US20040150156A1 - Frameless media path modules - Google Patents

Frameless media path modules Download PDF

Info

Publication number
US20040150156A1
US20040150156A1 US10357761 US35776103A US2004150156A1 US 20040150156 A1 US20040150156 A1 US 20040150156A1 US 10357761 US10357761 US 10357761 US 35776103 A US35776103 A US 35776103A US 2004150156 A1 US2004150156 A1 US 2004150156A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
media
path
transport
module
modules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10357761
Inventor
Markus Fromherz
David Biegelsen
Mark Yim
Kimon Roufas
Daniel Bobrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palo Alto Research Center Inc
Xerox Corp
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers

Abstract

A frameless media path module is provided for a media processing system feeding media streams through a media path structured for serial or parallel flows. The frameless media path module includes a plurality of media guides and not less than two media transport nips operated by at least one actuator. Means is included for attaching the frameless media path module to a supporting structure. Media state sensing electronics detect media edge or relative motion and intermodule electrical communication capability is provided.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    The following copending applications, Attorney Docket Number D/A3012, U.S. application Ser. No. ______, filed Feb. 4, 2003, titled “Media Path Modules”, is assigned to the same assignee of the present application. The entire disclosure of this copending application is totally incorporated herein by reference in its entirety.
  • INCORPORATION BY REFERENCE
  • [0002]
    The following U.S. patents are fully incorporated herein by reference: U.S. Pat. No. 5,467,975 to Hadimioglu et al. (“Apparatus and Method for Moving a Substrate”); and U.S. Pat. No. 6,059,284 to Wolf et al. (“Process, Lateral and Skew Sheet Positioning Apparatus and Method”).
  • BACKGROUND OF THE INVENTION
  • [0003]
    This invention relates generally to media transport systems, and more particularly to modular, reconfigurable media path modules within such a transport system.
  • [0004]
    Paper transport systems within printing systems are generally constructed from custom designed units, usually consisting of heavy frames supporting pinch rollers driven by one or a few motors. One such system is shown in U.S. Pat. No. 6,322,069 to Krucinski et al., which utilizes a plurality of copy sheet drives, pinch rollers, and belts to transport paper through the printer system. Another approach is taught by U.S. Pat. No. 5,303,017 to Smith, which is directed to a system for avoiding inter-set printing delays with on-line job set compiling or finishing. Smith accomplishes this through the use of sheet feeders and diverter chutes with reversible sheet feeders, also utilizing pinch rollers driven by motors. However, because prior art transport systems are custom designed to meet the differing needs of specific printing systems, field reconfigurability and programmable reconfigurability are not possible.
  • [0005]
    It is an object of this invention to provide frameless standard modules, consisting of standard subunits, which can be linked physically, electrically and electronically by attachment to an external frame, and from which any path for transporting flexible media could be constructed.
  • SUMMARY OF THE INVENTION
  • [0006]
    Briefly stated, and in accordance with one aspect of the present invention, a frameless media path module is provided for a media processing system feeding media streams through a media path structured for serial or parallel flows. The frameless media path module includes a plurality of media guides and not less than two media transport nips operated by at least one actuator. Means is included for attaching the frameless media path module to a supporting structure. Media state sensing electronics detect media edge or relative motion and intermodule electrical communication capability is provided.
  • [0007]
    In accordance with another aspect of the invention, a reconfigurable media path assembly is provided for a media processing system feeding media streams through a media path structured for serial or parallel flows. The reconfigurable media path assembly includes not less than one frameless media path module having a plurality of media guides, not less than two media transport nips, module attachment means, at least one actuator, intermodule electrical communication means, and media state sensing electronics. The frameless media path modules are attached to a support assembly.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0008]
    The foregoing and other features of the instant invention will be apparent and easily understood from a further reading of the specification, claims and by reference to the accompanying drawings in which:
  • [0009]
    [0009]FIG. 1 illustrates transport module configurations formed from components according to the subject invention;
  • [0010]
    [0010]FIG. 2 is a perspective view of one embodiment of a transport module assembled on a support panel according to the subject invention;
  • [0011]
    [0011]FIG. 3 illustrates an configuration of modules to form a reconfigurable media path;
  • [0012]
    [0012]FIG. 4 illustrates a plan view of a configuration of modules within a double-wide framework;
  • [0013]
    [0013]FIG. 5 is an oblique view of the embodiment according to FIG. 5;
  • [0014]
    [0014]FIG. 6 is a perspective view of the embodiment of FIG. 5 showing transport modules assembled on support panels according to the subject invention;
  • [0015]
    [0015]FIG. 7 is an oblique view of the embodiment according to FIG. 5, in which media is directed into or out of the media plane.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0016]
    Paper transport systems, constructed from custom designed units generally consisting of heavy frames supporting pinch rollers driven by one or a few motors, are utilized extensively in industry, but have limitations in regard to part reusability and reconfigurability. Standard paper path modules from which any paper path could be constructed would enable shorter time-to-market, lower cost through economies of scale, high part reusability, field reconfigurability, and programmable reconfigurability. The media path modules disclosed herein consist of an integrated, flexible sheet transport and guide assembly with motor driven drive nip units, paper convergence guide units, sheet edge and/or relative motion detection units, and power/computation/communication units. The modules are fixed in place to an external frame to form a modular system which is physically strong and electrically bussed.
  • [0017]
    Turning to FIG. 1, there is illustrated exemplary embodiments 100, 140, and 180 of generic transport modules for linearly translating or turning media. Such units can be used to merge paper streams or pass media along forward or backward in the process directions. Module 100 consists of flexible media guides 120 with integrated media transport nips 110, media inlet guides 125, and drive motors 150 (shown oversized) configured to transport media in a desired path, in this example generally horizontal in direction. The modules are essentially uniform along their length with the motor drives mounted at the two ends of the module. Various types of sheet guides are contemplated by the disclosure herein, for example solid, perforated, or others known in the art. The motors may be much smaller than shown in FIG. 1, and thus modules can be more closely configured than would appear from the figure. Additionally, the modules can be driven using separate motors or, in less general applications, can be chain driven by a single motor (e.g. for a module in which media only enter from a fixed side).
  • [0018]
    For the purposes of clarity, a cylindrical nip is illustrated as the transport mechanism for this embodiment. Cylindrical nips are pinch rollers which contact the media from both sides along a line. One of the cylinders is driven rotationally about its axis and the other is an idler which supports or provides the normal pinching force. It should be noted that other actuation means to provide tangential media forces can be used instead. An example of one such alternate means of actuation is a spherical nip actuator, which contacts the media in only a small area and is in principle capable of driving the media tangentially in an arbitrary direction, as is described in U.S. Pat. No. 6,059,284 to Wolf et al. (“Process, Lateral and Skew Sheet Positioning Apparatus and Method”) incorporated herein by reference in its entirety. Another example of an alternate means of actuation is a piezoelectrically driven brush or brushes to move the media in a desired direction, as taught by U.S. Pat. No. 5,467,975 to Hadimioglu et al. (“Apparatus and Method for Moving a Substrate”) incorporated herein by reference in its entirety.
  • [0019]
    These basic elements may alternately be configured as shown in configurations 140 and 180, which also include media inlet guides 165 and media exit guides 170. In configuration 140 media inlet guides 165, flexible media guides 160, and transport nip 145 are configured to impart an angular directional change in the media path. In configuration 180, flexible media guides 185, media inlet guides 175, media outlet guides 170, and media transport nips 190 and 195 impart dual angular directional changes in the media path. The modules include media edge sensors and driven transport nips with media inlet guides. All drive and control electronics as well as communication bus drivers are mounted onto the guide using any of many methods known in the art, for example flexible printed circuit board technology. All intermodule electrical signals for power and communication are passed to the modules by connectors which connect either with other modules or with the external frame.
  • [0020]
    The term module here refers to an assembly of guides, rollers, motors, sensors, and optional computational and communication components. Different module types with different properties may be provided for different purposes, e.g., transport modules, gate modules with additional switch and motor, registration modules, etc. Turning now to FIG. 2, one embodiment of a module assembly does not require a rigid frame for the transport modules themselves, but instead consists of an external frame providing support for individual transport modules. In this example embodiment, the frame is formed from two parallel panels 210 having a predetermined hole pattern. Although in this example embodiment holes 240 in the hole pattern are shown as being circular, it will readily be appreciated that the hole pattern could assume any of numerous geometric shapes or, alternatively, a slot pattern could be utilized. Rods 220 are attached to parallel panels 210 at desired opening locations by any methods known in the art. Although rods 220 are cylindrical in shape as illustrated in this embodiment, they may be fabricated in various geometric shapes, for example they may have square or rectangular cross-sections. The transport module 230 is then attached at either the module top or bottom to rods 220. By being attached on only one side to rods 220, the other side of transport module 230 may be hinged to permit opening of the module for clearance of a media blockage. Frame panels 210 and rods 220 may be fabricated from metals and plastics known in the art.
  • [0021]
    Alternative means to assemble a frame to hold the media modules are possible. For example, instead of parallel panels, an open structure of beams may be assembled to form a rigid frame as in an open frame bridge. As another alternative, a solid housing of fixed or variable size could serve a similar purpose. In another embodiment, the transport modules may be attached directly to a rigid frame, rather than being supported by rods. This approach, although it may limit field reconfigurability of the transport system, would still provide flexibility in assembly in a manufacturing environment. Interlocking mechanisms to connect modules to the frame may be selected from many alternative means known to the art. All drive and control electronics as well as communication bus drivers are mounted on the modules or within the frame. All intermodule electrical signals (power and communication) are passed through by connectors, either with other modules or via the frame, which mate as part of the operation of connecting modules to the frame and to other modules.
  • [0022]
    [0022]FIG. 3 illustrates an example of a reconfigurable media path 300 configured from a plurality of standard modules. In example embodiment 300 the media paths can be retrograde as well as forward transporting and parallel flows can be enabled. Here modules 310, 320, 330, and 340 are attached to panel 360 in such a way that media received by module 310 may be transported by module 320 to gate module 350, which provides the capability for splitting a media path and creating parallel media paths. In this example, media may flow past gate 350 either to module 330 or module 340. The spacing and size of the modules are determined by several aspects of the sheets to be transported. For example, the spacing between nips 360 and 370 must be less than the shortest media length in the process direction. Similarly, the spacing between nips 380 and 390 also must be less than the shortest media length in the process direction. Media stock stiffness provides another constraint, in that the radius of curvature in turns, such as at the transition from module 310 to module 320, cannot be too small to accommodate the stiffest media that may move through the media path. A typical radius in xerographic printer applications is approximately five centimeters. For constraints typical of current xerographic usage, the spacing between nips would be approximately ten centimeters, with a five centimeter radius of curvature in turning operations.
  • [0023]
    The embodiments described with respect to FIG. 2 hereinabove enable the ability to construct a double-wide frame supporting both large and smaller transport path assemblies side by side on the same rod. This enables provision for two parallel media paths in the same frame, as illustrated in FIG. 4 in a top view to show the arrangement of transport path assemblies. Here single frame 400 supports transport path assemblies 410, 420, and 430, with media moving in process direction 440. In this example embodiment, media is being transported from separate parallel paths 420 and 430 to a single output path 410. Using the xerographic process as an example, paths 420 and 430 may be transporting paper from two different print engines to a single finisher served by path 410.
  • [0024]
    This embodiment is further illustrated in FIG. 5, in an oblique view. Because paths 520 and 530 are parallel and in the same plane, module-supporting rods (not shown in this figure, but as rods 620 in FIG. 6) may extend the entire width of both transport assemblies 520 and 530 to support transport modules mounted internally in those transport path assemblies. In this embodiment media moves along process path direction 540, with transported media from transport path assemblies 520 and 530 being received by transport path assembly 510. This embodiment is illustrated in perspective in FIG. 6, in which module support rods 620 extend the entire width of two transport assemblies 680 and 690. Attachment means 650 secure transport modules 640 to rods 620. In this example embodiment, the frame is formed from parallel panels 610 having a predetermined hole pattern. Although in this example embodiment the hole pattern is shown as being circular, it will readily be appreciated that the hole pattern could assume any of numerous geometric shapes or, alternatively, a slot pattern could be utilized. Rods 620 are attached to parallel panels 610 at desired opening locations by any methods known in the art. Although rods 620 are cylindrical in shape as illustrated in this embodiment, they may be fabricated in various geometric shapes, for example, they may have square or rectangular cross-sections. The transport modules 640 are attached at either the module top or bottom to rods 620. By being attached on only one side to rods 620, the other side of transport modules 640 may be hinged to permit opening of the module for clearance of a media blockage. Frame panels 610 and rods 620 may be fabricated from metals and/or plastics known in the art.
  • [0025]
    Alternative means to assemble a double-wide frame to hold the media modules are possible. For example, instead of parallel panels, an open structure of beams may be assembled to form a rigid frame as in an open frame bridge. As another alternative, a solid housing of fixed or variable size could serve a similar purpose. In another embodiment, the transport modules may be attached directly to a rigid double-wide frame, rather than being supported by rods. This approach, although it may limit field reconfigurability of the transport system, would still provide flexibility in assembly in a manufacturing environment. Interlocking mechanisms to connect modules to the frame may be selected from many alternative means known to the art. All drive and control electronics as well as communication bus drivers are mounted on the modules or within the frame. All intermodule electrical signals (power and communication) are passed through by connectors, either with other modules or via the frame, which mate as part of the operation of connecting modules to the frame and to other modules.
  • [0026]
    Another possible arrangement of transport path assemblies is illustrated in FIG. 7, in which parallel paths in differing planes provide for the joining of transport paths from transport path assemblies 720 and 730 into transport path assembly 710, again moving in process direction 740. This arrangement provides for a gate module at point 750 which is capable of moving media in a lateral direction (left to right or right to left) such that media can be moved along one of two alternate route in process direction 740. Similarly, by moving in the reverse process direction, two paths can be merged into a single path. This enables the connection of not only transport paths that are stacked on top of one another, but also paths that are laid out side by side in a double-wide frame.
  • [0027]
    Various means may be utilized to assemble a double-wide frame to hold the media modules in the double-wide embodiments contemplated in FIG. 7. For example, parallel panels, such as described with reference to FIG. 6, could shape the double-wide frame, or an open structure of beams may be assembled to form a rigid frame as in an open frame bridge. As another alternative, a solid housing of fixed or variable size could serve a similar purpose. In another embodiment, the transport modules may be attached directly to a rigid double-wide frame, rather than being supported by rods. This approach, although it may limit field reconfigurability of the transport system, would still provide flexibility in assembly in a manufacturing environment. Interlocking mechanisms to connect modules to the frame may be selected from many alternative means known to the art. All drive and control electronics as well as communication bus drivers are mounted on the modules or within the frame. All intermodule electrical signals (power and communication) are passed through by connectors, either with other modules or via the frame, which mate as part of the operation of connecting modules to the frame and to other modules.
  • [0028]
    While the present invention has been illustrated and described with reference to specific embodiments, further modification and improvements will occur to those skilled in the art. For example, the modules may utilize separately driven nips and the nips can be independent in the cross-process direction as well, to permit deskewing and other operations requiring more than one degree of freedom. Additionally, other types of sheet state sensors, such as relative motion detectors, can be used in place of or in addition to sheet edge detectors. It is to be understood, therefore, that this invention is not limited to the particular forms illustrated and that it is intended in the appended claims to embrace all alternatives, modifications, and variations which do not depart from the spirit and scope of this invention.

Claims (30)

    What is claimed:
  1. 1. For a media processing system feeding media streams through a media path structured for serial or parallel flows, a frameless media path module comprising:
    a plurality of media guides;
    not less than two media transport nips;
    module attachment means;
    actuation means;
    intermodule electrical communication means; and
    media state sensing electronics.
  2. 2. The frameless media path module according to claim 1, wherein said media transport nips comprise cylindrical nips.
  3. 3. The frameless media path module according to claim 1, wherein said media transport nips comprise spherical nips.
  4. 4. The frameless media path module according to claim 1, wherein said media transport nips comprise piezoelectrically driven brushes.
  5. 5. The frameless media path module according to claim 1, further comprising computational electronics.
  6. 6. The frameless media path module according to claim 1, wherein said not less than two media transport nips are spaced a distance apart, said distance being less than the shortest media length in the process direction.
  7. 7. The frameless media path module according to claim 1, wherein said actuation means comprises not less than one motor drive unit.
  8. 8. The frameless media path module according to claim 1, wherein said actuation means comprises separate motor drive units for each of said not less than two media transport nips.
  9. 9. The frameless media path module according to claim 8, wherein said motor drive units drive said not less than two media transport nips independently in the process direction.
  10. 10. The frameless media path module according to claim 8, wherein said motor drive units drive said not less than two media transport nips independently in the cross-process direction.
  11. 11. The frameless media path module according to claim 1, further comprising media state sensors.
  12. 12. The frameless media path module according to claim 11, wherein said media state sensors comprise media edge sensors.
  13. 13. The frameless media path module according to claim 11, wherein said media state sensors comprise relative motion sensors.
  14. 14. The frameless media path module according to claim 1, further comprising not less than two media inlet guides.
  15. 15. The frameless media path module according to claim 1, further comprising not less than two media outlet guides.
  16. 16. For a media processing system feeding media streams through a media path structured for serial or parallel flows, a reconfigurable media path assembly comprising:
    not less than one frameless media path module including a plurality of media guides, not less than two media transport nips, module attachment means, actuation means, intermodule electrical communication means, and media state sensing electronics; and
    a support assembly.
  17. 17. The reconfigurable media path assembly according to claim 16, wherein said support assembly comprises:
    not less than one external frame;
    frameless media path module supporting means; and
    frameless media path module attachment means.
  18. 18. The support assembly according to claim 17, wherein said not less than one external frame comprises not less than two parallel panels.
  19. 19. The support assembly according to claim 17, wherein said not less than one external frame comprises an open structure.
  20. 20. The support assembly according to claim 17, wherein said not less than one external frame comprises a solid housing.
  21. 21. The support assembly according to claim 17, wherein said frameless media path module supporting means comprises not less than two supporting rods.
  22. 22. The support assembly according to claim 21, wherein said supporting rods have a cross-section, said cross-section being geometric in shape.
  23. 23. The support assembly according to claim 17, wherein said frameless media path module attachment means is secured to not more than one surface of the frameless media path module.
  24. 24. The support assembly according to claim 23, wherein said unsecured surface of the frameless media path module is configured to permit access to an interior region of the frameless media path module.
  25. 25. The reconfigurable media path assembly according to claim 16, further comprising a gate module.
  26. 26. The reconfigurable media path assembly according to claim 16, wherein the reconfigurable media path assembly comprises a plurality of frameless media path modules.
  27. 27. The reconfigurable media path assembly according to claim 16, wherein not less than two reconfigurable media path assemblies are configured to form parallel media transport paths in the same transport plane.
  28. 28. The reconfigurable media path assembly according to claim 16, wherein not less than two reconfigurable media path assemblies are configured to form parallel media transport paths in different transport planes.
  29. 29. The reconfigurable media path assembly according to claim 16, wherein not less than three reconfigurable media path assemblies are configured to form not less than two parallel media transport paths which are joined to a single media transport path in the process direction.
  30. 30. The reconfigurable media path assembly according to claim 16, wherein not less than three reconfigurable media path assemblies are configured to form a single media transport path which is split into two parallel media transport paths in the process direction.
US10357761 2003-02-04 2003-02-04 Frameless media path modules Abandoned US20040150156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10357761 US20040150156A1 (en) 2003-02-04 2003-02-04 Frameless media path modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10357761 US20040150156A1 (en) 2003-02-04 2003-02-04 Frameless media path modules

Publications (1)

Publication Number Publication Date
US20040150156A1 true true US20040150156A1 (en) 2004-08-05

Family

ID=32771059

Family Applications (1)

Application Number Title Priority Date Filing Date
US10357761 Abandoned US20040150156A1 (en) 2003-02-04 2003-02-04 Frameless media path modules

Country Status (1)

Country Link
US (1) US20040150156A1 (en)

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040247365A1 (en) * 2003-06-06 2004-12-09 Xerox Corporation Universal flexible plural printer to plural finisher sheet integration system
US20050158098A1 (en) * 2004-01-21 2005-07-21 Xerox Corporation High print rate merging and finishing system for printing
US20060012102A1 (en) * 2004-06-30 2006-01-19 Xerox Corporation Flexible paper path using multidirectional path modules
US20060034631A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Multiple object sources controlled and/or selected based on a common sensor
US20060033771A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation. Parallel printing architecture with containerized image marking engines
US20060039729A1 (en) * 2004-08-23 2006-02-23 Xerox Corporation Parallel printing architecture using image marking engine modules
US20060039727A1 (en) * 2004-08-23 2006-02-23 Xerox Corporation Printing system with horizontal highway and single pass duplex
US20060067756A1 (en) * 2004-09-28 2006-03-30 Xerox Corporation printing system
US20060067757A1 (en) * 2004-09-28 2006-03-30 Xerox Corporation Printing system
US20060066885A1 (en) * 2004-09-29 2006-03-30 Xerox Corporation Printing system
US20060114313A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Printing system
US20060115284A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation. Semi-automatic image quality adjustment for multiple marking engine systems
US20060114497A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Printing system
US20060115285A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Xerographic device streak failure recovery
US20060132815A1 (en) * 2004-11-30 2006-06-22 Palo Alto Research Center Incorporated Printing systems
US20060139395A1 (en) * 2004-12-24 2006-06-29 Atsuhisa Nakashima Ink Jet Printer
US20060170144A1 (en) * 2005-02-02 2006-08-03 Xerox Corporation System of opposing alternate higher speed sheet feeding from the same sheet stack
US20060176336A1 (en) * 2005-02-04 2006-08-10 Xerox Corporation Printing systems
US20060197966A1 (en) * 2005-03-02 2006-09-07 Xerox Corporation Gray balance for a printing system of multiple marking engines
US20060208417A1 (en) * 2005-03-16 2006-09-21 Palo Alto Research Center Incorporated. Frameless media path modules
US20060214364A1 (en) * 2005-03-25 2006-09-28 Xerox Corporation Sheet registration within a media inverter
US20060215240A1 (en) * 2005-03-25 2006-09-28 Xerox Corporation Image quality control method and apparatus for multiple marking engine systems
US20060214359A1 (en) * 2005-03-25 2006-09-28 Xerox Corporation Inverter with return/bypass paper path
US20060222393A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation Printing system
US20060222384A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation Image on paper registration alignment
US20060221159A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation. Parallel printing architecture with parallel horizontal printing modules
US20060222378A1 (en) * 2005-03-29 2006-10-05 Xerox Corporation. Printing system
US20060227350A1 (en) * 2005-04-08 2006-10-12 Palo Alto Research Center Incorporated Synchronization in a distributed system
US20060230403A1 (en) * 2005-04-08 2006-10-12 Palo Alto Research Center Incorporated Coordination in a distributed system
US7123873B2 (en) 2004-08-23 2006-10-17 Xerox Corporation Printing system with inverter disposed for media velocity buffering and registration
US20060235547A1 (en) * 2005-04-08 2006-10-19 Palo Alto Research Center Incorporated On-the-fly state synchronization in a distributed system
US20060233569A1 (en) * 2004-11-30 2006-10-19 Xerox Corporation Systems and methods for reducing image registration errors
US20060237899A1 (en) * 2005-04-19 2006-10-26 Xerox Corporation Media transport system
US20060238778A1 (en) * 2005-04-20 2006-10-26 Xerox Corporation Printing systems
US20060244980A1 (en) * 2005-04-27 2006-11-02 Xerox Corporation Image quality adjustment method and system
US20060268318A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Printing system
US20060268287A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Automated promotion of monochrome jobs for HLC production printers
US20060269310A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Printing systems
US20060268317A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Scheduling system
EP1729257A2 (en) 2005-06-02 2006-12-06 Xerox Corporation Inter-separation decorrelator
US20060274334A1 (en) * 2005-06-07 2006-12-07 Xerox Corporation Low cost adjustment method for printing systems
US20060280517A1 (en) * 2005-06-14 2006-12-14 Xerox Corporation Warm-up of multiple integrated marking engines
US20060285857A1 (en) * 2005-06-20 2006-12-21 Xerox Corporation Printing platform
US20060290047A1 (en) * 2005-06-24 2006-12-28 Xerox Corporation Printing system sheet feeder
US20060291927A1 (en) * 2005-06-24 2006-12-28 Xerox Corporation Glossing subsystem for a printing device
US20060290760A1 (en) * 2005-06-28 2006-12-28 Xerox Corporation. Addressable irradiation of images
US20060291930A1 (en) * 2005-06-24 2006-12-28 Xerox Corporation Printing system
US20070002085A1 (en) * 2005-06-30 2007-01-04 Xerox Corporation High availability printing systems
US20070002403A1 (en) * 2005-06-30 2007-01-04 Xerox Corporation Method and system for processing scanned patches for use in imaging device calibration
US20070024894A1 (en) * 2005-07-26 2007-02-01 Xerox Corporation Printing system
US20070029721A1 (en) * 2004-03-29 2007-02-08 Palo Alto Research Center Incorporated Rotational jam clearance apparatus
US20070041745A1 (en) * 2005-08-22 2007-02-22 Xerox Corporation Modular marking architecture for wide media printing platform
US20070047976A1 (en) * 2005-08-30 2007-03-01 Xerox Corporation Consumable selection in a printing system
US20070052991A1 (en) * 2005-09-08 2007-03-08 Xerox Corporation Methods and systems for determining banding compensation parameters in printing systems
US20070071465A1 (en) * 2005-09-23 2007-03-29 Xerox Corporation Printing system
US20070081828A1 (en) * 2005-10-11 2007-04-12 Xerox Corporation Printing system with balanced consumable usage
US20070081064A1 (en) * 2005-10-12 2007-04-12 Xerox Corporation Media path crossover for printing system
US20070103707A1 (en) * 2005-11-04 2007-05-10 Xerox Corporation Scanner characterization for printer calibration
US20070103743A1 (en) * 2005-11-04 2007-05-10 Xerox Corporation Method for correcting integrating cavity effect for calibration and/or characterization targets
US20070110301A1 (en) * 2005-11-15 2007-05-17 Xerox Corporation Gamut selection in multi-engine systems
US20070116479A1 (en) * 2005-11-23 2007-05-24 Xerox Corporation Media pass through mode for multi-engine system
US7224913B2 (en) 2005-05-05 2007-05-29 Xerox Corporation Printing system and scheduling method
US20070120305A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Radial merge module for printing system
US20070120935A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Media path crossover clearance for printing system
US20070122193A1 (en) * 2005-11-28 2007-05-31 Xerox Corporation Multiple IOT photoreceptor belt seam synchronization
US20070120933A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Printing system
US20070140767A1 (en) * 2005-12-20 2007-06-21 Xerox Corporation Printing system architecture with center cross-over and interposer by-pass path
US20070139672A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Method and apparatus for multiple printer calibration using compromise aim
US20070140711A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Media path diagnostics with hyper module elements
US20070145676A1 (en) * 2005-12-23 2007-06-28 Palo Alto Research Center Incorporated Universal variable pitch interface interconnecting fixed pitch sheet processing machines
US20070146742A1 (en) * 2005-12-22 2007-06-28 Xerox Corporation Method and system for color correction using both spatial correction and printer calibration techniques
US20070159670A1 (en) * 2005-12-23 2007-07-12 Xerox Corporation Printing system
US20070164504A1 (en) * 2006-01-13 2007-07-19 Xerox Corporation Printing system inverter apparatus and method
US20070177189A1 (en) * 2006-01-27 2007-08-02 Xerox Corporation Printing system and bottleneck obviation
US20070183811A1 (en) * 2006-02-08 2007-08-09 Xerox Corporation Multi-development system print engine
US20070195355A1 (en) * 2006-02-22 2007-08-23 Xerox Corporation Multi-marking engine printing platform
US20070204226A1 (en) * 2006-02-28 2007-08-30 Palo Alto Research Center Incorporated. System and method for manufacturing system design and shop scheduling using network flow modeling
US20070201097A1 (en) * 2006-02-27 2007-08-30 Xerox Corporation System for masking print defects
US20070217796A1 (en) * 2006-03-17 2007-09-20 Xerox Corporation Fault isolation of visible defects with manual module shutdown options
US20070216746A1 (en) * 2006-03-17 2007-09-20 Xerox Corporation Page scheduling for printing architectures
US20070236747A1 (en) * 2006-04-06 2007-10-11 Xerox Corporation Systems and methods to measure banding print defects
US7283762B2 (en) 2004-11-30 2007-10-16 Xerox Corporation Glossing system for use in a printing architecture
US20070257426A1 (en) * 2006-05-04 2007-11-08 Xerox Corporation Diverter assembly, printing system and method
US20070264037A1 (en) * 2006-05-12 2007-11-15 Xerox Corporation Process controls methods and apparatuses for improved image consistency
US20070263238A1 (en) * 2006-05-12 2007-11-15 Xerox Corporation Automatic image quality control of marking processes
US20070297841A1 (en) * 2006-06-23 2007-12-27 Xerox Corporation Continuous feed printing system
US20080008492A1 (en) * 2006-07-06 2008-01-10 Xerox Corporation Power regulator of multiple integrated marking engines
US20080018915A1 (en) * 2006-07-13 2008-01-24 Xerox Corporation Parallel printing system
US20080073837A1 (en) * 2006-09-27 2008-03-27 Xerox Corporation Sheet buffering system
US20080099984A1 (en) * 2006-10-31 2008-05-01 Xerox Corporation Shaft driving apparatus
US20080112743A1 (en) * 2006-11-09 2008-05-15 Xerox Corporation Print media rotary transport apparatus and method
US20080126860A1 (en) * 2006-09-15 2008-05-29 Palo Alto Research Center Incorporated Fault management for a printing system
US20080137110A1 (en) * 2006-12-11 2008-06-12 Xerox Corporation Method and system for identifying optimal media for calibration and control
US20080137111A1 (en) * 2006-12-11 2008-06-12 Xerox Corporation Data binding in multiple marking engine printing systems
US20080143043A1 (en) * 2006-12-19 2008-06-19 Xerox Corporation Bidirectional media sheet transport apparatus
US20080147234A1 (en) * 2006-12-14 2008-06-19 Palo Alto Research Center Incorporated Module identification method and system for path connectivity in modular systems
US20080174802A1 (en) * 2007-01-23 2008-07-24 Xerox Corporation Preemptive redirection in printing systems
US7412180B2 (en) 2004-11-30 2008-08-12 Xerox Corporation Glossing system for use in a printing system
US20080196606A1 (en) * 2007-02-20 2008-08-21 Xerox Corporation Efficient cross-stream printing system
US20080266592A1 (en) * 2007-04-30 2008-10-30 Xerox Corporation Scheduling system
US20080268839A1 (en) * 2007-04-27 2008-10-30 Ayers John I Reducing a number of registration termination massages in a network for cellular devices
US20080278735A1 (en) * 2007-05-09 2008-11-13 Xerox Corporation Registration method using sensed image marks and digital realignment
US20080300707A1 (en) * 2007-05-29 2008-12-04 Palo Alto Research Center Incorporated. System and method for on-line planning utilizing multiple planning queues
US20080300708A1 (en) * 2007-05-29 2008-12-04 Palo Alto Research Center Incorporated. Model-based planning using query-based component executable instructions
US20080301690A1 (en) * 2004-08-23 2008-12-04 Palo Alto Research Center Incorporated Model-based planning with multi-capacity resources
US20080300706A1 (en) * 2007-05-29 2008-12-04 Palo Alto Research Center Incorporated. System and method for real-time system control using precomputed plans
US20090033954A1 (en) * 2007-08-03 2009-02-05 Xerox Corporation Color job output matching for a printing system
US7496412B2 (en) 2005-07-29 2009-02-24 Xerox Corporation Control method using dynamic latitude allocation and setpoint modification, system using the control method, and computer readable recording media containing the control method
US7495799B2 (en) 2005-09-23 2009-02-24 Xerox Corporation Maximum gamut strategy for the printing systems
US7559549B2 (en) 2006-12-21 2009-07-14 Xerox Corporation Media feeder feed rate
US7590501B2 (en) 2007-08-28 2009-09-15 Xerox Corporation Scanner calibration robust to lamp warm-up
US7649645B2 (en) 2005-06-21 2010-01-19 Xerox Corporation Method of ordering job queue of marking systems
US7676191B2 (en) 2007-03-05 2010-03-09 Xerox Corporation Method of duplex printing on sheet media
US7679631B2 (en) 2006-05-12 2010-03-16 Xerox Corporation Toner supply arrangement
US20100067966A1 (en) * 2008-09-17 2010-03-18 Xerox Corporation Reconfigurable sheet transport module
US7706737B2 (en) 2005-11-30 2010-04-27 Xerox Corporation Mixed output printing system
US7742185B2 (en) 2004-08-23 2010-06-22 Xerox Corporation Print sequence scheduling for reliability
US20110109947A1 (en) * 2007-04-27 2011-05-12 Xerox Corporation Optical scanner with non-redundant overwriting
US7976012B2 (en) 2009-04-28 2011-07-12 Xerox Corporation Paper feeder for modular printers
US8081329B2 (en) 2005-06-24 2011-12-20 Xerox Corporation Mixed output print control method and system
US8145335B2 (en) 2006-12-19 2012-03-27 Palo Alto Research Center Incorporated Exception handling
US8203750B2 (en) 2007-08-01 2012-06-19 Xerox Corporation Color job reprint set-up for a printing system
US8259369B2 (en) 2005-06-30 2012-09-04 Xerox Corporation Color characterization or calibration targets with noise-dependent patch size or number
US8330965B2 (en) 2006-04-13 2012-12-11 Xerox Corporation Marking engine selection
US8819103B2 (en) 2005-04-08 2014-08-26 Palo Alto Research Center, Incorporated Communication in a distributed system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579446A (en) * 1982-07-12 1986-04-01 Canon Kabushiki Kaisha Both-side recording system
US5131649A (en) * 1991-01-03 1992-07-21 Xerox Corporation Multiple output sheet inverter
US5467975A (en) * 1994-09-30 1995-11-21 Xerox Corporation Apparatus and method for moving a substrate
US5568246A (en) * 1995-09-29 1996-10-22 Xerox Corporation High productivity dual engine simplex and duplex printing system using a reversible duplex path
US6059284A (en) * 1997-01-21 2000-05-09 Xerox Corporation Process, lateral and skew sheet positioning apparatus and method
US6107579A (en) * 1996-02-06 2000-08-22 Siemens Aktiengesellschaft Arrangement for automatically determining the weight of items of post
US6161828A (en) * 1999-05-12 2000-12-19 Pitney Bowes Inc. Sheet collation device and method
US6286831B1 (en) * 1998-08-31 2001-09-11 Xerox Corporation Optimized passive gate inverter
US6450711B1 (en) * 2000-12-05 2002-09-17 Xerox Corporation High speed printer with dual alternate sheet inverters

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579446A (en) * 1982-07-12 1986-04-01 Canon Kabushiki Kaisha Both-side recording system
US5131649A (en) * 1991-01-03 1992-07-21 Xerox Corporation Multiple output sheet inverter
US5467975A (en) * 1994-09-30 1995-11-21 Xerox Corporation Apparatus and method for moving a substrate
US5568246A (en) * 1995-09-29 1996-10-22 Xerox Corporation High productivity dual engine simplex and duplex printing system using a reversible duplex path
US6107579A (en) * 1996-02-06 2000-08-22 Siemens Aktiengesellschaft Arrangement for automatically determining the weight of items of post
US6059284A (en) * 1997-01-21 2000-05-09 Xerox Corporation Process, lateral and skew sheet positioning apparatus and method
US6286831B1 (en) * 1998-08-31 2001-09-11 Xerox Corporation Optimized passive gate inverter
US6161828A (en) * 1999-05-12 2000-12-19 Pitney Bowes Inc. Sheet collation device and method
US6450711B1 (en) * 2000-12-05 2002-09-17 Xerox Corporation High speed printer with dual alternate sheet inverters

Cited By (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320461B2 (en) 2003-06-06 2008-01-22 Xerox Corporation Multifunction flexible media interface system
US7226049B2 (en) 2003-06-06 2007-06-05 Xerox Corporation Universal flexible plural printer to plural finisher sheet integration system
US20040247365A1 (en) * 2003-06-06 2004-12-09 Xerox Corporation Universal flexible plural printer to plural finisher sheet integration system
US6925283B1 (en) 2004-01-21 2005-08-02 Xerox Corporation High print rate merging and finishing system for printing
US20050158098A1 (en) * 2004-01-21 2005-07-21 Xerox Corporation High print rate merging and finishing system for printing
US20070296143A1 (en) * 2004-03-29 2007-12-27 Palo Alto Research Center Incorporated Rotational jam clearance apparatus
US20070029721A1 (en) * 2004-03-29 2007-02-08 Palo Alto Research Center Incorporated Rotational jam clearance apparatus
US7931269B2 (en) 2004-03-29 2011-04-26 Palo Alto Research Center Incorporated Rotational jam clearance apparatus
US7918453B2 (en) 2004-03-29 2011-04-05 Palo Alto Research Center Incorporated Rotational jam clearance apparatus
US7510182B2 (en) 2004-06-30 2009-03-31 Xerox Corporation Flexible paper path method using multidirectional path modules
US20060012102A1 (en) * 2004-06-30 2006-01-19 Xerox Corporation Flexible paper path using multidirectional path modules
US20080230985A1 (en) * 2004-06-30 2008-09-25 Palo Alto Research Center Incorporated Flexible paper path using multidirectional path modules
US7396012B2 (en) * 2004-06-30 2008-07-08 Xerox Corporation Flexible paper path using multidirectional path modules
US7188929B2 (en) 2004-08-13 2007-03-13 Xerox Corporation Parallel printing architecture with containerized image marking engines
US7206532B2 (en) 2004-08-13 2007-04-17 Xerox Corporation Multiple object sources controlled and/or selected based on a common sensor
US20060033771A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation. Parallel printing architecture with containerized image marking engines
US20060034631A1 (en) * 2004-08-13 2006-02-16 Xerox Corporation Multiple object sources controlled and/or selected based on a common sensor
US7742185B2 (en) 2004-08-23 2010-06-22 Xerox Corporation Print sequence scheduling for reliability
US7024152B2 (en) 2004-08-23 2006-04-04 Xerox Corporation Printing system with horizontal highway and single pass duplex
US7123873B2 (en) 2004-08-23 2006-10-17 Xerox Corporation Printing system with inverter disposed for media velocity buffering and registration
US7421241B2 (en) 2004-08-23 2008-09-02 Xerox Corporation Printing system with inverter disposed for media velocity buffering and registration
US7136616B2 (en) 2004-08-23 2006-11-14 Xerox Corporation Parallel printing architecture using image marking engine modules
US20060039727A1 (en) * 2004-08-23 2006-02-23 Xerox Corporation Printing system with horizontal highway and single pass duplex
US20060039729A1 (en) * 2004-08-23 2006-02-23 Xerox Corporation Parallel printing architecture using image marking engine modules
US20070031170A1 (en) * 2004-08-23 2007-02-08 Dejong Joannes N Printing system with inverter disposed for media velocity buffering and registration
US20080301690A1 (en) * 2004-08-23 2008-12-04 Palo Alto Research Center Incorporated Model-based planning with multi-capacity resources
US9250967B2 (en) 2004-08-23 2016-02-02 Palo Alto Research Center Incorporated Model-based planning with multi-capacity resources
US7336920B2 (en) 2004-09-28 2008-02-26 Xerox Corporation Printing system
US20060067756A1 (en) * 2004-09-28 2006-03-30 Xerox Corporation printing system
US20060067757A1 (en) * 2004-09-28 2006-03-30 Xerox Corporation Printing system
US20060066885A1 (en) * 2004-09-29 2006-03-30 Xerox Corporation Printing system
US7751072B2 (en) 2004-09-29 2010-07-06 Xerox Corporation Automated modification of a marking engine in a printing system
US7310108B2 (en) 2004-11-30 2007-12-18 Xerox Corporation Printing system
US20060233569A1 (en) * 2004-11-30 2006-10-19 Xerox Corporation Systems and methods for reducing image registration errors
US7305194B2 (en) 2004-11-30 2007-12-04 Xerox Corporation Xerographic device streak failure recovery
US7412180B2 (en) 2004-11-30 2008-08-12 Xerox Corporation Glossing system for use in a printing system
US7162172B2 (en) 2004-11-30 2007-01-09 Xerox Corporation Semi-automatic image quality adjustment for multiple marking engine systems
US7283762B2 (en) 2004-11-30 2007-10-16 Xerox Corporation Glossing system for use in a printing architecture
US20060132815A1 (en) * 2004-11-30 2006-06-22 Palo Alto Research Center Incorporated Printing systems
US20060115285A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Xerographic device streak failure recovery
US20060114497A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Printing system
US7791751B2 (en) 2004-11-30 2010-09-07 Palo Alto Research Corporation Printing systems
US20060115284A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation. Semi-automatic image quality adjustment for multiple marking engine systems
US7245856B2 (en) 2004-11-30 2007-07-17 Xerox Corporation Systems and methods for reducing image registration errors
US20060114313A1 (en) * 2004-11-30 2006-06-01 Xerox Corporation Printing system
US20060139395A1 (en) * 2004-12-24 2006-06-29 Atsuhisa Nakashima Ink Jet Printer
US7753367B2 (en) 2005-02-02 2010-07-13 Xerox Corporation System of opposing alternate higher speed sheet feeding from the same sheet stack
US7540484B2 (en) 2005-02-02 2009-06-02 Xerox Corporation System of opposing alternate higher speed sheet feeding from the same sheet stack
US20060170144A1 (en) * 2005-02-02 2006-08-03 Xerox Corporation System of opposing alternate higher speed sheet feeding from the same sheet stack
US20090236792A1 (en) * 2005-02-02 2009-09-24 Mandel Barry P System of opposing alternate higher speed sheet feeding from the same sheet stack
US20060176336A1 (en) * 2005-02-04 2006-08-10 Xerox Corporation Printing systems
US7226158B2 (en) 2005-02-04 2007-06-05 Xerox Corporation Printing systems
US8014024B2 (en) 2005-03-02 2011-09-06 Xerox Corporation Gray balance for a printing system of multiple marking engines
US20060197966A1 (en) * 2005-03-02 2006-09-07 Xerox Corporation Gray balance for a printing system of multiple marking engines
US20060208417A1 (en) * 2005-03-16 2006-09-21 Palo Alto Research Center Incorporated. Frameless media path modules
US20060214359A1 (en) * 2005-03-25 2006-09-28 Xerox Corporation Inverter with return/bypass paper path
US7416185B2 (en) 2005-03-25 2008-08-26 Xerox Corporation Inverter with return/bypass paper path
US20060215240A1 (en) * 2005-03-25 2006-09-28 Xerox Corporation Image quality control method and apparatus for multiple marking engine systems
US7697151B2 (en) 2005-03-25 2010-04-13 Xerox Corporation Image quality control method and apparatus for multiple marking engine systems
US7258340B2 (en) * 2005-03-25 2007-08-21 Xerox Corporation Sheet registration within a media inverter
US20060214364A1 (en) * 2005-03-25 2006-09-28 Xerox Corporation Sheet registration within a media inverter
US7206536B2 (en) 2005-03-29 2007-04-17 Xerox Corporation Printing system with custom marking module and method of printing
US20060222378A1 (en) * 2005-03-29 2006-10-05 Xerox Corporation. Printing system
US20060221159A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation. Parallel printing architecture with parallel horizontal printing modules
US20060222393A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation Printing system
US7245844B2 (en) 2005-03-31 2007-07-17 Xerox Corporation Printing system
US7272334B2 (en) 2005-03-31 2007-09-18 Xerox Corporation Image on paper registration alignment
US20060222384A1 (en) * 2005-03-31 2006-10-05 Xerox Corporation Image on paper registration alignment
US7444108B2 (en) 2005-03-31 2008-10-28 Xerox Corporation Parallel printing architecture with parallel horizontal printing modules
US20060230403A1 (en) * 2005-04-08 2006-10-12 Palo Alto Research Center Incorporated Coordination in a distributed system
US20060235547A1 (en) * 2005-04-08 2006-10-19 Palo Alto Research Center Incorporated On-the-fly state synchronization in a distributed system
US8819103B2 (en) 2005-04-08 2014-08-26 Palo Alto Research Center, Incorporated Communication in a distributed system
US7873962B2 (en) 2005-04-08 2011-01-18 Xerox Corporation Distributed control systems and methods that selectively activate respective coordinators for respective tasks
US7791741B2 (en) 2005-04-08 2010-09-07 Palo Alto Research Center Incorporated On-the-fly state synchronization in a distributed system
US20060227350A1 (en) * 2005-04-08 2006-10-12 Palo Alto Research Center Incorporated Synchronization in a distributed system
US20060237899A1 (en) * 2005-04-19 2006-10-26 Xerox Corporation Media transport system
US7566053B2 (en) 2005-04-19 2009-07-28 Xerox Corporation Media transport system
US20060238778A1 (en) * 2005-04-20 2006-10-26 Xerox Corporation Printing systems
US7593130B2 (en) 2005-04-20 2009-09-22 Xerox Corporation Printing systems
US20060244980A1 (en) * 2005-04-27 2006-11-02 Xerox Corporation Image quality adjustment method and system
US7224913B2 (en) 2005-05-05 2007-05-29 Xerox Corporation Printing system and scheduling method
US20060269310A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Printing systems
US7995225B2 (en) 2005-05-25 2011-08-09 Xerox Corporation Scheduling system
US7619769B2 (en) 2005-05-25 2009-11-17 Xerox Corporation Printing system
US20100238505A1 (en) * 2005-05-25 2010-09-23 Xerox Corporation Scheduling system
US7302199B2 (en) 2005-05-25 2007-11-27 Xerox Corporation Document processing system and methods for reducing stress therein
US7787138B2 (en) 2005-05-25 2010-08-31 Xerox Corporation Scheduling system
US20060268318A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Printing system
US20060268287A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Automated promotion of monochrome jobs for HLC production printers
US20060268317A1 (en) * 2005-05-25 2006-11-30 Xerox Corporation Scheduling system
US20060274337A1 (en) * 2005-06-02 2006-12-07 Xerox Corporation Inter-separation decorrelator
EP1729257A2 (en) 2005-06-02 2006-12-06 Xerox Corporation Inter-separation decorrelator
US7486416B2 (en) 2005-06-02 2009-02-03 Xerox Corporation Inter-separation decorrelator
US8004729B2 (en) 2005-06-07 2011-08-23 Xerox Corporation Low cost adjustment method for printing systems
US20060274334A1 (en) * 2005-06-07 2006-12-07 Xerox Corporation Low cost adjustment method for printing systems
US20060280517A1 (en) * 2005-06-14 2006-12-14 Xerox Corporation Warm-up of multiple integrated marking engines
US7308218B2 (en) 2005-06-14 2007-12-11 Xerox Corporation Warm-up of multiple integrated marking engines
US20060285857A1 (en) * 2005-06-20 2006-12-21 Xerox Corporation Printing platform
US7245838B2 (en) 2005-06-20 2007-07-17 Xerox Corporation Printing platform
US7649645B2 (en) 2005-06-21 2010-01-19 Xerox Corporation Method of ordering job queue of marking systems
US7451697B2 (en) 2005-06-24 2008-11-18 Xerox Corporation Printing system
US8081329B2 (en) 2005-06-24 2011-12-20 Xerox Corporation Mixed output print control method and system
US20060290047A1 (en) * 2005-06-24 2006-12-28 Xerox Corporation Printing system sheet feeder
US20060291930A1 (en) * 2005-06-24 2006-12-28 Xerox Corporation Printing system
US7310493B2 (en) 2005-06-24 2007-12-18 Xerox Corporation Multi-unit glossing subsystem for a printing device
US20060291927A1 (en) * 2005-06-24 2006-12-28 Xerox Corporation Glossing subsystem for a printing device
US7387297B2 (en) 2005-06-24 2008-06-17 Xerox Corporation Printing system sheet feeder using rear and front nudger rolls
US7433627B2 (en) 2005-06-28 2008-10-07 Xerox Corporation Addressable irradiation of images
US20060290760A1 (en) * 2005-06-28 2006-12-28 Xerox Corporation. Addressable irradiation of images
US8203768B2 (en) 2005-06-30 2012-06-19 Xerox Corporaiton Method and system for processing scanned patches for use in imaging device calibration
US20070002403A1 (en) * 2005-06-30 2007-01-04 Xerox Corporation Method and system for processing scanned patches for use in imaging device calibration
US20070002085A1 (en) * 2005-06-30 2007-01-04 Xerox Corporation High availability printing systems
US8259369B2 (en) 2005-06-30 2012-09-04 Xerox Corporation Color characterization or calibration targets with noise-dependent patch size or number
US20070024894A1 (en) * 2005-07-26 2007-02-01 Xerox Corporation Printing system
US7647018B2 (en) 2005-07-26 2010-01-12 Xerox Corporation Printing system
US7496412B2 (en) 2005-07-29 2009-02-24 Xerox Corporation Control method using dynamic latitude allocation and setpoint modification, system using the control method, and computer readable recording media containing the control method
US20070041745A1 (en) * 2005-08-22 2007-02-22 Xerox Corporation Modular marking architecture for wide media printing platform
US7466940B2 (en) 2005-08-22 2008-12-16 Xerox Corporation Modular marking architecture for wide media printing platform
US20070047976A1 (en) * 2005-08-30 2007-03-01 Xerox Corporation Consumable selection in a printing system
US7474861B2 (en) 2005-08-30 2009-01-06 Xerox Corporation Consumable selection in a printing system
US7911652B2 (en) 2005-09-08 2011-03-22 Xerox Corporation Methods and systems for determining banding compensation parameters in printing systems
US20070052991A1 (en) * 2005-09-08 2007-03-08 Xerox Corporation Methods and systems for determining banding compensation parameters in printing systems
US20070071465A1 (en) * 2005-09-23 2007-03-29 Xerox Corporation Printing system
US7495799B2 (en) 2005-09-23 2009-02-24 Xerox Corporation Maximum gamut strategy for the printing systems
US7430380B2 (en) 2005-09-23 2008-09-30 Xerox Corporation Printing system
US20070081828A1 (en) * 2005-10-11 2007-04-12 Xerox Corporation Printing system with balanced consumable usage
US7444088B2 (en) 2005-10-11 2008-10-28 Xerox Corporation Printing system with balanced consumable usage
US7811017B2 (en) 2005-10-12 2010-10-12 Xerox Corporation Media path crossover for printing system
US20070081064A1 (en) * 2005-10-12 2007-04-12 Xerox Corporation Media path crossover for printing system
US20070103743A1 (en) * 2005-11-04 2007-05-10 Xerox Corporation Method for correcting integrating cavity effect for calibration and/or characterization targets
US8711435B2 (en) 2005-11-04 2014-04-29 Xerox Corporation Method for correcting integrating cavity effect for calibration and/or characterization targets
US20070103707A1 (en) * 2005-11-04 2007-05-10 Xerox Corporation Scanner characterization for printer calibration
US7719716B2 (en) 2005-11-04 2010-05-18 Xerox Corporation Scanner characterization for printer calibration
US20070110301A1 (en) * 2005-11-15 2007-05-17 Xerox Corporation Gamut selection in multi-engine systems
US7660460B2 (en) 2005-11-15 2010-02-09 Xerox Corporation Gamut selection in multi-engine systems
US20070116479A1 (en) * 2005-11-23 2007-05-24 Xerox Corporation Media pass through mode for multi-engine system
US7280771B2 (en) 2005-11-23 2007-10-09 Xerox Corporation Media pass through mode for multi-engine system
US7519314B2 (en) 2005-11-28 2009-04-14 Xerox Corporation Multiple IOT photoreceptor belt seam synchronization
US20070122193A1 (en) * 2005-11-28 2007-05-31 Xerox Corporation Multiple IOT photoreceptor belt seam synchronization
US20070120935A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Media path crossover clearance for printing system
US8276909B2 (en) 2005-11-30 2012-10-02 Xerox Corporation Media path crossover clearance for printing system
US20070120305A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Radial merge module for printing system
US7575232B2 (en) 2005-11-30 2009-08-18 Xerox Corporation Media path crossover clearance for printing system
US7922288B2 (en) 2005-11-30 2011-04-12 Xerox Corporation Printing system
US20070120933A1 (en) * 2005-11-30 2007-05-31 Xerox Corporation Printing system
US7706737B2 (en) 2005-11-30 2010-04-27 Xerox Corporation Mixed output printing system
US7636543B2 (en) 2005-11-30 2009-12-22 Xerox Corporation Radial merge module for printing system
US20090267285A1 (en) * 2005-11-30 2009-10-29 Xerox Corporation Media path crossover clearance for printing system
US7912416B2 (en) 2005-12-20 2011-03-22 Xerox Corporation Printing system architecture with center cross-over and interposer by-pass path
US20070140767A1 (en) * 2005-12-20 2007-06-21 Xerox Corporation Printing system architecture with center cross-over and interposer by-pass path
US8351840B2 (en) 2005-12-20 2013-01-08 Xerox Corporation Printing system architecture with center cross-over and interposer by-pass path
US7756428B2 (en) 2005-12-21 2010-07-13 Xerox Corp. Media path diagnostics with hyper module elements
US7826090B2 (en) 2005-12-21 2010-11-02 Xerox Corporation Method and apparatus for multiple printer calibration using compromise aim
US20070140711A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Media path diagnostics with hyper module elements
US20070139672A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Method and apparatus for multiple printer calibration using compromise aim
US8102564B2 (en) 2005-12-22 2012-01-24 Xerox Corporation Method and system for color correction using both spatial correction and printer calibration techniques
US20070146742A1 (en) * 2005-12-22 2007-06-28 Xerox Corporation Method and system for color correction using both spatial correction and printer calibration techniques
US8488196B2 (en) 2005-12-22 2013-07-16 Xerox Corporation Method and system for color correction using both spatial correction and printer calibration techniques
US20070159670A1 (en) * 2005-12-23 2007-07-12 Xerox Corporation Printing system
US20070145676A1 (en) * 2005-12-23 2007-06-28 Palo Alto Research Center Incorporated Universal variable pitch interface interconnecting fixed pitch sheet processing machines
US7624981B2 (en) 2005-12-23 2009-12-01 Palo Alto Research Center Incorporated Universal variable pitch interface interconnecting fixed pitch sheet processing machines
US7746524B2 (en) 2005-12-23 2010-06-29 Xerox Corporation Bi-directional inverter printing apparatus and method
US7963518B2 (en) 2006-01-13 2011-06-21 Xerox Corporation Printing system inverter apparatus and method
US20070164504A1 (en) * 2006-01-13 2007-07-19 Xerox Corporation Printing system inverter apparatus and method
US20070177189A1 (en) * 2006-01-27 2007-08-02 Xerox Corporation Printing system and bottleneck obviation
US8477333B2 (en) 2006-01-27 2013-07-02 Xerox Corporation Printing system and bottleneck obviation through print job sequencing
US7630669B2 (en) 2006-02-08 2009-12-08 Xerox Corporation Multi-development system print engine
US20070183811A1 (en) * 2006-02-08 2007-08-09 Xerox Corporation Multi-development system print engine
US20070195355A1 (en) * 2006-02-22 2007-08-23 Xerox Corporation Multi-marking engine printing platform
US20070201097A1 (en) * 2006-02-27 2007-08-30 Xerox Corporation System for masking print defects
US8194262B2 (en) 2006-02-27 2012-06-05 Xerox Corporation System for masking print defects
US20070204226A1 (en) * 2006-02-28 2007-08-30 Palo Alto Research Center Incorporated. System and method for manufacturing system design and shop scheduling using network flow modeling
US8407077B2 (en) 2006-02-28 2013-03-26 Palo Alto Research Center Incorporated System and method for manufacturing system design and shop scheduling using network flow modeling
US20070216746A1 (en) * 2006-03-17 2007-09-20 Xerox Corporation Page scheduling for printing architectures
US20070217796A1 (en) * 2006-03-17 2007-09-20 Xerox Corporation Fault isolation of visible defects with manual module shutdown options
US7493055B2 (en) 2006-03-17 2009-02-17 Xerox Corporation Fault isolation of visible defects with manual module shutdown options
US7542059B2 (en) 2006-03-17 2009-06-02 Xerox Corporation Page scheduling for printing architectures
US7965397B2 (en) 2006-04-06 2011-06-21 Xerox Corporation Systems and methods to measure banding print defects
US20070236747A1 (en) * 2006-04-06 2007-10-11 Xerox Corporation Systems and methods to measure banding print defects
US8330965B2 (en) 2006-04-13 2012-12-11 Xerox Corporation Marking engine selection
US7681883B2 (en) 2006-05-04 2010-03-23 Xerox Corporation Diverter assembly, printing system and method
US20070257426A1 (en) * 2006-05-04 2007-11-08 Xerox Corporation Diverter assembly, printing system and method
US7679631B2 (en) 2006-05-12 2010-03-16 Xerox Corporation Toner supply arrangement
US20070264037A1 (en) * 2006-05-12 2007-11-15 Xerox Corporation Process controls methods and apparatuses for improved image consistency
US7382993B2 (en) 2006-05-12 2008-06-03 Xerox Corporation Process controls methods and apparatuses for improved image consistency
US7800777B2 (en) 2006-05-12 2010-09-21 Xerox Corporation Automatic image quality control of marking processes
US20070263238A1 (en) * 2006-05-12 2007-11-15 Xerox Corporation Automatic image quality control of marking processes
US7865125B2 (en) 2006-06-23 2011-01-04 Xerox Corporation Continuous feed printing system
US20070297841A1 (en) * 2006-06-23 2007-12-27 Xerox Corporation Continuous feed printing system
US7856191B2 (en) 2006-07-06 2010-12-21 Xerox Corporation Power regulator of multiple integrated marking engines
US20080008492A1 (en) * 2006-07-06 2008-01-10 Xerox Corporation Power regulator of multiple integrated marking engines
US20080018915A1 (en) * 2006-07-13 2008-01-24 Xerox Corporation Parallel printing system
US7924443B2 (en) 2006-07-13 2011-04-12 Xerox Corporation Parallel printing system
US8607102B2 (en) 2006-09-15 2013-12-10 Palo Alto Research Center Incorporated Fault management for a printing system
US20080126860A1 (en) * 2006-09-15 2008-05-29 Palo Alto Research Center Incorporated Fault management for a printing system
US20100258999A1 (en) * 2006-09-27 2010-10-14 Xerox Corporation Sheet buffering system
US7766327B2 (en) 2006-09-27 2010-08-03 Xerox Corporation Sheet buffering system
US20080073837A1 (en) * 2006-09-27 2008-03-27 Xerox Corporation Sheet buffering system
US8322720B2 (en) 2006-09-27 2012-12-04 Xerox Corporation Sheet buffering system
US7857309B2 (en) 2006-10-31 2010-12-28 Xerox Corporation Shaft driving apparatus
US20080099984A1 (en) * 2006-10-31 2008-05-01 Xerox Corporation Shaft driving apparatus
US20080112743A1 (en) * 2006-11-09 2008-05-15 Xerox Corporation Print media rotary transport apparatus and method
US7819401B2 (en) 2006-11-09 2010-10-26 Xerox Corporation Print media rotary transport apparatus and method
US20080137111A1 (en) * 2006-12-11 2008-06-12 Xerox Corporation Data binding in multiple marking engine printing systems
US7969624B2 (en) 2006-12-11 2011-06-28 Xerox Corporation Method and system for identifying optimal media for calibration and control
US20080137110A1 (en) * 2006-12-11 2008-06-12 Xerox Corporation Method and system for identifying optimal media for calibration and control
US8159713B2 (en) 2006-12-11 2012-04-17 Xerox Corporation Data binding in multiple marking engine printing systems
US7945346B2 (en) 2006-12-14 2011-05-17 Palo Alto Research Center Incorporated Module identification method and system for path connectivity in modular systems
US20080147234A1 (en) * 2006-12-14 2008-06-19 Palo Alto Research Center Incorporated Module identification method and system for path connectivity in modular systems
US8100523B2 (en) 2006-12-19 2012-01-24 Xerox Corporation Bidirectional media sheet transport apparatus
US8145335B2 (en) 2006-12-19 2012-03-27 Palo Alto Research Center Incorporated Exception handling
US20080143043A1 (en) * 2006-12-19 2008-06-19 Xerox Corporation Bidirectional media sheet transport apparatus
US7559549B2 (en) 2006-12-21 2009-07-14 Xerox Corporation Media feeder feed rate
US8693021B2 (en) 2007-01-23 2014-04-08 Xerox Corporation Preemptive redirection in printing systems
US20080174802A1 (en) * 2007-01-23 2008-07-24 Xerox Corporation Preemptive redirection in printing systems
US7934825B2 (en) 2007-02-20 2011-05-03 Xerox Corporation Efficient cross-stream printing system
US20080196606A1 (en) * 2007-02-20 2008-08-21 Xerox Corporation Efficient cross-stream printing system
US7676191B2 (en) 2007-03-05 2010-03-09 Xerox Corporation Method of duplex printing on sheet media
US20110109947A1 (en) * 2007-04-27 2011-05-12 Xerox Corporation Optical scanner with non-redundant overwriting
US8049935B2 (en) 2007-04-27 2011-11-01 Xerox Corp. Optical scanner with non-redundant overwriting
US20080268839A1 (en) * 2007-04-27 2008-10-30 Ayers John I Reducing a number of registration termination massages in a network for cellular devices
US8253958B2 (en) 2007-04-30 2012-08-28 Xerox Corporation Scheduling system
US20080266592A1 (en) * 2007-04-30 2008-10-30 Xerox Corporation Scheduling system
US8169657B2 (en) 2007-05-09 2012-05-01 Xerox Corporation Registration method using sensed image marks and digital realignment
US20080278735A1 (en) * 2007-05-09 2008-11-13 Xerox Corporation Registration method using sensed image marks and digital realignment
US7925366B2 (en) 2007-05-29 2011-04-12 Xerox Corporation System and method for real-time system control using precomputed plans
US7590464B2 (en) 2007-05-29 2009-09-15 Palo Alto Research Center Incorporated System and method for on-line planning utilizing multiple planning queues
US20080300707A1 (en) * 2007-05-29 2008-12-04 Palo Alto Research Center Incorporated. System and method for on-line planning utilizing multiple planning queues
US7689311B2 (en) 2007-05-29 2010-03-30 Palo Alto Research Center Incorporated Model-based planning using query-based component executable instructions
US20080300706A1 (en) * 2007-05-29 2008-12-04 Palo Alto Research Center Incorporated. System and method for real-time system control using precomputed plans
US20080300708A1 (en) * 2007-05-29 2008-12-04 Palo Alto Research Center Incorporated. Model-based planning using query-based component executable instructions
US8203750B2 (en) 2007-08-01 2012-06-19 Xerox Corporation Color job reprint set-up for a printing system
US8587833B2 (en) 2007-08-01 2013-11-19 Xerox Corporation Color job reprint set-up for a printing system
US7697166B2 (en) 2007-08-03 2010-04-13 Xerox Corporation Color job output matching for a printing system
US20090033954A1 (en) * 2007-08-03 2009-02-05 Xerox Corporation Color job output matching for a printing system
US7590501B2 (en) 2007-08-28 2009-09-15 Xerox Corporation Scanner calibration robust to lamp warm-up
US20100067966A1 (en) * 2008-09-17 2010-03-18 Xerox Corporation Reconfigurable sheet transport module
US8364072B2 (en) * 2008-09-17 2013-01-29 Xerox Corporation Reconfigurable sheet transport module
US7976012B2 (en) 2009-04-28 2011-07-12 Xerox Corporation Paper feeder for modular printers

Similar Documents

Publication Publication Date Title
US5810149A (en) Conveyor system
US7124876B2 (en) Diverter
US6959165B2 (en) High print rate merging and finishing system for printing
US7123873B2 (en) Printing system with inverter disposed for media velocity buffering and registration
US7258340B2 (en) Sheet registration within a media inverter
US20020081132A1 (en) Printing system
US6397023B1 (en) Techniques for achieving correct order in printer output
US6607320B2 (en) Mobius combination of reversion and return path in a paper transport system
US20070081064A1 (en) Media path crossover for printing system
WO2003105324A1 (en) Controlled motion system
US6533271B1 (en) Switch point for flat, flexible postal articles in sorting machines
US7108260B2 (en) Flexible director paper path module
US6615717B1 (en) Symmetrical parallel duplex paper path device
US6053494A (en) Job offset assembly
US7185888B2 (en) Rotational jam clearance apparatus
US6390466B1 (en) Tray device for sheet handling system
US5812151A (en) Printing apparatus and method for performing a printing operation on both obverse and reverse surfaces of a continuous web paper
US20080112743A1 (en) Print media rotary transport apparatus and method
US5860644A (en) Sheet feeding and stacking base for electronic printers
US7275635B2 (en) Free flow conveyance system
US20070140767A1 (en) Printing system architecture with center cross-over and interposer by-pass path
US7510182B2 (en) Flexible paper path method using multidirectional path modules
US6199860B1 (en) Motor driven delivery buckets
EP1168091A1 (en) Sheet processing method, sheet processing apparatus and image forming apparatus having the same
US4721298A (en) Bi-stable paper separator

Legal Events

Date Code Title Description
AS Assignment

Owner name: XEROX CORPORATION, CONNECTICUT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FROMHERZ, MARKUS P.J.;BIEGELSEN, DAVID K.;YIM, MARK H.;AND OTHERS;REEL/FRAME:013743/0185

Effective date: 20030203

AS Assignment

Owner name: PALO ALTO RESEARCH CENTER INCORPORATED, CALIFORNIA

Free format text: CORRECTED COVER SHEET TO CORRECT ASSIGNEE S NAME, PREVIOUSLY RECORDED AT REEL/FRAME 013743/0185 (ASSIGNMENT OF ASSIGNOR S INTEREST);ASSIGNORS:FROMHERZ, MARKUS P.J.;BIEGELSEN, DAVID K.;YIM, MARK H.;AND OTHERS;REEL/FRAME:015421/0567

Effective date: 20030203