT1/MBP fusion protein as described in the standard protocol with the addition of 6 μg/ml soluble MBP to the Phab-milkpowder mixture during panning. In order to obtain Phabs capable of discriminating between two highly homologous proteins, selections on immunotube-coated full-length PBX1a were carried out according to the standard protocol in the presence of 5 μg/ml full-length recombinant PBX2 protein during panning (Monica et al., Mol. Cell. Biol 11, 6149-6157 (1991).
  • Example 3 Selection of Phage Antibodies by Cell Sorting
  • Venous blood was diluted 1:10 in 0.8% NH4Cl/0.08% NaHCO3/0.08% EDTA (pH 6.8) to remove erythrocytes and the nucleated cells were pelleted and washed once in PBS/1% BSA. Approximately 1013 phage antibody particles were blocked for 15 minutes in 4 ml 4% milkpowder in PBS (MPBS). 5×106 leucocytes were added to the blocked phages and the mixture was slowly rotated overnight at 4° C. The following day, cells were washed twice in 50 ml ice-cold PBS/1% BSA. The pelleted cells were resuspended in 50 μl of CD3-PerCP and 50 μl of CD20-FITC and after a 20 minute incubation on ice, cells were washed once with 1% BSA/PBS and resuspended in 500 μl ice-cold PBS/1% BSA. Cell sorting was performed on a FACSvantage®. For each subpopulation, 104 cells were sorted in 100 μl PBS.
  • Example 4 Propagation of Selected Phages
  • Phages were eluted from the cells by adding 150 μl 76 mM citric acid pH 2.5 in PBS and incubation for 5 minutes at room temperature (RT). The mixture was neutralized with 200 μl 1 M Tris/HCI, pH 7.4. Eluted phages were used to infect E'Coli X11-Blue and the bacteria were plated on TYE medium containing the appropriate antibiotics and glucose. Bacterial colonies were counted, scraped from the plates and used as an inoculum for the next round of phage rescue.
  • Example 5 Preparation of Monoclonal Phage Antibodies and scFv Fragments and Immunofluorescent Analysis
  • Phages were prepared from individual ampicillin resistant colonies grown in 25 ml 2TY medium, purified by polyethylene glycol precipitation, resuspended in 2 ml PBS, filtered (0.45 μM) and stored at 4° C. until further use. ScFv fragments were produced in E Coli non-suppressor strain SF 110 that is deficient in the proteases degP and ompT. In our experience, the stability of scFv produced in SF110 is superior to that of scFv produced in HB2151 commonly used for this purpose.
  • For staining of leucocytes, 100 μl MoPhab was blocked by adding 50 μl 4% MPBS for 15 minutes at RT. 5×105 leucocytes in 50 μl PBS/1% BSA were added and incubated on ice for 1 hour. The cells were washed twice in ice-cold PBS/1% BSA. To detect cell-bound phages, the cells were incubated in 10 μl of 1/200 diluted sheep anti-M13 polyclonal antibody (Pharmacia, Uppsala. Sweden), washed twice and incubated in 10 μl of 20 μg/ml PE-labeled donkey anti-sheep polyclonal antibody (Jackson immunoresearch, West Grove, Pa.), each for 20 minutes on ice. The cells were washed and incubated in 10 μl each of CD3-FITC and CD20-PerCP monoclonal antibodies. When cells were strained with purified scFv fragments, second and third step reagents consisted of the anti-myc tag-specific antibody 9E10 and FITC- or PE-labeled goat anti-mouse antibodies. After a single final wash, the cells were resuspended in 0.5 ml PBS/1% BSA and analyzed by FACS.
  • Fetal bone marrow was from aborted fetuses (16-22 weeks gestation) and used following the guidelines of the institutional review board of Stanford Medical School Center on the use of human subjects in medical research. Bone marrow cells were obtained by flushing intramedullary cavities of the femurs with RPMI 1640 medium. Pelleted cells were treated with the hypotonic NH4Cl solution to remove erythrocytes. 106 fetal bone marrow cells were stained with MoPhabs T1, B9, and B28 in combination with a panel of fluorochrome-labeled MoAbs. The panel includes CD3 (Leu 4B PerCP), CD4 (Leu FITC), CD8 (Leu2a APC), CD 10 (anti Calla FITC; all from Becton Dickinson Immunocytometry Systems, San Jose, Calif.), and FITC-conjugated goat anti-human, μ, δ, and κ chain-specific polyclonal antibodies (Southern Biotechnologies, AL).
  • Example 6 Specificity of Isolated MoPhabs
  • 5×106 erythrocyte-lysed peripheral blood cells from a healthy individual were incubated with the phage library and subsequently stained with CD3 PerCP and CD20 FITC labeled monoclonal antibodies (MoAbs). The population was run on a flow cytometer.
  • 104 cells of each population were sorted and the phages bound to the isolated cells were eluted from the cell surface. The number of clones obtained after the first round of selection varied between 320 and 1704. The number of phage clones obtained roughly was inversely correlated with the frequency of the cell population in the blood sample as shown in Table 1. TABLE 1 # MoPhabs Sorted # Staining Population Round 1 Round 2 # Pos. Clones Profiles ‘all’leucocytes 640 980 15/15 1 eosinophils 1280 390 11/15 2 T-cells (CD3+) 320 3330 15/15 2 B-cells 1704 6000 10/16 3 (CD20+)
  • The second round of selection resulted in a modest increase in the number of phages eluted from the cells in most but not all cases as shown in Table 1.
  • The phages eluted from the sorted cells were expanded as individual libraries and used in a second round of selection employing the same procedure. Finally, MoPhabs were prepared from individual colonies obtained after the second round of selection.
  • The binding properties of 15 MoPhabs from each sorted population was analyzed by incubation with peripheral blood leucocytes followed by incubation with secondary anti-phage PE-labeled antibody and CD20 FITC and CD3 PerCP. After two rounds of selection, between 63% and 100% of the MoPhabs were found to display binding activity to leucocytes, see Table 1.
  • Staining profiles were obtained for a negative control MoPhab, a MoPhab derived from sorting ‘all’ leucocytes, two eosinophil-derived MoPhavs (E1/E2), two T cell derived MoPhabs 9T1fF2) and two B cell derived MoPhabs (B9/B28). ScFv fragments were produced from each MoPhab clone. For all clones, identical results were obtained for whole phage antibodies and isolated scFv fragments, albeit some loss of signal intensity was observed when using the latter. The 15 MoPhAbs selected on ‘all’ leukocytes showed identical staining patterns: all granulocytes, eosinophils, and monocytes stained homogeneously bright. All the T lymphocytes stained but with varying intensity. Strikingly, no binding to B lymphocytes was observed. Among the 15 MoPhAbs selected for binding to eosinophils, two staining patterns were discernable. Both MoPhabs bound to all eosinophils and monocytes; the staining profile of granulocytes differed between both MoPhabs. MoPhab E2 reacted with the majority of T cells, whereas virtually no staining of T cells was observed with MoPhab E1. Conversely, MoPhab E2 did not bind to B cells while MoPhab E1 stained virtually all B cells. Two staining patterns could be distinguished among the 12 MoPhabs selected for binding to T lymphocytes. MoPhab T2 dimly stained a subpopulation of B cells, T cells and granulocytes but not monocytes and eosinophils. MoPhab T 1 exclusively and brightly stained a subpopulation of T lymphocytes comprising approximately 50% of CD3+ cells. Finally, among MoPhabs selected from B cells, three staining patterns were distinguishable: approximately 50% of the peripheral blood B cells stained with MoPhab B9, MoPhab B28 stained all CD20+ peripheral blood B cells, whereas MoPhab B 11 stained virtually all leucocytes.
  • MoPhabs TI, B9 and B28 were selected for further characterization. In four color staining experiments with CD3, CD4, CD8 and T 1 antibodies, T 1 was shown to bind to CD8+ cells and not to CD4+ cells. Immunofluorescent staining of COS cells transiently transfected with cDNAs encoding the CD8α chain, the CD8β chain or both demonstrated that MoPhAb T1 recognized cells expressing the CD8αα homodimer. We conclude that T1 recognizes an epitope encoded by the CD8α chain.
  • Triple-staining of B9 with CD20 and antisera specific for the immunoglobulin μ, δ, γ, α, κ, and λ chains revealed that B9 marker expression did not concur with any of the Ig isotypes. Triple-staining of purified tonsil B cells with MoPhab B9 or B28, CD19, and CD 10 or μ heavy chain specific antibodies confirmed that B28 binds to all and B9 binds to a subpopulation of CD19+ tonsil B cells. Germinal center B cells (CD19+/CD10+) uniformly lack the antigen recognized by MoPhab B9. In human bone marrow, the CD 19 marker is expressed from the earliest pro-B cell to the virgin, surface IgM+ B cell stage. Triple staining of fetal bone marrow cells with CD19, sIgM and B9 or B28 demonstrated that B9 and B28 are not expressed during B lineage differentiation. We conclude that the structures detected by the B9 and B28 MoPhabs are expressed at a very late stage of B cell development, presumably after newly generated sIgM+ B cells have left the bone marrow. To our best knowledge B cell-specific markers with such expression patterns have not been described previously.
  • Nucleotide sequence analysis was used to established VH and VL gene utilization and heavy chain CDR3 composition encoding the scFv antibodies obtained from the sorted subpopulations as shown in Table II. TABLE II VH and VL gene utilization and deduced amino acid sequence of CDR3 regions of selected MoPhabs. MoPhab CDR3 VH VL A1 RMRFPSY DP32 Vλ3 E1 RLRSPPL DP32 Vλ2 E2 RAWYTDSFDY DP45 Vκ1 T1 KWLPPNFFDY DP32 Vκ3 T2 RSTLADYFDY DP69 Vλ3 B9 KGVSLRAFDY DP31 Vκ1 B28 RGFLRFASSWFDY DP32 Vλ3
  • ScFv derived from different clones with the same staining profile showed identical nucleotide sequences of CDR3 regions. The MoPhabs with different staining patterns were encoded by various combinations of VH and VL chains, with an overrepresentation of the DP32 gene fragment, and comprised CDR3 loops varying in length between 6 and 12 amino acids.
  • It is apparent that many modifications and variations of this invention as hereinabove set forth may be made without departing from the spirit and scope thereof. The specific embodiments are given by way of example only and the invention is limited only by the terms of the appended claims.

