US20040229062A1 - Multi-wall sheet without the triangle effect, coated by coextrusion - Google Patents

Multi-wall sheet without the triangle effect, coated by coextrusion Download PDF

Info

Publication number
US20040229062A1
US20040229062A1 US10/843,995 US84399504A US2004229062A1 US 20040229062 A1 US20040229062 A1 US 20040229062A1 US 84399504 A US84399504 A US 84399504A US 2004229062 A1 US2004229062 A1 US 2004229062A1
Authority
US
United States
Prior art keywords
die
coextrusion
coextruded
sheets
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/843,995
Other versions
US7824589B2 (en
Inventor
Jakob Rubeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to BAYER POLMERS SHEET EUROPE GMBH reassignment BAYER POLMERS SHEET EUROPE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RUBECK, JAKOB
Publication of US20040229062A1 publication Critical patent/US20040229062A1/en
Priority to US12/888,106 priority Critical patent/US20110008579A1/en
Application granted granted Critical
Publication of US7824589B2 publication Critical patent/US7824589B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/695Flow dividers, e.g. breaker plates
    • B29C48/70Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows
    • B29C48/705Flow dividers, e.g. breaker plates comprising means for dividing, distributing and recombining melt flows in the die zone, e.g. to create flow homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0044Stabilisers, e.g. against oxydation, light or heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0047Agents changing thermal characteristics
    • B29K2105/005Heat sensitisers or absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0025Opaque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0029Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to extrusions and in particular to extrusion of thermoplastic materials.
  • a process for the production of coextruded gussetless multi-wall sheets is disclosed. Also disclosed is an extrusion die for the production of such sheets.
  • the inventive coextrusion process entails feeding part of the base material directly into the male insert of the multi-wall extrusion die to produce a gussetless sheet
  • Multi-wall sheets are often provided where one or both of the outer coextruded walls are capable of performing any of a variety of functions.
  • one or both outside walls may provide UV protection for the sheet against damage (e.g. yellowing) by UV radiation, but other functions, e.g. IR reflection, are also performed in this way.
  • EP-A 0 110 221 discloses sheets consisting of two layers of polycarbonate, one layer containing at least 3 wt. % of a UV absorber. These sheets may be produced by coextrusion according to EP-A 0 110 221.
  • EP-A 0 320 632 discloses moldings consisting of two layers of thermoplastic, preferably polycarbonate, one layer containing a specially substituted benzotriazoles as UV absorbers. EP-A 0 320 632 also discloses the production of these moldings by coextrusion.
  • EP-A 0 247 480 discloses multi-layer sheets in the structure of which includes a layer of branched polycarbonate and a layer of thermoplastic, the polycarbonate layer containing a specially substituted benzotriazoles as UV absorbers. The production of these sheets by coextrusion is also disclosed.
  • EP-A 0 500 496 discloses polymer compositions stabilized against UV light with special triazines, and their use as the outer layer on a multi-wall sheet.
  • the polymers mentioned are polycarbonate, polyester, polyamides, polyacetals, polyphenylene oxide and polyphenylene sulfide.
  • FIG. 1 shows a section through a multi-wall sheet, showing the formation of gussets. Feed of the polymer melt at ( 1 ) results in a flow of the polymer melt from the top and bottom into the multi-wall mould (arrows). This in turn leads to the formation of gussets in the coextruded layer ( 2 ).
  • FIG. 2 shows a section through a multi-wall sheet showing the process when pressing more main resin material from the opposite side of the coextruded one. Increased polymer feed from the side opposite to the coextruded side of the sheet ( 3 ) leads to a distribution of the melt from bottom to top resulting in a gussetless coextruded layer ( 4 ).
  • FIG. 3 shows section through a multi-wall plate, showing what this effect would look like with coextrusion both sides of the sheet. Increased polymer feed at ( 5 ) will lead to a gussetless coextruded layer ( 6 ) and a coextruded layer with a thick gusset ( 7 ).
  • FIG. 4 shows a section through a multi-wall sheet, showing how the process according to the invention works. Additional feed of polymer melt at ( 8 ) through a channel into the multi-wall mould completely avoids the triangle effect leading to coextruded layers ( 9 ), ( 10 ) without gusset formation.
  • FIG. 5 shows a cross section of one embodiment of the inventive die. Inflow of polymer melt occurs at ( 12 ) via channels ( 13 ) for feeding melt into the midpart of the male insert ( 14 ) of the die. The top and bottom side die lips are-represented by ( 15 ) and the sheet exits at ( 16 ).
  • the objective is therefore to produce a coextruded multi-wall sheet which, in contrast to the state of the art, no longer exhibits the triangle effect.
  • the material flow from the outside material streams is reduced or even prevented, as shown in FIG. 4, and the funnel formation and hence the gusset formation or triangle effect is minimized, or preferably even completely avoided, on both sides of the sheet.
  • the process according to the invention is therefore suitable for the production of multi-wall sheets coextruded on one or both sides.
  • the present invention thus provides a process for applying an outer layer on multi-wall sheets by coextrusion, and the gussetless sheets, or sheets free of the triangle effect, prepared by the process. These sheets are distinguished by a particularly smooth surface and uniform, i.e. gussetless, coextruded layers. A multi-wall sheet coextruded on both sides is a preferred embodiment.
  • the present invention therefore also provides an extrusion die for carrying out the process according to the invention.
  • the present invention also provides a product containing said sheets.
  • This product which contains e.g. said coextruded multi-wall sheet, is preferably selected from the group comprising glazing, greenhouses, conservatories, verandas, car ports, bus shelters, roofings, partitions, cash kiosks and solar collectors.
  • the process according to the invention has the substantial advantage of avoiding the triangle effect, which otherwise has noticeable adverse consequences due to gusset formation and the associated wastage of material, and by an uneven sheet surface.
  • the coating material wasted in the gusset generally contains valuable thermoplastic containing expensive additives. It may be of considerable financial advantage to save such material.
  • the process according to the invention is suitable for the production of a wide variety of coextruded layers and mainly for any conceivable functional layers, including in combination (UV protection and functional layer, e.g. IR reflection on the top and UV protection on the bottom), and is particularly suitable for the production of multi-wall sheets provided with UV protection on both sides.
  • UV protection and functional layer e.g. IR reflection on the top and UV protection on the bottom
  • coextruded multi-wall sheets according to the invention have further advantages over the state of the art. They may be produced by coextrusion, affording advantages over a product produced by lacquering. Thus, in contrast to lacquering, no solvents volatilize during coextrusion.
  • lacquers demand expensive technology. For example, they require explosion-proof machines and solvent recycling, i.e. high investment in plants. Coextrusion does not have this disadvantage.
  • a preferred embodiment of the present invention is said multi-wall sheet coextruded on both sides wherein the core material and the coextruded layer can be made of identical or different thermoplastics. Preferably, both layers are based on the same material.
  • thermoplastic molding compositions are suitable in the practice of the invention.
  • examples include one or more of polycarbonate, polyester, polyestercarbonates, polymethyl methacrylates, polystyrenes, SAN, blends of polycarbonate with polyesters and/or polystyrenes and/or SAN.
  • Preferred base resin material are those containing transparent thermoplastics such as polycarbonate or polymethyl methacrylates. It is particularly preferable to use polycarbonate or polymethyl methacrylates and very particularly preferable to use polycarbonate.
  • thermoplastics are well known to those skilled in the art and is carried out by the known processes.
  • the preferred coextruded multi-wall sheets are those in which the coextruded layer additionally contains 1 to 20% relative to the weight of the layer of UV absorbers and has a thickness of 5 to 200 ⁇ m, preferably 30 to 100 ⁇ m.
  • the multi-wall sheets may be twin-wall sheets, triple-wall sheets, quadruple-wall sheets, etc.
  • the multi-wall sheets may also have different profiles, e.g. X profiles or XX profiles.
  • the multi-wall sheets may also be corrugated.
  • a preferred embodiment of the present invention is a multi-wall sheet including a polycarbonate core material and two coextruded layers, arranged on top or underneath, all made of polycarbonate.
  • the coextruded multi-wall sheets according to the invention may be translucent, opaque or transparent.
  • the coextruded multi-wall sheets are transparent.
  • Both the base material and the coextruded layer(s) of the multi-wall sheets according to the invention may contain additives.
  • the coextruded layer may contain UV absorbers and demolding agents.
  • the UV absorbers or mixtures thereof are present in concentrations of 0-20 wt. %, preferably 0.1 to 20 wt. %, particularly preferably 2 to 10 wt. % and very particularly preferably 3 to 8 wt. %, the percents being relative to the weight of the composition. If two or more coextruded layers are present, the proportion of UV absorbers in these layers may differ.
  • UV absorbers examples include UV absorbers, UV absorbers, and UV absorbers.
  • R and X are identical or different and are H, alkyl or alkylaryl.
  • R3 and R4 are also identical or different and are H, C1-C4-alkyl, C5-C6-cycloalkyl, benzyl or C6-C14-aryl.
  • R1, R2, m and n are as defined for formula (II), p is an integer from 0 to 3, q is an integer from 1 to 10,
  • Y is —CH2-CH2-, —(CH2)3-, —(CH2)4-, —(CH2)5-, —(CH2)6- or CH(CH3)-CH2- and R3 and R4 are as defined for formula (II).
  • R1, R2, R3 and R4 are identical or different and are H, alkyl, CN or halogen and X is alkyl.
  • R1 is C1-alkyl to C17-alkyl
  • R2 is H or C1-alkyl to C4-alkyl
  • n is 0 to 20.
  • R1, R2, R3, R4, R5, R6, R7 and R8 may be identical or different and are H, alkyl, CN or halogen and X is alkyl or —(CH2CH2-O—)n-C( ⁇ O)—.
  • Very particularly preferred UV absorbers are selected from the group comprising Tinuvin 360, Tinuvin 1577 and Uvinul 3030.
  • UV absorbers are commercially available.
  • coextrusion and core resin of the multi-wall sheets may also contain other conventional processing aids, especially demolding agents and flow regulators, as well as the additives conventional for the polycarbonates used, such as stabilizers, especially heat stabilizers, and also colorants, optical brighteners and inorganic pigments.
  • thermoplastics for the multi-wall sheets according to the invention:
  • weight average molecular weights w preferably of 18,000 to 40,000, particularly preferably of 26,000 to 36,000 and very particularly preferably of 28,000 to 35,000, determined by gel permeation chromatography calibrated against polycarbonate.
  • the polycarbonates are preferably prepared by the interfacial polycondensation process or the melt transesterification process and the preparation is described below using the interfacial polycondensation process as an example.
  • the compounds that are preferably to be used as starting compounds are bisphenols of the general formula
  • Z is a divalent organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups.
  • Examples of such compounds are bisphenols belonging to the group comprising dihydroxybiphenyls, bis(hydroxyphenyl)alkanes, indanebisphenols, bis(hydroxyphenyl) ethers, bis(hydroxyphenyl) sulfones, bis(hydroxyphenyl) ketones and 1,3- or 1,4-bis(hydroxyphenylpropyl)benzenes.
  • Particularly preferred bisphenols belonging to the above groups of compounds are bisphenol A, tetraalkylbisphenol A, 1,3-bis[2-(4-hydroxyphenyl)-2-propyl]-benzene (bisphenol M), 1,4-bis-[2-(4-hydroxyphenyl)-2-propyl]benzene, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (bisphenol TMC) and optionally mixtures thereof.
  • the bisphenol compounds to be used according to the invention are reacted with carbonic acid compounds, especially phosgene, or, in the case of the melt transesterification process, with diphenyl carbonate or dimethyl carbonate.
  • Polyestercarbonates are preferably obtained by reacting the above-mentioned bisphenols, at least one aromatic dicarboxylic acid and optionally carbonic acid equivalents.
  • aromatic dicarboxylic acids are phthalic acid, terephthalic acid, isophthalic acid, 3,3′- or 4,4′-diphenyldicarboxylic acid and benzophenonedicarboxylic acids.
  • Up to 80 mol %, preferably from 20 to 50 mol %, of the carbonate groups in the polycarbonates may be replaced by aromatic dicarboxylic acid ester groups.
  • inert organic solvents used in the interfacial polycondensation process are dichloromethane, the various dichloroethanes and chloropropane compounds, carbon tetrachloride, chloroform, chlorobenzene and chlorotoluene.
  • chlorobenzene or dichloromethane or mixtures of dichloromethane and chlorobenzene It is preferable to use chlorobenzene or dichloromethane or mixtures of dichloromethane and chlorobenzene.
  • the interfacial polycondensation reaction may be accelerated by catalysts such as tertiary amines, especially N-alkylpiperidines, or onium salts. It is preferable to use tributylamine, triethylamine and N-ethylpiperidine. In the case of the melt transesterification process, it is preferable to use the catalysts mentioned in DE-A 42 38 123.
  • the polycarbonates may be intentionally branched in a controlled manner by using small amounts of branching agents, some suitable branching agents being phloroglucinol, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)-2-heptene, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptane, 1,3,5-tri(4-hydroxyphenyl)benzene, 1,1,1-tri(4-hydroxyphenyl)ethane, tri(4-hydroxyphenyl)phenylmethane, 2,2-bis[4,4-bis(4-hydroxyphenyl)cyclohexyl]propane, 2,4-bis(4-hydroxyphenylisopropyl)phenol, 2,6-bis(2-hydroxy-5′-methylbenzyl)-4-methylphenol, 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)propane, hexa(4-(4-hydroxyphenylisopropy
  • branching agents or mixtures of branching agents optionally to be used concomitantly in an amount of 0.05 to 2 mol %, based on the diphenols used, may be introduced together with the diphenols or else added at a later stage of the synthesis.
  • the chain terminators used are preferably phenols, such as phenol, alkylphenols like cresol and 4-tert-butylphenol, chlorophenol, bromophenol, cumylphenol or mixtures thereof, in amounts of 1-20 mol %, preferably 2-10 mol %, per mol of bisphenol. Phenol, 4-tert-butylphenol and cumylphenol are preferred.
  • chain terminators and branching agents may be added to the syntheses separately or else together with the bisphenol.
  • Polycarbonates that are preferred according to the invention are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, the copolycarbonates based on the two monomers bisphenol A and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, and the copolycarbonates based on the two monomers bisphenol A and 4,4′-dihydroxybiphenyl (DHB).
  • DHB 4,4′-dihydroxybiphenyl
  • the homopolycarbonate based on bisphenol A is particularly preferred.
  • the polymer used may contain stabilizers, examples of suitable stabilizers being phosphines, phosphites, stabilizers containing Si, and other compounds described in EP-A 0 500 496. Examples which may be mentioned are triphenyl phosphites, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, tetrakis(2,4-ditert-butylphenyl)-4,4′-biphenylene diphosphonite and triaryl phosphite. Triphenylphosphine and tris(2,4-ditert-butylphenyl) phosphite are particularly preferred.
