US20050002113A1 - Drop centering device - Google Patents

Drop centering device Download PDF

Info

Publication number
US20050002113A1
US20050002113A1 US10812307 US81230704A US2005002113A1 US 20050002113 A1 US20050002113 A1 US 20050002113A1 US 10812307 US10812307 US 10812307 US 81230704 A US81230704 A US 81230704A US 2005002113 A1 US2005002113 A1 US 2005002113A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
surface
drop
hollow
point
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10812307
Inventor
Bruno Berge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VARIOPTIC
Original Assignee
VARIOPTIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B26/00Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating
    • G02B26/004Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements using movable or deformable optical elements for controlling the intensity, colour, phase, polarisation or direction of light, e.g. switching, gating, modulating based on a displacement or a deformation of a fluid based on electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5088Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above confining liquids at a location by surface tension, e.g. virtual wells on plates, wires

Abstract

A method for centering a drop of liquid on a given point on a surface. The inventive method consists in forming a bell-mouthed recess, whereby said recess has a curvature at any point at the limit of contact between the drop and the recess that is lower than or opposite to the curvature of a circle (TC) that is tangent to the surface of the recess to said point and at a symmetrical point (CP2) of said surface.

Description

  • This application is a continuation/divisional of copending application Ser. No. 09/937,508, filed May 22, 2002, which was filed as a national stage application of International Application No. PCT/FR00/00751, filed Mar. 24, 2000, which claims the right of priority based on French Patent Application No. 99/03980, filed Mar. 26, 1999. This application is also being filed as a continuation-in-part of International Application No. PCT/FR98/02143, which was filed Oct. 7, 1998, which was copending with International Application No. PCT/FR00/00751, and is also being filed as a continuation-in-part of application Ser. No. 09/529,193, which was filed Jul. 25, 2000, as a § 371 national stage application of International Application No. PCT/FR98/02143 and which was also copending with International Application No. PCT/FR00/00751. application Ser. No. 09/529,193, and its corresponding International Application No. PCT/FR98/02143, claim the right of priority based on French Patent Application No. 97/12781, filed Oct. 8, 1997, the former now issued as U.S. Pat. No. 6,369,954.
  • The present invention relates to the maintaining of a liquid drop in a predetermined position on a solid surface, and more specifically to the centering of such a drop.
  • For various reasons, it may be desired to maintain a drop laid on a surface, accurately centered on a predetermined axis. A known way (by the inventor) consists of modifying around this axis the surface wetability with respect to the drop liquid.
  • FIG. 1 shows a side cross-section view of a liquid drop 2 laid on a surface 4. Surface 4 has been processed in a circular area C1 centered on an axis O. The processing of area C1 is such that its wetability with respect to the liquid of drop 2 is strong. Thus, capillarity forces maintain drop 2 centered on axis O.
  • An improvement (of the inventor), not shown, of such a surface processing consists of creating around axis O several concentric circular areas. The processing of these areas then is such that the closer an area is to axis O, the more its wetability with respect to the liquid of drop 2 is strong. Such an improvement enables centering drop 2 for different contact angles. This is particularly advantageous when a way of changing said angle is available, for example by means of an electric voltage. Such surface processings may however be difficult and expensive to implement.
  • An object of the present invention is to center a drop laid on a surface without using a modification of the surface wetability.
  • To achieve this object, the present invention provides a method for centering a liquid drop at a given location of a surface, which consists of forming at this location a flared hollow such that, at any point of the contact limit between the drop and the hollow, said hollow has a curvature smaller than or opposite to that of a circle tangent to the hollow surface at said point and at a symmetrical point of this surface.
  • According to an embodiment of the present invention, the flared hollow has the shape of a truncated cone with an axis perpendicular to said surface.
  • According to an embodiment of the present invention, the flared hollow has the shape of the upper central portion of a torus having an axis perpendicular to the surface.
  • According to an embodiment of the present invention, a method for centering a liquid drop on the external surface of a convex surface is provided, which consists of giving this surface at any point of the contact limit with the drop a shape such that this surface has a curvature greater than that of a circle tangent to this surface at this point and at a symmetrical point of this surface.
  • According to an embodiment of the present invention, the convex surface is formed by revolution against said axis of an arc of a circle having a radius smaller than that of said tangent circle.
  • The present invention also provides a variable-focus lens implementing the above-mentioned method, which includes a wall made of an isolating material, a drop of a first isolating liquid arranged on an area of a first surface of the wall, a second conductive liquid covering the first surface and the drop, the first and second liquids being non-miscible, having different optical indexes and substantially the same density, and means for applying an electric voltage between the conductive liquid and an electrode arranged on the second surface of said wall, the drop being placed in a flared hollow of the wall.
  • According to an embodiment of the present invention, the electrode is a sheet metal, the flared hollow is a truncated cone formed by embossing said sheet metal, centered on an axis perpendicular to the first surface, and the bottom of which is pierced with a centered hole, and the isolating material wall is a transparent plastic film flattened against the electrode and the walls of the hollow, and which covers said hole.
  • According to an embodiment of the present invention, the electrode is a sheet metal, the flared hollow is a truncated cone formed by machining said sheet metal, centered on an axis perpendicular to the first surface, and the bottom of which is pierced with a centered hole, and the isolating material wall is a transparent plastic film flattened against the electrode and the walls of the hollow, and which covers said hole.
  • The foregoing objects, features and advantages of the present invention, will be discussed in detail in the following non-limiting description of specific embodiments in connection with the accompanying drawings.
  • FIG. 1, previously described, shows a side cross-section view of a drop-centering means according to prior work of the present inventor;
  • FIG. 2 shows a side cross-section view of a liquid drop laid on a planar surface;
  • FIGS. 3 to 7 are side cross-section views of a liquid drop placed in a flared hollow of a surface;
  • FIGS. 8 to 10 are side cross-section views of a liquid drop located at one end of a drop-grasping rod;