Claims (12)

1-8. (Cancelled)
9. A method for obtaining a phage particle comprising an antibody fragment directed against an antigen associated with the surface of target cells, the method comprising:
(a) providing a library of phage particles that express antibody fragments on the surface of the phage particles;
(b) incubating said library of phage particles with non-target antigens;
(c) incubating said library of phage particles with said target cells, under conditions that allow binding of the antibody fragment expressed on the surface of the phage particles to said antigen associated with said target cells;
(d) separating said target cells and phage particles bound therewith from phage particles not bound by target cells; and
(e) recovering the phage particles bound to the target cells, wherein step (c) may precede step (b).
10. A method according to claim 9, wherein the non-target antigens are immobilized.
11. A method according to claim 10, wherein the non-target antigens are immobilized by coating a solid surface.
12. A method according to claim 9, wherein the non-target antigens are associated with the surface of non-target cells.
13. A method according to claim 12, wherein the separating of said target cells and phage particles bound therewith from phage particles not bound by target cells is accomplished by flow cytometry.
14. A method according to claim 9, further comprising isolating antibody fragments that bind to said target cells.
15. A method according to claim 13, wherein said target cells and/or said non-target cells are detectably labeled.
16. A method according to claim 15, wherein said detectably labeled cells are labeled with a fluorescent label.
17. A method according to claim 16, wherein the fluorochrome-labeled antibodies are phycoerythrin (PE)-labeled, peridinin chlorophyll protein (PerCP)-labeled or fluorescein isothiocyanate (FITC)-labeled.
18. A method according to claim 9, further comprising repeating steps (b) through (e).
19. A method according to claim 9, wherein the library of phage particles comprises phage particles expressing Fab or single chain Fv (scFv) antibody fragments.
US10/910,547 1995-06-07 2004-08-03 Phage antibodies Abandoned US20050043521A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US48363395A true 1995-06-07 1995-06-07
US93289297A true 1997-09-18 1997-09-18
US09/085,072 US6265150B1 (en) 1995-06-07 1998-05-26 Phage antibodies
US09/865,048 US6858384B2 (en) 1995-06-07 2001-05-24 Phage antibodies
US10/910,547 US20050043521A1 (en) 1995-06-07 2004-08-03 Phage antibodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/910,547 US20050043521A1 (en) 1995-06-07 2004-08-03 Phage antibodies

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/865,048 Continuation US6858384B2 (en) 1995-06-07 2001-05-24 Phage antibodies

Publications (1)

Publication Number Publication Date
US20050043521A1 true US20050043521A1 (en) 2005-02-24

Family

ID=27047725

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/085,072 Expired - Lifetime US6265150B1 (en) 1995-06-07 1998-05-26 Phage antibodies
US09/865,048 Expired - Fee Related US6858384B2 (en) 1995-06-07 2001-05-24 Phage antibodies
US10/910,547 Abandoned US20050043521A1 (en) 1995-06-07 2004-08-03 Phage antibodies

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US09/085,072 Expired - Lifetime US6265150B1 (en) 1995-06-07 1998-05-26 Phage antibodies
US09/865,048 Expired - Fee Related US6858384B2 (en) 1995-06-07 2001-05-24 Phage antibodies

Country Status (1)

Country Link
US (3) US6265150B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710836B2 (en) 2008-12-10 2014-04-29 Nanomr, Inc. NMR, instrumentation, and flow meter/controller continuously detecting MR signals, from continuously flowing sample material
US8841104B2 (en) 2010-04-21 2014-09-23 Nanomr, Inc. Methods for isolating a target analyte from a heterogeneous sample
US9389225B2 (en) 2010-04-21 2016-07-12 Dna Electronics, Inc. Separating target analytes using alternating magnetic fields
US9428547B2 (en) 2010-04-21 2016-08-30 Dna Electronics, Inc. Compositions for isolating a target analyte from a heterogeneous sample
US9476812B2 (en) 2010-04-21 2016-10-25 Dna Electronics, Inc. Methods for isolating a target analyte from a heterogeneous sample
US9551704B2 (en) 2012-12-19 2017-01-24 Dna Electronics, Inc. Target detection
US9599610B2 (en) 2012-12-19 2017-03-21 Dnae Group Holdings Limited Target capture system
US9804069B2 (en) 2012-12-19 2017-10-31 Dnae Group Holdings Limited Methods for degrading nucleic acid
US9902949B2 (en) 2012-12-19 2018-02-27 Dnae Group Holdings Limited Methods for universal target capture
US9995742B2 (en) 2012-12-19 2018-06-12 Dnae Group Holdings Limited Sample entry
US10000557B2 (en) 2012-12-19 2018-06-19 Dnae Group Holdings Limited Methods for raising antibodies