  • These stabilizers may be present in all the layers of the multi-wall sheet according to the invention, i.e. both in the core material base layer and in the coextruded layer(s). It is possible for different additives or concentrations of additives to be present in each layer.
  • the multi-wall sheet according to the invention may contain 0.01 to 0.5%, relative to the weight of the relevant composition, of esters or partial esters of monohydric to hexahydric alcohols, especially glycerol, pentaerythritol or guerbet alcohols.
  • Examples of monohydric alcohols are stearyl alcohol, palmityl alcohol and guerbet alcohols.
  • Glycol is an example of a dihydric alcohol.
  • Glycerol is an example of a trihydric alcohol.
  • Pentaerythritol and mesoerythritol are examples of tetrahydric alcohols.
  • Arabitol, ribitol and xylitol are examples of pentahydric alcohols.
  • Mannitol, glucitol (sorbitol) and dulcitol are examples of hexahydric alcohols.
  • the esters are preferably the monoesters, diesters, triesters, tetraesters, pentaesters and hexaesters or their mixtures, especially random mixtures, of saturated C10 to C36 aliphatic monocarboxylic acids and optionally hydroxymonocarboxylic acids, preferably saturated C14 to C32 aliphatic monocarboxylic acids and optionally hydroxymonocarboxylic acids.
  • the commercially available fatty acid esters especially of pentaerythritol and glycerol, may contain ⁇ 60% relative to their weight of various partial esters as a result of the preparative process.
  • saturated aliphatic monocarboxylic acids having 10 to 36 C atoms are capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic. acid, behenic acid, lignoceric acid, cerotic acid and montanic acids.
  • Examples of preferred saturated aliphatic monocarboxylic acids having 14 to 22 C atoms are myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic acid and behenic acid.
  • Saturated aliphatic monocarboxylic acids like palmitic acid, stearic acid and hydroxystearic acid are particularly preferred.
  • the saturated C10 to C36 aliphatic carboxylic acids and the fatty acid esters are either known as such in the literature or may be prepared by processes known in the literature.
  • Examples of pentaerythritol fatty acid esters are those of the particularly preferred monocarboxylic acids mentioned above.
  • Esters of pentaerythritol and glycerol with stearic acid and palmitic acid are particularly preferred.
  • Esters of guerbet alcohols and glycerol with stearic acid and palmitic acid, and optionally hydroxystearic acid, are also particularly preferred.
  • esters may be present both in the base layer and in the coextruded layer(s). Different additives or concentrations may be present in each layer.
  • the multi-wall sheets according to the invention may contain antistatic agents.
  • antistatic agents are cationic compounds, e.g. quaternary ammonium, phosphonium or sulfonium salts, anionic compounds, e.g. alkylsulfonates, alkylsulfates, alkylphosphates or carboxylates in the form of alkali metal or alkaline earth metal salts, and non-ionic compounds, e.g. polyethylene glycol esters, polyethylene glycol ethers, fatty acid esters or ethoxylated fatty amines.
  • Preferred antistatic agents are non-ionic compounds.
  • antistatic agents may be present in the core material of the multi-wall sheet and in the coextruded layer(s). Different additives or concentrations may be present in each part.
  • the antistatic agents are preferably used in the coextruded layer(s).
  • the multi-wall sheets according to the invention may contain organic dyes, inorganic coloured pigments, fluorescent dyes and, particularly preferably, optical brighteners.
  • colorants may be present in the core material of the multi-wall sheet and in the coextruded layer(s). Different additives or concentrations may be present in the different parts of the sheets.
  • All the molding compounds and their additives and solvents used to produce the multi-wall sheet according to the invention may be contaminated with respective impurities as a result of their preparative processes and storage, the aim being to work with the cleanest possible starting materials.
  • the individual constituents may be mixed in known manner, either successively or simultaneously, either at room temperature or at elevated temperature.
  • the additives are preferably incorporated in known manner into the molding compounds for the multi-wall sheets according to the invention, by mixing polymer granules with the additives at temperatures of about 200 to 330° C. in conventional machines, such as internal kneaders, single-screw extruders and double-shaft extruders, for example by melt compounding or melt extrusion, or by mixing solutions of the polymer with solutions of the additives and subsequently vaporizing the solvents in known manner.
  • the proportion of additives in the molding compound may vary within wide limits and depends on the desired properties of the molding compound.
  • the total proportion of additives in the molding compound is preferably up to about 20 wt. %, preferably 0.2 to 12 wt. %, based on the weight of the molding compound.
  • the UV absorbers may also be incorporated into the molding compounds e.g. by mixing solutions of the UV absorbers, and optionally other additives mentioned above, with solutions of the plastics in suitable organic solvents such as CH2Cl2, halogenoalkanes, halogenoaromatics, chlorobenzene and xylenes.
  • suitable organic solvents such as CH2Cl2, halogenoalkanes, halogenoaromatics, chlorobenzene and xylenes.
  • the mixtures of substances are then preferably homogenized in known manner via extrusion; the mixtures of solutions are preferably removed, for example compounded, in known manner by vaporization of the solvent followed by extrusion.
  • Coextrusion as such is known in the literature (cf. for example EP-A 0 110 221 and EP-A 0 110 238).
  • the procedure is preferably as follows: Extruders for producing the core material and coextrusion layer(s) are connected to a coextrusion adapter.
  • the adapter is constructed so that the melt forming the coextrusion layer(s) is applied as a thin layer adhering to the melt for the core layer.
  • the melt strand containing segmented coextrusion and core material produced in this way is then converted to the desired shape (multi-wall sheet) in the die connected downstream.
  • the melt is subsequently cooled under controlled conditions in known manner by means of calibrating and then cut into lengths.
  • an annealing furnace may be used after sizing in order to remove stresses.
  • the adapter arranged upstream from the die, it is also possible for the die itself to be designed so that the melts are brought together in the die.
  • one or more coextruders for applying the coextrusion layers, with a screw of length 25 to 36 D, D being the diameter of the extruder, and a diameter D of 25 mm to 70 mm, with and without venting,
  • the polycarbonate granules of the base material were fed into the hoppers of the main extruder and the coextrusion material was fed into the hoppers of the coextruders.
  • Each material was melted and conveyed in its own cylinder/screw plasticizing system.
  • the material melts were brought together in the coextrusion adapter, passed the multi-wall sheet die and formed a coextruded sheet after leaving the die and being cooled down in the calibration unit.
  • the other devices served to transport the extruded sheets, cut them into lengths and deliver them.
  • Makrolon® 1243 a branched bisphenol A polycarbonate containing 0.3 mol % of isatin biscresol as branching agent and having a w of 29,234 and a relative solution viscosity of 0.5 g/100 ml, and
  • Makrolon® 3103 a linear bisphenol A polycarbonate having a w of 31,887 and a relative solution viscosity of 0.5 g/100 ml, as base materials, and
  • DP1-1816 another linear bisphenol A polycarbonate having a w of 33,560 and containing UV stabilizing additives.

Abstract

A process for the production of gussetless multi-wall sheets is disclosed. Also disclosed is an extrusion die for the production of such sheets. The inventive coextrusion process entails feeding part of the base material directly into and via the male insert of the extrusion die to produce a gussetless sheet.

Description

    FIELD OF THE INVENTION
  • The present invention relates to extrusions and in particular to extrusion of thermoplastic materials. [0001]
  • SUMMARY OF THE INVENTION
  • A process for the production of coextruded gussetless multi-wall sheets is disclosed. Also disclosed is an extrusion die for the production of such sheets. The inventive coextrusion process entails feeding part of the base material directly into the male insert of the multi-wall extrusion die to produce a gussetless sheet [0002]
  • BACKGROUND OF THE INVENTION
  • Multi-wall sheets are often provided where one or both of the outer coextruded walls are capable of performing any of a variety of functions. For example, one or both outside walls may provide UV protection for the sheet against damage (e.g. yellowing) by UV radiation, but other functions, e.g. IR reflection, are also performed in this way. [0003]
  • The state of the art relating to multi-layer products is summarized below. [0004]
  • EP-A 0 110 221 discloses sheets consisting of two layers of polycarbonate, one layer containing at least 3 wt. % of a UV absorber. These sheets may be produced by coextrusion according to EP-A 0 110 221. [0005]
  • EP-A 0 320 632 discloses moldings consisting of two layers of thermoplastic, preferably polycarbonate, one layer containing a specially substituted benzotriazoles as UV absorbers. EP-A 0 320 632 also discloses the production of these moldings by coextrusion. [0006]
  • EP-A 0 247 480 discloses multi-layer sheets in the structure of which includes a layer of branched polycarbonate and a layer of thermoplastic, the polycarbonate layer containing a specially substituted benzotriazoles as UV absorbers. The production of these sheets by coextrusion is also disclosed. [0007]
  • EP-A 0 500 496 discloses polymer compositions stabilized against UV light with special triazines, and their use as the outer layer on a multi-wall sheet. The polymers mentioned are polycarbonate, polyester, polyamides, polyacetals, polyphenylene oxide and polyphenylene sulfide. [0008]
  • However, all the coextruded multi-wall sheets known from the state of the art exhibit the so-called “triangle effect”, a defect resulting upon the coextrusion, described as a combination of gussets consisting of the material making up the coextruded layer with unevenness of the surface of the sheet (FIG. 1).[0009]
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a section through a multi-wall sheet, showing the formation of gussets. Feed of the polymer melt at ([0010] 1) results in a flow of the polymer melt from the top and bottom into the multi-wall mould (arrows). This in turn leads to the formation of gussets in the coextruded layer (2).
  • FIG. 2 shows a section through a multi-wall sheet showing the process when pressing more main resin material from the opposite side of the coextruded one. Increased polymer feed from the side opposite to the coextruded side of the sheet ([0011] 3) leads to a distribution of the melt from bottom to top resulting in a gussetless coextruded layer (4).
  • FIG. 3 shows section through a multi-wall plate, showing what this effect would look like with coextrusion both sides of the sheet. Increased polymer feed at ([0012] 5) will lead to a gussetless coextruded layer (6) and a coextruded layer with a thick gusset (7).
  • FIG. 4 shows a section through a multi-wall sheet, showing how the process according to the invention works. Additional feed of polymer melt at ([0013] 8) through a channel into the multi-wall mould completely avoids the triangle effect leading to coextruded layers (9), (10) without gusset formation.
  • FIG. 5 shows a cross section of one embodiment of the inventive die. Inflow of polymer melt occurs at ([0014] 12) via channels (13) for feeding melt into the midpart of the male insert (14) of the die. The top and bottom side die lips are-represented by (15) and the sheet exits at (16).
  • DETAILED DESCRIPTION OF THE INVENTION
  • Given the state of the art, the objective is therefore to produce a coextruded multi-wall sheet which, in contrast to the state of the art, no longer exhibits the triangle effect. [0015]
  • This object forms the basis of the present invention. [0016]
  • In the case of sheets coated-on one side, this problem may be solved with a modified feed of the coextrusion material by increasing the material feed from the non-coextruded side, making it possible to avoid gusset formation on the coextruded side (FIG. 2). [0017]
  • In the case of sheets coextruded on both sides, however, this process is inapplicable. Here, the increased feed from one side would produce a thicker gusset on the other side, so the gain on one side would be offset by a loss on the other side (FIG. 3). [0018]
  • It has now been found, surprisingly, that the gusset formation on each side may be virtually completely avoided by modifying the material flows during extrusion in such a way that a partial flow is tapped from the conventional material flow around the male insert of the die, said partial flow being fed directly into the center of the male insert of the die where mainly the rib of the sheets are formed. The material flow through the male insert is normally divided into an upper and a lower stream which flow together again before the outlet of the die from above and below, to produce the walls. However, this flowing of material from the upper and lower sides creates a typical “draining funnel”, which is filled with coextrusion material flowing in. A gusset is formed, as shown in FIG. 1. To enable part of the material to be fed directly into the center of the male insert of the die, according to the invention, the material flow from the outside material streams is reduced or even prevented, as shown in FIG. 4, and the funnel formation and hence the gusset formation or triangle effect is minimized, or preferably even completely avoided, on both sides of the sheet. The process according to the invention is therefore suitable for the production of multi-wall sheets coextruded on one or both sides. [0019]
  • The present invention thus provides a process for applying an outer layer on multi-wall sheets by coextrusion, and the gussetless sheets, or sheets free of the triangle effect, prepared by the process. These sheets are distinguished by a particularly smooth surface and uniform, i.e. gussetless, coextruded layers. A multi-wall sheet coextruded on both sides is a preferred embodiment. [0020]
  • The present invention therefore also provides an extrusion die for carrying out the process according to the invention. [0021]
  • In addition to the conventional channels, sections and molds required for various purposes, are there channels which feed part of the inflowing material directly into the center of the male insert of the die. In a preferred embodiment, the material is fed directly forwards into the male insert from a region at the back of the die (FIG. 5). [0022]
  • The present invention also provides a product containing said sheets. This product, which contains e.g. said coextruded multi-wall sheet, is preferably selected from the group comprising glazing, greenhouses, conservatories, verandas, car ports, bus shelters, roofings, partitions, cash kiosks and solar collectors. [0023]
  • The process according to the invention has the substantial advantage of avoiding the triangle effect, which otherwise has noticeable adverse consequences due to gusset formation and the associated wastage of material, and by an uneven sheet surface. The coating material wasted in the gusset generally contains valuable thermoplastic containing expensive additives. It may be of considerable financial advantage to save such material. [0024]
  • The process according to the invention is suitable for the production of a wide variety of coextruded layers and mainly for any conceivable functional layers, including in combination (UV protection and functional layer, e.g. IR reflection on the top and UV protection on the bottom), and is particularly suitable for the production of multi-wall sheets provided with UV protection on both sides. [0025]
  • The coextruded multi-wall sheets according to the invention have further advantages over the state of the art. They may be produced by coextrusion, affording advantages over a product produced by lacquering. Thus, in contrast to lacquering, no solvents volatilize during coextrusion. [0026]
  • Moreover, lacquers cannot be stored for long periods. Coextrusion does not have this disadvantage. [0027]
  • Also, lacquers demand expensive technology. For example, they require explosion-proof machines and solvent recycling, i.e. high investment in plants. Coextrusion does not have this disadvantage. [0028]
  • A preferred embodiment of the present invention is said multi-wall sheet coextruded on both sides wherein the core material and the coextruded layer can be made of identical or different thermoplastics. Preferably, both layers are based on the same material. [0029]
  • All thermoplastic molding compositions are suitable in the practice of the invention. Examples include one or more of polycarbonate, polyester, polyestercarbonates, polymethyl methacrylates, polystyrenes, SAN, blends of polycarbonate with polyesters and/or polystyrenes and/or SAN. [0030]
  • Preferred base resin material are those containing transparent thermoplastics such as polycarbonate or polymethyl methacrylates. It is particularly preferable to use polycarbonate or polymethyl methacrylates and very particularly preferable to use polycarbonate. [0031]
  • The preparation of these thermoplastics is well known to those skilled in the art and is carried out by the known processes. [0032]
  • According to the invention, the preferred coextruded multi-wall sheets are those in which the coextruded layer additionally contains 1 to 20% relative to the weight of the layer of UV absorbers and has a thickness of 5 to 200 μm, preferably 30 to 100 μm. [0033]
  • The multi-wall sheets may be twin-wall sheets, triple-wall sheets, quadruple-wall sheets, etc. The multi-wall sheets may also have different profiles, e.g. X profiles or XX profiles. The multi-wall sheets may also be corrugated. [0034]
  • A preferred embodiment of the present invention is a multi-wall sheet including a polycarbonate core material and two coextruded layers, arranged on top or underneath, all made of polycarbonate. [0035]
  • Depending on the type of thermoplastics used and the additives they contain, the coextruded multi-wall sheets according to the invention may be translucent, opaque or transparent. [0036]
  • In one particular embodiment, the coextruded multi-wall sheets are transparent. [0037]
  • Both the base material and the coextruded layer(s) of the multi-wall sheets according to the invention may contain additives. [0038]
  • In particular, the coextruded layer may contain UV absorbers and demolding agents. [0039]
  • The UV absorbers or mixtures thereof are present in concentrations of 0-20 wt. %, preferably 0.1 to 20 wt. %, particularly preferably 2 to 10 wt. % and very particularly preferably 3 to 8 wt. %, the percents being relative to the weight of the composition. If two or more coextruded layers are present, the proportion of UV absorbers in these layers may differ. [0040]
  • Examples of UV absorbers that may be used according to the invention are described below: [0041]
  • a) Benzotriazole derivatives of formula (1): [0042]
    Figure US20040229062A1-20041118-C00001
  • In formula (I), R and X are identical or different and are H, alkyl or alkylaryl. [0043]
  • Preferred representatives are Tinuvin 329, where X=1,1,3,3-tetramethylbutyl and R=H, Tinuvin 350, where X=tert-butyl and R=2-butyl, and Tinuvin 234, where X=R=1,1-dimethyl-1-phenyl. [0044]
  • b) Dimeric benzotriazole derivatives of formula (II): [0045]
    Figure US20040229062A1-20041118-C00002
  • In formula (II), R1 and R2 are identical or different and are H, halogen, C1-C10-alkyl, C5-C10-cycloalkyl, C7-C13-aralkyl, C6-C14-aryl, —OR5 or —(CO)—O—R5, where R5=H or C1-C4-alkyl. [0046]
  • In formula (II), R3 and R4 are also identical or different and are H, C1-C4-alkyl, C5-C6-cycloalkyl, benzyl or C6-C14-aryl. [0047]
  • In formula (II), m is 1, 2 or 3 and n is 1, 2, 3 or 4. [0048]
  • Preference is given to Tinuvin 360, where R1=R3=R4=H, n=4, R2=1,1,3,3-tetramethylbutyl and m=1. [0049]
  • b1) Dimeric benzotriazole derivatives of formula (III): [0050]
    Figure US20040229062A1-20041118-C00003
  • wherein the bridge is [0051]
    Figure US20040229062A1-20041118-C00004
  • R1, R2, m and n are as defined for formula (II), p is an integer from 0 to 3, q is an integer from 1 to 10, [0052]
  • Y is —CH2-CH2-, —(CH2)3-, —(CH2)4-, —(CH2)5-, —(CH2)6- or CH(CH3)-CH2- and R3 and R4 are as defined for formula (II). [0053]
  • Preference is given to Tinuvin 840, where R1=H, n=4, R2=tert-butyl, m=1, R2 is in the ortho position to the OH group, R3=R4=H, p=2, Y=—(CH2)5- and q=1. [0054]
  • c) Triazine derivatives of formula (IV): [0055]
    Figure US20040229062A1-20041118-C00005
  • wherein R1, R2, R3 and R4 are identical or different and are H, alkyl, CN or halogen and X is alkyl. [0056]
  • Preference is given to Tinuvin 1577, where R1=R2=R3=R4=H and X=hexyl, and Cyasorb UV-1164, where R1=R2=R3=R4=methyl and X=octyl. [0057]
  • d) Triazine derivatives of formula (IVa) below: [0058]
    Figure US20040229062A1-20041118-C00006
  • wherein [0059]
  • R1 is C1-alkyl to C17-alkyl, [0060]
  • R2 is H or C1-alkyl to C4-alkyl, and [0061]
  • n is 0 to 20. [0062]
  • e) Dimeric triazine derivatives of formula (V): [0063]
    Figure US20040229062A1-20041118-C00007
  • wherein [0064]
  • R1, R2, R3, R4, R5, R6, R7 and R8 may be identical or different and are H, alkyl, CN or halogen and X is alkyl or —(CH2CH2-O—)n-C(═O)—. [0065]
  • f) Diaryl cyanoacrylates of formula (VI): [0066]
    Figure US20040229062A1-20041118-C00008
  • wherein [0067]
  • R1 to R40 may be identical or different and are H, alkyl, CN or halogen. Preference is given to Uvinul 3030, where R1 to R40=H. [0068]
  • Very particularly preferred UV absorbers are selected from the group comprising Tinuvin 360, Tinuvin 1577 and Uvinul 3030. [0069]
    Figure US20040229062A1-20041118-C00009
  • Said UV absorbers are commercially available. [0070]
  • In addition to or in place of the UV absorbers, coextrusion and core resin of the multi-wall sheets may also contain other conventional processing aids, especially demolding agents and flow regulators, as well as the additives conventional for the polycarbonates used, such as stabilizers, especially heat stabilizers, and also colorants, optical brighteners and inorganic pigments. [0071]
  • All the known polycarbonates are suitable as preferred thermoplastics for the multi-wall sheets according to the invention: [0072]
  • These include homopolycarbonates, copolycarbonates and thermoplastic polyestercarbonates. [0073]
  • They have weight average molecular weights w preferably of 18,000 to 40,000, particularly preferably of 26,000 to 36,000 and very particularly preferably of 28,000 to 35,000, determined by gel permeation chromatography calibrated against polycarbonate. [0074]
  • For the preparation of polycarbonates, reference may be made for example to “Schnell, Chemistry and Physics of Polycarbonates, Polymer Reviews, Vol. 9, Interscience Publishers, New York, London, Sydney 1964”, to “D.C. PREVORSEK, B. T. DEBONA and Y. KESTEN, Corporate Research Center, Allied Chemical Corporation, Morristown, N.J. 07960, ‘Synthesis of Poly(ester)carbonate Copolymers’ in Journal of Polymer Science, Polymer Chemistry Edition, Vol. 19, 75-90 (1980)”, to “D. Freitag, U. Grigo, P. R. Müller and N. Nouvertne, BAYER AG, ‘Polycarbonates’ in Encyclopedia of Polymer Science and Engineering, Vol. 11, Second Edition, 1988, pages 648-718” and finally to “Dres. U. Grigo, K. Kircher and P. R. Müller, ‘Polycarbonate’ in Becker/Braun, Kunststoff-Handbuch, [0075] Volume 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag, Munich, Vienna 1992, pages 117-299”.
  • The polycarbonates are preferably prepared by the interfacial polycondensation process or the melt transesterification process and the preparation is described below using the interfacial polycondensation process as an example. [0076]
  • The compounds that are preferably to be used as starting compounds are bisphenols of the general formula[0077]
  • HO—Z—OH,
  • wherein Z is a divalent organic radical having 6 to 30 carbon atoms and containing one or more aromatic groups. [0078]
  • Examples of such compounds are bisphenols belonging to the group comprising dihydroxybiphenyls, bis(hydroxyphenyl)alkanes, indanebisphenols, bis(hydroxyphenyl) ethers, bis(hydroxyphenyl) sulfones, bis(hydroxyphenyl) ketones and 1,3- or 1,4-bis(hydroxyphenylpropyl)benzenes. [0079]
  • Particularly preferred bisphenols belonging to the above groups of compounds are bisphenol A, tetraalkylbisphenol A, 1,3-bis[2-(4-hydroxyphenyl)-2-propyl]-benzene (bisphenol M), 1,4-bis-[2-(4-hydroxyphenyl)-2-propyl]benzene, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane (bisphenol TMC) and optionally mixtures thereof. [0080]
  • Preferably, the bisphenol compounds to be used according to the invention are reacted with carbonic acid compounds, especially phosgene, or, in the case of the melt transesterification process, with diphenyl carbonate or dimethyl carbonate. [0081]
  • Polyestercarbonates are preferably obtained by reacting the above-mentioned bisphenols, at least one aromatic dicarboxylic acid and optionally carbonic acid equivalents. Examples of suitable aromatic dicarboxylic acids are phthalic acid, terephthalic acid, isophthalic acid, 3,3′- or 4,4′-diphenyldicarboxylic acid and benzophenonedicarboxylic acids. Up to 80 mol %, preferably from 20 to 50 mol %, of the carbonate groups in the polycarbonates may be replaced by aromatic dicarboxylic acid ester groups. [0082]
  • Examples of inert organic solvents used in the interfacial polycondensation process are dichloromethane, the various dichloroethanes and chloropropane compounds, carbon tetrachloride, chloroform, chlorobenzene and chlorotoluene. [0083]
  • It is preferable to use chlorobenzene or dichloromethane or mixtures of dichloromethane and chlorobenzene. [0084]
  • The interfacial polycondensation reaction may be accelerated by catalysts such as tertiary amines, especially N-alkylpiperidines, or onium salts. It is preferable to use tributylamine, triethylamine and N-ethylpiperidine. In the case of the melt transesterification process, it is preferable to use the catalysts mentioned in DE-A 42 38 123. [0085]
  • The polycarbonates may be intentionally branched in a controlled manner by using small amounts of branching agents, some suitable branching agents being phloroglucinol, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)-2-heptene, 4,6-dimethyl-2,4,6-tri(4-hydroxyphenyl)heptane, 1,3,5-tri(4-hydroxyphenyl)benzene, 1,1,1-tri(4-hydroxyphenyl)ethane, tri(4-hydroxyphenyl)phenylmethane, 2,2-bis[4,4-bis(4-hydroxyphenyl)cyclohexyl]propane, 2,4-bis(4-hydroxyphenylisopropyl)phenol, 2,6-bis(2-hydroxy-5′-methylbenzyl)-4-methylphenol, 2-(4-hydroxyphenyl)-2-(2,4-dihydroxyphenyl)propane, hexa(4-(4-hydroxyphenylisopropyl)phenyl)orthoterephthalate, tetra(4-hydroxyphenyl)methane, tetra(4-(4-hydroxyphenylisopropyl)phenoxy)methane, 1,3,5-tris[2-(4-hydroxyphenyl)-2-propyl]benzene, 2,4-dihydroxybenzoic acid, trimesic acid, cyanuric chloride, 3,3-bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindole and 1,4-bis(4′,4″-dihydroxytriphenyl)methyl)benzene, especially 1,1,1-tri(4-hydroxyphenyl)ethane and bis(3-methyl-4-hydroxyphenyl)-2-oxo-2,3 -dihydroindole. [0086]
  • The branching agents or mixtures of branching agents optionally to be used concomitantly in an amount of 0.05 to 2 mol %, based on the diphenols used, may be introduced together with the diphenols or else added at a later stage of the synthesis. [0087]
  • The chain terminators used are preferably phenols, such as phenol, alkylphenols like cresol and 4-tert-butylphenol, chlorophenol, bromophenol, cumylphenol or mixtures thereof, in amounts of 1-20 mol %, preferably 2-10 mol %, per mol of bisphenol. Phenol, 4-tert-butylphenol and cumylphenol are preferred. [0088]
  • The chain terminators and branching agents may be added to the syntheses separately or else together with the bisphenol. [0089]
  • The preparation of the polycarbonates by the melt transesterification process is described by way of example in DE-A 42 38 123. [0090]
  • Polycarbonates that are preferred according to the invention are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, the copolycarbonates based on the two monomers bisphenol A and 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, and the copolycarbonates based on the two monomers bisphenol A and 4,4′-dihydroxybiphenyl (DHB). [0091]
  • The homopolycarbonate based on bisphenol A is particularly preferred. [0092]
  • The polymer used may contain stabilizers, examples of suitable stabilizers being phosphines, phosphites, stabilizers containing Si, and other compounds described in EP-A 0 500 496. Examples which may be mentioned are triphenyl phosphites, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, tetrakis(2,4-ditert-butylphenyl)-4,4′-biphenylene diphosphonite and triaryl phosphite. Triphenylphosphine and tris(2,4-ditert-butylphenyl) phosphite are particularly preferred. [0093]
  • These stabilizers may be present in all the layers of the multi-wall sheet according to the invention, i.e. both in the core material base layer and in the coextruded layer(s). It is possible for different additives or concentrations of additives to be present in each layer. [0094]
  • Furthermore, the multi-wall sheet according to the invention may contain 0.01 to 0.5%, relative to the weight of the relevant composition, of esters or partial esters of monohydric to hexahydric alcohols, especially glycerol, pentaerythritol or guerbet alcohols. [0095]
  • Examples of monohydric alcohols are stearyl alcohol, palmityl alcohol and guerbet alcohols. [0096]
  • Glycol is an example of a dihydric alcohol. [0097]
  • Glycerol is an example of a trihydric alcohol. [0098]
  • Pentaerythritol and mesoerythritol are examples of tetrahydric alcohols. [0099]
  • Arabitol, ribitol and xylitol are examples of pentahydric alcohols. [0100]
  • Mannitol, glucitol (sorbitol) and dulcitol are examples of hexahydric alcohols. [0101]
  • The esters are preferably the monoesters, diesters, triesters, tetraesters, pentaesters and hexaesters or their mixtures, especially random mixtures, of saturated C10 to C36 aliphatic monocarboxylic acids and optionally hydroxymonocarboxylic acids, preferably saturated C14 to C32 aliphatic monocarboxylic acids and optionally hydroxymonocarboxylic acids. [0102]
  • The commercially available fatty acid esters, especially of pentaerythritol and glycerol, may contain <60% relative to their weight of various partial esters as a result of the preparative process. [0103]
  • Examples of saturated aliphatic monocarboxylic acids having 10 to 36 C atoms are capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic. acid, behenic acid, lignoceric acid, cerotic acid and montanic acids. [0104]
  • Examples of preferred saturated aliphatic monocarboxylic acids having 14 to 22 C atoms are myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic acid and behenic acid. [0105]
  • Saturated aliphatic monocarboxylic acids like palmitic acid, stearic acid and hydroxystearic acid are particularly preferred. [0106]
  • The saturated C10 to C36 aliphatic carboxylic acids and the fatty acid esters are either known as such in the literature or may be prepared by processes known in the literature. Examples of pentaerythritol fatty acid esters are those of the particularly preferred monocarboxylic acids mentioned above. [0107]
  • Esters of pentaerythritol and glycerol with stearic acid and palmitic acid are particularly preferred. [0108]
  • Esters of guerbet alcohols and glycerol with stearic acid and palmitic acid, and optionally hydroxystearic acid, are also particularly preferred. [0109]
  • The esters may be present both in the base layer and in the coextruded layer(s). Different additives or concentrations may be present in each layer. [0110]
  • The multi-wall sheets according to the invention may contain antistatic agents. [0111]
  • Examples of antistatic agents are cationic compounds, e.g. quaternary ammonium, phosphonium or sulfonium salts, anionic compounds, e.g. alkylsulfonates, alkylsulfates, alkylphosphates or carboxylates in the form of alkali metal or alkaline earth metal salts, and non-ionic compounds, e.g. polyethylene glycol esters, polyethylene glycol ethers, fatty acid esters or ethoxylated fatty amines. Preferred antistatic agents are non-ionic compounds. [0112]
  • These antistatic agents may be present in the core material of the multi-wall sheet and in the coextruded layer(s). Different additives or concentrations may be present in each part. The antistatic agents are preferably used in the coextruded layer(s). [0113]
  • The multi-wall sheets according to the invention may contain organic dyes, inorganic coloured pigments, fluorescent dyes and, particularly preferably, optical brighteners. [0114]
  • These colorants may be present in the core material of the multi-wall sheet and in the coextruded layer(s). Different additives or concentrations may be present in the different parts of the sheets. [0115]
  • All the molding compounds and their additives and solvents used to produce the multi-wall sheet according to the invention may be contaminated with respective impurities as a result of their preparative processes and storage, the aim being to work with the cleanest possible starting materials. [0116]
  • The individual constituents may be mixed in known manner, either successively or simultaneously, either at room temperature or at elevated temperature. [0117]
  • The additives, especially the UV absorbers and other additives mentioned above, are preferably incorporated in known manner into the molding compounds for the multi-wall sheets according to the invention, by mixing polymer granules with the additives at temperatures of about 200 to 330° C. in conventional machines, such as internal kneaders, single-screw extruders and double-shaft extruders, for example by melt compounding or melt extrusion, or by mixing solutions of the polymer with solutions of the additives and subsequently vaporizing the solvents in known manner. The proportion of additives in the molding compound may vary within wide limits and depends on the desired properties of the molding compound. The total proportion of additives in the molding compound is preferably up to about 20 wt. %, preferably 0.2 to 12 wt. %, based on the weight of the molding compound. [0118]
  • The UV absorbers may also be incorporated into the molding compounds e.g. by mixing solutions of the UV absorbers, and optionally other additives mentioned above, with solutions of the plastics in suitable organic solvents such as CH2Cl2, halogenoalkanes, halogenoaromatics, chlorobenzene and xylenes. The mixtures of substances are then preferably homogenized in known manner via extrusion; the mixtures of solutions are preferably removed, for example compounded, in known manner by vaporization of the solvent followed by extrusion. [0119]
  • It is possible to go on processing the multi-wall sheets according to the invention e.g. by thermo forming or by means of surface treatments, such as the application of scratch resistant lacquers, water spreading layers, and the like, and the products produced by these processes are also provided by the present invention. [0120]
  • Coextrusion as such is known in the literature (cf. for example EP-A 0 110 221 and EP-A 0 110 238). In the present case the procedure is preferably as follows: Extruders for producing the core material and coextrusion layer(s) are connected to a coextrusion adapter. The adapter is constructed so that the melt forming the coextrusion layer(s) is applied as a thin layer adhering to the melt for the core layer. The melt strand containing segmented coextrusion and core material produced in this way is then converted to the desired shape (multi-wall sheet) in the die connected downstream. The melt is subsequently cooled under controlled conditions in known manner by means of calibrating and then cut into lengths. Optionally, an annealing furnace may be used after sizing in order to remove stresses. In place of the adapter arranged upstream from the die, it is also possible for the die itself to be designed so that the melts are brought together in the die. [0121]
  • The process according to the invention, as illustrated is carried out using a die and male insert combination modified as described above, i.e. with a channel for feeding the material directly into the male insert of the multi-wall die. Accordingly, the present patent application also provides the use of a die male insert combination according to the invention for the production of a gussetless coextruded twin-wall sheet. [0122]
  • The invention is illustrated in greater detail by the following Examples, which do not imply a limitation. The Examples according to the invention merely represent preferred embodiments of the present invention. [0123]
  • The machines and equipment used for the production of multi-layer solid sheets are described below. They comprise: [0124]
  • the main extruder with a screw of length 25 to 36 D and a diameter of 70 mm to 200 mm, with and without venting, [0125]
  • one or more coextruders for applying the coextrusion layers, with a screw of length 25 to 36 D, D being the diameter of the extruder, and a diameter D of 25 mm to 70 mm, with and without venting, [0126]
  • a coextrusion adapter, [0127]
  • a multi-wall sheet die with special male insert [0128]
  • a calibration unit, [0129]
  • a take-off device, [0130]
  • a roller conveyor, [0131]
  • a cutting device (saw or knives), [0132]
  • a delivery table. [0133]
  • The polycarbonate granules of the base material were fed into the hoppers of the main extruder and the coextrusion material was fed into the hoppers of the coextruders. Each material was melted and conveyed in its own cylinder/screw plasticizing system. The material melts were brought together in the coextrusion adapter, passed the multi-wall sheet die and formed a coextruded sheet after leaving the die and being cooled down in the calibration unit. The other devices served to transport the extruded sheets, cut them into lengths and deliver them. [0134]
  • The sheets obtained were then assessed visually. [0135]
  • Polycarbonate twin-wall sheets of the following dimensions were produced: [0136]
    Nr. thickness rib distance width area weight
    1 10 mm 11 mm 2100 mm 1,7 kg/m 2
    2 10 mm 11 mm 2100 mm 2,0 kg/m 2
    3  8 mm 11 mm 2100 mm 1,5 kg/m 2
    4  8 mm 11 mm 2100 mm 1,7 kg/m2
  • They contained no obvious gussets and accordingly did not exhibit the triangle effect. [0137]
  • The following polycarbonates were used as coextrusion material in these experiments: [0138]
  • Makrolon® 1243, a branched bisphenol A polycarbonate containing 0.3 mol % of isatin biscresol as branching agent and having a w of 29,234 and a relative solution viscosity of 0.5 g/100 ml, and [0139]
  • Makrolon® 3103, a linear bisphenol A polycarbonate having a w of 31,887 and a relative solution viscosity of 0.5 g/100 ml, as base materials, and [0140]
  • DP1-1816, another linear bisphenol A polycarbonate having a w of 33,560 and containing UV stabilizing additives. [0141]
  • Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims. [0142]

Claims (7)

What is claimed is:
1. In the coextrusion process for producing a multi-wall sheet the improvement comprising feeding part of the core material directly into and via the male insert of the extrusion die, to produce a gussetless sheet.
2. The process according to claim 1, wherein the feeding is through at least one channel in the die, and directly forwards into the male insert of the die from a region at the back of the die.
3. A die for making a multi-wall sheet characterized by at least one boring in the male insert of the die directly providing the male insert of the die with a part of the core material right in the middle of the die.
4. The gussetless multi-walled sheet prepared by the process of claim 1.
5. The process of claim 1 wherein base material is a transparent thermoplastic composition.
6. The process of claim 1 wherein base material is a thermoplastic polycarbonate composition.
7. The multi-wall sheet prepared by the process of claim 6.
US10/843,995 2003-05-16 2004-05-12 Multi-wall sheet without the triangle effect, coated by coextrusion Expired - Fee Related US7824589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/888,106 US20110008579A1 (en) 2003-05-16 2010-09-22 Multi-wall sheet without the triangle effect, coated by coextrusion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2003122003 DE10322003A1 (en) 2003-05-16 2003-05-16 Coextrusion coated web plate without triangle effect
DE10322003 2003-05-16
DE10322003.8 2003-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/888,106 Continuation US20110008579A1 (en) 2003-05-16 2010-09-22 Multi-wall sheet without the triangle effect, coated by coextrusion

Publications (2)

Publication Number Publication Date
US20040229062A1 true US20040229062A1 (en) 2004-11-18
US7824589B2 US7824589B2 (en) 2010-11-02

Family

ID=33394644

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/843,995 Expired - Fee Related US7824589B2 (en) 2003-05-16 2004-05-12 Multi-wall sheet without the triangle effect, coated by coextrusion
US12/888,106 Abandoned US20110008579A1 (en) 2003-05-16 2010-09-22 Multi-wall sheet without the triangle effect, coated by coextrusion

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/888,106 Abandoned US20110008579A1 (en) 2003-05-16 2010-09-22 Multi-wall sheet without the triangle effect, coated by coextrusion

Country Status (15)

Country Link
US (2) US7824589B2 (en)
EP (2) EP1792703B1 (en)
JP (1) JP5058601B2 (en)
KR (1) KR101183814B1 (en)
CN (1) CN1791502A (en)
AT (2) ATE355958T1 (en)
DE (3) DE10322003A1 (en)
DK (1) DK1792703T3 (en)
ES (2) ES2347269T3 (en)
IL (1) IL171946A (en)
PL (1) PL1792703T3 (en)
PT (1) PT1792703E (en)
RU (1) RU2357862C2 (en)
UA (2) UA89910C2 (en)
WO (1) WO2004101257A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128361A1 (en) * 2006-05-05 2007-11-15 Firma Breyer Gmbh Maschinenfabrik Extrusion die for the production of hollow chamber profiles
US20080167486A1 (en) * 2007-01-10 2008-07-10 The University Of Connecticut Methods and systems for alkyl ester production
US20090123719A1 (en) * 2007-11-12 2009-05-14 Christianus Johannes Jacobus Maas Multiwall Polymer Sheet Comprising Branched Polycarbonate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2668518C (en) * 2009-06-11 2012-09-25 Manfred A. A. Lupke Die tooling for extruding tubular product
WO2013167542A1 (en) 2012-05-08 2013-11-14 Bayer Materialscience Gmbh Light guide plate
CN103612378A (en) * 2013-12-11 2014-03-05 湖北凯乐科技股份有限公司 Nylon and polyethylene jacket double-layer co-extrusion mold

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485912A (en) * 1965-02-09 1969-12-23 Dow Chemical Co Composite article formation
US3606636A (en) * 1967-05-05 1971-09-21 Dow Chemical Co Extrusion die
US3764245A (en) * 1971-05-10 1973-10-09 F Miyamoto Apparatus for producing light structural board of thermoplastic resin
US4877657A (en) * 1989-02-06 1989-10-31 The D.L. Auld Company Decorative trim strip with enhanced depth of vision
US4927675A (en) * 1985-12-31 1990-05-22 General Electric Company Filled core materials having unfilled outer attached layers
US5001177A (en) * 1986-05-28 1991-03-19 Bayer Aktiengesellschaft Branched thermoplastic polycarbonates having improved protection against UV light
US5108835A (en) * 1987-11-24 1992-04-28 Bayer Aktiengesellschaft Coextruded double walled sheet of linear polycarbonate resin
US5112547A (en) * 1989-08-07 1992-05-12 Hashimoto Forming Industry Co., Ltd. Method of making an elongate article
US5288778A (en) * 1991-02-21 1994-02-22 Ciba-Geigy Corporation Stabilized polymers having hetero atoms in the main chain
US5662851A (en) * 1991-02-15 1997-09-02 Tokai Kogyo Kabushiki Kaisha Method of producing a molding
US5980226A (en) * 1993-11-05 1999-11-09 Guillemette; A. Roger Modular die assembly
US6189269B1 (en) * 1992-05-29 2001-02-20 Royal Building Systems (Cdn) Limited Thermoplastic wall forming member with wiring channel
US20020197449A1 (en) * 2001-06-22 2002-12-26 Roehm Gmbh & Co., Kg Extrusion die for making hollow-chamber profiled panels of thermoplastic plastic with interior coextruded layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8113747U1 (en) * 1981-05-09 1982-01-21 Röhm GmbH, 6100 Darmstadt "COEXTRUDED LIGHT-TRANSFERABLE PLASTIC PROFILE"
JPS57207032A (en) * 1981-06-17 1982-12-18 Hashimoto Forming Co Ltd Method of extrusion molding of molding
DE8233007U1 (en) 1982-11-25 1983-03-24 Röhm GmbH, 6100 Darmstadt POLYCARBONATE PLASTIC PANEL
JPS60234840A (en) 1984-05-07 1985-11-21 東罐興業株式会社 Synthetic resin molded shape
JPS6293685A (en) 1985-10-21 1987-04-30 Seiko Epson Corp Electronic timepiece
IL116039A0 (en) * 1995-11-16 1996-01-31 Polygal Plastic panel
DE29823984U1 (en) * 1998-04-16 2000-03-23 Cpm Compounding Processing Mac Device for producing multilayer plastic pipes from polymer materials
JP2000167902A (en) * 1998-12-09 2000-06-20 Sekisui Chem Co Ltd Profile extrusion mold and method for extrusion-molding profile
FR2820360B1 (en) * 2001-02-05 2003-11-07 Kaysersberg Packaging Sa PLATES IN THERMOPLASTIC MATERIAL, METHOD AND DEVICE FOR MANUFACTURING THESE PLATES
US6844040B2 (en) * 2002-10-01 2005-01-18 Arunas Antanas Pabedinskas Reinforced composite structural members
ATE556833T1 (en) * 2003-03-17 2012-05-15 Tech Wood Internat Ltd METHOD FOR PRODUCING A REINFORCED PLASTIC PROFILE

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485912A (en) * 1965-02-09 1969-12-23 Dow Chemical Co Composite article formation
US3606636A (en) * 1967-05-05 1971-09-21 Dow Chemical Co Extrusion die
US3764245A (en) * 1971-05-10 1973-10-09 F Miyamoto Apparatus for producing light structural board of thermoplastic resin
US4927675A (en) * 1985-12-31 1990-05-22 General Electric Company Filled core materials having unfilled outer attached layers
US5001177A (en) * 1986-05-28 1991-03-19 Bayer Aktiengesellschaft Branched thermoplastic polycarbonates having improved protection against UV light
US5108835A (en) * 1987-11-24 1992-04-28 Bayer Aktiengesellschaft Coextruded double walled sheet of linear polycarbonate resin
US4877657A (en) * 1989-02-06 1989-10-31 The D.L. Auld Company Decorative trim strip with enhanced depth of vision
US5112547A (en) * 1989-08-07 1992-05-12 Hashimoto Forming Industry Co., Ltd. Method of making an elongate article
US5662851A (en) * 1991-02-15 1997-09-02 Tokai Kogyo Kabushiki Kaisha Method of producing a molding
US5288778A (en) * 1991-02-21 1994-02-22 Ciba-Geigy Corporation Stabilized polymers having hetero atoms in the main chain
US6189269B1 (en) * 1992-05-29 2001-02-20 Royal Building Systems (Cdn) Limited Thermoplastic wall forming member with wiring channel
US5980226A (en) * 1993-11-05 1999-11-09 Guillemette; A. Roger Modular die assembly
US20020197449A1 (en) * 2001-06-22 2002-12-26 Roehm Gmbh & Co., Kg Extrusion die for making hollow-chamber profiled panels of thermoplastic plastic with interior coextruded layer
US6821609B2 (en) * 2001-06-22 2004-11-23 Roehm Gmbh & Co., Kg Extrusion die for making hollow-chamber profiled panels of thermoplastic plastic with interior coextruded layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128361A1 (en) * 2006-05-05 2007-11-15 Firma Breyer Gmbh Maschinenfabrik Extrusion die for the production of hollow chamber profiles
US20080167486A1 (en) * 2007-01-10 2008-07-10 The University Of Connecticut Methods and systems for alkyl ester production
US7544830B2 (en) 2007-01-10 2009-06-09 The University Of Connecticut Methods and systems for alkyl ester production
US20090208380A1 (en) * 2007-01-10 2009-08-20 The University Of Connecticut Systems for alkyl ester production
US8119832B2 (en) 2007-01-10 2012-02-21 The University Of Connecticut Systems for alkyl ester production
US8461376B2 (en) 2007-01-10 2013-06-11 The University Of Connecticut Systems for alkyl ester production
US20090123719A1 (en) * 2007-11-12 2009-05-14 Christianus Johannes Jacobus Maas Multiwall Polymer Sheet Comprising Branched Polycarbonate
US8568860B2 (en) 2007-11-12 2013-10-29 Sabic Innovative Plastics Ip B.V. Multiwall polymer sheet comprising branched polycarbonate

Also Published As

Publication number Publication date
EP1792703B1 (en) 2010-07-14
DE502004003146D1 (en) 2007-04-19
UA86022C2 (en) 2009-03-25
EP1625006A1 (en) 2006-02-15
PT1792703E (en) 2010-09-10
CN1791502A (en) 2006-06-21
IL171946A0 (en) 2006-04-10
KR20060034641A (en) 2006-04-24
ES2347269T3 (en) 2010-10-27
IL171946A (en) 2010-11-30
KR101183814B1 (en) 2012-09-17
JP5058601B2 (en) 2012-10-24
JP2007533484A (en) 2007-11-22
RU2357862C2 (en) 2009-06-10
US7824589B2 (en) 2010-11-02
PL1792703T3 (en) 2010-12-31
ATE355958T1 (en) 2007-03-15
DE502004011407D1 (en) 2010-08-26
RU2005139124A (en) 2006-05-10
EP1792703A2 (en) 2007-06-06
US20110008579A1 (en) 2011-01-13
UA89910C2 (en) 2010-03-10
EP1792703A3 (en) 2007-11-28
DK1792703T3 (en) 2010-10-18
WO2004101257A1 (en) 2004-11-25
DE10322003A1 (en) 2004-12-02
ES2284009T3 (en) 2007-11-01
ATE473852T1 (en) 2010-07-15
EP1625006B1 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
US7652082B2 (en) Compositions containing polycarbonate and novel UV absorbers
US20110008579A1 (en) Multi-wall sheet without the triangle effect, coated by coextrusion
US20030152775A1 (en) Multilayered article of manufacture
KR100658548B1 (en) Compositions Containing Polycarbonate
US6632864B2 (en) Composition containing thermoplastic polymers
US6740693B1 (en) Polycarbonate moulding compounds
US6960623B2 (en) Compositions containing polycarbonate
US6713181B2 (en) Compositions containing polycarbonate
KR100792093B1 (en) Composition Containing Thermoplastic Synthetic Materials

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER POLMERS SHEET EUROPE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUBECK, JAKOB;REEL/FRAME:015356/0258

Effective date: 20040511

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20181102