  • FIG. 11 shows a side cross-section view of an application of the present invention to the centering of a transparent liquid drop used as a lens; and
  • FIG. 12 shows a side cross-section view of an alternative of FIG. 11.
  • Same elements have been designated with same references in the following drawings. In particular, reference 2 will designate a liquid drop of small dimensions, having its position on a surface essentially defined by the capillarity forces (the surface tension). Reference 4 will designate a surface, the wetability of which is constant with respect to the liquid of drop 2.
  • FIG. 2 shows a planar surface 4 cut by an axis O perpendicular to this surface. If a liquid drop is desired to be placed at a position A centered on axis O, for example, by being deposited from a drop-grasping rod, the chances of achieving this with precision are small, the drop remaining where it has been laid, for example, at a position B.
  • As illustrated in FIG. 3, to solve the problem of the centering of a drop 2 with respect to an axis O, the present inventor has first thought of placing drop 2 in a hollow formed in surface 4, this hollow having the shape of a spherical cap symmetrical with respect to axis O. However, any position of drop 2 in hollow 6 has appeared to be a stable position. Thus, as in the case of a planar surface 4, if drop 2 is desired to be placed at a position A centered on axis O, the chances of achieving this with precision are small since the drop will remain where it has been laid, for example, at a position B.
  • French patent application number 97/12781 (corresponding to U.S. Pat. No. 6,369,954) deposited by the present applicant describes a variable-focus liquid lens formed by a liquid drop laid at the surface of a solid, centered on an axis by the means described in relation with FIG. 1. This application further describes electromagnetic means for deforming the drop while maintaining it centered on the axis. On the other hand, this patent application describes a variable-focus liquid lens formed by a liquid drop contained in a tube and maintained centered on the tube axis by capillarity. There thus appears that a drop 2 can be centered on an axis O by being placed in a cylindrical hollow of surface 4, centered on this axis. However, it is difficult to place a liquid drop in such a cylindrical hollow while avoiding for a bubble to remain at the drop basis.
  • The present inventor has then systematically searched which type of hollow centered on an axis O enables easy centering of a liquid drop on this axis.
  • FIGS. 4 to 7 each represent a side cross-section view of a liquid drop 2 placed in a flared hollow 6 centered on an axis O and formed in a surface 4. For a position A of drop 2, centered on axis O, CP1 designates any point of the contact limit between drop 2 and the surface of hollow 6. The circle having its center located on axis O, and which is tangent to the surface of the hollow both at point CP1 and at a symmetrical point CP2, is called the tangent circle TC.
  • FIG. 4 represents a liquid drop 2 placed in a hollow 6 formed by the revolution around axis O of an arc of a circle having a radius smaller than that of previous circle TC. Thus, at any point CP1 of the contact limit between the hollow surface and the drop, the surface curvature of the hollow is greater than that of circle TC.
  • FIG. 5 shows a liquid drop 2 placed in a hollow 6 formed by revolution of a segment around axis O. Hollow 6 is a truncated cone. Thus, at any point CP1 of the contact limit with the drop, the surface curvature of hollow 6 is null, smaller than that of tangent circle TC.
  • FIG. 6 shows a liquid drop 2 placed in a hollow 6 formed by revolution around axis O of an arc of a circle greater than that of previous circle TC. Thus, at any point CP1 of the contact limit with the drop, the surface curvature of the hollow is smaller than that of tangent circle TC.
  • FIG. 7 shows a liquid drop 2 placed in a hollow 6 formed by revolution around axis O of an arc of a circle having a curvature opposite to that of tangent circle TC. Hollow 6 corresponds to the central upper portion of a torus. At any point CP1 of the contact limit with the drop, the surface curvature of hollow 6 is opposite to that of tangent circle TC.
  • The present inventor has shown that, for a drop 2 placed in a flared hollow 6 centered on an axis O, the surface curvature of hollow 6 at any point CP1 of the contact limit with the drop determines whether a position A of the drop centered on axis O is a position of equilibrium or not.
  • Thus, when, as in FIGS. 5, 6, and 7, the curvature at any point CP1 is smaller than or inverse to that of tangent circle TC, a drop placed in such a hollow naturally takes a position A centered on axis O.
  • On the other hand, when, as in FIG. 4, the curvature at any point CP1 is greater than that of tangent circle TC, a position A of the drop, centered on axis O, is particularly unstable and will not be able to be maintained. A drop placed in such a hollow naturally takes an out-of-center position B with respect to axis O.
  • Finally, when, as in FIG. 3, the curvature at any point CP1 is equal to that of tangent circle TC, any position of the drop is stable, and a drop placed in such a hollow at a position B brought out of center will keep this position.
  • Thus, the present invention provides a method for centering a drop at a given location of a surface consisting of forming at this location a flared hollow such that, at any point CP1 of the contact limit with the drop, this hollow has a curvature smaller than or opposite to that of tangent circle TC.
  • It should be noted that only the contact limit between the drop and the hollow surface counts. The shape of the hollow has no importance and it may be flat, convex, or concave.
  • According to another aspect of the present invention, a convex surface of uniform wetability centered on an axis O is considered, on which is laid a liquid drop, in a position A centered on axis O. The previously-described point CP1 and tangent circle TC are considered again.
  • FIGS. 8 to 10 are side cross-section views of a liquid drop 14 placed on a convex surface 16 centered on an axis O.
  • FIG. 8 shows the case where the convex surface is spherical. The surface of sphere 16 at any point CP1 of the contact limit with drop 14 is always confounded with tangent circle TC.
  • In the case of FIG. 9, the convex surface is conical. The “curvature” of conical surface 16 at any point CP1 of the contact limit with drop 14 is always smaller than that of tangent circle TC.
  • In the case of FIG. 10, the convex surface is formed by revolution around axis O of an arc of a circle having a radius smaller than that of tangent circle TC. The surface curvature at any point CP1 of the contact limit with drop 14 is always greater than that of tangent circle TC.
  • The present inventor has shown that, for a drop 14 placed on a convex surface 16 centered on an axis O, the curvature at any point CP1 of the contact limit with the drop determines whether a position A of the drop, centered on axis O, is a position of equilibrium of not.
  • Thus, when, as in FIG. 10, the curvature at any point CP1 is greater than that of tangent circle TC, a drop placed on such a surface naturally takes a position A centered on axis O. However, as in FIG. 9, the curvature at any point CP1 is smaller than that of tangent circle TC, a position A of the drop, centered on axis O, is unstable. A drop placed on such a surface naturally takes a position B brought out of center with respect to axis O.
  • Finally, when, as in FIG. 8, the curvature at any point CP1 is equal to that of tangent circle TC, any position of the drop is stable, and a drop placed at an out-of-center position B will keep this position.
  • Thus, the present invention provides a method for centering a drop on a convex surface which consists, at any point CP1 of the contact limit with the drop, of giving the surface a curvature greater than that of tangent circle TC.
  • According to an application of this method, convex surface 16 forms the end of a rod 18 for grasping a drop 14. Indeed, for certain chemical or biological handling operations, it is desirable to have drop-grasping rods which enable precisely and reliably handling liquid drops. A drop-grasping rod, the end of which is formed according to the present invention, enables conveying definitely centered drops.
  • An application of the present invention to the forming of a means for centering a liquid drop used as an optical lens will now be described.
  • FIG. 11 shows a simplified cross-section view of such a variable-focus liquid lens, formed in a dielectric enclosure 4 filled with a conductive liquid 8. Dielectric 4 naturally has a low wetability with respect to conductive liquid 8. A lower surface of a wall of enclosure 4 includes a hollow 6, centered around an axis O perpendicular to this wall. Hollow 6 is a truncated cone according to the present invention, such as that shown in FIG. 5. A drop of an isolating liquid 2 is placed in hollow 6. As seen previously, isolating liquid drop 2 naturally takes a position A centered on axis O. Isolating liquid 2 and conductive liquid 8 are both transparent, non-miscible, they have different optical indexes and have substantially the same density. The dioptre formed between liquids 8 and 2 forms a surface of a liquid lens, the optical axis of which is axis O and the other surface of which corresponds to the contact between the drop and the bottom of the hollow. As electrode 10, including a hole 11 in the vicinity of axis O, is placed on the external surface of dielectric enclosure 4. As electrode 12 is in contact with conductive liquid 8. Electrode 12 may be immersed in liquid 8, or be a conductive deposition performed on an internal wall of enclosure 4. A voltage source (not shown) enables applying a voltage V between electrodes 10 and 12.
  • Voltage V may be increased from O volt to a maximum voltage, which depends on the used materials. When the voltage increases, isolating liquid drop 2 deforms to reach a limiting position (designated with reference B). While drop 2 deforms from its position A to its position B, the focus of the liquid lens varies.
  • It should be noted that, drop 2 being an isolating liquid, no microdrops occur at its periphery when voltage V is high, conversely to what would occur if the drop was a conductive liquid.
  • The conical shape of hollow 6 is such that, whatever the shape of drop 2 that it contains, the curvature of its surface at any contact point between the limit of the drop and the surface is smaller than that of a tangent circle TC crossing this point. Thus, according to an aspect of the present invention, hollow 6 is such that, all along its deformation from its position A to its position B, liquid drop 2 is continuously maintained centered on axis O. A liquid lens with a accurately fixed optical axis and with a focus varying with voltage V is thus available.
  • It should be noted that a hollow 6 according to the present invention, which ensures the continuous centering of liquid drop 2, is relatively simple to implement and that it advantageously replaces the electromagnetic centering means or the surface processing centering means described in above-mentioned French patent application.
  • An A.C. voltage will preferably be used for voltage V, to avoid the accumulation of electric loads across the thickness of material 4, from the surface on which is laid drop 2.
  • As an example, water charged with salts (mineral or others) or any liquid, organic or not, which is conductive or made such by addition of ionic components may be used as a conductive liquid 8. For isolating liquid 2, oil, an alkane or a mixture of alkanes, possibly halogenated, or any other isolating liquid non miscible with conductive liquid 8 may be used. Dielectric wall 4 may be a glass plate or a superposition of fluorinated polymer, epoxy resin, polyethylene. Electrode 10 may be a metal deposition.
  • FIG. 12 shows a simplified cross-section view of an alternative embodiment of the variable-focus liquid lens of FIG. 11. Same references designate same elements in FIGS. 11 and 12. In this embodiment, electrode 10 may be a metal sheet in which hollow 6 is formed by embossing. It may also be a metal wall in which hollow 6 has been formed by machining, then polishing. Wall 4 then is, for example, a thin transparent plastic film flattened against electrode 10 and which covers hole 11. This plastic film may for example be flattened by thermoforming.
  • In the example of application of FIG. 12, drop 2 has an idle diameter of approximately 1 to 5 mm. Conductive liquid 8 and the isolating liquid of drop 2 being substantially of same density, drop 2 has the shape of a spherical cap. When idle (position A), the edge of drop 2 makes an angle of approximately 45 degrees with the surface of hollow 6, if the latter is a cone having a 45-degree slope. In its limiting position (position B), the edge of drop 2 makes an angle of approximately 90 degrees with the surface of enclosure 4. The described device, using as a conductive liquid 8 salt water having an optical index 1.35 and, as the isolating liquid of drop 2, oil with optical index 1.45, enables obtaining approximately 30 diopters of focus variation for an applied voltage of 250 V and a dissipated electric power of a few mW. The frequency of the A.O. voltage ranges in this case between 100 and 10,000 Hz, its period being much smaller than the system response time of approximately a few hundredths of a second.
  • The variable-focus lens according to the present invention may have a size ranging between a few hundreds of μm and a few tens of mm and may in particular be applied to the field of optoelectronic, endoscopy, imaging and vision systems.
  • Of course, the present invention is likely to have various alternatives and modifications which will occur to those skilled in the art. In particular, the present description has been made in relation with hollows having a circular cross-section, that is, formed by rotation around an axis O. However, elongated hollows having the shape of a channel may for example be provided. In this case, FIGS. 5 to 7 will be considered as describing the cross-section view of a channel, and axis O will represent the symmetry plane of said channel.
  • On the other hand, a hollow 6 with a flat bottom has been shown in FIG. 11, which results in a plano-convex lens. Now, it has been seen that the shape of the bottom of hollow 6 does not influence its properties of centering of drop 2. Thus, biconvex or meniscus lenses may easily be formed by modifying the curvature of the bottom of hollow 6.
  • On the other hand, also, an embodiment of a variable-focus lens using a conical hollow such as in FIG. 5 has been shown in FIGS. 11 and 12, but the present invention will easily be adapted to a variable-focus lens using another shape of hollow according to the present invention.
  • Finally, a device including a network formed of groups of three separately-controlled variable-focus lenses, red-, green- and blue-colored, operating for example in all or nothing, enabling letting through or stopping the light coming from a single white light source may be formed, thus forming an illuminated color screen that can be very large and of low cost.

Claims (11)

  1. 1. A method for centering a liquid drop (2) at a given location of a surface (4), characterized in that it consists of forming at this location a flared hollow (6) such that, at any point (CP1) of the contact limit between the drop and the hollow, said hollow has a curvature smaller than or opposite to that of a circle (TC) tangent to the hollow surface at said point and at a symmetrical point (CP2) of this surface.
  2. 2. The method of claim 1, characterized in that the flared hollow (6) has the shape of a truncated cone with an axis perpendicular to said surface.
  3. 3. The method of claim 1, characterized in that the flared hollow (6) has the shape of the upper central portion of a torus having an axis perpendicular to the surface.
  4. 4. A method for centering a liquid drop (14) on the external surface of a convex surface (16), characterized in that it consists of giving this surface at any point (CP1) of the contact limit with the drop a shape such that this surface has a curvature greater than that of a circle (TC) tangent to this surface at this point and at a symmetrical point (CP2) of this surface.
  5. 5. The method of claim 4, characterized in that it consists of forming the convex surface (6) by revolution against said axis of an arc of a circle having a radius smaller than that of said tangent circle.
  6. 6. A variable-focus lens, including:
    a wall made of an insulating material (4),
    a drop of a first insulating liquid (2) arranged on an area of a first surface of the wall,
    a second conductive liquid (8) covering the first 30 surface and the drop, the first and second liquids being non-miscible, having different optical indexes and substantially the same density, and
    means (12) for applying an electric voltage (V) between the conductive liquid and an electrode (10) arranged on the second surface of said wall,
    characterized in that the drop is placed in a flared hollow (6) of the wall according to the method of claim 1.
  7. 7. The variable-focus lens of claim 6, characterized in that:
    the electrode (10) is a sheet metal,
    the flared hollow (6) is a truncated cone formed by embossing said sheet metal, centered on an axis (0) perpendicular to the first surface, and the bottom of which is pierced with a centered hole (11), and
    the insulating material wall (4) is a transparent plastic film flattened against the electrode and the walls of the hollow, and which covers said hole.
  8. 8. The variable-focus lens of claim 6, characterized in that:
    the electrode (10) is a sheet metal,
    the flared hollow (6) is a truncated cone formed by 20 machining said sheet metal, centered on an axis (0) perpendicular to the first surface, and the bottom of which is pierced with a centered hole (11), and
    the isolating material wall (4) is a transparent plastic film flattened against the electrode and the walls of the hollow, and which covers said hole.
  9. 9. A method for centering a liquid drop at a given location of a surface, comprising the steps of forming at this location a drop containment cavity surface such that, at any point (CP1) of the contact limit between the drop and the drop containment cavity surface, said surface has a curvature smaller than or opposite to that of a circle (TC) tangent to the drop containment cavity surface at said point and at a symmetrical point (CP2) of this surface.
  10. 10. A method as claimed in claim 9, wherein the drop containment cavity surface is rotationally symmetric.
  11. 11. A variable-focus lens, comprising:
    a drop of a first insulating liquid arranged in a drop containment cavity having a sidewall with a first surface,
    a second conductive liquid covering the first drop, the first and second liquids being non-miscible, having different optical indexes and substantially the same density, and
    an electric voltage source selectively connectable between the conductive liquid and an electrode arranged on a second surface of said sidewall,
    wherein the configuration of the sidewall is such that, at any point (CP1) of a contact limit between the drop and the drop containment cavity first surface, said surface has a curvature smaller than or opposite to that of a circle (TC) tangent to the drop containment cavity first surface at said point and at a symmetrical point (CP2) of this surface.
US10812307 1997-10-08 2004-03-30 Drop centering device Abandoned US20050002113A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FR97/12781 1997-10-08
FR9712781A FR2769375B1 (en) 1997-10-08 1997-10-08 Varifocal lens
PCT/FR1998/002143 WO1999018456A1 (en) 1997-10-08 1998-10-07 Lens with variable focus
US09529193 US6369954B1 (en) 1997-10-08 1998-10-07 Lens with variable focus
FR99/03980 1999-03-26
FR9903980A FR2791439B1 (en) 1999-03-26 1999-03-26 Apparatus for centering a drop
US93750802 true 2002-05-22 2002-05-22
US10812307 US20050002113A1 (en) 1997-10-08 2004-03-30 Drop centering device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10812307 US20050002113A1 (en) 1997-10-08 2004-03-30 Drop centering device
US11589277 US7548377B2 (en) 1997-10-08 2006-10-30 Drop centering device
US12470281 US20090225436A1 (en) 1997-10-08 2009-05-21 Drop centering device

Related Parent Applications (5)

Application Number Title Priority Date Filing Date
US09937508 Continuation
PCT/FR1998/002143 Continuation-In-Part WO1999018456A1 (en) 1997-10-08 1998-10-07 Lens with variable focus
US09529193 Continuation-In-Part US6369954B1 (en) 1997-10-08 1998-10-07 Lens with variable focus
PCT/FR2000/000751 Continuation WO2000058763A1 (en) 1999-03-26 2000-03-24 Drop centering device
US93750802 Continuation 2002-05-22 2002-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11589277 Continuation US7548377B2 (en) 1997-10-08 2006-10-30 Drop centering device

Publications (1)

Publication Number Publication Date
US20050002113A1 true true US20050002113A1 (en) 2005-01-06

Family

ID=33556505

Family Applications (3)

Application Number Title Priority Date Filing Date
US10812307 Abandoned US20050002113A1 (en) 1997-10-08 2004-03-30 Drop centering device
US11589277 Expired - Lifetime US7548377B2 (en) 1997-10-08 2006-10-30 Drop centering device
US12470281 Abandoned US20090225436A1 (en) 1997-10-08 2009-05-21 Drop centering device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11589277 Expired - Lifetime US7548377B2 (en) 1997-10-08 2006-10-30 Drop centering device
US12470281 Abandoned US20090225436A1 (en) 1997-10-08 2009-05-21 Drop centering device

Country Status (1)

Country Link
US (3) US20050002113A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199720A1 (en) * 2004-03-11 2005-09-15 Edward Barkan Optical adjustment of working range and beam spot size in electro-optical readers
US20050199725A1 (en) * 2004-03-11 2005-09-15 Pierre Craen Optical adjustment for increased working range and performance in electro-optical readers
US20060126190A1 (en) * 2004-11-24 2006-06-15 Varioptic S.A. Lens of variable focal length
DE102005025722A1 (en) * 2005-06-04 2006-07-13 Landesstiftung Baden-Württemberg gGmbH Optical lens with electrically variable focal length, has lens body formed substrate made of silicon or silicon material
EP1739461A1 (en) * 2005-06-29 2007-01-03 Wavelight Laser Technologie AG Fluid lens system and its use in an artificial eye, an accomodation measuring system and a telescope
US20070002455A1 (en) * 2005-06-23 2007-01-04 Varioptic S.A. Variable-focus lens and method of manufacturing the same
US20070080280A1 (en) * 2005-10-11 2007-04-12 Havens William H Control systems for adaptive lens
US20070146895A1 (en) * 2005-12-27 2007-06-28 Samsung Electro-Mechanics Co., Ltd. Method of fabricating liquid lens using electrowetting and liquid lens fabricated thereby
US20070156021A1 (en) * 2005-09-14 2007-07-05 Bradford Morse Remote imaging apparatus having an adaptive lens
US7245440B2 (en) 2004-12-23 2007-07-17 Varioptic S.A. Variable focal lens
US20070182816A1 (en) * 2006-02-09 2007-08-09 Fox Stephen H Method for determining windshield condition and an improved vehicle imaging system
WO2007107589A1 (en) * 2006-03-21 2007-09-27 Varioptic Intraocular implant
USRE39874E1 (en) * 1997-10-08 2007-10-09 Varioptic Lens with variable focus
US20070247724A1 (en) * 2006-04-25 2007-10-25 Samsung Electro-Mechanics Co., Ltd. Liquid lens with curved contact surface
US20080014823A1 (en) * 2004-04-08 2008-01-17 Hayes Robert A Display Device
US7324287B1 (en) 2006-11-07 2008-01-29 Corning Incorporated Multi-fluid lenses and optical devices incorporating the same
US20080063022A1 (en) * 2006-09-12 2008-03-13 Kevin Thomas Gahagan Semiconductor laser and tunable fluid lenses
US20080079897A1 (en) * 2006-09-29 2008-04-03 Welch Allyn, Inc. Medical diagnostic instrument with variable focus liquid lens
US20080144186A1 (en) * 2006-12-15 2008-06-19 Chen Feng Focus module and components with actuator polymer control
US20080144185A1 (en) * 2006-12-15 2008-06-19 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US20090002838A1 (en) * 2006-08-10 2009-01-01 Kazuo Yokoyama Varifocal Lens Device
US20090021823A1 (en) * 2007-05-31 2009-01-22 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
US20090072037A1 (en) * 2007-09-17 2009-03-19 Metrologic Instruments, Inc. Autofocus liquid lens scanner
US20090109544A1 (en) * 2007-10-29 2009-04-30 James Scott Sutherland Fluid lens lateral shifting
US20090213147A1 (en) * 2008-02-21 2009-08-27 Sharp Kabushiki Kaisha Single view display
US20100046084A1 (en) * 2007-02-13 2010-02-25 Sony Corporation Electro-wetting device and a method of manufacturing the same
US20100085471A1 (en) * 2007-03-28 2010-04-08 Thomas Craven-Bartle Different aspects of electronic pens
WO2012027156A1 (en) * 2010-08-24 2012-03-01 Johnson & Johnson Vision Care, Inc. Lens with compound linear-convex meniscus wall
WO2012033795A1 (en) * 2010-09-08 2012-03-15 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
US20140221753A1 (en) * 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US9195058B2 (en) 2011-03-22 2015-11-24 Parker-Hannifin Corporation Electroactive polymer actuator lenticular system
US9231186B2 (en) 2009-04-11 2016-01-05 Parker-Hannifin Corporation Electro-switchable polymer film assembly and use thereof
US9425383B2 (en) 2007-06-29 2016-08-23 Parker-Hannifin Corporation Method of manufacturing electroactive polymer transducers for sensory feedback applications
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002113A1 (en) * 1997-10-08 2005-01-06 Varioptic Drop centering device
FR2791439B1 (en) * 1999-03-26 2002-01-25 Univ Joseph Fourier Apparatus for centering a drop
US8773744B2 (en) 2011-01-28 2014-07-08 Delta Electronics, Inc. Light modulating cell, device and system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030813A (en) * 1974-12-20 1977-06-21 Matsushita Electric Industrial Co., Ltd. Control element having liquid layer attainable to geometrically uneven state in response to electrical signal
US5659330A (en) * 1996-05-31 1997-08-19 Xerox Corporation Electrocapillary color display sheet
US5687401A (en) * 1995-08-19 1997-11-11 Ricoh Company, Ltd. High variable-power ratio, high aperture ratio, zoom optical system
US5745255A (en) * 1995-05-18 1998-04-28 Nec Corporation Electrophotographic digital printer having data expansion means responsive to desired image quality and type of recording medium used
US6369954B1 (en) * 1997-10-08 2002-04-09 Universite Joseph Fourier Lens with variable focus
US6449081B1 (en) * 1999-06-16 2002-09-10 Canon Kabushiki Kaisha Optical element and optical device having it
US20020196558A1 (en) * 2001-06-19 2002-12-26 Kroupenkine Timofei N. Tunable liquid microlens
US6545816B1 (en) * 2001-10-19 2003-04-08 Lucent Technologies Inc. Photo-tunable liquid microlens
US6545815B2 (en) * 2001-09-13 2003-04-08 Lucent Technologies Inc. Tunable liquid microlens with lubrication assisted electrowetting
US6702483B2 (en) * 2000-02-17 2004-03-09 Canon Kabushiki Kaisha Optical element
US20050088754A9 (en) * 2001-06-19 2005-04-28 Kroupenkine Timofei N. Method and apparatus for calibrating a tunable microlens

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886332A (en) 1994-04-19 1999-03-23 Geo Labs, Inc. Beam shaping system with surface treated lens and methods for making same
JP3446839B2 (en) 1993-04-23 2003-09-16 ソニー株式会社 Optical filter
JPH07128635A (en) 1993-11-08 1995-05-19 Nippon Hoso Kyokai <Nhk> Liquid crystal input light control filter for photoelectric conversion device
KR100417567B1 (en) 1995-06-07 2004-02-05 제이콥 엔 올스테드터 A camera for generating image of a scene in a three dimensional imaging system
JP3461061B2 (en) 1995-06-30 2003-10-27 株式会社リコー The light quantity adjusting device of the camera
JPH09236740A (en) 1996-02-29 1997-09-09 Minolta Co Ltd Photographing lens system
DE19710668A1 (en) 1997-03-14 1998-09-17 Robert Seidel Variable lens system e.g. for endoscope zoom lens
US20050002113A1 (en) * 1997-10-08 2005-01-06 Varioptic Drop centering device
FR2791439B1 (en) * 1999-03-26 2002-01-25 Univ Joseph Fourier Apparatus for centering a drop
US6806988B2 (en) * 2000-03-03 2004-10-19 Canon Kabushiki Kaisha Optical apparatus
CN100381860C (en) * 2003-05-06 2008-04-16 皇家飞利浦电子股份有限公司 Electrowetting module
FR2874707B1 (en) * 2004-08-27 2006-11-17 Varioptic Sa Varifocal lens
FR2880697B1 (en) * 2005-01-13 2008-05-23 Samsung Electro Mech liquid lens variable focus with reduced control voltage

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030813A (en) * 1974-12-20 1977-06-21 Matsushita Electric Industrial Co., Ltd. Control element having liquid layer attainable to geometrically uneven state in response to electrical signal
US5745255A (en) * 1995-05-18 1998-04-28 Nec Corporation Electrophotographic digital printer having data expansion means responsive to desired image quality and type of recording medium used
US5687401A (en) * 1995-08-19 1997-11-11 Ricoh Company, Ltd. High variable-power ratio, high aperture ratio, zoom optical system
US5659330A (en) * 1996-05-31 1997-08-19 Xerox Corporation Electrocapillary color display sheet
US6369954B1 (en) * 1997-10-08 2002-04-09 Universite Joseph Fourier Lens with variable focus
US6449081B1 (en) * 1999-06-16 2002-09-10 Canon Kabushiki Kaisha Optical element and optical device having it
US6702483B2 (en) * 2000-02-17 2004-03-09 Canon Kabushiki Kaisha Optical element
US20020196558A1 (en) * 2001-06-19 2002-12-26 Kroupenkine Timofei N. Tunable liquid microlens
US20050088754A9 (en) * 2001-06-19 2005-04-28 Kroupenkine Timofei N. Method and apparatus for calibrating a tunable microlens
US6545815B2 (en) * 2001-09-13 2003-04-08 Lucent Technologies Inc. Tunable liquid microlens with lubrication assisted electrowetting
US6545816B1 (en) * 2001-10-19 2003-04-08 Lucent Technologies Inc. Photo-tunable liquid microlens

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39874E1 (en) * 1997-10-08 2007-10-09 Varioptic Lens with variable focus
US20050199725A1 (en) * 2004-03-11 2005-09-15 Pierre Craen Optical adjustment for increased working range and performance in electro-optical readers
US20050199720A1 (en) * 2004-03-11 2005-09-15 Edward Barkan Optical adjustment of working range and beam spot size in electro-optical readers
US7264162B2 (en) * 2004-03-11 2007-09-04 Symbol Technologies, Inc. Optical adjustment of working range and beam spot size in electro-optical readers
US7201318B2 (en) * 2004-03-11 2007-04-10 Symbol Technologies, Inc. Optical adjustment for increased working range and performance in electro-optical readers
US20080014823A1 (en) * 2004-04-08 2008-01-17 Hayes Robert A Display Device
US7980909B2 (en) * 2004-04-08 2011-07-19 Liquavista B.V. Display device
US20060126190A1 (en) * 2004-11-24 2006-06-15 Varioptic S.A. Lens of variable focal length
US7515350B2 (en) 2004-11-24 2009-04-07 Varioptic S.A. Lens of variable focal length
US7245440B2 (en) 2004-12-23 2007-07-17 Varioptic S.A. Variable focal lens
DE102005025722A1 (en) * 2005-06-04 2006-07-13 Landesstiftung Baden-Württemberg gGmbH Optical lens with electrically variable focal length, has lens body formed substrate made of silicon or silicon material
US20070002455A1 (en) * 2005-06-23 2007-01-04 Varioptic S.A. Variable-focus lens and method of manufacturing the same
US7499223B2 (en) 2005-06-23 2009-03-03 Varioptic S.A. Variable-focus lens and method of manufacturing the same
US7855839B2 (en) 2005-06-29 2010-12-21 Wavelight Ag Artificial eye and measuring instrument for measuring the accommodation of an eye
WO2007000280A1 (en) * 2005-06-29 2007-01-04 Wavelight Ag. Artificial eye and measuring instrument for measuring the accommodation of an eye
EP1739461A1 (en) * 2005-06-29 2007-01-03 Wavelight Laser Technologie AG Fluid lens system and its use in an artificial eye, an accomodation measuring system and a telescope
US20070156021A1 (en) * 2005-09-14 2007-07-05 Bradford Morse Remote imaging apparatus having an adaptive lens
US20070080280A1 (en) * 2005-10-11 2007-04-12 Havens William H Control systems for adaptive lens
US8027095B2 (en) 2005-10-11 2011-09-27 Hand Held Products, Inc. Control systems for adaptive lens
US7522345B2 (en) 2005-12-27 2009-04-21 Samsung Electro-Mechanics Co., Ltd. Method of fabricating liquid lens using electrowetting and liquid lens fabricated thereby
US20070146895A1 (en) * 2005-12-27 2007-06-28 Samsung Electro-Mechanics Co., Ltd. Method of fabricating liquid lens using electrowetting and liquid lens fabricated thereby
EP1804090A1 (en) * 2005-12-27 2007-07-04 Samsung Electro-Mechanics Co., Ltd. Method of fabricating liquid lens using electrowetting and liquid lens fabricated thereby
US20070182816A1 (en) * 2006-02-09 2007-08-09 Fox Stephen H Method for determining windshield condition and an improved vehicle imaging system
US7310190B2 (en) 2006-02-09 2007-12-18 Delphi Technologies, Inc. Vehicle imaging system with windshield condition determination
EP1819167A2 (en) 2006-02-09 2007-08-15 Delphi Technologies, Inc. Method for determining windshield condition and an improved vehicle imaging system
WO2007107589A1 (en) * 2006-03-21 2007-09-27 Varioptic Intraocular implant
US20070247724A1 (en) * 2006-04-25 2007-10-25 Samsung Electro-Mechanics Co., Ltd. Liquid lens with curved contact surface
US7643217B2 (en) 2006-08-10 2010-01-05 Panasonic Corporation Varifocal lens device
US20090002838A1 (en) * 2006-08-10 2009-01-01 Kazuo Yokoyama Varifocal Lens Device
US20080063022A1 (en) * 2006-09-12 2008-03-13 Kevin Thomas Gahagan Semiconductor laser and tunable fluid lenses
US7553020B2 (en) 2006-09-29 2009-06-30 Welch Allyn, Inc. Medical diagnostic instrument with variable focus liquid lens
US20080079897A1 (en) * 2006-09-29 2008-04-03 Welch Allyn, Inc. Medical diagnostic instrument with variable focus liquid lens
US7324287B1 (en) 2006-11-07 2008-01-29 Corning Incorporated Multi-fluid lenses and optical devices incorporating the same
US9699370B2 (en) 2006-12-15 2017-07-04 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US20080144185A1 (en) * 2006-12-15 2008-06-19 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US20080144186A1 (en) * 2006-12-15 2008-06-19 Chen Feng Focus module and components with actuator polymer control
US9134464B2 (en) 2006-12-15 2015-09-15 Hand Held Products, Inc. Focus module and components with actuator
US8687282B2 (en) 2006-12-15 2014-04-01 Hand Held Products, Inc. Focus module and components with actuator
US8505822B2 (en) 2006-12-15 2013-08-13 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US9207367B2 (en) 2006-12-15 2015-12-08 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US7813047B2 (en) 2006-12-15 2010-10-12 Hand Held Products, Inc. Apparatus and method comprising deformable lens element
US9739911B2 (en) 2006-12-15 2017-08-22 Hand Held Products, Inc. Focus module and components with actuator
US8027096B2 (en) 2006-12-15 2011-09-27 Hand Held Products, Inc. Focus module and components with actuator polymer control
US20110017829A1 (en) * 2006-12-15 2011-01-27 Wang Ynjiun P Apparatus and method comprising deformable lens element
US8081389B2 (en) 2007-02-13 2011-12-20 Sony Corporation Electro-wetting device and a method of manufacturing the same
US20100046084A1 (en) * 2007-02-13 2010-02-25 Sony Corporation Electro-wetting device and a method of manufacturing the same
US8548317B2 (en) 2007-03-28 2013-10-01 Anoto Ab Different aspects of electronic pens
US20100085471A1 (en) * 2007-03-28 2010-04-08 Thomas Craven-Bartle Different aspects of electronic pens
US7733575B2 (en) 2007-05-31 2010-06-08 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
US20090021823A1 (en) * 2007-05-31 2009-01-22 Artificial Muscle, Inc. Optical systems employing compliant electroactive materials
US9425383B2 (en) 2007-06-29 2016-08-23 Parker-Hannifin Corporation Method of manufacturing electroactive polymer transducers for sensory feedback applications
US20090072037A1 (en) * 2007-09-17 2009-03-19 Metrologic Instruments, Inc. Autofocus liquid lens scanner
US20090109544A1 (en) * 2007-10-29 2009-04-30 James Scott Sutherland Fluid lens lateral shifting
US7688518B2 (en) 2007-10-29 2010-03-30 Corning Incorporated Fluid lens lateral shifting
US8558853B2 (en) 2008-02-21 2013-10-15 Sharp Kabushiki Kaisha Single view display
US20090213147A1 (en) * 2008-02-21 2009-08-27 Sharp Kabushiki Kaisha Single view display
US9231186B2 (en) 2009-04-11 2016-01-05 Parker-Hannifin Corporation Electro-switchable polymer film assembly and use thereof
US8693104B2 (en) 2010-08-24 2014-04-08 Johnson & Johnson Vision Care, Inc. Lens with compound linear-convex meniscus wall
WO2012027156A1 (en) * 2010-08-24 2012-03-01 Johnson & Johnson Vision Care, Inc. Lens with compound linear-convex meniscus wall
US8767309B2 (en) 2010-09-08 2014-07-01 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
WO2012033795A1 (en) * 2010-09-08 2012-03-15 Johnson & Johnson Vision Care, Inc. Lens with multi-convex meniscus wall
CN103080781A (en) * 2010-09-08 2013-05-01 庄臣及庄臣视力保护公司 Lens with multi-convex meniscus wall
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
US9195058B2 (en) 2011-03-22 2015-11-24 Parker-Hannifin Corporation Electroactive polymer actuator lenticular system
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US20140221753A1 (en) * 2013-02-01 2014-08-07 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy

Also Published As

Publication number Publication date Type
US20070103790A1 (en) 2007-05-10 application
US7548377B2 (en) 2009-06-16 grant
US20090225436A1 (en) 2009-09-10 application

Similar Documents

Publication Publication Date Title
US3476463A (en) Coherent light optical system yielding an output beam of desired intensity distribution at a desired equiphase surface
US5952651A (en) Laser manipulation apparatus and cell plate used therefor
US4787722A (en) Fresnel lens with aspiteric grooves
US5004307A (en) Near field and solid immersion optical microscope
US4772115A (en) Illuminated ring keratometer device
US7646544B2 (en) Fluidic optical devices
Kuiper et al. Variable-focus liquid lens for miniature cameras
US20030038755A1 (en) Light modulation by frustration of total internal reflection
US4882281A (en) Probe for electrofusion, electroporation, or like procedure
US4067937A (en) Method for forming a light transmission glass fiber equipped with an optical lens
US6054071A (en) Poled electrets for gyricon-based electric-paper displays
US6814901B2 (en) Method of manufacturing microlens array and microlens array
US4579123A (en) Stand-off device
US5290398A (en) Synthesis of tapers for fiber optic sensors
US4884434A (en) Wear sensor
US5486337A (en) Device for electrostatic manipulation of droplets
US5357590A (en) Device for optically coupling a plurality of first optical waveguides to a plurality of second optical waveguides
US4560269A (en) Cell for mixing operations and for optical examination
EP0540281A2 (en) Method and apparatus for fabricating bichromal balls for a twisting ball display
US4850686A (en) Apparatus for adjusting light beam direction
US4896932A (en) Method of forming an optical fibre junction
US4275950A (en) Light-guide lens
US5467868A (en) Ophthalmic lens package
US5574598A (en) Varifocal lens
US4732449A (en) Beam splitter

Legal Events

Date Code Title Description
AS Assignment

Owner name: VARIOPTIC, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BERGE, BRUNO;REEL/FRAME:015807/0867

Effective date: 20040909