Families Citing this family (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265150B1 (en) * 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
JP4763135B2 (en) * 1998-12-23 2011-08-31 メザイク プロプライエトリー リミティッド Assays for detecting binding partners
US7425437B2 (en) * 1999-11-26 2008-09-16 Crucell Holland B.V. Vaccines against West Nile Virus
AT386747T (en) * 1999-12-27 2008-03-15 Crucell Holland Bv Antibodies to ep-cam
US20020115065A1 (en) * 2000-08-28 2002-08-22 Ton Logtenberg Differentially expressed epitopes and uses thereof
US20030138425A1 (en) * 2001-09-21 2003-07-24 Mather Jennie Powell Antibodies that bind to cancer-associated antigen cytokeratin 8 and methods of use thereof
US8455627B2 (en) * 2001-10-05 2013-06-04 Affimed Therapeutics, Ag Human antibody specific for activated state of platelet integrin receptor GPIIb/IIIa
EP1300419B1 (en) * 2001-10-05 2007-06-13 Affimed Therapeutics AG Antibody of human origin for inhibiting thrombocyte aggregation
US20040005709A1 (en) * 2001-10-24 2004-01-08 Hoogenboom Henricus Renerus Jacobus Mattheus Hybridization control of sequence variation
EA200400658A1 (en) * 2001-11-09 2004-10-28 Неофарм, Инк. Method of treatment of tumors expressing a receptor for il-13 (options)
AU2003230929A1 (en) * 2002-04-12 2003-10-27 Raven Biotechnologies, Inc. Antibodies that bind to integrin alpha-v-beta-6 and methods of use thereof
AU2003225294A1 (en) * 2002-05-03 2003-11-17 Raven Biotechnologies, Inc. Alcam and alcam modulators
CA2489004C (en) * 2002-06-13 2013-01-08 Crucell Holland B.V. Agonistic binding molecules to the human ox40 receptor
US7527969B2 (en) 2002-06-19 2009-05-05 Raven Biotechnologies, Inc. RAAG10 cell surface target and a family of antibodies recognizing that target
AU2003250074B2 (en) 2002-07-18 2010-09-09 Merus N.V. Recombinant production of mixtures of antibodies
EP1545615A4 (en) * 2002-10-04 2006-03-01 Rinat Neuroscience Corp Methods for treating cardiac arrhythmia and preventing death due to cardiac arrhythmia using ngf antagonists
AU2003304238A1 (en) * 2002-10-08 2005-01-13 Rinat Neuroscience Corp. Methods for treating post-surgical pain by administering an anti-nerve growth factor antagonist antibody and compositions containing the same
BR0315164A (en) * 2002-10-08 2005-08-23 Rinat Neuroscience Corp Methods for treating post-surgical pain administering a nerve growth factor antagonist and compositions containing the same
JP2006517524A (en) 2002-10-08 2006-07-27 ライナット ニューロサイエンス コーポレイション Methods for treating pain by administering a nerve growth factor antagonist and opioid analgesic, and compositions containing them
PL377769A1 (en) * 2002-10-09 2006-02-20 Rinat Neuroscience Corp. Methods of treating alzheimer's disease using antibodies directed against amyloid beta peptide and compositions thereof
AT502051T (en) 2002-10-16 2011-04-15 Purdue Pharma Lp Antibodies that bind to cell-associated ca 125 / 0722p, and procedures for their application
AU2003295474B2 (en) * 2002-11-13 2009-07-30 Macrogenics West, Inc. Antigen PIPA and antibodies that bind thereto
JP2006513187A (en) * 2002-12-23 2006-04-20 ライナット ニューロサイエンス コーポレイション A method for treating a taxol-induced sensory neuropathy
US7569364B2 (en) * 2002-12-24 2009-08-04 Pfizer Inc. Anti-NGF antibodies and methods using same
SI2270048T1 (en) 2002-12-24 2016-01-29 Rinat Neuroscience Corp. Anti-NGF antibodies and methods using same
US9498530B2 (en) 2002-12-24 2016-11-22 Rinat Neuroscience Corp. Methods for treating osteoarthritis pain by administering a nerve growth factor antagonist and compositions containing the same
US20060147932A1 (en) * 2003-01-18 2006-07-06 Alun Davies Methods of screening for modulators of nerve growth factor
EP2191846A1 (en) 2003-02-19 2010-06-02 Rinat Neuroscience Corp. Method for treating pain by administering a nerve growth factor antagonist and an NSAID and composition containing the same
JP2006520806A (en) * 2003-03-20 2006-09-14 ライナット ニューロサイエンス コーポレイション A method of treating a taxol-induced bowel disorder
WO2004087758A2 (en) * 2003-03-26 2004-10-14 Neopharm, Inc. Il 13 receptor alpha 2 antibody and methods of use
NZ543498A (en) 2003-05-14 2007-06-29 Immunogen Inc A conjugate comprising an antibody chemically coupled to a maytansinoid
EP2395017A3 (en) 2003-05-30 2012-12-19 Merus B.V. Design and use of paired variable regions of specific binding molecules
CN1279056C (en) * 2003-06-06 2006-10-11 马菁 Specific antibody of tumor-associated antigen SM5-1 and use thereof
US20050232926A1 (en) * 2003-06-06 2005-10-20 Oncomax Acquisition Corp. Antibodies specific for cancer associated antigen SM5-1 and uses thereof
NZ543635A (en) 2003-06-25 2008-05-30 Crucell Holland Bv Human C-type lectin: a suitable target molecule for binding molecules, particularly immunoconjugates, in the diagnosis, prevention and/or treatment of myeloid neoplastic diseases such as AML and CML
AU2004260884B2 (en) * 2003-07-22 2009-11-19 Crucell Holland B.V. Binding molecules against SARS-coronavirus and uses thereof
CA2536062A1 (en) * 2003-08-18 2005-03-03 Tethys Bioscience, Inc. Methods for reducing complexity of a sample using small epitope antibodies
MXPA06003014A (en) * 2003-09-18 2006-06-23 Raven Biotechnologies Inc Kid3 and kid3 antibodies that bind thereto.
JP5912211B2 (en) 2004-01-20 2016-04-27 メルス ビー.ヴィー. Mixture of binding proteins
KR101637908B1 (en) 2004-04-07 2016-07-11 리나트 뉴로사이언스 코프. Methods for treating bone cancer pain by administering a nerve growth factor antagonist
DE602004021773D1 (en) * 2004-05-05 2009-08-13 Micromet Ag Preparing a single-chain fv antibody fragment
WO2005118644A2 (en) 2004-05-27 2005-12-15 Crucell Holland B.V. Binding molecules capable of neutralizing rabies virus and uses thereof
KR101295139B1 (en) 2004-06-07 2013-08-12 레이븐 바이오테크놀로지스, 인코퍼레이티드 Transferrin receptor antibodies
WO2006085979A2 (en) 2004-07-09 2006-08-17 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Soluble forms of hendra and nipah virus g glycoprotein
WO2006036291A2 (en) * 2004-07-30 2006-04-06 Rinat Neuroscience Corp. Antibodies directed against amyloid-beta peptide and methods using same
EP1799259B1 (en) 2004-10-12 2012-12-05 Crucell Holland B.V. Binding molecules for the detection of cancer
WO2006051091A1 (en) 2004-11-11 2006-05-18 Crucell Holland B.V. Compositions against sars-coronavirus and uses thereof
AU2005318171B2 (en) 2004-12-20 2011-09-29 Crucell Holland B.V. Binding molecules capable of neutralizing West Nile virus and uses thereof
EP1846767B1 (en) * 2005-01-12 2012-06-06 MacroGenics West, Inc. Kid31 and antibodies that bind thereto
WO2006083852A2 (en) * 2005-01-31 2006-08-10 Raven Biotechnologies, Inc. Luca2 and antibodies that bind thereto
CA2596273C (en) * 2005-02-02 2017-11-14 Raven Biotechnologies, Inc. Adam-9 modulators
US20060171952A1 (en) * 2005-02-02 2006-08-03 Mather Jennie P JAM-3 and antibodies that bind thereto
AU2006210606B2 (en) * 2005-02-03 2012-03-22 Macrogenics West, Inc. Antibodies to Oncostatin M receptor
AU2006210460B2 (en) * 2005-02-04 2012-04-05 Macrogenics West, Inc. Antibodies that bind to EphA2 and methods of use thereof
EP2468304A3 (en) 2005-02-11 2012-09-26 ImmunoGen, Inc. Process for preparing stable drug conjugates
US20110166319A1 (en) * 2005-02-11 2011-07-07 Immunogen, Inc. Process for preparing purified drug conjugates
AR054260A1 (en) * 2005-04-26 2007-06-13 Rinat Neuroscience Corp Methods of treating diseases of the lower motor neuron and compositions used therein
UY29504A1 (en) 2005-04-29 2006-10-31 Rinat Neuroscience Corp Antibodies directed against the beta amyloid peptide and methods using the same.
WO2006120230A2 (en) 2005-05-12 2006-11-16 Crucell Holland B.V. Host cell specific binding molecules capable of neutralizing viruses and uses thereof
WO2006136601A1 (en) * 2005-06-23 2006-12-28 Crucell Holland B.V. Optimization of west nile virus antibodies
BRPI0613770A2 (en) 2005-07-22 2009-05-19 Y S Therapeutics Co Ltd anti-CD26 antibodies and methods of use thereof
AU2006278573A1 (en) * 2005-08-03 2007-02-15 Immunogen, Inc. Immunoconjugate formulations
NZ609752A (en) * 2005-08-24 2014-08-29 Immunogen Inc Process for preparing maytansinoid antibody conjugates
CA2622603C (en) * 2005-09-15 2014-06-17 Crucell Holland B.V. Method for preparing immunoglobulin libraries
WO2007055902A1 (en) * 2005-11-03 2007-05-18 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Immunogenic peptides and methods of use for treating and preventing cancer
UA94244C2 (en) 2005-11-14 2011-04-26 Ринат Нейросаенз Корп. Antagonist antibody directed against calcitonin gene-related peptide and pharmaceutical composition comprising the same
US7820174B2 (en) 2006-02-24 2010-10-26 The United States Of America As Represented By The Department Of Health And Human Services T cell receptors and related materials and methods of use
US8097425B2 (en) * 2006-03-10 2012-01-17 Tethys Bioscience, Inc. Multiplex protein fractionation
CA2654712C (en) * 2006-06-06 2015-05-05 Crucell Holland B.V. Human binding molecules having killing activity against staphylococci and uses thereof
US7960518B2 (en) 2006-06-06 2011-06-14 Crucell Holland B.V. Human binding molecules having killing activity against enterococci and uses thereof
CN101516912B (en) * 2006-06-07 2013-10-30 生物联合公司 Antibodies recognizing carbohydrate containing epitope on CD-43 and CEA expressed on cancer cells and methods using same
EP2450377A1 (en) 2006-09-07 2012-05-09 Crucell Holland B.V. Human binding molecules capable of neutralizing influenza virus H5N1 and uses thereof
SI2059532T1 (en) 2006-09-07 2013-04-30 Crucell Holland B.V. Human binding molecules capable of neutralizing influenza virus h5n1 and uses thereof
US8088379B2 (en) * 2006-09-26 2012-01-03 The United States Of America As Represented By The Department Of Health And Human Services Modified T cell receptors and related materials and methods
CA2668800A1 (en) * 2006-11-08 2008-06-05 Macrogenics West, Inc. Tes7 and antibodies that bind thereto
EP2102236B1 (en) * 2007-01-12 2014-08-06 Government of the United States of America, Represented by the Secretary, Department of Health and Human Services GP100-specific T cell receptors and related materials and methods of use
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
AP200905028A0 (en) 2007-04-10 2009-12-31 Univ Tulane Soluble and membrane-anchored forms of lassa virussubunit proteins
WO2008137120A1 (en) * 2007-05-03 2008-11-13 Tethys Bioscience, Inc. Binding reagents that contain small epitope binding molecules
WO2009079649A1 (en) 2007-12-18 2009-06-25 Bioalliance C.V. Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
US8669349B2 (en) 2008-04-02 2014-03-11 Macrogenics, Inc. BCR-complex-specific antibodies and methods of using same
EP2318832B1 (en) 2008-07-15 2013-10-09 Academia Sinica Glycan arrays on ptfe-like aluminum coated glass slides and related methods
TWI445716B (en) 2008-09-12 2014-07-21 Rinat Neuroscience Corp Pcsk9 antagonists
US20110286916A1 (en) * 2008-11-20 2011-11-24 Jose Miguel Aste-Amezaga Generation and characterization of anti-notch antibodies for therapeutic and diagnostic use
WO2010075417A1 (en) 2008-12-23 2010-07-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Survivin specific t cell receptor for treating cancer
WO2010075303A1 (en) 2008-12-23 2010-07-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Splicing factors with a puf protein rna-binding domain and a splicing effector domain and uses of same
WO2010086828A2 (en) 2009-02-02 2010-08-05 Rinat Neuroscience Corporation Agonist anti-trkb monoclonal antibodies
US8530167B2 (en) 2009-02-09 2013-09-10 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diagnostic and therapeutic uses of GNPTAB, GNPTG, and NAGPA in stuttering
EA029939B1 (en) 2009-05-11 2018-06-29 Янссен Вэксинс Энд Превеншн Б.В. Human binding molecules capable of neutralizing influenza virus h3n2 and uses thereof
WO2010141566A1 (en) 2009-06-03 2010-12-09 Immunogen, Inc. Conjugation methods
US9090690B2 (en) 2009-06-18 2015-07-28 Pfizer Inc. Anti Notch-1 antibodies
EP2464661B1 (en) 2009-08-13 2018-01-17 The Johns Hopkins University Methods of modulating immune function with anti-b7-h7cr antibodies
US8465743B2 (en) 2009-10-01 2013-06-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-vascular endothelial growth factor receptor-2 chimeric antigen receptors and use of same for the treatment of cancer
US8853378B2 (en) 2009-10-09 2014-10-07 Georgetown University Polynucleotides that home to atherosclerotic plaque
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
TW201125583A (en) * 2009-12-23 2011-08-01 Bioalliance Cv Anti-EpCAM antibodies that induce apoptosis of cancer cells and methods using same
US9056068B2 (en) 2010-02-04 2015-06-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Vaccine and methods of use against Strongyloide stercoralis infection
TWI552760B (en) 2010-02-24 2016-10-11 Rinat Neuroscience Corp Antagonist -il-7 receptor antibodies and methods
EA030226B1 (en) 2010-03-04 2018-07-31 Макродженикс, Инк. Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof
US8802091B2 (en) 2010-03-04 2014-08-12 Macrogenics, Inc. Antibodies reactive with B7-H3 and uses thereof
RU2570729C2 (en) 2010-03-11 2015-12-10 Ринат Ньюросайенс Корпорейшн Antibodies with ph-dependent antigen binding
ES2575160T3 (en) 2010-03-15 2016-06-24 The Board Of Trustees Of The University Of Illinois Inhibitors of the interactions that bind the alpha subunit of beta integrin-protein G
WO2011123518A1 (en) 2010-03-31 2011-10-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Adenosine receptor agonists for the treatment and prevention of vascular or joint capsule calcification disorders
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
DK2975409T3 (en) 2010-05-10 2018-12-17 Acad Sinica Zanamivir phosphonate congeners with anti-influenza activity and determination of oseltamivir sensitivity in influenza viruses
WO2012015758A2 (en) 2010-07-30 2012-02-02 Saint Louis University Methods of treating pain
EP2606067B1 (en) 2010-08-19 2018-02-21 Zoetis Belgium S.A. Anti-ngf antibodies and their use
AU2011305817B2 (en) 2010-09-21 2014-12-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-SSX-2 T cell receptors and related materials and methods of use
WO2012054825A1 (en) 2010-10-22 2012-04-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mage-a3 t cell receptors and related materials and methods of use
US9068993B2 (en) 2010-11-04 2015-06-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diagnostic assays and methods of use for detection of filarial infection
CA2821130C (en) 2010-12-15 2017-11-07 Wyeth Llc Anti-notch1 antibodies
US9029502B2 (en) 2010-12-20 2015-05-12 The Regents Of The University Of Michigan Inhibitors of the epidermal growth factor receptor-heat shock protein 90 binding interaction
SG193997A1 (en) 2011-03-29 2013-11-29 Immunogen Inc Process for manufacturing conjugates of improved homogeneity
EA201391398A1 (en) 2011-03-29 2014-02-28 Иммуноджен, Инк. Getting conjugats "maytansinoid-antibody" in one stage method
WO2012138475A1 (en) 2011-04-08 2012-10-11 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-epidermal growth factor receptor variant iii chimeric antigen receptors and use of same for the treatment of cancer
NZ703939A (en) 2011-05-21 2016-01-29 Macrogenics Inc Cd3-binding molecules capable of binding to human and non-human cd3
ES2635416T3 (en) 2011-06-09 2017-10-03 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Exotoxin A from pseudomonas with epitopes of T lymphocytes and / or less immunogenic B lymphocytes
NZ618530A (en) 2011-07-14 2016-05-27 Crucell Holland Bv Human binding molecules capable of neutralizing influenza a viruses of phylogenetic group 1 and phylogenetic group 2 and influenza b viruses
PL2755997T3 (en) 2011-09-15 2019-01-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing hla-a1- or hla-cw7-restricted mage
ES2656505T3 (en) 2011-09-16 2018-02-27 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Pseudomonas exotoxin A with less immunogenic B lymphocyte epitopes
WO2013052933A2 (en) 2011-10-06 2013-04-11 The Board Of Trustees Of The University Of Illinois Myosin binding protein-c for use in methods relating to diastolic heart failure
RU2644243C2 (en) 2011-10-20 2018-02-08 Дзе Юнайтед Стейтс Оф Америка, Эз Репрезентед Бай Дзе Секретари, Департмент Оф Хелс Энд Хьюман Сёрвисез Chimeric antigenic receptors to cd22
CA2954166A1 (en) 2011-11-11 2013-05-16 Rinat Neuroscience Corp. Antibodies specific for trop-2 and their uses
RU2014123030A (en) 2011-12-22 2016-02-20 Ринат Ньюросайенс Корп. Antagonistic antibodies against the human growth hormone receptor and ways of their application
WO2013093693A1 (en) 2011-12-22 2013-06-27 Rinat Neuroscience Corp. Staphylococcus aureus specific antibodies and uses thereof
AU2013235726B2 (en) 2012-03-23 2017-04-20 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mesothelin chimeric antigen receptors
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
CN108586610A (en) 2012-04-20 2018-09-28 美勒斯公司 Ways and means for generating immunoglobulin-like molecule
CA2874486A1 (en) 2012-05-22 2013-11-28 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Murine anti-ny-eso-1 t cell receptors
CN104364264B (en) 2012-06-06 2018-07-24 硕腾服务有限责任公司 Ngf humanized anti-dog antibodies and methods
WO2014008263A2 (en) 2012-07-02 2014-01-09 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Paramyxovirus and methods of use
US8603470B1 (en) 2012-08-07 2013-12-10 National Cheng Kung University Use of IL-20 antagonists for treating liver diseases
AU2013306098A1 (en) 2012-08-18 2015-02-12 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
US9547009B2 (en) 2012-08-21 2017-01-17 Academia Sinica Benzocyclooctyne compounds and uses thereof
EP2895509A1 (en) 2012-09-14 2015-07-22 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing mhc class ii-restricted mage-a3
JP6345181B2 (en) 2012-10-04 2018-06-20 イムノゲン インコーポレーティッド Use of PVDF membranes to purify cell binding agent cytotoxic agent conjugates
ES2718903T3 (en) 2012-10-24 2019-07-05 Us Health M971 chimeric antigen receptors
US8975033B2 (en) 2012-11-05 2015-03-10 The Johns Hopkins University Human autoantibodies specific for PAD3 which are cross-reactive with PAD4 and their use in the diagnosis and treatment of rheumatoid arthritis and related diseases
KR20150082503A (en) 2012-11-09 2015-07-15 화이자 인코포레이티드 Platelet-derived growth factor b specific antibodies and compositions and uses thereof
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
JP2016512557A (en) 2013-03-14 2016-04-28 マクロジェニクス,インコーポレーテッド Bispecific molecules that are immunoreactive with antigens expressed by immune effector cells and virus-infected cells that express activated receptors and uses thereof
US9790282B2 (en) 2013-03-25 2017-10-17 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-CD276 polypeptides, proteins, and chimeric antigen receptors
EP3457138A3 (en) 2013-04-30 2019-06-19 Université de Montréal Novel biomarkers for acute myeloid leukemia
CN105189560A (en) 2013-05-07 2015-12-23 瑞纳神经科学公司 Anti-glucagon receptor antibodies and methods of use thereof
US9890369B2 (en) 2013-06-20 2018-02-13 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cytolethal distending toxin subunit B conjugated or fused to Bacillus anthracis toxin lethal factor
EP3013365B1 (en) 2013-06-26 2019-06-05 Academia Sinica Rm2 antigens and use thereof
US9981030B2 (en) 2013-06-27 2018-05-29 Academia Sinica Glycan conjugates and use thereof
EP3022223B1 (en) 2013-07-15 2019-06-19 The U.S.A. as represented by the Secretary, Department of Health and Human Services Anti-human papillomavirus 16 e6 t cell receptors
JP2015030666A (en) 2013-07-31 2015-02-16 学校法人順天堂 Anti-human cd26 monoclonal antibodies and antigen-binding fragments thereof
TWI623551B (en) 2013-08-02 2018-05-11 輝瑞大藥廠 Anti-cxcr4 antibodies and antibody-drug conjugates
WO2015035337A1 (en) 2013-09-06 2015-03-12 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS WITH ALTERED GLYCOSYL GROUPS
CA2926215A1 (en) 2013-10-06 2015-04-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Modified pseudomonas exotoxin a
SG10201810298VA (en) 2013-11-13 2018-12-28 Pfizer Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
SG11201604565WA (en) 2013-12-06 2016-07-28 Us Health Thymic stromal lymphopoietin receptor-specific chimeric antigen receptors and methods using same
WO2015087187A1 (en) 2013-12-10 2015-06-18 Rinat Neuroscience Corp. Anti-sclerostin antibodies
TW201620939A (en) 2014-01-16 2016-06-16 Academia Sinica Treating cancer and combinations thereof, and methods of detecting
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
CA2936984A1 (en) 2014-01-24 2015-07-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-ny-br-1 polypeptides, proteins, and chimeric antigen receptors
WO2015120187A1 (en) 2014-02-05 2015-08-13 The University Of Chicago Chimeric antigen receptors recognizing cancer-spevific tn glycopeptide variants
CN106415244A (en) 2014-03-27 2017-02-15 中央研究院 Reactive labelling compounds and uses thereof
CN106661562A (en) 2014-05-27 2017-05-10 中央研究院 Fucosidase from bacteroides and methods using the same
AU2015267045A1 (en) 2014-05-27 2017-01-05 Academia Sinica Anti-HER2 glycoantibodies and uses thereof
KR20170003939A (en) 2014-05-29 2017-01-10 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 Anti-human papillomavirus 16 e7 t cell receptors
TW201625684A (en) 2014-06-26 2016-07-16 Macrogenics Inc Diabody immunoreactive with pd-1 and the lag-3 covalently bound and methods of use thereof
WO2016003893A1 (en) 2014-06-30 2016-01-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Detection of colorectal cancer with two novel heme-related molecules in human feces
EP3166688A4 (en) 2014-07-08 2017-12-20 New York University Tau imaging ligands and their uses in the diagnosis and treatment of tauopathy
KR20170042802A (en) 2014-09-08 2017-04-19 아카데미아 시니카 HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS
WO2016044383A1 (en) 2014-09-17 2016-03-24 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-cd276 antibodies (b7h3)
US20190030071A1 (en) 2014-11-03 2019-01-31 IMMURES S.r.I. T cell receptors
JP2018505128A (en) 2014-11-19 2018-02-22 イミュノジェン・インコーポレーテッド Process for preparing cell binding agent-cytotoxic agent conjugates
TWI595006B (en) 2014-12-09 2017-08-11 Rinat Neuroscience Corp Anti-pd-1 antibody class and their method of use
WO2016118191A1 (en) 2015-01-24 2016-07-28 Academia Sinica Novel glycan conjugates and methods of use thereof
US10308719B2 (en) 2015-01-26 2019-06-04 The University Of Chicago IL13Rα2 binding agents and use thereof in cancer treatment
CN108136002A (en) 2015-04-13 2018-06-08 辉瑞公司 Therapeutic antibodies and their use
EP3292410A1 (en) 2015-05-06 2018-03-14 POC Medical Systems Inc. Devices and methods for detection of biomarkers
EP3325516A1 (en) 2015-07-21 2018-05-30 Dyax Corp. A monoclonal antibody inhibitor of factor xiia
CR20180062A (en) 2015-07-30 2018-05-25 Macrogenics Inc Binding molecules pd-1 and methods of use thereof
CN108291917A (en) 2015-10-19 2018-07-17 戴埃克斯有限公司 Immunoassay method to detect cleaved high molecular weight kininogen
CA2946113A1 (en) 2015-10-23 2017-04-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
CO2018007151A2 (en) 2015-12-11 2018-09-20 Dyax Corp Plasma kallikrein inhibitors and uses thereof to treat hereditary angioedema attack
EP3405490A1 (en) 2016-01-21 2018-11-28 Pfizer Inc Mono and bispecific antibodies for epidermal growth factor receptor variant iii and cd3 and their uses
CA3013125A1 (en) 2016-02-05 2017-08-10 Immunogen, Inc. Efficient process for preparing cell-binding agent-cytotoxic agent conjugates
US20170233472A1 (en) 2016-02-17 2017-08-17 Macrogenics, Inc. ROR1-Binding Molecules, and Methods of Use Thereof
US10336784B2 (en) 2016-03-08 2019-07-02 Academia Sinica Methods for modular synthesis of N-glycans and arrays thereof
WO2017200981A1 (en) 2016-05-16 2017-11-23 Baxalta Incorporated Anti-factor ix padua antibodies
WO2017201225A1 (en) 2016-05-19 2017-11-23 Poc Medical Systems, Inc. Cancer screening via detection and quantification of multiple biomarkers
KR20190065433A (en) 2016-10-19 2019-06-11 더 스크립스 리서치 인스티튜트 Chimeric antigen receptor-effector cell switches with humanized targeting moieties and / or optimized chimeric antigen receptor-interacting domains and uses thereof
CN110267685A (en) 2016-12-23 2019-09-20 伊缪诺金公司 Target the immunoconjugates and its application method of ADAM9
TWI659750B (en) 2017-01-13 2019-05-21 中央研究院 Improved reloadable hydrogel system for treating myocardial infarction
TWI659751B (en) 2017-01-13 2019-05-21 中央研究院 Improved reloadable hydrogel system for treating brain conditions
AU2018226646A1 (en) 2017-03-03 2019-09-19 Rinat Neuroscience Corp. Anti-GITR antibodies and methods of use thereof
WO2018189611A1 (en) 2017-04-12 2018-10-18 Pfizer Inc. Antibodies having conditional affinity and methods of use thereof
WO2018213612A1 (en) 2017-05-18 2018-11-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-mesothelin polypeptides and proteins
US20180346601A1 (en) 2017-06-02 2018-12-06 Pfizer Inc. Antibodies specific for flt3 and their uses
WO2019016784A1 (en) 2017-07-21 2019-01-24 Universidade De Coimbra Anti-nucleolin antibody
WO2019152705A1 (en) 2018-02-01 2019-08-08 Pfizer Inc. Antibodies specific for cd70 and their uses

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265150B1 (en) * 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69233723T2 (en) 1991-12-06 2009-02-05 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Use of protein kinases for the diagnosis and treatment of Alzheimer's disease
DE69426948T2 (en) 1993-02-09 2001-10-11 Becton Dickinson Co Automatic determination of the cell line severe leukemia by flow cytometry
WO1994026787A1 (en) 1993-05-07 1994-11-24 The Board Of Trustees Of The Leland Stanford Junior University Method for generating cell type specific phage antibody libraries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265150B1 (en) * 1995-06-07 2001-07-24 Becton Dickinson & Company Phage antibodies
US6858384B2 (en) * 1995-06-07 2005-02-22 Crucell Holland B.V. Phage antibodies

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710836B2 (en) 2008-12-10 2014-04-29 Nanomr, Inc. NMR, instrumentation, and flow meter/controller continuously detecting MR signals, from continuously flowing sample material
US9696302B2 (en) 2010-04-21 2017-07-04 Dnae Group Holdings Limited Methods for isolating a target analyte from a heterogeneous sample
US8841104B2 (en) 2010-04-21 2014-09-23 Nanomr, Inc. Methods for isolating a target analyte from a heterogeneous sample
US9428547B2 (en) 2010-04-21 2016-08-30 Dna Electronics, Inc. Compositions for isolating a target analyte from a heterogeneous sample
US9476812B2 (en) 2010-04-21 2016-10-25 Dna Electronics, Inc. Methods for isolating a target analyte from a heterogeneous sample
US9970931B2 (en) 2010-04-21 2018-05-15 Dnae Group Holdings Limited Methods for isolating a target analyte from a heterogenous sample
US9562896B2 (en) 2010-04-21 2017-02-07 Dnae Group Holdings Limited Extracting low concentrations of bacteria from a sample
US9869671B2 (en) 2010-04-21 2018-01-16 Dnae Group Holdings Limited Analyzing bacteria without culturing
US9389225B2 (en) 2010-04-21 2016-07-12 Dna Electronics, Inc. Separating target analytes using alternating magnetic fields
US9671395B2 (en) 2010-04-21 2017-06-06 Dnae Group Holdings Limited Analyzing bacteria without culturing
US9804069B2 (en) 2012-12-19 2017-10-31 Dnae Group Holdings Limited Methods for degrading nucleic acid
US9599610B2 (en) 2012-12-19 2017-03-21 Dnae Group Holdings Limited Target capture system
US9902949B2 (en) 2012-12-19 2018-02-27 Dnae Group Holdings Limited Methods for universal target capture
US9551704B2 (en) 2012-12-19 2017-01-24 Dna Electronics, Inc. Target detection
US9995742B2 (en) 2012-12-19 2018-06-12 Dnae Group Holdings Limited Sample entry
US10000557B2 (en) 2012-12-19 2018-06-19 Dnae Group Holdings Limited Methods for raising antibodies
US10379113B2 (en) 2012-12-19 2019-08-13 Dnae Group Holdings Limited Target detection

Also Published As

Publication number Publication date
US6858384B2 (en) 2005-02-22
US20020132228A1 (en) 2002-09-19
US6265150B1 (en) 2001-07-24

Similar Documents

Publication Publication Date Title
Bakkus et al. Evidence that the clonogenic cell in multiple myeloma originates from a pre‐switched but somatically mutated B cell
Barbas et al. Human autoantibody recognition of DNA.
Billadeau et al. The bone marrow of multiple myeloma patients contains B cell populations at different stages of differentiation that are clonally related to the malignant plasma cell.
US5648260A (en) DNA encoding antibodies with altered effector functions
US6555313B1 (en) Production of anti-self antibodies from antibody segment repertoires and displayed on phage
EP0744958B1 (en) Polyclonal antibody libraries
DE19819846B4 (en) Multivalent antibody constructs
EP0616640B1 (en) Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6635424B2 (en) Method for generating libraries of antibody genes comprising amplification of diverse antibody DNAs and methods for using these libraries for the production of diverse antigen combining molecules
AU765201B2 (en) Small functional units of antibody heavy chain variable regions
CA2198899C (en) Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
JP3720353B2 (en) Multivalent and multispecific binding proteins, their preparation and use
CA2119930C (en) Production of chimeric antibodies - a combinatorial approach
Bakker et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia
EP0563296B1 (en) Optimization of binding proteins
US6476198B1 (en) Multispecific and multivalent antigen-binding polypeptide molecules
US20020150914A1 (en) Recombinant antibodies from a phage display library, directed against a peptide-MHC complex
ES2353268T3 (en) Generation of specific binding elements that bind to (poly) peptides encoded by genomic DNA fragments or ESTs.
EP0866136B1 (en) Recombinant library screening methods
Holliger et al. Engineering bispecific antibodies
EP0659766A1 (en) Human monoclonal antibodies against human cytokines and methods of making and using such antibodies
Cai et al. Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries
Boel et al. Functional human monoclonal antibodies of all isotypes constructed from phage display library-derived single-chain Fv antibody fragments
Kipriyanov et al. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures
EP1461428B1 (en) Method for producing hybrid antibodies

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION