US20040160901A1 - Thermal transmission control of wireless data modem - Google Patents

Thermal transmission control of wireless data modem Download PDF

Info

Publication number
US20040160901A1
US20040160901A1 US10/781,068 US78106804A US2004160901A1 US 20040160901 A1 US20040160901 A1 US 20040160901A1 US 78106804 A US78106804 A US 78106804A US 2004160901 A1 US2004160901 A1 US 2004160901A1
Authority
US
United States
Prior art keywords
mobile station
transmission rate
transceiver
temperature
transmissions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/781,068
Inventor
Alex Raith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22724195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040160901(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US10/781,068 priority Critical patent/US20040160901A1/en
Publication of US20040160901A1 publication Critical patent/US20040160901A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/03Constructional details, e.g. casings, housings
    • H04B1/036Cooling arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention generally relates to the field of communications systems and, more particularly, to the field of radio communications systems wherein transmissions can occur at variable rates.
  • Radiocommunication systems and, in particular, cellular radiotelephone systems have experienced explosive growth in the past decade. This growth is due, at least in part, to the improvement in the number and quality of services provided by radiocommunication systems. For example, early systems were designed primarily to support voice communications. However, cellular radiocommunication systems now provide many additional services including, for example, paging, messaging and data communications (e.g., to support Internet communication). Some of these new services make higher throughputs (i.e., than needed for voice communication) very desirable.
  • a corresponding minimum user bit rate is required.
  • user bit rate corresponds to voice quality and/or data throughput, with a higher user bit rate producing better voice quality and/or higher data throughput.
  • the total user bit rate is determined by a selected combination of techniques, e.g., speech coding, channel coding, modulation scheme, and the air interface resources allocated to the connection, i.e., for a TDMA system, the number of assignable time slots, for a CDMA system the number of spreading codes.
  • power amplifiers used in mobile phones and modems in the transmit path are not perfect, i.e., not all power is transformed into electromechanical waves.
  • roughly half of the generated power is lost in the form of heat dissipation in the power amplifier. This heat can be damaging to the modem or annoying to the end user in the case of a handheld device.
  • lack of heat dissipation rather than issues of complexity associated with higher bit rates may limit the maximum bit rate that a small phone can transmit.
  • the activity is often very bursty. This reduces the average power consumption.
  • the burstyness of packet data transmissions is governed by the application, i.e., the instantaneous use.
  • the mobile phone designer typically assumes the worst case scenario, i.e., that there will be times when the application will transmit for an extended period of time (related to the heat dissipation time constant) at its full bit rate capability.
  • mobiles may be designed to restrict their transmitted bit rate such that the temperature of the devices is limited to a safe level even during worst case periods of usage.
  • EP 800,282 describes a system wherein a temperature sensor monitors the temperature within a portion of the system. When the monitored temperature exceeds a threshold temperature, then the transmission rate associated with a speech codec is decreased.
  • the abstract of JP 9/326749 describes a system wherein data packets are transmitted in consecutive timeslots when a temperature of a power module is less than a threshold, but wherein packet data transmission is made intermittently when the power module becomes too hot.
  • a mobile station measures its operating temperature and compares that temperature with a threshold. When the measured temperature exceeds the threshold, the mobile station reduces its consumed transmit power by reducing its transmission rate.
  • the mobile station may first request the reduction from the system, or may independently decide to reduce its transmission rate. In either case, the mobile station will transmit an indication of the reduced transmission rate to the system.
  • the system can reallocate resources, e.g., by allocating released uplink timeslots to other mobile stations, by allocating released uplink spreading codes to other mobile stations and/or by allocating additional downlink timeslots to the mobile station that is reducing its transmission rate.
  • the mobile station can inform the user of the reduction in transmission rate, as well as provide an indication that the reduction is due to increased temperature of the mobile station.
  • the heat alert can take different forms, including a displayed icon, a warning sound or a voice alert. This enables the user to move to a better transmit position, which may result in the system instructing the mobile station to reduce its transmit power, thereby reducing the mobile station's temperature.
  • reductions in transmission rate can be decided based both on the measured temperature and on the transmit status of the mobile station. For example, if the mobile station is in the middle of a higher layer message, it may continue to transmit lower layer frames even after the first temperature threshold is exceeded. However, continued transmission can be predicated on the measured temperature being lower than a second threshold. By permitting the mobile station to complete a higher layer message, retransmission and processing delay are minimized.
  • FIG. 1 is a block diagram of an exemplary cellular mobile radiotelephone system.
  • FIG. 2 is a flowchart depicting an exemplary embodiment of the present invention.
  • FIG. 3 is an exemplary mapping between layers in an exemplary TIA/EIA 136 compliant radiocommunication system.
  • FIG. 4 is a flowchart depicting another exemplary embodiment of the present invention.
  • FIG. 5 is a flowchart depicting still another exemplary embodiment of the present invention.
  • FIG. 6 is a graph illustrating exemplary relationships between transmit power per bit, bit rate and total transmit power.
  • the temperature of the mobile station is monitored and used in a number of different ways to adjust system and mobile station operation and to keep the user informed of the mobile station's performance so that he or she can also act accordingly.
  • EP 800,282 and the abstract of JP 9/326749 the physical implementation of temperature sensors and devices for reading the measured temperatures in wireless communication devices per se is known and, therefore, is not described in great detail herein.
  • the disclosures of these documents are expressly incorporated here by reference. Instead methods of (and devices for) using this information, for example, to inform the system of operational changes, to reallocate resources within the system and to inform the user of the temperature-related operational change, according to the present invention are described more fully.
  • FIG. 1 represents a block diagram of an exemplary cellular mobile radiotelephone system, including an exemplary base station 110 and mobile station 120 , in which the present invention can be implemented.
  • the base station includes a control and processing unit 130 which is connected to the mobile service switching center, MSC 140 , which in turn is connected to a packet switched network via a serving GPRS support node, SGSN (not shown).
  • MSC 140 mobile service switching center
  • SGSN serving GPRS support node
  • General aspects of packet data radiocommunication systems are known in the art, as described, for example, by U.S. Pat. No. 5,590,133 to Billstrom et al. and U.S. Pat. No. 5,768,267 to Raith et al., both of which are incorporated in this application by reference.
  • the base station 110 handles a plurality of voice channels through a voice channel transceiver 150 , which is controlled by the control and processing unit 130 .
  • each base station includes a control channel transceiver 160 , which may be capable of handling more than one control channel.
  • the control channel transceiver 160 is controlled by the control and processing unit 130 .
  • the control channel transceiver 160 broadcasts control information over the control channel of the base station or cell to mobiles locked to that control channel. It will be understood that the transceivers 150 and 160 can be implemented as a single device, like the voice and control transceiver 170 in mobile station 120 .
  • Mobile station 120 receives the information broadcast on a control channel at its voice and control channel transceiver 170 . Then, the processing unit 175 evaluates the received control channel information, which can include characteristics of cells that are candidates for the mobile station to lock on to, and determines on which cell the mobile should lock.
  • the broadcast control channel can also be used to send information to the mobile station indicating certain capabilities of the base station, e.g., those associated with throughput (bit rate).
  • this base station capability information may include information regarding the base station's support (if any) for multi-slot operation, multi-code operation and/or different modulation/coding schemes, which characteristics, among others, impact transmission/reception throughput.
  • the mobile station Once the mobile station has received this information, it can compare its own capabilities with those supported by the base station and determine the maximal bit rate achievable in that cell.
  • the mobile station 120 also includes an input device 185 , such as a numeric keypad, which allows a user to interact with the mobile station.
  • a display device 190 such as an LCD screen, provides a visual display of information to the user, e.g., indicators of maximal and/or predicted throughput and/or temperature warnings as described below.
  • a temperature measurement device or sensor 195 measures the heat within the mobile station's housing, e.g., proximate the power amplifier (not shown) and provides temperature information to the processor 175 .
  • the mobile station may also be a PC card, e.g., a card designed in accordance with the PCMCIA standard, which is connected to a personal computer, e.g., a laptop. In this latter case the display device would be the PC monitor.
  • PC card e.g., a card designed in accordance with the PCMCIA standard
  • the display device would be the PC monitor.
  • the mobile station also includes memory 180 , which may include a pre-programmed address having the terminal's capabilities and one or more temperature thresholds stored therein. Since the terminal's capabilities may be limited by the type of subscription held by the user, such limitations would need to be known by the terminal and/or the system for throughput calculation purposes. This information may be provided to the terminal in a number of ways. For example, the information may be stored on the user's subscriber interface module (SIM) card which is inserted in the terminal or, the subscription information may be signaled to the terminal at call setup/login.
  • SIM subscriber interface module
  • the system determines the initial transmission rate at which the connection will operate.
  • the system can identify the capability of the mobile station in various ways. For example, the system can retrieve the mobile station's capabilities from. the home location register (HLR) using the mobile station's MIN and/or IMSI, the system can receive this information from the mobile station at registration, e.g., via a capability report or a class mark, the system can receive this information from the mobile station at call set-up (or at the start of a transaction), e.g., via a capability report, or a class mark. Then the system can then assign transmission resources, e.g., timeslots and/or codes, based on the mobile station's capabilities, among other factors.
  • transmission resources e.g., timeslots and/or codes
  • the base station 110 for the base station 110 to correctly detect the bits sent by mobile 120 , the received power of the bits must be above the noise and interference level to a degree dependent on the particular access method.
  • the signal-to-noise ratio (SNR) may be measured after any channel decoding and despreading employed. Since packet data systems typically incorporate techniques for retransmission of unrecoverable blocks of data (ARQ techniques), low SNR results in, greater delay and lower throughput. More specifically, when the channel becomes poor, the mobile more frequently has to retransmit a block rather than sending a new block of data.
  • FIG. 1 An example will serve to better illustrate the relationship between throughput and temperature within the mobile station.
  • the GSM system there are eight time slots in the TDMA frame.
  • eight users can be multiplexed on a single carrier.
  • For each full-rate traffic. channel a user is assigned one time slot per TDMA frame.
  • a typical GSM mobile may transmit with 1W.
  • the average power consumption is then 1 ⁇ 8 W, since the Mobile station is only active for 1 ⁇ 8 of the time. Since the TDMA frame is very short (a few milliseconds), the temperature will not vary much during a TDMA frame, which temperature is determined by the average transmit, power, e.g., 1 ⁇ 8W.
  • a natural way of increasing the bit rate in GSM is to allocate more than one time slot per user per frame, which concept is referred to above as “multi-slot” operation.
  • the average consumed power is N/8 W.
  • the power is increased proportionally to the bit rate, i.e. the range of transmission (cell, size) is maintained. If the mobile were to transmit in all 8 time slots, the power consumption is 1W.
  • the modulation type may also be varied to adjust the transmission rate.
  • the selected modulation is GMSK which is a “constant envelope” type of modulation.
  • This type of modulation can be implemented with a relatively high degree of efficiency, i.e., most of the power is transformed into an electromagnetic signal.
  • EDGE future enhancements of the physical layer of GPRS, referred to as EDGE, it is anticipated that the selected modulation will be 8 PSK.
  • 8 PSK is a non-constant envelope type of modulation, which will reduce the efficiency of the power amplifier, i.e., increase the heat generated by mobile stations.
  • one relatively crude technique for managing temperature control of mobile stations is to simply provide a temperature measurement device in the mobile station and reduce the transmission rate when the temperature exceeds a threshold. According to one exemplary embodiment of the present invention, however, Applicant envisions additional cooperation between the mobile station and the system in handling this type of temperature-related transmission adjustment.
  • the mobile station is required to perform a signal strength measurement on another carrier (i.e., other than its currently assigned traffic channel carrier) once every TDMA frame.
  • This process is referred to as performing Mobile Assisted Handoff (MAHO) measurements.
  • MAHO Mobile Assisted Handoff
  • GPRS there is a similar measurement requirement, but in this case used for cell reselection. For a single frequency synthesizer, it takes some time to move the frequency to the intended channel, perform the measurement, and then return to the channel traffic frequency.
  • a typical maximal number of time slots per frame that a mobile can receive and/or transmit in is five in GSM or GPRS systems, not all eight which are available in each TDMA frame.
  • mobile stations may be permitted to transmit and/or receive information using more timeslots to increase throughput, see U.S. patent application Ser. No. 08/544,841, entitled “Identifying and Controlling Signal Strength Measurements by a Mobile Station in a Wireless Communication System”, to Raith et al., the disclosure of which is incorporated here by reference).
  • the GPRS specification allows for overhead signaling where the mobile indicates its capability to the system. There are several capability classes defined.
  • the capability class can, for example, be expressed as maximum of the sum of transmit and receive slots, e.g., 5.
  • the mobile station can, for example, enter into an operating mode where it receives in 4 slots and transmits in 1 slot or another operating mode wherein it receives in 3 slots and transmits in 2.
  • the mobile station can vary its resource usage to lower its transmit power when the mobile station determines that its operating temperature is too high, however the mobile station will send a message informing the base station of this change or, in the alternative, requesting the change.
  • the message can be newly defined for this purpose, can be implemented as a new information element of an existing message, e.g., the aforedescribed capability report, or can be included by populating an existing information element (e.g., regarding TX capabilities) with the newly requested value/class mark or the already changed value/class mark.
  • a separate information element can be provided regarding whether this message is a request to change the transmission rate or informing the system of a previously implemented rate adjustment. This information is then used by the system to reallocate resources, e.g., air interface resources.
  • the transmission rate change handshaking between the mobile station and the base station could take many forms.
  • the mobile station could request the rate change and await a positive acknowledgement prior to implementing the change
  • the mobile station could request the rate change and await a negative acknowledgement for a predetermined time at which time it would undo the change
  • the mobile station could simply implement the transmission rate change and inform the system accordingly.
  • the mobile station If, however, the mobile station simply begins to omit transmitting data on some of its reserved timeslots in the uplink due to heat problems, these time slots would be wasted since no other user is allowed to make an initial access or bit rate expansion using these slots. Therefore, according to the present invention, the mobile station informs the system that it needs to back-off from its current transmission rate, so that the system can reallocate resources, e.g.,make these timeslots available for other purposes.
  • a mobile station that is transmitting in triple rate might transmit data bursts 1 , 2 , 3 , 4 , 5 , 6 and 7 as:
  • Frame 1 A 1 , B 2 , C 3 Frame 2 : A 4 , B 5 , C 6 Frame 3 : A 7 , . . .
  • Frame 1 A 1 , B 2 Frame 2 : A 3 , B 4 Frame 3 : A 5 , B 6 . . .
  • channel C is available for usage by another mobile station and an indication of such can be sent to the system.
  • an explicit indication to the base station that the mobile has to back-off on its transmit resource usage the same mobile station can benefit in that its downlink allocation can be increased and/or other users can benefit by obtaining additional transmit resources.
  • FIG.2 An illustration of an exemplary method in accordance with this exemplary embodiment is provided as FIG.2.
  • the temperature T 1 of the mobile station is measured using device or sensor 195 .
  • a comparison with a stored threshold temperature T th is performed at decision block 202 . If the mobile station is not overheating, e.g., T 1 ⁇ T th , then the flow moves to block 204 wherein the mobile station transmits at its currently assigned rate, using its currently assigned resources. Otherwise, if the mobile station is getting too hot,,the flow proceeds to block 206 wherein a reduced rate is determined.
  • the mobile station may reduce its transmission rate to using 1 timeslot.
  • the amount of reduction in the transmission rate may also be related to the measured temperature.
  • the mobile station transmits an indicator to the system regarding the mobile station's new transmission rate at step 208 .
  • this reallocation process may include, for example, assigning released uplink timeslots to other mobile stations, assigning released uplink spreading codes to other mobile stations, and/or assigning additional downlink timeslots to the mobile station which is reducing its transmission rate.
  • the mobile station may request a reduction in its transmission rate or transmit power. Then, the mobile station can await an indication from the system that it may perform the requested reduction, or in the alternative, the absence of a negative response from the system. If the mobile station subsequently measures a temperature which exceeds a second level (a danger level) it may then autonomously reduce its transmission rate or transmit power.
  • a first temperature level a warning level
  • the mobile station may request a reduction in its transmission rate or transmit power. Then, the mobile station can await an indication from the system that it may perform the requested reduction, or in the alternative, the absence of a negative response from the system. If the mobile station subsequently measures a temperature which exceeds a second level (a danger level) it may then autonomously reduce its transmission rate or transmit power.
  • the mobile station 120 in addition to (or instead of) informing the system of a change in transmission rate, can inform the user of (1) warnings that the mobile station is heating up to a point where it may impact the transmission rate, and/or (2) an indication of an actual transmission rate change.
  • mobile station 120 can, upon measuring a temperature that is approaching T th provide an alert to the user, e.g., an iconic alert, a sound or voice alert.
  • an alert e.g., an iconic alert, a sound or voice alert.
  • the user may be able to adjust his or her usage of the mobile station in such a way as to reduce its transmitted power and, therefore, the mobile station's temperature.
  • the user can attempt to improve the system's reception of the mobile station's transmissions by moving to a less obstructed site to reduce attenuation and take advantage of the system's power control mechanism (described below) or can move a small distance (or simply adjust the antenna) to attempt to reduce Rayleigh fading.
  • another indicator may be displayed on mobile station 120 which informs the user of the mobile station's current operating parameters with respect to temperature reduction.
  • the mobile station can provide an indication of its current transmit power or a bar indicating some combination of its transmit power on the uplink and received signal strength on the downlink. This provides the user with more rapid feedback than an indicator of measured temperature, which measured temperature will only slowly decrease after the transmit power is reduced.
  • the mobile station can also inform the user of the new transmission rate via its display 190 .
  • This third type of indicator can be displayed along with the above-described heat indicator which will inform the user that the reduced transmission rate was the result of a high operating temperature.
  • the transmission rate indicator can be expressed as a percentage of a maximum transmission rate (e.g., of the mobile station or what is possible over the connection given the capabilities of the mobile station and base station), e.g., a bar showing 75% of maximum on the display.
  • the transmission rate indicator can be expressed as a percent reduction from the maximum transmission rate.
  • This indicator can be independent of the burstiness of the current application and the access multiplexing of the users on the channel, i.e., informing the user of the mobile station's current, heat-related capability rather than the instantaneous transmission rate of a given burst of data.
  • an indicator could be provided which indicates instantaneous transmission and/or reception of data. Any other desired alarm/alert can also be generated by the mobile station to indicate a change in transmission rate, e.g., a tone, sound effect, voice alert, etc.
  • closed loop power control refers to the capability of the system to monitor the quality and/or received signal strength of signals transmitted by mobile stations and send power control commands in accordance therewith. For example, if a base station 110 receives a packet from a mobile station 120 which has more than a predetermined number of bit errors, then the base station will return a transmit power control command in a subsequent packet on the downlink indicating that the mobile station should increase its transmit power. Conversely, if the base station receives a packet at a signal strength which is higher than necessary to accurately decode the information, it will return a power control command which instructs the mobile station to reduce its transmit power.
  • the system may decide to instruct the mobile station to reduce its transmit power, which will in turn reduce the heat dissipated by the power amplifier and permit the mobile station to return to its original transmission rate.
  • the measured temperature of the mobile station and the status of current transmissions can be taken into account in determining when and how to adjust transmissions from the mobile station.
  • exemplary embodiments of the present invention provide for a determination of the mobile station's transmit position within higher layer messages, i.e., how much of a higher layer message has been transmitted, prior to determining whether to slow down or halt transmissions due to heat. This may reduce the impact of heat-related transmission adjustments, because recovery of transmitted information may be easier if complete higher layer messages are transmitted.
  • Layer 3 the mapping between the Layer 3 message into three Layer 2 messages (which include the Layer 3 information plus a header, cyclic redundancy check (CRC) and tail bits) into Layer 1 (physical layer) messages.
  • CRC cyclic redundancy check
  • each higher layer message is transmitted in a plurality of lower layer messages and, ultimately, in a number of TDMA bursts.
  • the present invention may take that into account in determining the mobile station's transmission mode in addition to measured temperature.
  • the current operating temperature of the mobile station is measured at block 400 .
  • the transmission can continue at a current transmission rate at step 404 .
  • the mobile station 120 determines whether it has completed its current higher layer frame, e.g., whether there are any TDMA bursts or Layer 2 frames remaining to be transmitted within a current Layer 3 message, at step 406 . If not, the mobile station reduces its transmission rate or aborts transmission entirely due to heat at step 408 .
  • the mobile station If the mobile station is too hot, but has remaining lower layer frames to send to complete a higher layer frame, it may continue to try to send data packets.
  • the mobile station compares the measured temperature T m with a second threshold Tt th2 . If the temperature is greater than this second threshold, then the mobile station cannot complete the higher layer message and returns to step 408 where it takes appropriate action to reduce its transmit power. Otherwise, the mobile station transmits one more lower layer frame (e.g., a Layer 2 frame or TDMA burst) at step 410 and the flow circles back to determine whether the higher layer frame is completed.
  • a second threshold e.g., a Layer 2 frame or TDMA burst
  • the mobile station Once the mobile station completes its higher layer frame or exceeds the second temperature threshold, it will reduce its transmission rate (or abort operations). However, it may be desirable to give the mobile station an opportunity to increase its transmission rate (or reestablish active transmission) after a cooling period. Thus, after some predetermined time period t w , the flow can return to check the mobile station's temperature again at block 400 .
  • the exemplary embodiment illustrated in FIG. 4 can be combined with either of the foregoing exemplary embodiments, i.e., can include informing the system regarding reductions in transmission rates (as well as Layer 3 abortions and increases in the transmission rate after the cooling period) and can include informing the user of any or all of these decisions.
  • asynchronous operation such as is found in systems operating in accordance with TIA/EIA IS-130 or the GSM based asynchronous data service
  • the present invention is more readily applicable.
  • the system may be confused if there is no power, synchword, codes, etc., when it expects the presence of a signal.
  • the data protocols in these types of systems contain frames which are numbered, thus the higher layer protocol may very well be able to handle situations wherein a mobile station is autonomously adjusting its transmit resources, e.g., from 2 time slots to 1 time slot.
  • the management functionality of the base station may equate such an independent change in transmission with a major error event, thereby possibly disconnecting the call.
  • explicit signaling by the mobile station informing (or possibly requesting) a fall-back to a lower bit rate (e.g., less time slot utilization) may also be useful.
  • the mobile station can directly adjust its transmit power rather than indirectly adjusting transmit power by varying its transmission rate.
  • a method according to this exemplary embodiment is depicted as FIG. 5. Therein, the temperature T m is measured at step 500 . If the measured temperature is less than a threshold temperature (step 502 ), then the mobile station continues to transmit at a current power level. Otherwise, if, for example, the mobile station is beginning to overheat, the mobile station reduces its transmit power by 0.5 dB, at step 506 .
  • the system determines that its received signal quality on the uplink is too low, e.g., due to the mobile station's transmit power reduction, then it can send a transmit power control command to the mobile station ordering the mobile to increase its transmit power. If this occurs, then the mobile station may then increase its transmit power and reduce its transmission rate in accordance with any of the foregoing exemplary embodiments, e.g., sending a message requesting (or informing) the system of the reduced transmission rate.
  • the mobile station when a temperature threshold is exceeded, the mobile station could perform both transmit power reduction and transmission rate reduction in order to reduce its operating temperature. That is, for example, the mobile station could transmit in fewer timeslots and with lower power to reduce its total transmit power.
  • the mobile station could just reduce its bit rate, could just reduce its transmit power per bit or could reduce some combination of bit rate and power per bit.

Abstract

A method for controlling temperature-related transmissions in radiocommunication systems. A mobile station includes a measuring device for determining operating temperature. When the measured temperature exceeds a predetermined threshold temperature, the mobile station can reduce its transmission rate, thereby reducing power dissipation within the device. The mobile station informs the system of the rate reduction, whereby the system can reallocate released resources, e.g., timeslots and/or spreading codes. The mobile station can also inform the user of the change in transmission rates and/or the temperature of the mobile station, whereupon the user can move to a better transmitting location. The mobile station can also take into account the transmit status of the current connection in determining when to reduce the transmission rate.

Description

    BACKGROUND
  • The present invention generally relates to the field of communications systems and, more particularly, to the field of radio communications systems wherein transmissions can occur at variable rates. [0001]
  • Commercial communication systems and, in particular, cellular radiotelephone systems have experienced explosive growth in the past decade. This growth is due, at least in part, to the improvement in the number and quality of services provided by radiocommunication systems. For example, early systems were designed primarily to support voice communications. However, cellular radiocommunication systems now provide many additional services including, for example, paging, messaging and data communications (e.g., to support Internet communication). Some of these new services make higher throughputs (i.e., than needed for voice communication) very desirable. [0002]
  • In order to provide these various communication services, a corresponding minimum user bit rate is required. For example, for voice and/or data services, user bit rate corresponds to voice quality and/or data throughput, with a higher user bit rate producing better voice quality and/or higher data throughput. The total user bit rate is determined by a selected combination of techniques, e.g., speech coding, channel coding, modulation scheme, and the air interface resources allocated to the connection, i.e., for a TDMA system, the number of assignable time slots, for a CDMA system the number of spreading codes. [0003]
  • Today's cellular phones transmit at a net data rate of about 10 kbit/s. In the future, it is expected that cellular modems will be able to receive and transmit several hundreds of kilobits per second. One example is the GSM-based packet data system referred to as General Packet Radio Service (GPRS). However, in order to provide these higher throughput rates while at the same time maintaining existing cell sizes (which latter criteria is strongly desired by network operators), the transmit power must increase correspondingly. Under this scenario, especially for small wireless modems, such as those which can be built-in to small handheld phones and for wireless modem cards inserted into PCs or laptops, an increase in average power will generate more heat than can be cooled off by these small devices. [0004]
  • For example, power amplifiers used in mobile phones and modems in the transmit path are not perfect, i.e., not all power is transformed into electromechanical waves. Depending on the modulation scheme and implementation, roughly half of the generated power is lost in the form of heat dissipation in the power amplifier. This heat can be damaging to the modem or annoying to the end user in the case of a handheld device. Thus, lack of heat dissipation rather than issues of complexity associated with higher bit rates may limit the maximum bit rate that a small phone can transmit. [0005]
  • For packet data operation the activity is often very bursty. This reduces the average power consumption. The burstyness of packet data transmissions is governed by the application, i.e., the instantaneous use. However, the mobile phone designer typically assumes the worst case scenario, i.e., that there will be times when the application will transmit for an extended period of time (related to the heat dissipation time constant) at its full bit rate capability. Thus, mobiles may be designed to restrict their transmitted bit rate such that the temperature of the devices is limited to a safe level even during worst case periods of usage. [0006]
  • Some documents describe attempts to combat increases in device temperature by monitoring the device temperature and adjusting the operation of the device based on the monitored temperature. For example, EP 800,282 describes a system wherein a temperature sensor monitors the temperature within a portion of the system. When the monitored temperature exceeds a threshold temperature, then the transmission rate associated with a speech codec is decreased. Similarly, the abstract of JP 9/326749 describes a system wherein data packets are transmitted in consecutive timeslots when a temperature of a power module is less than a threshold, but wherein packet data transmission is made intermittently when the power module becomes too hot. [0007]
  • Although these conventional solutions partially address the temperature/transmission rate problem described above, they do so in a unilateral manner, i.e, the mobile station makes a temperature determination and unilaterally adjusts transmissions accordingly. Applicant envisions additional features which provide a cooperative solution between the system, mobile unit and user for addressing temperature/transmission rate issues, whereby overall system operation and user knowledge is enhanced. [0008]
  • SUMMARY
  • According to exemplary embodiments of the present invention, a mobile station measures its operating temperature and compares that temperature with a threshold. When the measured temperature exceeds the threshold, the mobile station reduces its consumed transmit power by reducing its transmission rate. The mobile station may first request the reduction from the system, or may independently decide to reduce its transmission rate. In either case, the mobile station will transmit an indication of the reduced transmission rate to the system. In this way, the system can reallocate resources, e.g., by allocating released uplink timeslots to other mobile stations, by allocating released uplink spreading codes to other mobile stations and/or by allocating additional downlink timeslots to the mobile station that is reducing its transmission rate. [0009]
  • According to other exemplary embodiments of the present invention, the mobile station can inform the user of the reduction in transmission rate, as well as provide an indication that the reduction is due to increased temperature of the mobile station. The heat alert can take different forms, including a displayed icon, a warning sound or a voice alert. This enables the user to move to a better transmit position, which may result in the system instructing the mobile station to reduce its transmit power, thereby reducing the mobile station's temperature. [0010]
  • According to other exemplary embodiments of the present invention, reductions in transmission rate can be decided based both on the measured temperature and on the transmit status of the mobile station. For example, if the mobile station is in the middle of a higher layer message, it may continue to transmit lower layer frames even after the first temperature threshold is exceeded. However, continued transmission can be predicated on the measured temperature being lower than a second threshold. By permitting the mobile station to complete a higher layer message, retransmission and processing delay are minimized.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of the invention. [0012]
  • FIG. 1 is a block diagram of an exemplary cellular mobile radiotelephone system. [0013]
  • FIG. 2 is a flowchart depicting an exemplary embodiment of the present invention. [0014]
  • FIG. 3 is an exemplary mapping between layers in an exemplary TIA/EIA 136 compliant radiocommunication system. [0015]
  • FIG. 4 is a flowchart depicting another exemplary embodiment of the present invention. [0016]
  • FIG. 5 is a flowchart depicting still another exemplary embodiment of the present invention. [0017]
  • FIG. 6 is a graph illustrating exemplary relationships between transmit power per bit, bit rate and total transmit power.[0018]
  • DETAILED DESCRIPTION
  • According to exemplary embodiments of the present invention, the temperature of the mobile station is monitored and used in a number of different ways to adjust system and mobile station operation and to keep the user informed of the mobile station's performance so that he or she can also act accordingly. As evidenced by the aforedescribed EP 800,282 and the abstract of [0019] JP 9/326749, the physical implementation of temperature sensors and devices for reading the measured temperatures in wireless communication devices per se is known and, therefore, is not described in great detail herein. The disclosures of these documents are expressly incorporated here by reference. Instead methods of (and devices for) using this information, for example, to inform the system of operational changes, to reallocate resources within the system and to inform the user of the temperature-related operational change, according to the present invention are described more fully.
  • The following description is written in terms of a cellular radiotelephone system, but it will be understood that Applicant's invention is not limited to that environment. More specifically, the following description is written using terms which may be associated with TIA/EIA 136 and GSM/GPRS compliant systems, but it will be understood by those skilled in the art that the present invention may be implemented in other communication applications including those which are designed in accordance with other standards, e.g., IS-95 or PDC, as well as those which use other access methodologies, e.g., CDMA. [0020]
  • FIG. 1 represents a block diagram of an exemplary cellular mobile radiotelephone system, including an [0021] exemplary base station 110 and mobile station 120, in which the present invention can be implemented. The base station includes a control and processing unit 130 which is connected to the mobile service switching center, MSC 140, which in turn is connected to a packet switched network via a serving GPRS support node, SGSN (not shown). General aspects of packet data radiocommunication systems are known in the art, as described, for example, by U.S. Pat. No. 5,590,133 to Billstrom et al. and U.S. Pat. No. 5,768,267 to Raith et al., both of which are incorporated in this application by reference.
  • The [0022] base station 110 handles a plurality of voice channels through a voice channel transceiver 150, which is controlled by the control and processing unit 130. Also, each base station includes a control channel transceiver 160, which may be capable of handling more than one control channel. The control channel transceiver 160 is controlled by the control and processing unit 130. The control channel transceiver 160 broadcasts control information over the control channel of the base station or cell to mobiles locked to that control channel. It will be understood that the transceivers 150 and 160 can be implemented as a single device, like the voice and control transceiver 170 in mobile station 120.
  • [0023] Mobile station 120 receives the information broadcast on a control channel at its voice and control channel transceiver 170. Then, the processing unit 175 evaluates the received control channel information, which can include characteristics of cells that are candidates for the mobile station to lock on to, and determines on which cell the mobile should lock. In the present invention the broadcast control channel can also be used to send information to the mobile station indicating certain capabilities of the base station, e.g., those associated with throughput (bit rate). Thus, this base station capability information may include information regarding the base station's support (if any) for multi-slot operation, multi-code operation and/or different modulation/coding schemes, which characteristics, among others, impact transmission/reception throughput. Once the mobile station has received this information, it can compare its own capabilities with those supported by the base station and determine the maximal bit rate achievable in that cell.
  • The [0024] mobile station 120 also includes an input device 185, such as a numeric keypad, which allows a user to interact with the mobile station. A display device 190, such as an LCD screen, provides a visual display of information to the user, e.g., indicators of maximal and/or predicted throughput and/or temperature warnings as described below. A temperature measurement device or sensor 195 measures the heat within the mobile station's housing, e.g., proximate the power amplifier (not shown) and provides temperature information to the processor 175. In addition to being configured as a cellular telephone, the mobile station may also be a PC card, e.g., a card designed in accordance with the PCMCIA standard, which is connected to a personal computer, e.g., a laptop. In this latter case the display device would be the PC monitor.
  • The mobile station also includes [0025] memory 180, which may include a pre-programmed address having the terminal's capabilities and one or more temperature thresholds stored therein. Since the terminal's capabilities may be limited by the type of subscription held by the user, such limitations would need to be known by the terminal and/or the system for throughput calculation purposes. This information may be provided to the terminal in a number of ways. For example, the information may be stored on the user's subscriber interface module (SIM) card which is inserted in the terminal or, the subscription information may be signaled to the terminal at call setup/login.
  • At call set-up (or at the start of a transaction), the system determines the initial transmission rate at which the connection will operate. The system can identify the capability of the mobile station in various ways. For example, the system can retrieve the mobile station's capabilities from. the home location register (HLR) using the mobile station's MIN and/or IMSI, the system can receive this information from the mobile station at registration, e.g., via a capability report or a class mark, the system can receive this information from the mobile station at call set-up (or at the start of a transaction), e.g., via a capability report, or a class mark. Then the system can then assign transmission resources, e.g., timeslots and/or codes, based on the mobile station's capabilities, among other factors. [0026]
  • As will be appreciated by those skilled in the art, for the [0027] base station 110 to correctly detect the bits sent by mobile 120, the received power of the bits must be above the noise and interference level to a degree dependent on the particular access method. The signal-to-noise ratio (SNR) may be measured after any channel decoding and despreading employed. Since packet data systems typically incorporate techniques for retransmission of unrecoverable blocks of data (ARQ techniques), low SNR results in, greater delay and lower throughput. More specifically, when the channel becomes poor, the mobile more frequently has to retransmit a block rather than sending a new block of data.
  • However, for a given quality of service (i.e, as characterized by throughput and delay), the higher the transmitted bit rate, the more total power is required in the mobile to maintain a given SNR, and thereby quality of service in the base station. Each bit requires a certain power to transmit. The power requirement in the transmitter is then proportional to the number of transmitted bits. This is independent of the access methodology, e.g., FDMA, TDMA, CDMA, OFDM or any combination of these basic concepts. [0028]
  • Of course, if the mobile [0029] 120 moves closer to the base station 110, the SNR in the base station 110 increases. Thus, an alternative to the rule that increased power is required for increased bit rate, is to effectively make the cell size dependent on the bit rate. However, network operators would generally prefer, within limitations based on cost, size and complexity, to offer a ubiquitous data service irrespective of the location of the user and to maintain current cell sizes.
  • An example will serve to better illustrate the relationship between throughput and temperature within the mobile station. In the GSM system there are eight time slots in the TDMA frame. For circuit switched operation, eight users can be multiplexed on a single carrier. For each full-rate traffic. channel, a user is assigned one time slot per TDMA frame. A typical GSM mobile may transmit with 1W. The average power consumption is then ⅛ W, since the Mobile station is only active for ⅛ of the time. Since the TDMA frame is very short (a few milliseconds), the temperature will not vary much during a TDMA frame, which temperature is determined by the average transmit, power, e.g., ⅛W. [0030]
  • A natural way of increasing the bit rate in GSM is to allocate more than one time slot per user per frame, which concept is referred to above as “multi-slot” operation. When transmitting N out of 8 time slots per frame, the average consumed power is N/8 W. Thus, the power is increased proportionally to the bit rate, i.e. the range of transmission (cell, size) is maintained. If the mobile were to transmit in all 8 time slots, the power consumption is 1W. [0031]
  • As mentioned above, the modulation type may also be varied to adjust the transmission rate. For example, in today's GSM and GPRS standards, the selected modulation is GMSK which is a “constant envelope” type of modulation. This type of modulation can be implemented with a relatively high degree of efficiency, i.e., most of the power is transformed into an electromagnetic signal. In future enhancements of the physical layer of GPRS, referred to as EDGE, it is anticipated that the selected modulation will be 8 PSK. 8 PSK is a non-constant envelope type of modulation, which will reduce the efficiency of the power amplifier, i.e., increase the heat generated by mobile stations. [0032]
  • These trends in offering increased bit rate by allocating more time slots to a user and evolving to a more capacity efficient, but power hungry modulation method, will lead to increased problems with temperature problems. Although the foregoing examples are couched in terms of TDMA systems, CDMA systems face simliar power issues wherein additional spreading codes can be allocated to provide greater througput and/or variable spreading factors can be employed wherein code puncturing is used to adjust the data transmission rate. In fact, Applicant expects that the difficulty in dissipating heat will be more likely to limit product offerings on the uplink than signal processing constraints. [0033]
  • As mentioned above, one relatively crude technique for managing temperature control of mobile stations is to simply provide a temperature measurement device in the mobile station and reduce the transmission rate when the temperature exceeds a threshold. According to one exemplary embodiment of the present invention, however, Applicant envisions additional cooperation between the mobile station and the system in handling this type of temperature-related transmission adjustment. [0034]
  • For example, in current GSM systems the mobile station is required to perform a signal strength measurement on another carrier (i.e., other than its currently assigned traffic channel carrier) once every TDMA frame. This process is referred to as performing Mobile Assisted Handoff (MAHO) measurements. In GPRS there is a similar measurement requirement, but in this case used for cell reselection. For a single frequency synthesizer, it takes some time to move the frequency to the intended channel, perform the measurement, and then return to the channel traffic frequency. [0035]
  • Given this constraint, a typical maximal number of time slots per frame that a mobile can receive and/or transmit in is five in GSM or GPRS systems, not all eight which are available in each TDMA frame. (However, Applicant has also envisioned the possibility that in future systems, mobile stations may be permitted to transmit and/or receive information using more timeslots to increase throughput, see U.S. patent application Ser. No. 08/544,841, entitled “Identifying and Controlling Signal Strength Measurements by a Mobile Station in a Wireless Communication System”, to Raith et al., the disclosure of which is incorporated here by reference). The GPRS specification allows for overhead signaling where the mobile indicates its capability to the system. There are several capability classes defined. The capability class can, for example, be expressed as maximum of the sum of transmit and receive slots, e.g., 5. The mobile station can, for example, enter into an operating mode where it receives in 4 slots and transmits in 1 slot or another operating mode wherein it receives in 3 slots and transmits in 2. [0036]
  • According to exemplary embodiments of the present invention, the mobile station can vary its resource usage to lower its transmit power when the mobile station determines that its operating temperature is too high, however the mobile station will send a message informing the base station of this change or, in the alternative, requesting the change. The message can be newly defined for this purpose, can be implemented as a new information element of an existing message, e.g., the aforedescribed capability report, or can be included by populating an existing information element (e.g., regarding TX capabilities) with the newly requested value/class mark or the already changed value/class mark. A separate information element can be provided regarding whether this message is a request to change the transmission rate or informing the system of a previously implemented rate adjustment. This information is then used by the system to reallocate resources, e.g., air interface resources. [0037]
  • The transmission rate change handshaking between the mobile station and the base station could take many forms. For example, the mobile station could request the rate change and await a positive acknowledgement prior to implementing the change, the mobile station could request the rate change and await a negative acknowledgement for a predetermined time at which time it would undo the change, or the mobile station could simply implement the transmission rate change and inform the system accordingly. [0038]
  • Consider, for example, GPRS systems which allow for a mode where, until otherwise signaled, the mobile station is reserved particular timeslots in the uplink for transmission. Reservation mechanisms are employed, for example, to avoid situations wherein different mobile stations attempt to transmit data to the system on the same resource at the same time. Readers having an interest in more detail regarding reservation mechanisms used in radiocommunication systems are directed to U.S. patent application Ser. No. 08/796,110, entitled “Packet Control Channel Feedback Support for Contention and Reservation Based Access”, filed Feb. 5, 1997, the disclosure of which is incorporated here by reference. [0039]
  • If, however, the mobile station simply begins to omit transmitting data on some of its reserved timeslots in the uplink due to heat problems, these time slots would be wasted since no other user is allowed to make an initial access or bit rate expansion using these slots. Therefore, according to the present invention, the mobile station informs the system that it needs to back-off from its current transmission rate, so that the system can reallocate resources, e.g.,make these timeslots available for other purposes. For example, a mobile station that is transmitting in triple rate (e.g., all three channels on a radio frequency in TIA/EIA 136 system referred to here as channels A, B and C) might transmit data bursts [0040] 1, 2, 3, 4, 5, 6 and 7 as:
  • Frame [0041] 1: A1, B2, C3 Frame 2: A4, B5, C6 Frame 3: A7, . . .
  • However, if the mobile station then drops back to double rate, its transmission pattern might be shown as: [0042]
  • Frame [0043] 1: A1, B2 Frame 2: A3, B4 Frame 3: A5, B6 . . .
  • Thus, channel C is available for usage by another mobile station and an indication of such can be sent to the system. By sending an explicit indication to the base station that the mobile has to back-off on its transmit resource usage, the same mobile station can benefit in that its downlink allocation can be increased and/or other users can benefit by obtaining additional transmit resources. [0044]
  • An illustration of an exemplary method in accordance with this exemplary embodiment is provided as FIG.2. Therein, at [0045] step 200, the temperature T1 of the mobile station is measured using device or sensor 195. A comparison with a stored threshold temperature Tth is performed at decision block 202. If the mobile station is not overheating, e.g., T1<Tth, then the flow moves to block 204 wherein the mobile station transmits at its currently assigned rate, using its currently assigned resources. Otherwise, if the mobile station is getting too hot,,the flow proceeds to block 206 wherein a reduced rate is determined. For example, if a mobile station is transmitting using 4 timeslots, and Tth is much greater than T1, then the mobile station may reduce its transmission rate to using 1 timeslot. Thus, the amount of reduction in the transmission rate may also be related to the measured temperature.
  • In any event, once a new transmission rate is determined, the mobile station transmits an indicator to the system regarding the mobile station's new transmission rate at [0046] step 208. This permits the system to reallocate the resources previously assigned to the mobile station at step 210. Depending upon the type of system, this reallocation process may include, for example, assigning released uplink timeslots to other mobile stations, assigning released uplink spreading codes to other mobile stations, and/or assigning additional downlink timeslots to the mobile station which is reducing its transmission rate. Those readers interested in variable rate transmission systems in a TDMA environment are directed to U.S. patent application Ser. No. 08/725,643, entitled “Multi-Rate Radiocommunication Systems and Terminals”, filed on Oct. 15, 1996, to Raith et al. For an example of variable rate transmissions in a CDMA environment, see U.S. patent application Ser. 08/890,793, entitled “Channelization Code Allocation for Radio Communication Systems” filed on Jul. 11, 1997 to Ovesjö et al. The disclosures of these latter two patent applications are also expressly incorporated here by reference.
  • As an alternative, upon determining that the mobile station has exceeded a first temperature level (a warning level), the mobile station may request a reduction in its transmission rate or transmit power. Then, the mobile station can await an indication from the system that it may perform the requested reduction, or in the alternative, the absence of a negative response from the system. If the mobile station subsequently measures a temperature which exceeds a second level (a danger level) it may then autonomously reduce its transmission rate or transmit power. [0047]
  • According to other exemplary embodiments of the present invention, in addition to (or instead of) informing the system of a change in transmission rate, the [0048] mobile station 120 can inform the user of (1) warnings that the mobile station is heating up to a point where it may impact the transmission rate, and/or (2) an indication of an actual transmission rate change. For example, mobile station 120 can, upon measuring a temperature that is approaching Tth provide an alert to the user, e.g., an iconic alert, a sound or voice alert. By informing the user of this heat condition, the user may be able to adjust his or her usage of the mobile station in such a way as to reduce its transmitted power and, therefore, the mobile station's temperature. For example, the user can attempt to improve the system's reception of the mobile station's transmissions by moving to a less obstructed site to reduce attenuation and take advantage of the system's power control mechanism (described below) or can move a small distance (or simply adjust the antenna) to attempt to reduce Rayleigh fading.
  • To provide the user with some feedback, another indicator may be displayed on [0049] mobile station 120 which informs the user of the mobile station's current operating parameters with respect to temperature reduction. For example, the mobile station can provide an indication of its current transmit power or a bar indicating some combination of its transmit power on the uplink and received signal strength on the downlink. This provides the user with more rapid feedback than an indicator of measured temperature, which measured temperature will only slowly decrease after the transmit power is reduced.
  • If user intervention is successful in avoiding a transmission rate change, i.e., if the measured temperature doesn't cross T[0050] th, then no further action may be needed. If, on the other hand, a transmission change is needed, the mobile station can also inform the user of the new transmission rate via its display 190. This third type of indicator can be displayed along with the above-described heat indicator which will inform the user that the reduced transmission rate was the result of a high operating temperature. Moreover, the transmission rate indicator can be expressed as a percentage of a maximum transmission rate (e.g., of the mobile station or what is possible over the connection given the capabilities of the mobile station and base station), e.g., a bar showing 75% of maximum on the display. Alternatively, the transmission rate indicator can be expressed as a percent reduction from the maximum transmission rate. This indicator can be independent of the burstiness of the current application and the access multiplexing of the users on the channel, i.e., informing the user of the mobile station's current, heat-related capability rather than the instantaneous transmission rate of a given burst of data. Alternatively, or in addition thereto, an indicator could be provided which indicates instantaneous transmission and/or reception of data. Any other desired alarm/alert can also be generated by the mobile station to indicate a change in transmission rate, e.g., a tone, sound effect, voice alert, etc.
  • As mentioned above, many radiocommunication systems use a form of closed-loop power control to maintain a mobile station's transmit power at an optimal level to support high quality communications without undue interference. Generally speaking, closed loop power control refers to the capability of the system to monitor the quality and/or received signal strength of signals transmitted by mobile stations and send power control commands in accordance therewith. For example, if a [0051] base station 110 receives a packet from a mobile station 120 which has more than a predetermined number of bit errors, then the base station will return a transmit power control command in a subsequent packet on the downlink indicating that the mobile station should increase its transmit power. Conversely, if the base station receives a packet at a signal strength which is higher than necessary to accurately decode the information, it will return a power control command which instructs the mobile station to reduce its transmit power.
  • Thus, the user could move toward an open area, e.g., out of a building, nearer to a window, out of a car, etc. In this way, the system may decide to instruct the mobile station to reduce its transmit power, which will in turn reduce the heat dissipated by the power amplifier and permit the mobile station to return to its original transmission rate. [0052]
  • According to yet another exemplary embodiment of the present invention, the measured temperature of the mobile station and the status of current transmissions can be taken into account in determining when and how to adjust transmissions from the mobile station. For example, exemplary embodiments of the present invention provide for a determination of the mobile station's transmit position within higher layer messages, i.e., how much of a higher layer message has been transmitted, prior to determining whether to slow down or halt transmissions due to heat. This may reduce the impact of heat-related transmission adjustments, because recovery of transmitted information may be easier if complete higher layer messages are transmitted. [0053]
  • To better understand the ramifications of higher/lower layer transmissions, consider the exemplary mapping illustrated in FIG. 3 for the digital control channel as described in TIA/EIA 136. Note, however, that use of this exemplary digital control channel mapping is purely illustrative and that the present invention finds particular applicability in other contexts, e.g., transmission of data packets on a packet data channel, which other contexts may use different terminology (e.g., LLC frames and MAC layer frames) to express relationships between layers. Rather than add the pages of description necessary for a complete understanding of each labelled field in FIG.[0054] 3, the interested reader is referred to the standard specification TIA/EIA 136 (Parts 010-720), dated Feb. 6, 1998, which document is incorporated here by reference. Of interest for the present discussion is the mapping between the Layer 3 message into three Layer 2 messages (which include the Layer 3 information plus a header, cyclic redundancy check (CRC) and tail bits) into Layer 1 (physical layer) messages. It can be seen that each higher layer message is transmitted in a plurality of lower layer messages and, ultimately, in a number of TDMA bursts. According to this exemplary embodiment of the present invention, it is preferable to complete higher layer messages prior to terminating transmission or reducing transmission rates. This may avoid the need to retransmit data blocks and may reduce delay associated with completing the decoding of Layer 3 messages. Thus, for example, if the mobile station still needs to send one more TDMA burst to complete a particular Layer 3 message (or one more Layer 3 message to complete a higher layer message), the present invention may take that into account in determining the mobile station's transmission mode in addition to measured temperature.
  • An exemplary method according to this exemplary embodiment will now be described with respect to FIG. 4. Therein, the current operating temperature of the mobile station is measured at [0055] block 400. At step 402, if the measured temperature Tm is less than a first threshold Tth1, then the transmission can continue at a current transmission rate at step 404. Otherwise, the mobile station 120 determines whether it has completed its current higher layer frame, e.g., whether there are any TDMA bursts or Layer 2 frames remaining to be transmitted within a current Layer 3 message, at step 406. If not, the mobile station reduces its transmission rate or aborts transmission entirely due to heat at step 408.
  • If the mobile station is too hot, but has remaining lower layer frames to send to complete a higher layer frame, it may continue to try to send data packets. At [0056] step 410, the mobile station compares the measured temperature Tm with a second threshold Ttth2. If the temperature is greater than this second threshold, then the mobile station cannot complete the higher layer message and returns to step 408 where it takes appropriate action to reduce its transmit power. Otherwise, the mobile station transmits one more lower layer frame (e.g., a Layer 2 frame or TDMA burst) at step 410 and the flow circles back to determine whether the higher layer frame is completed.
  • Once the mobile station completes its higher layer frame or exceeds the second temperature threshold, it will reduce its transmission rate (or abort operations). However, it may be desirable to give the mobile station an opportunity to increase its transmission rate (or reestablish active transmission) after a cooling period. Thus, after some predetermined time period t[0057] w, the flow can return to check the mobile station's temperature again at block 400. Of course those skilled in the art will appreciate that the exemplary embodiment illustrated in FIG. 4 can be combined with either of the foregoing exemplary embodiments, i.e., can include informing the system regarding reductions in transmission rates (as well as Layer 3 abortions and increases in the transmission rate after the cooling period) and can include informing the user of any or all of these decisions.
  • Although the foregoing has been described in the context of packet data, those skilled in the art will appreciate that the present invention can also be applied to circuit switched operation. There are two types of circuit switched operation—synchronous and asynchronous. Synchronous operation inherently requires a fixed bit rate and, therefore, a reduction in the transmission rate is not currently envisioned. However, the exemplary embodiment described below, wherein the transmit power is directly reduced, is readily applicable to synchronous operation. [0058]
  • For asynchronous operation, such as is found in systems operating in accordance with TIA/EIA IS-130 or the GSM based asynchronous data service, the present invention is more readily applicable. However, depending on the implementation in the base station, the system may be confused if there is no power, synchword, codes, etc., when it expects the presence of a signal. The data protocols in these types of systems contain frames which are numbered, thus the higher layer protocol may very well be able to handle situations wherein a mobile station is autonomously adjusting its transmit resources, e.g., from 2 time slots to 1 time slot. However, the management functionality of the base station may equate such an independent change in transmission with a major error event, thereby possibly disconnecting the call. Thus, in this asynchronous, circuit-switched context, explicit signaling by the mobile station informing (or possibly requesting) a fall-back to a lower bit rate (e.g., less time slot utilization) may also be useful. [0059]
  • According to yet another exemplary embodiment of the present invention, the mobile station can directly adjust its transmit power rather than indirectly adjusting transmit power by varying its transmission rate. A method according to this exemplary embodiment is depicted as FIG. 5. Therein, the temperature T[0060] m is measured at step 500. If the measured temperature is less than a threshold temperature (step 502), then the mobile station continues to transmit at a current power level. Otherwise, if, for example, the mobile station is beginning to overheat, the mobile station reduces its transmit power by 0.5 dB, at step 506. If the system determines that its received signal quality on the uplink is too low, e.g., due to the mobile station's transmit power reduction, then it can send a transmit power control command to the mobile station ordering the mobile to increase its transmit power. If this occurs, then the mobile station may then increase its transmit power and reduce its transmission rate in accordance with any of the foregoing exemplary embodiments, e.g., sending a message requesting (or informing) the system of the reduced transmission rate.
  • As yet another alternative, when a temperature threshold is exceeded, the mobile station could perform both transmit power reduction and transmission rate reduction in order to reduce its operating temperature. That is, for example, the mobile station could transmit in fewer timeslots and with lower power to reduce its total transmit power. Consider FIG. 6, wherein exemplary relationships between the transmit power per bit, bit rate and total transmit power are illustrated. Therein, it can be seen that to reduce the total transmit power from nine units to four units, various approaches could be adopted to move from the TX Power=9 curve to the TXPower=4 curve. The mobile station could just reduce its bit rate, could just reduce its transmit power per bit or could reduce some combination of bit rate and power per bit. [0061]
  • Although the invention has been described and illustrated with reference to specific embodiments thereof, it is not intended that the invention be limited to these illustrative embodiments. Those skilled in the art will recognize that modifications and variations can be made without departing from the spirit of the invention. [0062]

Claims (41)

What is claimed is:
1. A method for communicating information in a radiocommunication system comprising the steps of:
measuring, at a mobile station, a temperature level;
comparing said measured temperature level with a threshold temperature level;
selectively reducing, based upon said comparing step, a transmission rate of said mobile station;
transmitting an indication from said mobile station of said reduced transmission rate to said system; and
reallocating resources within said system in response to said indication of said reduced transmission rate.
2. The method of claim 1, wherein said step of selectively reducing said transmission rate further comprises a step of:
transmitting in N timeslots per frame at said reduced transmission rate rather than M timeslots per frame, where M>N.
3. The method of claim 1, wherein said step of selectively reducing said transmission rate further comprises a step of:
transmitting using N spreading codes rather than M spreading codes, where M>N.
4. The method of claim 1, wherein said step of selectively reducing said transmission rate further comprises the step of:
puncturing a spreading code.
5. The method of claim 1, further comprising the step of:
informing a user that said transmission rate is being reduced due to temperature.
6. The method of claim 5, wherein said step of informing further comprises the step of:
displaying said reduced transmission rate along with an icon that indicates overheating.
7. The method of claim 5, wherein said step of informing further comprises the step of:
generating a sound effect which indicates overheating.
8. The method of claim 1, wherein said step of reallocating resources within said system in response to said indication of said reduced transmission rate further comprises the step of:
transmitting, from said system to said mobile station, during at least one additional timeslot in the downlink.
9. The method of claim 1, wherein said step of reallocating resources within said system in response to said indication of said reduced transmission rate further comprises the step of:
permitting another mobile station to transmit during at least one timeslot on a frequency used by said mobile station in the uplink.
10. The method of claim 1, wherein said step of reallocating resources within said system in response to said indication of said reduced transmission rate further comprises the step of:
allocating a spreading code used by said mobile station to another mobile station.
11. The method of claim 1, wherein said step of transmitting an indication from said mobile station of said reduced transmission rate to said system further comprises the step of:
transmitting a request for said reduced transmission rate.
12. A transceiver comprising:
a transmitter for transmitting information over an air interface;
a temperature measuring device for determining a temperature of said transceiver;
a processor for comparing said measured temperature with a threshold temperature and for selectively reducing a transmission rate of said transmitter based on a result of said comparison; and
an output device for informing a user of said transceiver of said reduced transmission rate.
13. The transceiver of claim 12, wherein said output device is a display.
14. The transceiver of claim 12, wherein said output device is a speaker.
15. A method for controlling a temperature of a mobile station in a radiocommunication system comprising the steps of:
measuring a temperature of said mobile station;
comparing said temperature to a threshold temperature; and
selectively informing a user of said measured temperature.
16. The method of claim 15, further comprising the step of
moving said mobile station to a different location in response to said selectively informing step.
17. A method for communicating in a radiocommunication system comprising the steps of:
measuring, at a mobile station, a temperature level;
determining a transmit position of said mobile station within a higher layer message; and
selectively delaying transmissions of said mobile station based upon said measured temperature level and said transmit position of said mobile station.
18. The method of claim 17, wherein said higher layer message is a Layer 3 message and said step of determining further comprises the step of:
identifying whether a current Layer 3 message has been completely transmitted.
19. The method of claim 18, wherein said step of selectively delaying transmissions further comprises the step of:
comparing said measured temperature level with a first threshold temperature level; and
delaying transmissions if said measured temperature level exceeds said first threshold and said current Layer 3 message has been completely transmitted.
20. The method of claim 18, wherein said step of selectively delaying transmissions further comprises the step of:
continuing transmissions if said current Layer 3 message has not been completely transmitted.
21. The method of claim 18, wherein said step of selectively delaying transmissions further comprises the step of:
comparing, if said current Layer 3 message has not been completely transmitted, said measured temperature to a second threshold; and
continuing to transmit said current Layer 3 message if said measured temperature does not exceed said second threshold.
22. The method of claim 17 further comprising the step of:
transmitting an indication to said system indicating delay of said transmissions.
23. The method of claim 17, further comprising the step of:
informing a user of said mobile station of heat-related delayed transmissions.
24. The method of claim 17, wherein said step of selectively delaying further comprises the step of:
puncturing a spreading code associated with said transmissions.
25. The method of claim 17, wherein said step of selectively delaying further comprises the step of:
reducing a number of timeslots per frame associated with said transmissions.
26. The method of claim 17, wherein said step of selectively delaying further comprises the step of:
reducing a number of spreading codes associated with said transmissions.
27. A transceiver comprising:
a transmitter for transmitting information over an air interface;
a temperature measuring device for determining a temperature of said transceiver; and
a processor for comparing said measured temperature with a threshold temperature and for selectively reducing a transmission power of said transmitter based on a result of said comparison.
28. The transceiver of claim 27, further comprising:
an output device for informing a user of said transceiver of said reduced transmission power.
29. The transceiver of claim 27, further comprising:
a receiver for receiving transmit power control commands, wherein if said processor receives a transmit power control command instructing the transceiver to increase its transmit power, then said processor increases said transmit power and implements a transmission rate reduction.
30. The transceiver of claim 29, wherein said transceiver transmits a message requesting said transmission rate reduction prior to implementing said transmission rate reduction.
31. The transceiver of claim 29, wherein said transceiver implements said transmission rate reduction and transmits a message indicating said transmission rate reduction.
32. The transceiver of claim 27, wherein said transceiver reduces said transmit power and reduces a transmission rate when said measured temperature exceeds said threshold temperature.
33. The transceiver of claim 13, wherein said reduced transmission rate is displayed as a percentage of a maximum transmission rate.
34. The transceiver of claim 13, wherein said reduced transmission rate is displayed as a percentage reduction from a maximum transmission rate.
35. The transceiver of claim 28, wherein said reduced transmission power is displayed as a percentage of a maximum transmission power.
36. The transceiver of claim 28, wherein said reduced transmission power is displayed as a percentage reduction from a maximum transmission power.
37. A mobile station comprising:
means for reducing a transmission rate associated with information transmission from the mobile station; and
means for informing a user of said reduced transmission rate.
38. A mobile station comprising:
means for reducing a transmission power associated with information transmission from the mobile station; and
means for informing a user of said reduced transmission power.
39. A mobile station comprising:
a transceiver for transmitting and receiving radio signals; and
an output device for indicating a transmit power employed by said transceiver.
40. The mobile station of claim 39, wherein said output device is a computer attached to said mobile station.
41. The transceiver of claim 12, wherein said output device is a computer attached to said transceiver.
US10/781,068 1998-11-20 2004-02-18 Thermal transmission control of wireless data modem Abandoned US20040160901A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/781,068 US20040160901A1 (en) 1998-11-20 2004-02-18 Thermal transmission control of wireless data modem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/196,127 US6760311B1 (en) 1998-11-20 1998-11-20 Thermal transmission control of wireless data modem
US10/781,068 US20040160901A1 (en) 1998-11-20 2004-02-18 Thermal transmission control of wireless data modem

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/196,127 Division US6760311B1 (en) 1998-11-20 1998-11-20 Thermal transmission control of wireless data modem

Publications (1)

Publication Number Publication Date
US20040160901A1 true US20040160901A1 (en) 2004-08-19

Family

ID=22724195

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/196,127 Expired - Lifetime US6760311B1 (en) 1998-11-20 1998-11-20 Thermal transmission control of wireless data modem
US10/781,068 Abandoned US20040160901A1 (en) 1998-11-20 2004-02-18 Thermal transmission control of wireless data modem
US10/780,783 Expired - Lifetime US7860018B2 (en) 1998-11-20 2004-02-18 Thermal transmission control of wireless data modem

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/196,127 Expired - Lifetime US6760311B1 (en) 1998-11-20 1998-11-20 Thermal transmission control of wireless data modem

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/780,783 Expired - Lifetime US7860018B2 (en) 1998-11-20 2004-02-18 Thermal transmission control of wireless data modem

Country Status (13)

Country Link
US (3) US6760311B1 (en)
EP (1) EP1131906B1 (en)
JP (2) JP4712972B2 (en)
CN (1) CN1218511C (en)
AT (1) ATE295024T1 (en)
AU (1) AU3097900A (en)
CA (1) CA2350528C (en)
DE (1) DE69925153T2 (en)
HK (1) HK1053205A1 (en)
RU (1) RU2231223C2 (en)
TR (1) TR200101370T2 (en)
WO (1) WO2000031990A2 (en)
ZA (1) ZA200104027B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056132A1 (en) * 2000-01-26 2002-05-09 Vyyo Ltd. Distributed processing for optimal QOS in a broadband access system
US20040174833A1 (en) * 1998-11-20 2004-09-09 Raith Alex Krister Thermal transmission control of wireless data modem
US20070155329A1 (en) * 2005-12-29 2007-07-05 Sepehr Mehrabanzad Detection of radio frequency interference in wireless communication systems
US20070263856A1 (en) * 2006-05-01 2007-11-15 Kourosh Parsa Wireless access point with temperature control system
US20090086682A1 (en) * 2007-10-01 2009-04-02 Muhammad Ali Kazmi Downlink Out of Sync Detection in Continuous Packet Connectivity
US20090215442A1 (en) * 2008-02-25 2009-08-27 Telefonaktiebolaget L M Ericsson (Publ) Alleviating Mobile Device Overload Conditions in a Mobile Communication System
US20090253469A1 (en) * 2007-12-21 2009-10-08 Motorola, Inc. Managing Demand on a Battery of a Mobile Communications Device
US20110038265A1 (en) * 2009-08-11 2011-02-17 Huawei Device Co., Ltd Traffic Control Method, Device and Terminal
US20110243002A1 (en) * 2010-03-31 2011-10-06 Fujitsu Limited Apparatus, module and method used for wireless communication
US20130017851A1 (en) * 2011-07-11 2013-01-17 Samsung Electronics Co. Ltd. Method and apparatus for resource allocation
US8452323B2 (en) * 2011-09-22 2013-05-28 Qualcomm Incorporated Method and system for selecting a thermally optimal uplink for a portable computing device
TWI473476B (en) * 2013-01-09 2015-02-11 Pegatron Corp Network switch and method for preventing a network switch from overheating
WO2013116396A3 (en) * 2012-01-30 2015-06-18 Novatel Wireless, Inc. System and method for managing output energy levels
US9930673B2 (en) 2013-06-28 2018-03-27 Gemalto M2M Gmbh Configuring and reconfiguring a radio link in view of an operating temperature of a user equipment without call interruption
US10432926B2 (en) 2013-09-03 2019-10-01 Samsung Electronics Co., Ltd. Method for transmitting contents and electronic device thereof
US20200145927A1 (en) * 2018-11-02 2020-05-07 Apple Inc. Dynamic power reduction requests for wireless communications
US11184941B2 (en) 2017-05-18 2021-11-23 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for protecting user equipment, user equipment and base station
US11856514B2 (en) 2017-01-13 2023-12-26 Huawei Technologies Co., Ltd. Radio resource configuration adjustment method, apparatus, and system

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008162B2 (en) * 1999-08-18 2007-11-14 富士通株式会社 Communication method and communication apparatus
GB2354402B (en) * 1999-09-15 2004-02-11 Ericsson Telefon Ab L M Radio transmitter
GB2355367A (en) * 1999-10-13 2001-04-18 Ericsson Telefon Ab L M Adjusting allocation of transmission slots according operating conditions in a mobile telephone
GB2365676B (en) * 2000-02-18 2004-06-23 Sensei Ltd Mobile telephone with improved man-machine interface
US8321542B1 (en) * 2000-05-05 2012-11-27 Ipr Licensing, Inc. Wireless channel allocation in a base station processor
KR20020025476A (en) * 2000-09-29 2002-04-04 윤종용 Apparatus and method for modifying service class with respect to generation of heat in a gprs terminal
US6816908B1 (en) * 2000-10-16 2004-11-09 Qualcomm Incorporated Method and apparatus for controlling registration activity
US7006464B1 (en) * 2000-11-17 2006-02-28 Lucent Technologies Inc. Downlink and uplink channel structures for downlink shared channel system
US7200512B2 (en) 2001-02-16 2007-04-03 Sierra Wireless, Inc. Method for avoiding peak temperatures in communication devices
US7023824B2 (en) 2001-02-27 2006-04-04 Telefonaktiebolaget L M Ericsson (Publ) Method, apparatus, and system for optimizing transmission power and bit rate in multi-transmission scheme communication systems
US6477160B2 (en) * 2001-03-21 2002-11-05 Motorola, Inc. Communication device having proximity controlled transmission
US6941152B2 (en) * 2001-04-24 2005-09-06 Ipr Licensing, Inc. Wireless subscriber network registration system for configurable services
US6912395B2 (en) * 2001-09-25 2005-06-28 Motorola, Inc. Network and method for monitoring location capabilities of a mobile station
FI20012537A (en) 2001-12-20 2003-06-27 Nokia Corp Method and power control system of a wireless communication device and a wireless communication device
US20030152087A1 (en) * 2002-02-11 2003-08-14 Shahoumian Troy Alexander Excess-port switch
US6959171B2 (en) * 2002-02-28 2005-10-25 Intel Corporation Data transmission rate control
GB2386507A (en) * 2002-03-15 2003-09-17 Ubinetics Ltd Controlling transmission rate
US20040198294A1 (en) * 2002-04-29 2004-10-07 Tsofnat Hagin-Metzer Apparatus and method of transmission link quality indicator
JP3643578B2 (en) * 2002-09-11 2005-04-27 株式会社東芝 Communication load display method and communication apparatus
US8169981B2 (en) 2002-10-31 2012-05-01 Motorola Mobility, Inc. Method and mobile station for controlling communication via a radio link
CN1329741C (en) * 2002-12-16 2007-08-01 华为技术有限公司 Apparatus for obtaining environmental data and method for realizing same
JP2006514453A (en) * 2003-01-31 2006-04-27 ノキア コーポレイション Output power control for multi-slot uplink
US20040247993A1 (en) * 2003-05-21 2004-12-09 Sony Ericsson Mobile Communications Ab System and Method of Improving Talk-Time at the End of Battery Life
FR2856876B1 (en) * 2003-06-24 2005-09-30 Nortel Networks Ltd METHOD FOR CONTROLLING ACCESS TO RESOURCES OF A RADIO COMMUNICATION NETWORK AND BASE STATION FOR IMPLEMENTING A METHOD
EP1661309B1 (en) * 2003-08-18 2020-01-01 Nokia Technologies Oy Apparatus and associated method for selecting quality of service-related information in a radio communication system
US7206567B2 (en) * 2003-11-10 2007-04-17 Research In Motion Limited Methods and apparatus for limiting communication capabilities in mobile communication devices
US7689256B2 (en) 2003-11-10 2010-03-30 Research In Motion Limited Methods and apparatus for limiting communication capabilities in mobile communication devices
CN100341355C (en) * 2003-11-19 2007-10-03 华为技术有限公司 Method of raising high temperature morking ability of base station and textension equipment
JP4088243B2 (en) * 2003-11-20 2008-05-21 松下電器産業株式会社 Wireless communication apparatus and transmission rate prediction method
US7486956B2 (en) * 2004-05-19 2009-02-03 Qualcomm, Incorporated Channel estimation and channel quality indicator (CQI) measurements for a high-speed downlink GPRS
KR100681190B1 (en) * 2004-07-28 2007-02-09 엘지전자 주식회사 Handheld communication terminal including Cooling apparatus for parts
US7203494B2 (en) * 2004-11-12 2007-04-10 Motorola, Inc. Optimizing radio communication efficiency and methods thereof
JP4506536B2 (en) * 2005-03-30 2010-07-21 日本電気株式会社 Portable terminal device, operation control method thereof, and program
US7720018B2 (en) 2005-04-21 2010-05-18 Microsoft Corporation Low power transmission provisioning for wireless network devices
JP4633592B2 (en) * 2005-09-28 2011-02-16 京セラ株式会社 Wireless communication terminal
JP4624227B2 (en) * 2005-09-29 2011-02-02 京セラ株式会社 Communication terminal, mobile communication system, and communication control method
JP4563291B2 (en) * 2005-09-29 2010-10-13 京セラ株式会社 Wireless communication terminal
US8660099B2 (en) * 2005-09-30 2014-02-25 Aruba Networks, Inc. Call admission control within a wireless network
US20080059658A1 (en) * 2006-06-29 2008-03-06 Nokia Corporation Controlling the feeding of data from a feed buffer
US7698578B2 (en) * 2006-06-29 2010-04-13 Nokia Corporation Temperature-dependent power adjustment of transmitter
US20080025341A1 (en) * 2006-07-31 2008-01-31 Motorola, Inc. Method and system for granting of channel slots
US20080046132A1 (en) * 2006-08-18 2008-02-21 Nokia Corporation Control of heat dissipation
WO2008020300A2 (en) * 2006-08-18 2008-02-21 Nokia Corporation Control of heat dissipation in a mobile terminal
US8630239B2 (en) * 2006-09-20 2014-01-14 Lg Electronics Inc. Station and access point for EDCA communication, system thereof and communication method thereof
KR101353632B1 (en) 2006-09-20 2014-01-20 엘지전자 주식회사 EDCA Communication system, Station and Access point therefor and Communication method thereof
US7991437B2 (en) * 2006-10-30 2011-08-02 Infineon Technologies Ag Method and apparatus for controlling output power in power amplifiers
JP2008131319A (en) * 2006-11-21 2008-06-05 Sii Ido Tsushin Kk Compact wireless communication terminal device and temperature control method
US8665778B2 (en) * 2006-11-30 2014-03-04 Motorola Mobility Llc Monitoring and control of transmit power in a multi-modem wireless communication device
US8744519B2 (en) * 2006-12-14 2014-06-03 Motorola Mobility Llc Multimodal phone data session management enhancement that alleviates dual transmission problems
US20080194215A1 (en) * 2007-02-12 2008-08-14 Motorola, Inc. Method and system for reliably sending data based on data size and temperature margin
US7933571B2 (en) 2007-06-20 2011-04-26 Motorola Mobility, Inc. Method and apparatus for selecting a communication mode based on energy sources in a hybrid power supply
US8964734B2 (en) * 2007-07-26 2015-02-24 The Directv Group, Inc. Method and system for communicating content having modified packet headers through a satellite
US9564988B2 (en) * 2007-07-26 2017-02-07 The Directv Group, Inc. Method and system for forming a formatted content stream and using a cyclic redundancy check
KR20090042140A (en) * 2007-10-25 2009-04-29 한국전자통신연구원 Multi-antenna communication method and system thereof
JP5111074B2 (en) * 2007-11-28 2012-12-26 キヤノン株式会社 COMMUNICATION DEVICE AND ITS CONTROL METHOD
JP2009169631A (en) * 2008-01-16 2009-07-30 Nippon Telegr & Teleph Corp <Ntt> Radio communication terminal
JP2009246507A (en) * 2008-03-28 2009-10-22 Fujitsu Ltd Transmission system
US8620235B2 (en) * 2008-05-23 2013-12-31 Qualcomm Incorporated Thermal management for data modules
US7978088B2 (en) * 2008-05-30 2011-07-12 Motorola Mobility, Inc. Device and method to prolong the life of an energy source
US9151679B2 (en) * 2008-06-30 2015-10-06 Intel Corporation Temperature measurement in electronic devices
GB2461556A (en) * 2008-07-03 2010-01-06 Artimi Ltd Controlling throughput to control temperature in an ultrawideband (UWB) transceiver circuit
US8953696B2 (en) 2008-08-05 2015-02-10 Intel Corporation Signal decoding systems
US20110121939A1 (en) * 2008-08-06 2011-05-26 Takahiro Hosomi Wireless communication device, wireless communication method, wireless communication system, and computer-readable recording medium on which control program of wireless communication device has been recoded
CN101505311B (en) * 2009-03-18 2012-06-13 腾讯科技(深圳)有限公司 Information transmission method and system based on socialized network
WO2010127725A1 (en) * 2009-05-07 2010-11-11 Telefonaktiebolaget Lm Ericsson (Publ) Managing a power consumption of a mobile communication device
JP2009207167A (en) * 2009-05-07 2009-09-10 Nokia Corp Output power control for multi-slot uplink
US8229492B2 (en) * 2009-05-08 2012-07-24 Qualcomm Incorporated Throttling transmit power in a WWAN device based upon thermal input
CN101571839A (en) * 2009-05-22 2009-11-04 中兴通讯股份有限公司 Method and system for controlling temperature of data transmission equipment, and data transmission equipment therefor
US8150446B2 (en) * 2009-06-17 2012-04-03 Telefonaktiebolaget L M Ericsson (Publ) Thermal energy control in a mobile transceiver
WO2011002356A1 (en) 2009-06-29 2011-01-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement in a wireless communication system
US8265588B2 (en) * 2009-06-29 2012-09-11 Motorola Mobility Llc Device and method for temperature monitoring and warning
US8477041B2 (en) * 2009-06-29 2013-07-02 Motorola Mobility Llc Device and method for temperature monitoring and warning
US8498328B2 (en) 2009-10-13 2013-07-30 Qualcomm Incorporated Energy management for wireless devices
US8630169B2 (en) * 2010-02-25 2014-01-14 Nokia Corporation Method and apparatus for controlling a temperature of a packet communications device
JP5482325B2 (en) * 2010-03-12 2014-05-07 富士通モバイルコミュニケーションズ株式会社 Wireless communication device
JP4846041B2 (en) * 2010-06-21 2011-12-28 京セラ株式会社 Wireless communication terminal, transmission control method, and computer program
JP5690938B2 (en) 2010-09-02 2015-03-25 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for transmitting traffic in a communication network
EP2427001B1 (en) 2010-09-07 2013-11-06 Telefonaktiebolaget L M Ericsson (Publ) Controlling an uplink data transmission of a communication device
US9667280B2 (en) 2010-09-24 2017-05-30 Qualcomm Incorporated Methods and apparatus for touch temperature management based on power dissipation history
CN102014201B (en) * 2010-09-29 2014-04-30 中兴通讯股份有限公司 Data card temperature control method and device
KR20120038672A (en) * 2010-10-14 2012-04-24 삼성전자주식회사 Universal serial bus dongle and method controlling power thereof
WO2012052049A1 (en) 2010-10-18 2012-04-26 Telefonaktiebolaget L M Ericsson (Publ) Transmission ability feedback from a communication device towards a network control node
CN102176782A (en) * 2011-01-10 2011-09-07 华为终端有限公司 Wireless terminal equipment and thermal protection method thereof
US8675615B2 (en) * 2011-05-03 2014-03-18 Qualcomm Incorporated Temperature-driven airlink selection in a multi-mode wireless device
US20120329410A1 (en) * 2011-06-24 2012-12-27 Qualcomm Incorporated Thermal-based flow control
US9019880B2 (en) * 2011-08-11 2015-04-28 Qualcomm Incorporated Methods and apparatus for overload mitigation using uplink transmit power backoff
US9055533B2 (en) * 2011-12-16 2015-06-09 Intel Corporation Wireless communication device and method for improved WiFi and bluetooth coexistence usingreduced power for control packets
JP5550687B2 (en) * 2012-07-17 2014-07-16 株式会社東芝 Electronic device and communication status presentation method
US9323296B2 (en) * 2013-01-16 2016-04-26 Qualcomm Incorporated Thermal mitigation in dual SIM dual active devices
US9161314B2 (en) 2013-01-16 2015-10-13 Apple Inc. Apparatus and method for controlling the temperature of a mobile device
US9055470B2 (en) 2013-03-01 2015-06-09 Qualcomm Incorporated Method and apparatus for utilizing the smart blanking feature of thermal mitigation
US9341520B2 (en) * 2013-06-16 2016-05-17 Qualcomm Incorporated System and method for estimating ambient temperature of a portable computing device using a voice coil
US9918267B2 (en) * 2013-07-03 2018-03-13 Blackberry Limited Mitigation of radio interference and thermal issues using radio access technology selection
TWI497284B (en) * 2014-01-13 2015-08-21 Wistron Neweb Corp Method of controlling surface temperature and related surface temperature control system
US9647886B2 (en) 2014-02-17 2017-05-09 Haier Us Appliance Solutions, Inc. Update appliance communication settings to compensate for temperature fluctuations
WO2015161471A1 (en) * 2014-04-23 2015-10-29 华为终端有限公司 Method and device for controlling transmission power
US9763116B2 (en) * 2014-08-27 2017-09-12 Western Digital Technologies, Inc. Method of optimizing device performance by maintaining device within temperature limits
US20160183117A1 (en) * 2014-12-17 2016-06-23 Mediatek Inc. Method and apparatus for throttling uplink data based on temperature state
US9785157B2 (en) 2015-03-30 2017-10-10 Mediatek Inc. Method for controlling circuit modules within chip and associated system on chip
JP6602106B2 (en) * 2015-08-27 2019-11-06 キヤノン株式会社 COMMUNICATION DEVICE, ITS CONTROL METHOD, AND PROGRAM
US20170070894A1 (en) * 2015-09-04 2017-03-09 Qualcomm Incorporated Thermal mitigation systems and methods for multi-subscription devices
US9860773B2 (en) * 2015-12-07 2018-01-02 Intel IP Corporation Systems, methods, and devices to prevent overheating from high performance device configurations in wireless networks
WO2017153229A1 (en) 2016-03-08 2017-09-14 Arcelik Anonim Sirketi A household appliance
US10512039B2 (en) 2016-08-25 2019-12-17 Mediatek Singapore Pte. Ltd. Device-driven power scaling in advanced wireless modem architectures
US9924463B2 (en) * 2016-08-29 2018-03-20 Mediatek Singapore Pte. Ltd. Method, system and apparatus for controlling power consumption of a mobile terminal
CN107809773B (en) * 2016-09-08 2019-12-06 中兴通讯股份有限公司 Control method and device of data transmission equipment
WO2018191899A1 (en) * 2017-04-20 2018-10-25 北京小米移动软件有限公司 User equipment protection method, device, user equipment and base station
CN108401511B (en) * 2017-04-20 2021-11-16 北京小米移动软件有限公司 Method and device for protecting user equipment, user equipment and base station
EP3613249A1 (en) * 2017-04-21 2020-02-26 Sony Corporation Mitigation of overheating events at communication devices
CN112953575B (en) * 2017-08-09 2022-11-04 北京小米移动软件有限公司 Overheating protection method and device for user equipment, user equipment and base station
US10193602B1 (en) 2017-08-31 2019-01-29 Qualcomm Incorporated Thermal throttling using RF diversity
KR102402639B1 (en) 2017-11-24 2022-05-26 삼성전자주식회사 Electronic device and method for communicating thereof
US10736050B2 (en) * 2018-07-09 2020-08-04 Honeywell International Inc. Adjusting transmission power of an antenna based on an object causing path loss in a communication link
EP3871449B1 (en) 2018-12-28 2022-02-09 Google LLC User equipment limited-service mode
CN111479298B (en) * 2019-01-23 2023-10-20 华为技术有限公司 Method and device for controlling power consumption
CN109982418A (en) * 2019-02-28 2019-07-05 维沃移动通信有限公司 A kind of signal transfer control method and mobile terminal
DE102020101282A1 (en) 2019-04-12 2020-10-15 Samsung Electronics Co., Ltd. Method and device for thermal management in wireless communication
JP7315393B2 (en) 2019-07-10 2023-07-26 Fcnt株式会社 Wireless terminal, its uplink transmission control method, and program
CN112291833B (en) * 2019-07-23 2023-01-13 华为技术有限公司 Equipment control method, system and related device
WO2021044637A1 (en) * 2019-09-06 2021-03-11 株式会社Nttドコモ Terminal
WO2021044636A1 (en) * 2019-09-06 2021-03-11 株式会社Nttドコモ Terminal
US11777641B2 (en) 2020-10-01 2023-10-03 Qualcomm Incorporated Techniques for radio aware codec rate adaptation
TWI748743B (en) * 2020-11-11 2021-12-01 瑞昱半導體股份有限公司 Temperature controlling method, communication system, and control circuit
JP7171952B1 (en) 2022-02-16 2022-11-15 株式会社フジクラ Wireless communication module output adjustment method, wireless communication module manufacturing method, and wireless communication module output adjustment device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604744A (en) * 1992-10-05 1997-02-18 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels for multiple access radiocommunication
US5848062A (en) * 1996-04-02 1998-12-08 Nec Corporation Wireless communication equipment for remote station
US6072787A (en) * 1994-09-27 2000-06-06 Nokia Telecommunications Oy High-speed data transmission in a digital mobile communication system
US6169884B1 (en) * 1998-04-06 2001-01-02 Sierra Wireless, Inc. Method and apparatus for reducing power in radio transmitters
US6373831B1 (en) * 1997-03-26 2002-04-16 Nortel Networks Ltd. Systems and methods of channel coding and inverse-multiplexing for multi-carrier CDMA systems

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843351A (en) * 1987-08-28 1989-06-27 Hewlett-Packard Company Vector modulation signal generator
US5483676A (en) * 1988-08-04 1996-01-09 Norand Corporation Mobile radio data communication system and method
US5265119A (en) * 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US6266685B1 (en) * 1991-07-11 2001-07-24 Intermec Ip Corp. Hand-held data collection system with stylus input
US5361399A (en) * 1992-06-02 1994-11-01 Pagemart, Inc. Adaptive communication system for transmitting between base stations and portable transceivers via different data rate communication links
US5796575A (en) 1992-12-21 1998-08-18 Hewlett-Packard Company Portable computer with hinged cover having a window
SE9304119D0 (en) 1993-12-10 1993-12-10 Ericsson Ge Mobile Communicat Devices and mobile stations for providing packaged data communication in digital TDMA cellular systems
KR950022547A (en) * 1993-12-30 1995-07-28 김주용 Indoor temperature display device and control method of wireless telephone
US5603096A (en) * 1994-07-11 1997-02-11 Qualcomm Incorporated Reverse link, closed loop power control in a code division multiple access system
US5519886A (en) 1994-09-26 1996-05-21 Motorola, Inc. Method and apparatus for controlling device temperature during transmissions
JP3050365B2 (en) * 1995-03-03 2000-06-12 日本電気株式会社 Temperature control method for communication equipment
US5574977A (en) * 1995-04-17 1996-11-12 Telefonaktiebolaget Lm Ericsson System and method for providing priority access and channel assignment in a cellular telecommunication system
IL117831A0 (en) 1995-04-21 1996-08-04 Qualcomm Inc Temperature compensated automatic gain control
FI98174C (en) * 1995-05-09 1997-04-25 Nokia Telecommunications Oy Data transmission system with sliding window based data flow control
US5768267A (en) 1995-10-18 1998-06-16 Telefonaktiebolaget Lm Ericsson Method for system registration and cell reselection
FI101332B1 (en) * 1995-12-18 1998-05-29 Nokia Telecommunications Oy Discontinuous transmission in a multi-channel high-speed data transmission
JP2976915B2 (en) * 1996-04-02 1999-11-10 日本電気株式会社 Wireless communication device
JP2872112B2 (en) 1996-06-07 1999-03-17 埼玉日本電気株式会社 Mobile communication device control equipment for packet communication
US5875187A (en) * 1996-06-28 1999-02-23 At&T Wireless Services Inc. TDMA messaging service microcell
US5870685A (en) 1996-09-04 1999-02-09 Ericsson Inc. Mobile station operations management based on battery capacity
US5982813A (en) * 1996-09-30 1999-11-09 Amsc Subsidiary Corporation Demand-based power and data rate adjustments to a transmitter to optimize channel capacity and power usage with respect to data transmission traffic over a fixed-bandwidth channel
GB9621243D0 (en) * 1996-10-11 1996-11-27 Nokia Mobile Phones Ltd Dect/gcm interworking
ATE291304T1 (en) * 1996-11-13 2005-04-15 Nokia Corp METHOD, TRANSMITTER AND RECEIVER FOR TRANSMITTING TRAINING SIGNALS IN A TDMA MESSAGE TRANSMISSION SYSTEM
JPH10191356A (en) * 1996-12-27 1998-07-21 Oki Electric Ind Co Ltd Image encoder
US6064857A (en) * 1997-04-15 2000-05-16 Globalstar L.P. Dual mode satellite telephone with hybrid battery/capacitor power supply
EP0938198B1 (en) * 1997-05-16 2008-08-13 NTT DoCoMo, Inc. Variable rate transmission and reception methods, and variable rate transmission and reception devices
US6151507A (en) * 1997-11-07 2000-11-21 Nokia Mobile Phones Ltd. Individual short message service (SMS) options
US6084919A (en) * 1998-01-30 2000-07-04 Motorola, Inc. Communication unit having spectral adaptability
US6760311B1 (en) * 1998-11-20 2004-07-06 Ericsson Inc. Thermal transmission control of wireless data modem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604744A (en) * 1992-10-05 1997-02-18 Telefonaktiebolaget Lm Ericsson Digital control channels having logical channels for multiple access radiocommunication
US6072787A (en) * 1994-09-27 2000-06-06 Nokia Telecommunications Oy High-speed data transmission in a digital mobile communication system
US5848062A (en) * 1996-04-02 1998-12-08 Nec Corporation Wireless communication equipment for remote station
US6373831B1 (en) * 1997-03-26 2002-04-16 Nortel Networks Ltd. Systems and methods of channel coding and inverse-multiplexing for multi-carrier CDMA systems
US6169884B1 (en) * 1998-04-06 2001-01-02 Sierra Wireless, Inc. Method and apparatus for reducing power in radio transmitters

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040174833A1 (en) * 1998-11-20 2004-09-09 Raith Alex Krister Thermal transmission control of wireless data modem
US7860018B2 (en) * 1998-11-20 2010-12-28 Ericsson Inc. Thermal transmission control of wireless data modem
US20020056132A1 (en) * 2000-01-26 2002-05-09 Vyyo Ltd. Distributed processing for optimal QOS in a broadband access system
US7149188B2 (en) * 2000-01-26 2006-12-12 Vyyo, Inc. Distributed processing for optimal QOS in a broadband access system
US20070155329A1 (en) * 2005-12-29 2007-07-05 Sepehr Mehrabanzad Detection of radio frequency interference in wireless communication systems
US7801487B2 (en) * 2005-12-29 2010-09-21 Airvana, Inc. Detection of radio frequency interference in wireless communication systems
US20070263856A1 (en) * 2006-05-01 2007-11-15 Kourosh Parsa Wireless access point with temperature control system
US7747272B2 (en) * 2006-05-01 2010-06-29 Ortronics, Inc. Wireless access point with temperature control system
US20090086682A1 (en) * 2007-10-01 2009-04-02 Muhammad Ali Kazmi Downlink Out of Sync Detection in Continuous Packet Connectivity
US8160075B2 (en) * 2007-10-01 2012-04-17 Telefonaktiebolaget Lm Ericsson (Publ) Downlink out of sync detection in continuous packet connectivity
US20090253469A1 (en) * 2007-12-21 2009-10-08 Motorola, Inc. Managing Demand on a Battery of a Mobile Communications Device
US8086229B2 (en) * 2008-02-25 2011-12-27 Telefonaktiebolaget L M Ericsson (Publ) Alleviating mobile device overload conditions in a mobile communication system
US20090215442A1 (en) * 2008-02-25 2009-08-27 Telefonaktiebolaget L M Ericsson (Publ) Alleviating Mobile Device Overload Conditions in a Mobile Communication System
US8594694B2 (en) 2008-02-25 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Alleviating mobile device overload conditions in a mobile communication system
US20110038265A1 (en) * 2009-08-11 2011-02-17 Huawei Device Co., Ltd Traffic Control Method, Device and Terminal
EP2290909A1 (en) * 2009-08-11 2011-03-02 Huawei Device Co., Ltd. Traffic control method and terminal
US20110243002A1 (en) * 2010-03-31 2011-10-06 Fujitsu Limited Apparatus, module and method used for wireless communication
US8537707B2 (en) * 2010-03-31 2013-09-17 Fujitsu Limited Apparatus, module and method used for wireless communication
US9113474B2 (en) * 2011-07-11 2015-08-18 Samsung Electronics Co., Ltd. Method and apparatus for resource allocation
US20130017851A1 (en) * 2011-07-11 2013-01-17 Samsung Electronics Co. Ltd. Method and apparatus for resource allocation
US8452323B2 (en) * 2011-09-22 2013-05-28 Qualcomm Incorporated Method and system for selecting a thermally optimal uplink for a portable computing device
WO2013116396A3 (en) * 2012-01-30 2015-06-18 Novatel Wireless, Inc. System and method for managing output energy levels
TWI473476B (en) * 2013-01-09 2015-02-11 Pegatron Corp Network switch and method for preventing a network switch from overheating
US9930673B2 (en) 2013-06-28 2018-03-27 Gemalto M2M Gmbh Configuring and reconfiguring a radio link in view of an operating temperature of a user equipment without call interruption
US10432926B2 (en) 2013-09-03 2019-10-01 Samsung Electronics Co., Ltd. Method for transmitting contents and electronic device thereof
US11856514B2 (en) 2017-01-13 2023-12-26 Huawei Technologies Co., Ltd. Radio resource configuration adjustment method, apparatus, and system
US11184941B2 (en) 2017-05-18 2021-11-23 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for protecting user equipment, user equipment and base station
US20200145927A1 (en) * 2018-11-02 2020-05-07 Apple Inc. Dynamic power reduction requests for wireless communications
US10925007B2 (en) * 2018-11-02 2021-02-16 Apple Inc. Dynamic power reduction requests for wireless communications
US11310748B2 (en) 2018-11-02 2022-04-19 Apple Inc. Dynamic power reduction requests for wireless communications

Also Published As

Publication number Publication date
WO2000031990A2 (en) 2000-06-02
JP2011139494A (en) 2011-07-14
TR200101370T2 (en) 2001-11-21
US20040174833A1 (en) 2004-09-09
CA2350528A1 (en) 2000-06-02
US7860018B2 (en) 2010-12-28
DE69925153D1 (en) 2005-06-09
ZA200104027B (en) 2001-11-22
DE69925153T2 (en) 2005-11-17
JP4791604B2 (en) 2011-10-12
WO2000031990A3 (en) 2000-11-23
RU2231223C2 (en) 2004-06-20
JP4712972B2 (en) 2011-06-29
US6760311B1 (en) 2004-07-06
AU3097900A (en) 2000-06-13
CN1411638A (en) 2003-04-16
JP2002531023A (en) 2002-09-17
ATE295024T1 (en) 2005-05-15
EP1131906B1 (en) 2005-05-04
CN1218511C (en) 2005-09-07
CA2350528C (en) 2012-01-10
EP1131906A2 (en) 2001-09-12
HK1053205A1 (en) 2003-11-24

Similar Documents

Publication Publication Date Title
US7860018B2 (en) Thermal transmission control of wireless data modem
US9137813B2 (en) Uplink power control using received reference signal
US7792077B2 (en) Wireless communication method and apparatus for processing enhanced uplink scheduling grants
US7496374B2 (en) Transmission power control during simultaneous communications
JP4549062B2 (en) Power control method and apparatus
US8064419B2 (en) Apparatus and method for controlling reverse-link data transmission rate
EP1175794B1 (en) Asymmetric data transmission for use in a multi-modulation environment
CA2542299C (en) Power control for downlink and uplink channels
US7574229B2 (en) Output power control in multislot uplinks
RU2348116C2 (en) Device and method for control of data transmission speed in reverse communication line
KR101100776B1 (en) Method, user station and network device for radio communication in particular in connection with hsdpa service
IL174613A (en) Apparatus and method for controlling reverse-link data transmission rate

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION