Connect public, paid and private patent data with Google Patents Public Datasets

Removable tip for laser device with safety interlock

Download PDF

Info

Publication number
US20040143248A1
US20040143248A1 US10747988 US74798803A US2004143248A1 US 20040143248 A1 US20040143248 A1 US 20040143248A1 US 10747988 US10747988 US 10747988 US 74798803 A US74798803 A US 74798803A US 2004143248 A1 US2004143248 A1 US 2004143248A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
laser
skin
beam
energy
corneum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10747988
Inventor
Kevin Marchitlo
Stephen Flock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transmedica International Inc
Original Assignee
Transmedica International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150076Means for enhancing collection by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150099Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15134Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids
    • A61B5/15136Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser
    • A61B5/15138Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser provided with means to ensure the protection of the user, e.g. to avoid laser light entering the eyes of a user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets providing an auditory perception; Electric tinnitus maskers providing an auditory perception
    • H04R25/75Electric tinnitus maskers providing an auditory perception
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3476Powered trocars, e.g. electrosurgical cutting, lasers, powered knives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B2010/008Interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00747Dermatology
    • A61B2017/00765Decreasing the barrier function of skin tissue by radiated energy, e.g. using ultrasound, using laser for skin perforation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/395Visible markers with marking agent for marking skin or other tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • A61B2218/008Aspiration for smoke evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M2037/0007Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin having means for enhancing the permeation of substances through the epidermis, e.g. using suction or depression, electric or magnetic fields, sound waves or chemical agents

Abstract

An applicator for use with a laser device housing comprises an applicator body mountable for moving in the housing when at least a minimum amount of pressure is applied to the applicator by contact with a patient's skin to actuate a mechanism in the housing for operation of the laser device, and an applicator distal end affixed to the body and positionable substantially in a focal plane of the laser device by motion of the body upon application of at least the minimum amount of pressure. The mechanism may be an interlock, or a switch, or a switch for charging capacitors of the laser device. The Interlock may be a spring-mounted interlock.

Description

  • [0001]
    This application is a continuation of U.S. patent application Ser. No. 10/091,957, filed on Mar. 5, 2002, which is a continuation of U.S. patent application Ser. No. 09/457,953, filed on Dec. 9, 1999, and now issued as U.S. Pat. No. 6,443,945, which is a divisional of U.S. patent application Ser. No. 08/955,789, filed on Nov. 19, 1999 and now issued as U.S. Pat. No. 6,315,772, which is a continuation-in-part of U.S. patent application Ser. No. 08/792,335, filed Jan. 31, 1997, incorporated herein by reference, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/126,241 filed on Sep. 24, 1993, now issued as U.S. Pat. No. 5,643,252.
  • FIELD OF THE INVENTION
  • [0002]
    This invention is in the field of medical procedures, namely laser medical equipment used in the delivery of anesthetics or pharmaceuticals to, or the removal of fluids, gases or other biomolecules from, a patient.
  • BACKGROUND
  • [0003]
    The traditional method for the collection of small quantities of fluids, gases or other biomolecules from a patient utilizes mechanical perforation of the skin with a sharp device such as a metal lancet or needle. Additionally, the typical method of administering anesthetics or other pharmaceuticals is through the use of a needle.
  • [0004]
    These procedures have many drawbacks, including the possible infection of health care workers and the public by the sharp device used to perforate the skin, as well as the cost of handling and disposal of biologically hazardous waste.
  • [0005]
    When skin is perforated with a sharp device such as a metal lancet or needle, biological waste is created in the form of the “sharp” contaminated by the patient's blood and/or tissue. If the patient is infected with blood-born agents, such as human immunodeficiency virus (HIV), hepatitis virus, or the etiological agent of any other diseases, the contaminated sharp poses a serious threat to others that might come in contact with it. For example, many medical workers have contracted HIV as a result of accidental contact with a contaminated sharp.
  • [0006]
    Post-use disposal of contaminated sharps imposes both logistical and financial burdens on the end user. These costs are imposed as a result of the social consequences of improper disposal. For example, in the 1980's improperly disposed biological wastes washed up on public beaches on numerous occasions. Improper disposal also permits others, such as intravenous drug users, to obtain contaminated needles and spread disease.
  • [0007]
    There exists an additional drawback of the traditional method of using a needle for administering anesthetics or pharmaceuticals, as well as for drawing fluids, gases or other biomolecules. The pain associated with being stabbed by a the sharp instrument can be a traumatizing procedure, especially in pediatric patients, causing significant stress and anxiety in the patient. Moreover, for drawing fluids, gases or other biomolecules the stabbing procedure often must be repeated before sufficient fluid is obtained.
  • [0008]
    The current technology for applying local anesthetic without the use of needles typically involves either (a) topical lidocaine mixtures, (b) iontophoresis, (c) carriers or vehicles which are compounds that modify the chemical properties of either the stratum corneum, or the pharmaceutical, and (d) sonophoresis which involves modifying the barrier function of stratum corneum by ultrasound. A cream containing lidocaine is commonly used, especially in pediatric patients, but needs to be applied for up to 60 minutes, and anesthesia is produced to a depth of only about 4 mm. The lack of lidocaine penetration is a consequence of the barrier function of the stratum corneum. Inherent problems with iontophoresis include the complexity of the delivery system, cost, and unknown toxicology of prolonged exposure to electrical current. Additionally, the use of carriers or vehicles involves additional compounds which might modify the pharmacokinetics of the pharmaceutical of interest or are irritating.
  • [0009]
    Thus, a need exists for a technique to remove fluids, gases or other biomolecules or to administer anesthetics or other pharmaceuticals which does not require a sharp instrument. The method and apparatus disclosed herein fulfill this need and obviate the need for the disposal of contaminated instruments, thereby reducing the risk of infection.
  • [0010]
    Lasers have been used in recent years as a very efficient precise tool in a variety of surgical procedures. Among potentially new sources of laser radiation, the rare-earth elements are of major interest for medicine. One of the most promising of these is a YAG (yttrium, aluminum, garnet) crystal doped with erbium (Er) ions. With the use of this crystal, it is possible to build an erbium-YAG (Er:YAG) laser which can be configured to emit electromagnetic energy at a wavelength (2.94 microns) which is strongly absorbed by, among other things, water. When tissue, which consists mostly of water, is irradiated with radiation at or near this wavelength, energy is transferred to the tissue. If the intensity of the radiation is sufficient, rapid heating can result followed by vaporization of tissue. In addition, deposition of this energy can result in photomechanical disruption of tissue. Some medical uses of Er:YAG lasers have been described in the health-care disciplines of dentistry, gynecology and ophthalmology. See, e.g., Bogdasarov, B. V., et al., “The Effect of Er:YAG Laser Radiation on Solid and Soft Tissues,” Preprint 266, Institute of General Physics, Moscow, 1987; Bol'shakov, E. N. et al., “Experimental Grounds for Er:YAG Laser Application to Dentistry,” SPIE 1353:160-169, Lasers and Medicine (1989) (these and all other references cited herein are expressly incorporated by reference as if fully set forth in their entirety herein).
  • SUMMARY OF THE INVENTION
  • [0011]
    The present invention employs a laser to perforate or alter the skin of a patient so as to remove fluids, gases or other biomolecules or to administer anesthetics or other pharmaceuticals. Perforation or alteration is produced by irradiating the surface of the target tissue with a pulse or pulses of electromagnetic energy from a laser. Prior to treatment, the care giver properly selects the wavelength, energy fluence (energy of the pulse divided by the area irradiated), pulse temporal width and irradiation spot size so as to precisely perforate or alter the target tissue to a select depth and eliminate undesired damage to healthy proximal tissue.
  • [0012]
    According to one embodiment of the present invention, a laser emits a pulsed laser beam, focused to a small spot for the purpose of perforating or altering the target tissue. By adjusting the output of the laser, the laser operator can control the depth, width and length of the perforation or alteration as needed.
  • [0013]
    In another embodiment continuous-wave or diode lasers may be used to duplicate the effect of a pulsed laser beam. These lasers are modulated by gating their output, or, in the case of a diode laser, by fluctuating the laser excitation current in a diode laser. The overall effect is to achieve brief irradiation, or a series of brief irradiations, that produce the same tissue permeating effect as a pulsed laser. The term “modulated laser” is used herein to indicate this duplication of a pulsed laser beam.
  • [0014]
    The term, “perforation” is used herein to indicate the ablation of the stratum corneum to reduce or eliminate its barrier function. The term, “alteration” of the stratum corneum is used herein to indicate a change in the stratum corneum which reduces or eliminates the barrier function of the stratum corneum and increases permeability without ablating, or by merely partially ablating, the stratum corneum itself. A pulse or pulses of infrared laser radiation at a subablative energy of, e.g., 60 mJ (using a TRANSMEDICA™ International, Inc. (“TRANSMEDICA™”) Er:YAG laser with a beam of radiant energy with a wavelength of 2.94 microns, a 200 μs (microsecond) pulse, and a 2 mm spot size) will alter the stratum corneum. The technique may be used for transdermal drug delivery or for obtaining samples, fluids, gases or other biomolecules, from the body. Different wavelengths of laser radiation and energy levels less than or greater than 60 mJ may also produce the enhanced permeability effects without ablating the skin.
  • [0015]
    The mechanism for this alteration of the stratum corneum is not certain. It may involve changes in lipid or protein nature or function or be due to desiccation of the skin or mechanical alterations secondary to propagating pressure waves or cavitation bubbles. The pathway that topically applied drugs take through the stratum corneum is generally thought to be through cells and/or around them, as well as through hair follicles. The impermeability of skin to topically applied drugs is dependent on tight cell to cell junctions, as well as the biomolecular makeup of the cell membranes and the intercellular milieu. Any changes to either the molecules that make up the cell membranes or intercellular milieu, or changes to the mechanical structural integrity of the stratum corneum and/or hair follicles can result in reduced barrier function. It is believed that irradiation of the skin with radiant energy produced by the Er:YAG laser causes measurable changes in the thermal properties, as evidenced by changes in the Differential Scanning Calorimeter (DSC) spectra as well as the Fourier Transform Infrared (FTIR) spectra of the stratum corneum. Changes in DSC and FTIR spectra occur as a consequence of changes in molecules or macromolecular structure, or the environment around these molecules or structures. Without wishing to be bound to any particular theory, we can tentatively attribute these observations to changes in lipids, water and protein molecules in the stratum corneum caused by irradiation of molecules with electromagnetic radiation, both by directly changing molecules as well as by the production of heat and pressure waves which can also change molecules.
  • [0016]
    Both perforation and alteration change the permeability parameters of the skin in a manner which allows for increased passage of pharmaceuticals, as well as fluids, gases or other biomolecules, across the stratum corneum.
  • [0017]
    Accordingly, one object of the present invention is to provide a means for perforating or altering the stratum corneum of a patient in a manner that does not result in bleeding. For example, the perforation or alteration created at the target tissue is accomplished by applying a laser beam that penetrates through the stratum corneum layer or both the stratum corneum layer and the epidermis, thereby reducing or eliminating the barrier function of the stratum corneum. This procedure allows the administration of anesthetics or other pharmaceuticals, as well as the removal of fluids, gases or other biomolecules, through the skin. Moreover, this procedure allows drugs to be administered continually on an outpatient basis over long periods of time. The speed and/or efficiency of drug delivery is thereby enhanced for drugs which were either slow or unable to penetrate skin.
  • [0018]
    In another embodiment of this invention, pressure waves, plasma, and cavitation bubbles are created in or above the stratum corneum to increase the permeation of the compounds (e.g., pharmaceuticals) or fluid, gas or other biomolecule removal. This method may simply overcome the barrier function of intact stratum corneum without significant alteration or may be used to increase permeation or collection in ablated or altered stratum corneum. As described herein, pressure waves, plasma, and cavitation bubbles are produced by irradiating the surface of the target tissue, or material on the target tissue, with a pulse or pulses of electromagnetic energy from a laser. Prior to treatment, the care giver properly selects the wavelength, energy fluence (energy of the pulse divided by the area irradiated), pulse temporal width and irradiation spot size to create the pressure waves, plasma, or cavitation bubbles while limiting undesired damage to healthy proximal tissue.
  • [0019]
    A further object of this invention is to provide an alternative means for administering drugs that would otherwise be required to be taken through other means, such as orally or injected, thereby increasing patient compliance and decreasing patient discomfort.
  • [0020]
    An additional object of this invention is to allow the taking of measurements of various fluid constituents, such as glucose, or to conduct measurements of gases.
  • [0021]
    A further object of this invention is to avoid the use of sharps. The absence of a contaminated sharp will eliminate the risk of accidental injury and its attendant risks to health care workers, patients, and others that may come into contact with the sharp. The absence of a sharp in turn obviates the need for disposal of biologically hazardous waste. Thus, the present invention provides an ecologically sound method for administering anesthetics or other pharmaceuticals, as well as removing fluids, gases or other biomolecules.
  • [0022]
    In another embodiment a typical laser is modified to include a container unit. Such a container unit can be added to: (1) increase the efficiency in the collection of fluids, gases or other biomolecules; (2) reduce the noise created when the laser beam perforates the patient's tissue; and (3) collect the ablated tissue. The optional container unit is alternatively evacuated to expedite the collection of the released materials such as the fluids, gases or other biomolecules. The container can also be used to collect only ablated tissue. The noise created from the laser beam's interaction with the patient's skin may cause the patient anxiety. The optional container unit reduces the noise intensity and therefore alleviates the patient's anxiety and stress. The container unit also minimizes the risk of cross-contamination and guarantees the sterility of the collected sample. The placement of the container unit in the use of this invention is unique in that it covers the tissue being irradiated, at the time of irradiation by the laser beam, and is therefore able to collect the fluid, gas or other biomolecule samples and/or ablated tissue as the perforation or alteration occurs. The container unit may also be modified for the purpose of containing materials, such as drugs, which may be applied before, simultaneously or shortly after irradiation.
  • [0023]
    A typical laser used for this invention requires no special skills to use. It can be small, light-weight and can be used with regular or rechargeable batteries. The greater the laser's portability and ease of use, the greater the utility of this invention in a variety of settings, such as a hospital room, clinic, or home.
  • [0024]
    Safety features can be incorporated into the laser that require that no special safety eyewear be worn by the operator of the laser, the patient, or anyone else in the vicinity of the laser when it is being used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0025]
    The present invention may be better understood and its advantages appreciated by those skilled in the art by referring to the accompanying drawings wherein:
  • [0026]
    [0026]FIG. 1 shows a laser with its power source, high voltage pulse-forming network, flashlamp, lasing rod, mirrors, housing and focusing lens.
  • [0027]
    [0027]FIG. 2 shows an optional spring-loaded interlock and optionally heated applicator.
  • [0028]
    [0028]FIG. 3 shows an alternative means of exciting a laser rod using a diode laser.
  • [0029]
    [0029]FIG. 4 shows an alternative focusing mechanism.
  • [0030]
    [0030]FIGS. 5A & 5B show optional beam splatters for creating multiple simultaneous perforations.
  • [0031]
    [0031]FIG. 6 shows a patch that can be used to sterilize the site of irradiation.
  • [0032]
    [0032]FIGS. 7A & 7B show alternative patches for sterilization and/or delivery of pharmaceuticals, and/or collection of fluids, gases or other biomolecules.
  • [0033]
    [0033]FIG. 8 shows an optional container unit for collecting fluids, gases or other biomolecules, ablated tissue, and/or other matter released from the site of irradiation, and for reducing noise resulting from the interaction between the laser and the patient's tissue.
  • [0034]
    [0034]FIG. 9 shows a plug and plug perforation center.
  • [0035]
    [0035]FIG. 10 shows an optional container unit for collecting ablated tissue and reducing noise resulting from the interaction between the laser and the patient's tissue.
  • [0036]
    [0036]FIG. 11 shows a roll-on device for the delivery of anesthetics or pharmaceuticals.
  • [0037]
    [0037]FIG. 12 shows an elastomeric mount for a solid state laser crystal element with optional mirrored surfaces applied to each end of the element.
  • [0038]
    [0038]FIG. 13 shows an example of a crystal rod with matte finish around the full circumference of the entire rod.
  • [0039]
    [0039]FIG. 14 shows an example of a crystal rod with matte finish around the full circumference of two-thirds of the rod.
  • [0040]
    [0040]FIG. 15 shows an example of a crystal rod with matte stripes along its longitudinal axis.
  • [0041]
    [0041]FIG. 16 shows a cross-section of a crystal laser rod element surrounded by a material having an index of refraction greater than the index of refraction of the rod.
  • [0042]
    FIGS. 17A-17G show various examples of a container unit.
  • [0043]
    [0043]FIG. 18 shows an atomizer for the delivery of anesthetics or pharmaceuticals.
  • [0044]
    [0044]FIG. 19 shows examples of a container unit in use with a laser.
  • [0045]
    [0045]FIG. 20 shows an example of a lens with a mask.
  • [0046]
    [0046]FIG. 21 is a chart showing a study using corticosterone which showed enhanced permeation (over controls) at an energies of 77 mJ and 117 mJ.
  • [0047]
    [0047]FIG. 22 shows the decrease in the impedance of skin in vivo using various laser pulse energies.
  • [0048]
    FIGS. 23-24 show in a permeation study of tritiated water (3H2O) involving lased human skin at energies from 50 mJ (1.6 J/cm2) to 1250 mJ (40 J/cm2).
  • [0049]
    [0049]FIG. 25 shows histological sections of human skin irradiated at energies of 50 mJ and 80 mJ.
  • [0050]
    [0050]FIG. 26 is a chart of a study using DNA showing enhanced permeation through skin irradiated at an energy of 150 mJ and 300 mJ.
  • [0051]
    [0051]FIG. 27 shows laser pulse energy (J) versus water loss through human skin in vivo.
  • [0052]
    [0052]FIG. 28 is a chart showing a DSC scan of normally hydrated (66%) human stratum corneum, and a scan of Er:YAG laser irradiated stratum corneum using a subablative pulse energy of 60 mJ.
  • [0053]
    FIGS. 29-31 are charts showing the heat of transition (μJ), center of the transition (° C.) and the full-width at half-maximum of the transition (° C) of three peaks in the DSC spectra for stratum corneum treated different ways.
  • [0054]
    FIGS. 32-33 are charts of FTIR spectra of control and lased stratum corneum.
  • [0055]
    [0055]FIG. 34 shows Amide 1 band position (cm-1) as a function of stratum corneum treatment.
  • [0056]
    [0056]FIG. 35 shows CH2 vibration position (cm-1) as a function of stratum corneum treatment.
  • [0057]
    [0057]FIG. 36 shows a histological section of rat skin that was irradiated at 80 mJ.
  • [0058]
    [0058]FIG. 37 shows a histological section of human skin that was irradiated at 80 mJ.
  • [0059]
    [0059]FIG. 38 shows in vivo blanching assay results.
  • [0060]
    FIGS. 39-41 shows permeation of □-interferon, insulin and lidocaine, through human skin in vitro.
  • [0061]
    [0061]FIG. 42 shows an example of a beam splitter suitable for making simultaneous irradiation sites.
  • [0062]
    [0062]FIG. 43 shows one possible pattern of perforation or alteration sites using a beam splitter.
  • [0063]
    [0063]FIG. 44 shows a pressure gradient created in the stratum corneum.
  • [0064]
    [0064]FIG. 45 is a schematic of modulating the pulse repetition frequency of radiant energy from high (4 GHz) to low (4 MHz).
  • [0065]
    [0065]FIG. 46 shows a propagating pressure wave created in an absorbing material located on the skin.
  • [0066]
    [0066]FIG. 47 shows a propagating pressure wave created at the skin surface with a transparent, or partially transparent, optic located on the skin.
  • [0067]
    [0067]FIG. 48 shows a propagating pressure wave created in an absorbing material on the applied pharmaceutical.
  • [0068]
    [0068]FIG. 49 shows a propagating pressure wave created in the applied pharmaceutical.
  • [0069]
    [0069]FIG. 50 shows the creation of pressure waves in tissue converging to a focal point.
  • DETAILED DESCRIPTION
  • [0070]
    This invention provides a method for perforating or altering skin for either the sampling of fluids, gases or other biomolecules or the administration of anesthetics or other pharmaceuticals. The invention utilizes a laser beam, specifically focused, and lasing at an appropriate wavelength, to create small perforations or alterations in the skin of a patient. In a preferred embodiment, the laser beam has a wavelength between about 0.2 and microns. More preferably, the wavelength is between about 1.5 and 3.0 microns. Most preferably the wavelength is about 2.94 microns. In one embodiment, the laser beam is focused with a lens to produce an irradiated spot on the skin with a size of approximately 0.5 microns −5.0 cm diameter. Optionally, the spot can be slit-shaped, with a width of about 0.05-0.5 mm and a length of up to 2.5 mm.
  • [0071]
    The caregiver may consider several factors in defining the laser beam, including wavelength, energy fluence, pulse temporal width and irradiation spot-size. In a preferred embodiment, the energy fluence is in the range of 0.03-100,000 J/cm2. More preferably, the energy fluence is in the range of 0.03-9.6 J/cm2. The beam wavelength is dependent in part on the laser material, such as Er:YAG. The pulse temporal width is a consequence of the pulse width produced by, for example, a bank of capacitors, the flashlamp, and the laser rod material. The pulse width is optimally between 1 fs (femtosecond) and 1,000 μs.
  • [0072]
    According to the method of the present invention the perforation or alteration produced by the laser need not be produced with a single pulse from the laser. In a preferred embodiment the caregiver produces a perforation or alteration through the stratum corneum by using multiple laser pulses, each of which perforates or alters only a fraction of the target tissue thickness.
  • [0073]
    To this end, one can roughly estimate the energy required to perforate or alter the stratum corneum with multiple pulses by taking the energy in a single pulse, and dividing by the number of pulses desirable. For example, if a spot of a particular size requires 1 J of energy to produce a perforation or alteration through the entire stratum corneum, then one can produce a qualitatively similar perforation or alteration using ten pulses, each having {fraction (1/10)}th the energy. Because it is desirable that the patient not move the target tissue during the irradiation (human reaction times are on the order of 100 ms or so), and that the heat produced during each pulse not significantly diffuse, in a preferred embodiment the pulse repetition rate from the laser should be such that complete perforation is produced in a time of less than 100 ms. Alternatively, the orientation of the target tissue and the laser can be mechanically fixed so that changes in the target location do not occur during the longer irradiation time.
  • [0074]
    To penetrate the skin in a manner which does not induce much if any blood flow, skin is perforated or altered through the outer surface, such as the stratum corneum layer, but not as deep as the capillary layer. The laser beam is focussed precisely on the skin, creating a beam diameter at the skin in the range of 0.5 microns-5.0 cm. The width can be of any size, being controlled by the anatomy of the area irradiated and the desired permeation rate of the pharmaceutical to be applied, or fluid, gas or other biomolecule to be removed. The focal length of the focussing lens can be of any length, but in one embodiment it is 30 mm.
  • [0075]
    By modifying wavelength, pulse length, energy fluence (which is a function of the laser energy output (in Joules) and size of the beam at the focal point (cm2)), and irradiation spot size, it is possible to vary the effect on the stratum corneum between ablation (perforation) and non-ablation or partial ablation (alteration). Both ablation and non-ablative alternation of the stratum corneum result in enhanced permeation of subsequently applied pharmaceuticals, or removal of fluids, gases or other biomolecules.
  • [0076]
    For example, by reducing the pulse energy while holding other variables constant, it is possible to change between ablative and non-ablative tissue-effect. Using the TRANSMEDICA™ Er:YAG laser, which has a pulse length of about 300 μs, with a single pulse or radiant energy and irradiating a 2 mm spot on the skin, a pulse energy above approximately 100 mJ causes ablation, while any pulse energy below approximately 100 mJ causes non-ablative alteration to the stratum corneum. Optionally, by using multiple pulses, the threshold pulse energy required to enhance pharmaceutical delivery is reduced by a factor approximately equal to the number of pulses.
  • [0077]
    Alternatively, by reducing the spot size while holding other variables constant, it is also possible to change between ablative and non-ablative tissue-effect. For example, halving the spot area will result in halving the energy required to produce the same effect. Irradiations down to 0.5 microns can be obtained, for example, by coupling the radiant output of the laser into the objective lens of a microscope objective (e.g. as available from Nikon, Inc., Melville, N.Y.). In such a case, it is possible to focus the beam down to spots on the order of the limit of resolution of the microscope, which is perhaps on the order of about 0.5 microns. In fact, if the beam profile is Gaussian, the size of the affected irradiated area can be less than the measured beam size and can exceed the imaging resolution of the microscope. To non-ablatively alter tissue in this case, it would be suitable to use a 3.2 J/cm2 energy fluence, which for a half-micron spot size, would require a pulse energy of about 5 nJ. This low a pulse energy is readily available from diode lasers, and can also be obtained from, for example, the Er:YAG laser by attenuating the beam with an absorbing filter, such as glass.
  • [0078]
    Optionally, by changing the wavelength of radiant energy while holding the other variables constant, it is possible to change between an ablative and non-ablative tissue-effect. For example, using Ho:YAG (holmium: YAG; 2.127 microns) in place of the Er:YAG (erbium: YAG; 2.94 microns) laser, would result in less absorption of energy by the tissue, creating less of a perforation or alteration.
  • [0079]
    Picosecond and femtosecond pulses produced by lasers can also be used to produce alteration or ablation in skin. This can be accomplished with modulated diode or related microchip lasers, which deliver single pulses with temporal widths in the 1 femtosecond to 1 ms range. (See D. Stern et al., “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Lasers at 532 and 625 nm,” Corneal Laser Ablation, vol. 107, pp. 587-592 (1989), incorporated herein by reference, which discloses the use of pulse lengths down to 1 femtosecond).
  • [0080]
    According to one embodiment of the present invention, the anesthetic or pharmaceutical can be administered immediately after laser irradiation. Two embodiments of this invention incorporate an atomizer (FIG. 18) or a roll-on device (FIG. 11). In the case of a roll-on device, the laser beam propagates through hole 162 incorporated in ball 164 of the roll-on device. In the alternative, the roll-on device can be positioned adjacent to the path of the laser beam through the disposable applicator. After irradiation, the roll-on device is rolled over the irradiated site, thereby administering the desired anesthetic or pharmaceutical. In the case of an atomizer, the anesthetic is administered from a drug reservoir 166 through the use of compressed gas. After irradiation, a cylinder 168 containing compressed gas (such as, for example, carbon dioxide) is triggered to spray a set amount of anesthetic or pharmaceutical over the irradiated site.
  • [0081]
    Alternatively, it would be beneficial to apply positive pressure to a drug reservoir thereby pushing the drug into the skin, or negative pressure in a collection reservoir thus enhancing the diffusion of analytes out of the skin. Ambient atmospheric pressure is 760 mm Hg, or 1 atmosphere. Because of hydrostatic pressure in a standing individual, the relative pressure difference in the head may be 10 mm Hg below a reference value taken at the level of the neck, and 90 mm Hg higher in the feet. The arms may be between 8 and 35 mm Hg. Note also that because of the beating heart, a dynamic pressure (in a normal, healthy individual) of between 80-120 mm Hg is in the circulation. Thus, to permeate a drug through the skin (say in the arm), a positive pressure of greater than about 760 mm+35 mm Hg would be suitable. A pressure just slightly over 1 atmosphere would be suitable to enhance drug permeation, and yet would not enhance diffusion into the blood stream because of the dynamic pressures in the blood stream. A higher pressure might beneficially enhance diffusion into the blood stream. However, extended pressures much greater than perhaps 5 or so atmospheres for extended times might actually produce side effects.
  • [0082]
    In another embodiment of the present invention, an ink jet or mark is used for marking the site of irradiation. The irradiated sites are often not easily visible to the eye, consequently the health care provider may not know exactly where to apply the anesthetic or pharmaceutical subsequent to laser irradiation. This invention further provides techniques to mark the skin so that the irradiation site is apparent. For example, an ink-jet (analogous to those used in ink-jet printers) can be engaged prior to, during or immediately after laser irradiation. Additionally, a circle can be marked around the ablation site, or a series of lines all pointing inward to the ablation site can be used. Alternatively, the disposable safety-tip/applicator can be marked on the end (the end that touches up against the skin of the patient) with a pigment. Engaging the skin against the applicator prior to, during, or immediately after lasing results in a mark on the skin at the site of irradiation.
  • [0083]
    For certain purposes, it is useful to create multiple perforations or alterations of the skin simultaneously or in rapid sequence. To accomplish this, a beam-splitter can optionally be added to the laser, or a rapidly pulsing laser, such as a diode or related microchip lasers, may be used. Multiple irradiated sites, created simultaneously or sequentially, would result in an increased uptake of drugs as compared to a single irradiation site (i.e. an increase in uptake proportional to the total number of ablated sites). An example of a beam splitter 48 suitable for making simultaneous irradiation sites for use with a laser can be found in FIG. 42. Any geometric pattern of spots can be produced on the skin using this technique. Because the diffusion into skin of topically applied drugs can be approximated as symmetric, a beneficial pattern of irradiation spots for local drug delivery (such that a uniform local concentration would result over as wide an area as possible) would be to position each spot equidistant from each other in a staggered matrix pattern (FIG. 43).
  • [0084]
    Alternatively, multiple irradiation sites, or an irradiated area of arbitrary size and shape, could be produced with use of a scanner. For example, oscillating mirrors which reflect the beam of laser radiant energy can operate as a scanner.
  • [0085]
    For application of the laser device for anesthetic or pharmaceutical delivery, as well as fluid, gas or other biomolecule removal, the laser is manipulated in such a way that a portion of the patient's skin is positioned at the site of the laser focus within the applicator. For perforations or alterations for the delivery of anesthetics and other pharmaceuticals, as well as fluid, gas or other biomolecule removal, a region of the skin which has less contact with hard objects or with sources of contamination is preferred, but not required. Examples are skin on the arm, leg, abdomen or back. Optionally, the skin heating element is activated at this time in order to reduce the laser energy required for altering or ablating the stratum corneum.
  • [0086]
    Preferably a holder is provided with a hole coincident with the focal plane of the optical system. Optionally, as shown in FIG. 2, a spring-loaded interlock 36 can be attached to the holder, so that when the patient applies a small amount of pressure to the interlock, to recess it to the focal point, a switch is closed and the laser will initiate a pulse of radiation. In this setup, the focal point of the beam is not in line with the end of the holder until that end is depressed. In the extremely unlikely event of an accidental discharge of the laser before proper positioning of the tissue at the end of the laser applicator, the optical arrangement will result in an energy fluence rate that is significantly low, thus causing a negligible effect on unintentional targets.
  • [0087]
    The method of this invention may be enhanced by using a laser of a wavelength that is specifically absorbed by the skin components of interest (e.g., water, lipids or protein) which strongly affect the permeation of the skin tissues. However, choosing a laser that emits a strongly absorbed wavelength is not required. Altering the lipids in stratum corneum may allow enhanced permeation while avoiding the higher energies that are necessary to affect the proteins and water.
  • [0088]
    It would be beneficial to be able to use particular lasers other than the Er:YAG for stratum corneum ablation or alteration. For example, laser diodes emitting radiant energy with a wavelength of 810 nm (0.8 microns) are inexpensive, but such wavelength radiation is only poorly absorbed by tissue. In a further embodiment of this invention, a dye is administered to the skin surface, either by application over intact stratum corneum, or by application over an Er:YAG laser treated site (so the that deep dye penetration can occur), that absorbs such a wavelength of radiation. For example, indocyanine green (ICG), which is a harmless dye used in retina angiography and liver clearance studies, absorbs maximally at 810 nm when in plasma (Stephen Flock and Steven Jacques, “Thermal Damage of Blood Vessels in a Rat Skin-Flap Window Chamber Using Indocyanine Green and a Pulsed Alexandrite Laser: A Feasibility Study,” Laser Med. Sci. 8, 185-196, 1993). This dye, when in stratum corneum, is expected to absorb the 810 nm radiant energy from a diode laser (e.g. a GaAlAs laser) thereby raising the temperature of the tissue, and subsequently leading to ablation or molecular changes resulting in reduced barrier function.
  • [0089]
    Alternatively, it is possible to chemically alter the optical properties of the skin to enhance subsequent laser radiant energy absorption without chemicals actually being present at the time of laser irradiation. For example, 5-aminolevulinic acid (5-ALA) is a precursor to porphyrins, which are molecules involved in hemoglobin production and behavior. Porphyrins are strong absorbers of light. Administration of 5-ALA stimulates production of porphyrins in cells, but is itself consumed in the process. Subsequently, there will be enhanced absorption of radiant energy in this tissue at wavelengths where porphyrins absorb (e.g., 400 nm or 630 nm).
  • [0090]
    Another way to enhance the absorption of radiant energy in stratum corneum without the addition of an exogenous absorbing compound is to hydrate the stratum corneum by, for example, applying an occlusive barrier to the skin prior to laser irradiation. In this situation, the water produced within the body itself continues to diffuse through the stratum corneum and propagate out through pores in the skin, but is prevented from evaporating by the occlusive barrier. Thus, the moisture is available to further saturate the stratum corneum. As the radiant energy emitted by the Er:YAG laser is strongly absorbed by water, this process would increase the absorption coefficient of the stratum corneum, and so less energy would be required to induce the alterations or ablations in the stratum corneum necessary for enhanced topical drug delivery.
  • [0091]
    Additionally, the laser ablated site eventually heals as a result of infiltration of keratinocytes and keratin (which takes perhaps two weeks to complete), or by the diffusion of serum up through the ablated sites which form a clot (or eschar) which effectively seals the ablated site. For long term topical delivery of drugs, or for multiple sequential administrations of topical drugs, it would be beneficial to keep the ablated site open for an extended length of time.
  • [0092]
    Thus, in an additional embodiment of this invention, the ablated or non-ablated site is kept open by keeping the area of irradiation moist. This is accomplished by minimizing contact of air with the ablated site and/or providing fluid to keep the ablated site moist and/or biochemically similar to stratum corneum. The application of a patch (containing, for example, an ointment such as petroleum jelly or an ointment containing hydrocortisone) over the site would help to keep it open. A hydrogel patch would also serve to provide the necessary moisture. Additionally, cytotoxic drugs such as cisplatin, bleomycin, doxurubicin, and methotrexate, for example, topically applied in low concentrations would locally prevent cellular infiltration and wound repair. Furthermore, application of vitamin C (ascorbic acid), or other known inhibitors of melanin production, following irradiation, would help to prevent additional skin coloration in the area following treatment.
  • [0093]
    Pressure Wave to Enhance the Permeability of the Stratum Corneum or other Membranes
  • [0094]
    In another embodiment of the present invention, a pressure gradient is created at the ablated or altered site to force substances through the skin. This technique can be used for the introduction of compounds (e.g., pharmaceuticals) into the body.
  • [0095]
    When laser radiant energy is absorbed by tissue, expansion (due to heating) and/or physical movement of tissue (due to heating or non-thermal effects such as spallation) takes place. These phenomena lead to production of propagating pressure waves, which can have frequencies in the acoustic (20 Hz to 20,000 Hz) or ultrasonic (>20,000 Hz) region of the pressure wave spectrum. For example, Flock et al. (Proc SPIE Vol. 2395, pp. 170-176, 1995) show that when a 20 ns pulse from a Q-switched frequency-doubled Nd:YAG laser is impacted on blood, propagating transient high pressure waves form. These pressure waves can be spectrally decomposed to show that they consist of a spectrum of frequencies, from about 0 to greater than 4 MHz. The high pressure gradient associated with these kinds of compressional-type pressure waves can be transformed into tension-type or stress waves which can “tear” tissue apart in a process referred to as “spallation”.
  • [0096]
    The absorption of propagating pressure waves by tissue is a function of the tissue type and frequency of wave. Furthermore, the speed of these pressure waves in non-bone tissue is approximately 1400-1600 m/sec. Using these observations, a pressure gradient in tissue can be created, directed either into the body or out of the body, using pulsed laser radiant energy. To efficiently create pressure waves with a pulsed laser, the pulse duration needs to be less than the time it takes for the created heat to diffuse out of the region of interest. The effect is qualitatively equivalent to the effects of ultrasound on tissue. The attenuation coefficient for sound propogation in tissue increases approximately linearly with frequency (see, for example, J. Havlice and J. Taenzer, “Medical Ultrasound Imaging: An Overview of Principles and Instrumentation”, Proc. IEEE 67, 620-641, 1979), and is approximately 1 dB/cm/MHz (note that a 20 decibel (dB) intensity difference is equivalent to a factor of 10 in relative intensity). The thickness of the stratum corneum is about 25 microns and the epidermis is about 200 microns. Thus, the frequency that is attenuated by 10 dB when propagating through the stratum corneum is 10 dB/(1 dB/cm/MHz*0.0025 cm), or 4 GHz. Similarly, as strongly absorbed radiant energy produced by a pulsed laser (say pulsed at 4 GHz) will produce propagating pressure waves of a similar frequency as the pulse repetition rate, it is possible to selectively increase the pressure in the stratum corneum or upper layers of skin as compared to the lower layers, thus enhancing the diffusive properties of topically applied drug (see, e.g., FIG. 44). A transparent, or nearly transparent, optic 172, as shown in FIG. 47, can be placed on the surface of the skin to contain the backward inertia of the propagating pressure wave or ablated stratum corneum.
  • [0097]
    In an additional embodiment, as shown in FIG. 45, by modulating the pulse repetition frequency of the radiant energy from high to low, it is possible to create transient pressure fields that can be designed to be beneficial for enhancing the diffusive properties of a topically applied pharmaceutical.
  • [0098]
    The high-frequency propagating pressure waves can also be produced from a single laser pulse. When tissue absorbs a brief pulse of laser irradiation, pressure waves with a spectrum of frequencies result. Some of these frequencies will propagate into lower layers in the skin, thus it may be possible to set up a reverse pressure gradient (more pressure below and less superficially) in order to enhance the diffusion of biomolecules out of the body, effectively “pumping” them through the skin.
  • [0099]
    Acoustic waves and/or spallation are believed to occur during the use of the TRANSMEDICA™ Er:YAG laser in ablation of stratum corneum for drug delivery or perforation, since the 2.94 micron radiant energy is absorbed in about 1 micron of tissue, yet the tissue ablation can extend much deeper.
  • [0100]
    A continuous-wave laser can also be used to create pressure waves. A continuous-wave laser beam modulated at 5-30 MHz can produce 0.01-5 W/cm2 pressure intensities in tissue due to expansion and compression of sequentially heated tissue (for example, a Q-switched Er:YAG laser (40 ns pulse) at 10 mJ and focussed to a spot size of 0.05 cm, with a pulse repetition rate of 5-30 MHz, would produce in stratum corneum a stress of about 3750 bars, or 0.025 W/cm2). It takes a few hundred bars to cause transient permeability of cells. With this laser it requires about 0.01 W/cm2 of continuous pressure wave energy to provide effective permeation of skin.
  • [0101]
    In an additional embodiment, pressure waves are induced on the topically applied pharmaceutical. The propagation of the wave towards the skin will carry some of the pharmaceutical with it (see, e.g., FIG. 49).
  • [0102]
    In a further embodiment, pressure waves are induced on an absorbing material 170 placed over the topically applied pharmaceutical (see, e.g., FIG. 48). Preferably this material is a thin film of water, however, it can be created in any liquid, solid or gas located over the topically applied pharmaceutical. The propagation of the wave towards the skin will carry some of the pharmaceutical with it. Additionally, pressure waves can be induced on an absorbing material 170 (preferably a thin film of water, however, it can be created in any liquid, solid or gas) placed over the target tissue (see, e.g., FIG. 46). The propagation of the wave towards the skin will increase the permeability of the stratum corneum. Subsequent to the formation of these pressure waves, the desired pharmaceutical can be applied.
  • [0103]
    In another embodiment, pressure gradients can be used to remove fluids, gases or other biomolecules from the body. This can be accomplished by focusing a beam of radiant energy down to a small volume at some point within the tissue. The resulting heating leads to pressure wave intensities (which are proportional to the degree of heating) that will be greater near the focal point of the radiant energy, and less near the surface. The consequence of this is a pressure gradient directed outwards thus enhancing the removal of fluids, gases or other biomolecules. Alternatively, propagating pressure waves created at the surface of the skin can be focused to a point within the tissue. This can be done, for example, by using a pulsed laser to irradiate a solid object 174 above the skin, which by virtue of its shape, induces pressure waves in the tissue which converges to the focal point (see, e.g., FIG. 50). Again, the consequence of this is a pressure gradient directed outwards thus enhancing the removal of fluids, gases or other biomolecules.
  • [0104]
    The pressure waves described can be created after perforation or alteration of the stratum corneum has taken place. Alternatively, pressure waves can be used as the sole means to increase the diffusive properties of compounds trough the skin or the removal of fluids, gases or other biomolecules.
  • [0105]
    The pressure waves described can be created after perforation or alteration of the stratum corneum has taken place. Alternatively, pressure waves can be used as the sole means to increase the diffusive properties of pharmaceuticals.
  • [0106]
    Creation of Cavitation Bubbles to Increase Stratum Corneum Permeability
  • [0107]
    Cavitation bubbles, produced subsequent to the target tissues perforation or alteration, can be used to enhance the diffusive properties of a topically applied drug. While production of cavitation bubbles within the tissue is known (See, for example, R. Ensenaliev et al., “Effect of Tensile Amplitude and Temporal Characteristics on Threshold of Cavitation-Driven Ablation,” Proc. SPIE vol. 2681, pp 326-333, (1996)), for the present invention, cavitation bubbles are produced in a material on or over the surface of the skin so that they propagate downwards (as they do because of conservation of momentum) and impact on the stratum corneum, thereby reducing the barrier function of the skin. The cavitation bubbles can be created in an absorbing material 170 located on or over the skin.
  • [0108]
    Cavitation has been seen to occur in water at −8 to −100 bars, (Jacques et al., Proc. SPIE vol. 1546, p. 284 (1992)). Thus, using a Q-switched Er:YAG laser (40 ns pulse) at 10 mJ and focussed to a spot size of 0.05 cm in a thin film of water on the skin, with a pulse repetition rate of 5-30 MHz, a stress of about 3750 bars, or 0.025 W/cm2, is produced. This should generate the production of cavitation bubbles, which, when they contact the skin will cause mechanical and/or thermal damage thereby enhancing stratum corneum permeability.
  • [0109]
    In a preferred embodiment, the cavitation bubbles are produced in a thin film of water placed on or over the skin, however, any liquid or solid material can be used. Subsequent to production of the cavitation bubbles a pharmaceutical is applied to the affected tissue.
  • [0110]
    In an additional embodiment, cavitation bubbles are produced in the administered pharmaceutical subsequent to its application on the skin. Cavitation bubbles can also be produced in the stratum corneum itself before pharmaceutical application.
  • [0111]
    In a further embodiment, the target tissue is not perforated or altered before the production of cavitation bubbles, the cavitation bubbles' impact on the stratum corneum being the only method used to increase stratum corneum permeability.
  • [0112]
    Plasma Ablation to Increase Stratum Corneum Permeability
  • [0113]
    Plasma is a collection of ionized atoms and free electrons. It takes an extremely strong electric field or extremely high temperature to ionize atoms, but at the focus of an intense pulsed laser beam (>approx. 108-1010 W/cm2), such electric fields can result. Above this energy fluence rate, high enough temperatures can result. What one sees when plasma is formed is a transient bright white cloud (which results from electrons recombining with atoms resulting in light emission at many different wavelengths which combine to appear to the eye as white). A loud cracking is usually heard when plasma is formed as a result of supersonic shock waves propagating out of the heated (>1000K) volume that has high pressures (perhaps >1000 atmospheres). Since plasma is a collection of hot energetic atoms and electrons, it can be used to transfer energy to other matter, such as skin. See Walsh J T, “Optical-Thermal Response of Laser-Irradiated Tissue,” Chapter 25, pp. 865-902 (Plenum Press, NY 1995), incorporated by reference herein as if fully set forth in its entirety. For example, U.S. Pat. No. 5,586,981, issued to Hu, discloses the use of plasma to treat cutaneous vascular or pigmented lesions. The wavelength of the laser in Hu '981 is chosen such that the laser beam passes through the epidermal and dermal layers of skin and the plasma is created within the lesion, localizing the disruption to the targeted lesion.
  • [0114]
    A plasma can also be used to facilitate diffusion through the stratum corneum. In one embodiment of the present invention, plasma is produced above the surface of the skin whereupon a portion of the plasma cloud will propagate outwards (and downwards) to the skin whereupon, ablation or tissue alteration will occur. Plasma can be created in a liquid, solid or gas that is placed on or over the skin, into which the laser beam is focussed. If the plasma is created in a material with an acoustic impedance similar to tissue (say, a fluid), then the resulting pressure waves would tend to transfer most of their energy to the skin. The plasma “pressure wave” behaves similarly to a propagating pressure wave in tissue. This is due to the fact that the impedance mismatch at the upper surface between air and solid/liquid material is high, and, furthermore, plasma, like ultrasonic energy, propagates poorly in low-density (i.e. air) media.
  • [0115]
    In another embodiment, plasma is produced within the stratum corneum layer. Because the energy fluence rate needed to produce the plasma is as high as approximately 108 W/cm2, selection of a wavelength with radiant energy that is strongly absorbed in tissue is not an important concern.
  • [0116]
    Important benefits in these embodiments are that (1) the optical absorption of material to produce plasma is not an important consideration, although the energy fluence rate required to produce the plasma is less when the irradiated material strongly absorbs the incident radiant energy, and (2) there are relatively inexpensive diode-pumped Q-switched solid state lasers that can produce the requisite radiant energy (such as are available from Cutting Edge Optronics, Inc., St, Louis, Mo.).
  • [0117]
    To obtain a peak energy fluence rate greater than or approximately equal to the plasma creation threshold of 108 W/cm2, using a pulse length of 300 Ps (e.g. for the TRANSMEDICA™ Er:YAG laser, IJ for 300 μs), the pulse power is 3333 W, and the spot size needs to be 0.0065 mm. Alternatively, a small diode-pumped Q-switched laser can be used. Such lasers have pulse widths on the order of 10 ns, and, as such, the requisite spot size for producing plasma could be much larger.
  • [0118]
    Continuous-Wave (CW) Laser Scanning
  • [0119]
    It is possible, under machine and microprocessor control, to scan a laser beam (either continuous-wave or pulsed) over the target tissue, and to minimize or eliminate thermal damage to the epidermis or adjacent anatomical structures.
  • [0120]
    For example, a scanner (made up of electro-optical or mechanical components) can be fashioned to continually move the laser beam over a user-defined area. This area can be of arbitrary size and shape. The path for the scan could be spiral or raster. If the laser is pulsed, or modulated, then it would be possible to do a discrete random pattern where the scanning optics/mechanics directs the beam to a site on the skin, the laser lases, and then the scanning optics/mechanics directs the beam to a different site (preferable not adjacent to the first spot so that the skin has time to cool before an adjacent spot is heated up).
  • [0121]
    This scanning technique has been used before with copper-vapor lasers (in treating port-wine stains) and is in use with CO2 lasers for the purpose of facial resurfacing. In the case of the former, the subepidermal blood vessels are targeted, while in the latter, about 100 microns of tissue is vaporized and melted with each laser pass.
  • [0122]
    Delivery of Anesthesia
  • [0123]
    A laser can be used to perforate or alter the skin through the outer surface, such as the stratum corneum layer, but not as deep as the capillary layer, to allow localized anesthetics to be topically administered. Topically applied anesthetics must penetrate the stratum corneum layer in order to be effective. Presently, compounds acting as drug carriers are used to facilitate the transdermal diffusion of some drugs. These carriers sometimes change the behavior of the drug, or are themselves toxic.
  • [0124]
    With the other parameters set, the magnitude of the laser pump source will determine the intensity of the laser pulse, which will in turn determine the depth of the resultant perforation or alteration. Therefore, various settings on the laser can be adjusted to allow perforation or alteration of different thicknesses of stratum corneum.
  • [0125]
    Optionally, a beam-dump can be positioned in such a way as not to impede the use of the laser for perforation or alteration of extremities. The beam-dump will absorb any stray electromagnetic radiation from the beam that is not absorbed by the tissue, thus preventing any scattered rays from causing damage. The beam-dump can be designed so as to be easily removed for situations when the presence of the beam-dump would impede the placement of a body part on the applicator.
  • [0126]
    This method of delivering anesthetic creates a very small zone in which tissue is irradiated, and only an extremely small zone of thermal necrosis. A practical round irradiation site can range from 0.1-5.0 cm in diameter, while a slit shaped hole can range from approximately 0.05-0.5 mm in width and up to approximately 2.5 mm in length, although other slit sizes and lengths can be used. As a result, healing is quicker or as quick as the healing after a skin puncture with a sharp implement. After irradiation, anesthetic can then be applied directly to the skin or in a pharmaceutically acceptable formulation such as a cream, ointment, lotion or patch.
  • [0127]
    Alternatively, the delivery zone can be enlarged by strategic location of the irradiation sites and by the use of multiple sites. For example, a region of the skin may be anesthetized by first scanning the desired area with a pulsing laser such that each pulse is sufficient to cause perforation or alteration. This can be accomplished with modulated diode or related microchip lasers, which deliver single pulses with temporal widths in the 1 femtosecond to 1 ms range. (See D. Stem et al., “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Lasers at 532 and 625 nm,” Corneal Laser Ablation, vol. 107, pp. 587-592 (1989), incorporated herein by reference, which discloses the use of pulse lengths down to 1 femtosecond). Anesthetic (e.g., 10% lidocaine) would then be applied over the treated area to achieve a zone of anesthesia.
  • [0128]
    The present method can be used for transport of a variety of anesthetics. These anesthetics are different in their system and local toxicity, degree of anesthesia produced, time to onset of anesthesia, length of time that anesthesia prevails, biodistribution, and side effects. Examples of local anesthetic in facial skin-resurfacing with a laser can be found in Fitzpatrick R. E., Williams B. Goldman M. P.,“Preoperative Anesthesia and Postoperative Considerations in Laser Resurfacing,” Semin. Cutan. Med. Surg. 15(3): 170-6, 1996. A partial list consists of: cocaine, procaine, mepivacaine, etidocaine, ropivacaine, bupivacaine, lidocaine, tetracain, dibucaine, prilocaine, chloroprocaine, hexlcaine, fentanly, procainamide, piperocaine, MEGX (des-ethyl lidocaine) and PPX (pipecolyl xylidine). A reference on local anesthetic issues can be found in Rudolph de Jong, “Local Anesthetics,” Mosby-Year Book: St Louis, 1994.
  • [0129]
    Delivery of Pharmaceuticals
  • [0130]
    The present method can also be used to deliver pharmaceuticals in a manner similar to the above described delivery of anesthesia. By appropriate modification of the power level, and/or the spot size of the laser beam, perforations or alterations can be made which do not penetrate as deep as the capillary layer. These perforations or alterations can be made through only the outer surfaces, such as the stratum corneum layer or both the stratum corneum layer and the epidermis. Optionally an optical beam-splitter or multiply pulsed laser can be employed so that either single or multiple perforations or alterations within a desired area can be made. After perforation or alteration, the pharmaceutical can be applied directly to the skin or in a pharmaceutically acceptable formulation such as a cream, ointment, lotion or patch.
  • [0131]
    The present method can be used for transport of a variety of systemically acting pharmaceutical substances. For example nitroglycerin and antinauseants such as scopolamine; antibiotics such as tetracycline, streptomycin, sulfa drugs, kanamycin, neomycin, penicillin, and chloramphenicol; various hormones, such as parathyroid hormone, growth hormone, gonadotropins, insulin, ACTH, somatostatin, prolactin, placental lactogen, melanocyte stimulating hormone, thyrotropin, parathyroid hormone, calcitonin, enkephalin, and angiotensin; steroid or non-steroid anti-inflammatory agents, and systemic antibiotic, antiviral or antifungal agents.
  • [0132]
    Delivery of Locally Acting Pharmaceuticals
  • [0133]
    Laser-assisted perforation or alteration provides a unique site for local uptake of pharmaceutical substances to a desired region. Thus, high local concentrations of a substance may be achieved which are effective in a region proximal to the irradiated site by virtue of limited dilution near the site of application. This embodiment of the present invention provides a means for treating local pain or infections, or for application of a substance to a small specified area, directly, thus eliminating the need to provide high, potentially toxic amounts systemically through oral or i.v. administration. Locally acting pharmaceuticals such as alprostadil (for example Caverject from Pharmacia & Upjohn), various antibiotics, antiviral or antifungal agents, or chemotherapy or anti-cancer agents, can be delivered using this method to treat regions proximal to the delivery site. Protein or DNA based biopharmaceutical agents can also be delivered using this method.
  • [0134]
    Immunization
  • [0135]
    As for delivery of pharmaceuticals, antigens derived from a virus, bacteria or other agent which stimulates an immune response can be administered through the skin for immunization purposes. The perforations or alterations are made through the outer layers of the skin, either singly or multiply, and the immunogen is provided in an appropriate formulation. For booster immunizations, where delivery over a period of time increases the immune response, the immunogen can be provided in a formulation which penetrates slowly through the perforations or alterations, but at a rate faster than possible through unperforated or unaltered skin.
  • [0136]
    This approach offers clinicians a new approach for immunizations by solving some of the problems encountered with other routes of administration (e.g. many vaccine preparations are not efficacious through oral or intravenous routes). Further, the skin is often the first line of defense for invading microbes and the immune response in the skin is partially composed of Immunoglobulin A (IgA) antibodies like that of the mucous membranes. Scientists have long sought ways to induce mucosal immunity using various vaccine preparations. Unfortunately they have been met with limited success because in order to generate an IgA response, vaccine preparations must be delivered to mucous membranes in the gut or sinuses which are difficult to reach with standard formulations. By immunizing intradermally, unique populations of antibodies may be generated which include IgA, a critical element of mucosal immunity. This laser-assisted intradermal method of antigen presentation thereby may be used as a means to generate IgA antibodies against invading organisms.
  • [0137]
    Delivery of Allergens
  • [0138]
    Traditional allergy testing requires the allergist to make multiple pricks on the patient's skin and apply specific allergens to make a determination regarding intradermal hypersensitivity. The method of this invention can be used to deliver allergens reproducibly for allergy testing. Multiple perforations or alterations can be made through the outer layer of the skin without penetrating to the capillary level. A variety of allergens can then be applied to the skin, as in a skin patch test. One of the benefits of this methodology is that the stratum corneum barrier function compromise (i.e. laser irradiation) is more consistent than pricks made with a sharp.
  • [0139]
    Delivery of Permeation Enhancers
  • [0140]
    Certain compounds may be used to enhance the permeation of substances into the tissues below perforated or ablated stratum corneum. Such enhancers include DMSO, alcohols and salts. Other compounds specifically aid permeation based on specific effects such as by increasing ablation or improving capillary flow by limiting inflammation (i.e. salicylic acid). The method of this invention can be used to deliver these permeation enhancers. Multiple or single perforations or alterations can be made through the outer layer of the skin without penetrating to the capillary level. Subsequently, a variety of permeation enhancers can be applied to the irradiated site, as in a skin patch.
  • [0141]
    Delivery of Anti-Inflammatory Drugs
  • [0142]
    Analgesics and other non-steroid anti-inflammatory agents, as well as steroid anti—inflammatory agents may be caused to permeate through perforated or altered stratum corneum to locally affect tissue within proximity of the irradiated site. For example, anti-inflammatory agents such as Indocin (Merck & Co.), a non-steroidal drug, are effective agents for treatment of rheumatoid arthritis when taken orally, yet sometimes debilitating gastrointestinal effects can occur. By administering such agents through laser-assisted perforation or alteration sites, these potentially dangerous gastrointestinal complications may be avoided. Further, high local concentrations of the agents may be achieved more readily near the site of irradiation as opposed to the systemic concentrations achieved when orally administered.
  • [0143]
    Drawing Fluids, Gases or Other Biomolecules
  • [0144]
    A laser can be used to perforate or alter the skin through the outer surface, such as the stratum corneum layer, but not as deep as the capillary layer, to allow the collection of fluids, gases or other biomolecules. The fluid, gas or other biomolecule can be used for a wide variety of tests. With the other parameters set, the magnitude of the laser pump source will determine the intensity of the laser pulse, which will in turn determine the depth of the resultant perforation or alteration. Therefore, various settings on the laser can be adjusted to allow penetration of different thicknesses of skin.
  • [0145]
    Optionally, a beam-dump can be positioned in such a way as not to impede the use of the laser for perforation or alteration of extremities. The beam-dump will absorb any stray electromagnetic radiation from the beam that is not absorbed by the tissue, thus preventing any scattered rays from causing damage. The beam-dump can be designed to be easily removed for situations when the presence of the beam-dump would impede the placement of a body part on the applicator.
  • [0146]
    This method of drawing fluids, gases or other biomolecule creates a very small zone in which tissue is irradiated, and only an extremely small zone of thermal necrosis. For example, a practical round hole can range from about 0.1-1 mm in diameter, while a slit shaped hole can range from about approximately 0.05-0.5 mm in width and up to approximately 2.5 mm in length. As a result, healing is quicker or as quick as the healing after a skin puncture with a sharp implement.
  • [0147]
    The fluid, gas or other biomolecule can be collected into a suitable vessel, such as a small test tube or a capillary tube, or in a container unit placed between the laser and the tissue as described above. The process does not require contact. Therefore, neither the patient, the fluid, gas or other biomolecule to be drawn, or the instrument creating the perforation or alteration is contaminated.
  • [0148]
    The technique of the present invention may be used to sample extracellular fluid in order to quantify glucose or the like. Glucose is present in the extracellular fluid in the same concentration as (or in a known proportion to) the glucose level in blood (e.g. Lonnroth P. Strindberg L. Validation of the “internal reference technique” for calibrating micro dialysis catheters in situ, Acta Physiological Scandinavica, 153(4):37580, 1995 Apr.).
  • [0149]
    The perforation or alteration of the stratum corneum causes a local increase in the water loss through the skin (referred to as transepidermal water loss, or TEWL). As shown in FIG. 27, with increasing laser energy fluence (J/cm2), there is a corresponding increase in water loss. The tape strip data is a positive control that proves that the measurement is indeed sensitive to increased skin water evaporation.
  • [0150]
    Two of the energies used in FIG. 27, 40 mJ and 80 mJ (1.27 and 2.55 J/cm2) are non-ablative and therefore show that non-ablative energies allow the alteration of the barrier function of stratum corneum, thereby resulting in enhanced transepidermal water loss which can provide a diagnostic sample of extracellular fluid.
  • [0151]
    Besides glucose, other compounds and pathological agents also can be assayed in extracellular fluid. For example, HIV is present extracellularly and may be assayed according to the present method. The benefit to obtaining samples for HIV analysis without having to draw blood with a sharp that can subsequently contaminate the health-care provider is obvious. Additionally, the present invention can be used to employ lasers non-ablatively to reduce or eliminate the barrier properties of non-skin barriers in the human body, such as the blood-brain interface membranes, such as that positioned between the brains third ventricle and the hypothalamus, the sclera of the eye or any mucosal tissue, such as in the oral cavity.
  • [0152]
    Alteration Without Ablation
  • [0153]
    There are advantages to the technique of altering and not ablating the stratum corneum. In a preferred embodiment, the skin is altered, not ablated, so that its structural and biochemical makeup allow drugs to permeate. The consequence of this embodiment is: (1) the skin after irradiation still presents a barrier, albeit reduced, to external factors such as viruses and chemical toxins; (2) less energy is required than is required to ablate the stratum corneum, thus smaller and cheaper lasers can be used; and (3) less tissue damage occurs, thus resulting in more rapid and efficient healing.
  • [0154]
    Radiant Energy vs Laser Radiant Energy
  • [0155]
    The radiant energy emitted by lasers has the properties of being coherent, monochromatic, collimated and (typically) intense. Nevertheless, to enhance transdermal drug delivery or fluid, gas or biomolecule collection, the radiant energy used need not have these properties, or alternatively, can have one of all of these properties, but can be produced by a non-laser source
  • [0156]
    For example, the pulsed light output of a pulsed xenon flashlamp can be filtered with an optical filter or other wavelength selection device, and a particular range of wavelengths can be selected out of the radiant energy output. While the incoherent and quasi-monochromatic output of such a configuration cannot be focussed down to a small spot as can coherent radiant energy, for the aforementioned purpose that may not be important as it could be focused down to a spot with a diameter on the order of millimeters. Such light sources can be used in a continuous wave mode if desirable.
  • [0157]
    The infrared output of incandescent lights is significantly more than their output in the visible, and so such light sources, if suitably filtered to eliminate undesirable energy that does not reduce barrier function, could be used for this purpose. In another embodiment of the invention, it would be possible to use an intense incandescent light (such as a halogen lamp), filter it with an optical filter or similar device, and used the continuous-wave radiant energy output to decrease the barrier function of stratum corneum without causing ablation. All of these sources of radiant energy can be used to produce pulses, or continuos-wave radiant energy.
  • [0158]
    Laser Device
  • [0159]
    The practice of the present invention has been found to be effectively performed by various types of lasers; for example, the TRANSMEDICA™ Er:YAG laser perforator, or the Schwartz Electro-Optical Er:YAG laser. Preferably, any pulsed laser producing energy that is strongly absorbed in tissue may be used in the practice of the present invention to produce the same result at a non-ablative wavelength, pulse length, pulse energy, pulse number, and pulse rate. However, lasers which produce energy that is not strongly absorbed by tissue may also be used, albeit less effectively, in the practice of this invention. Additionally, as described herein, continuous-wave lasers may also be used in the practice of this invention.
  • [0160]
    [0160]FIGS. 1 and 2 are diagrammatic representations a typical laser that can be used for this invention. As shown in FIGS. 1 and 2, a typical laser comprises a power connection which can be either a standard electrical supply 10, or optionally a rechargeable battery pack 12, optionally with a power interlock switch 14 for safety purposes; a high voltage pulse-forming network 16; a laser pump-cavity 18 containing a laser rod 20, preferably Er:YAG; a means for exciting the laser rod, preferably a flashlamp 22 supported within the laser pump-cavity; an optical resonator comprised of a high reflectance mirror 24 positioned posterior to the laser rod and an output coupling mirror 26 positioned anterior to the laser rod; a transmitting focusing lens 28 positioned beyond the output coupling mirror; optionally a second focusing cylindrical lens 27 positioned between the output coupling mirror and the transmitting focusing lens; an applicator 30 for positioning the subject skin at the focal point of the laser beam, which is optionally heated for example with a thermoelectric heater 32, attached to the laser housing 34; an interlock 36 positioned between the applicator and the power supply; and optionally a beam dump 38 attached to the applicator with a fingertip access port 40.
  • [0161]
    The laser typically draws power from a standard 110 V or 220 V AC power supply 10 (single phase, 50 or 60 Hz) which is rectified and used to charge up a bank of capacitors included in the high voltage pulse-forming network 16. Optionally, a rechargeable battery pack 12 can be used instead. The bank of capacitors establishes a high DC voltage across a high output flashlamp 22. Optionally a power interlock 14, such as a keyswitch, can be provided which will prevent accidental charging of the capacitors and thus accidental laser excitation. A further interlock can be added to the laser at the applicator, such as a spring-loaded interlock 36, so that discharge of the capacitors requires both interlocks to be enabled.
  • [0162]
    With the depression of a switch, a voltage pulse can be superimposed on the already existing voltage across the flashlamp in order to cause the flashlamp to conduct, and, as a consequence, initiate the flash. The light energy from the flashlamp is located in the laser cavity 18 that has a shape such that most of the light energy is efficiently directed to the laser rod 20, which absorbs the light energy, and, upon de-excitation, subsequently lases. The laser cavity mirrors of low 26 and high 24 reflectivity, positioned collinearly with the long-axis of the laser rod, serve to amplify and align the laser beam.
  • [0163]
    Optionally, as shown in FIG. 12 the laser cavity mirrors comprise coatings 124, 126, applied to ends of the crystal element and which have the desired reflectivity characteristics. In a preferred embodiment an Er:YAG crystal is grown in a boule two inches in diameter and five inches long. The boule is core drilled to produce a rod 5-6 millimeters in diameter and five inches long. The ends of the crystal are ground and polished. The output end, that is the end of the element from which the laser beam exits, is perpendicular to the center axis of the rod within 5 arc minutes. The flatness of the output end is {fraction (1/10)} a wavelength (2.9 microns) over 90% of the aperture. The high reflectance end, that is the end opposite the output end, comprises a two meter convex spherical radius. The polished ends are polished so that there are an average of ten scratches and five digs per Military Specification Mil-0-13830A. Scratch and dig are subjective measurements that measure the visibility of large surface defects such as defined by U.S. military standards. Ratings consist of two numbers, the first being the visibility of scratches and the latter being the count of digs (small pits). A #10 scratch appears identical to a 10 micron wide standard scratch while a #1 dig appears identical to a 0.01 mm diameter standard pit. For collimated laser beams, one normally would use optics with better than a 40-20 scratch-dig rating.
  • [0164]
    Many coatings are available from Rocky Mountain Instruments, Colorado Springs, Colo. The coating is then vacuum deposited on the ends. For a 2.9 micron wavelength the coatings for the rear mirrored surface 124 should have a reflectivity of greater than 99%. The coating for the output end surface, by contrast, should have a reflectance of between 93% and 95%, but other mirrored surfaces with reflectivity as low as 80% are useful. Other vacuum deposited metallic coatings with known reflectance characteristics are widely available for use with other laser wavelengths.
  • [0165]
    The general equation which defines the reflectivity of the mirrors in a laser cavity necessary for the threshold for population inversion is:
  • R1R2(1−a L)2 exp[(g 21−1)2L]=1
  • [0166]
    where the R1 and R2 are the mirrors' reflectivities, aL is the total scattering losses per pass through the cavity, g21 is the gain coefficient which is the ratio of the stimulated emission cross section and population inversion density, □is the absorption of the radiation over one length of the laser cavity, and L is the length of the laser cavity. Using the above equation, one can select a coating with the appropriate spectral reflectivity from the following references. W. Driscoll and W. Vaughan, “Handbook of Optics,” ch. 8, eds., McGraw-Hill: NY (1978); M. Bass, et al., “Handbook of Optics,” ch. 35, eds., McGraw Hill: NY (1995).
  • [0167]
    Optionally, as also shown in FIG. 12, the crystal element may be nonrigidly mounted. In FIG. 12 an elastomeric material O-ring 128 is in a slot in the laser head assembly housing 120 located at the high reflectance end of the crystal element. A second elastomeric material O-ring 130 is in a second slot in the laser head assembly at the output end of the crystal element. The O-rings contact the crystal element by concentrically receiving the element as shown. However, elastomeric material of any shape may be used so long as it provides elastomeric support for the element (directly or indirectly) and thereby permits thermal expansion of the element. Optionally, the flash lamp 22 may also be nonrigidly mounted. FIG. 12 shows elastomeric O-rings 134, 136, each in its own slot within the laser head assembly housing. In FIG. 12 the O-rings 134 and 136 concentrically receive the flash lamp. However, the flash lamp may be supported by elastomeric material of other shapes, including shapes without openings.
  • [0168]
    Optionally, as shown in FIG. 3, a diode laser 42 that produces a pump-beam collinear with the long-axis of the laser crystal can be used instead of the flashlamp to excite the crystal. The pump-beam of this laser is collimated with a collimating lens 44, and transmitted to the primary laser rod through the high reflectance infrared mirror 45. This high reflectance mirror allows the diode pump laser beam to be transmitted, while reflecting infrared light from the primary laser.
  • [0169]
    The Er:YAG lasing material is the preferred material for the laser rod because the wavelength of the electromagnetic energy emitted by this laser, 2.94 microns, is very near one of the peak absorption wavelengths (approximately 3 microns) of water. Thus, this wavelength is strongly absorbed by water and tissue. The rapid heating of water and tissue causes perforation or alteration of the skin.
  • [0170]
    Other useful lasing material is any material which, when induced to lase, emits a wavelength that is strongly absorbed by tissue, such as through absorption by water, nucleic acids, proteins or lipids, and consequently causes the required perforation or alteration of the skin (although strong absorption is not required). A laser can effectively cut or alter tissue to create the desired perforations or alterations where tissue exhibits an absorption coefficient of 10-10,000 cm−1. Examples of useful lasing elements are pulsed CO2 lasers, Ho:YAG (holmium:YAG), Er:YAP, Er/Cr:YSGG (erbium/chromium: yttrium, scandium, gallium, garnet; 2.796 microns), Ho:YSGG (holmium: YSGG; 2.088 microns), Er:GGSG (erbium: gadolinium, gallium, scandium, garnet), Er:YLF (erbium: yttrium, lithium, fluoride; 2.8 microns), Tm:YAG (thulium: YAG; 2.01 microns), Ho:YAG (holmium: YAG; 2.127 microns); Ho/Nd:YAlO3 (holmium/neodymium: yttrium, aluminate; 2.85-2.92 microns), cobalt:MgF2 (cobalt: magnesium fluoride; 1.75-2.5 microns), HF chemical (hydrogen fluoride; 2.6-3 microns), DF chemical (deuterium fluoride; 3.6-4 microns), carbon monoxide (5-6 microns), deep UV lasers, and frequency tripled Nd:YAG (neodymium:YAG, where the laser beam is passed through crystals which cause the frequency to be tripled).
  • [0171]
    Utilizing current technology, some of these laser materials provide the added benefit of small size, allowing the laser to be small and portable. For example, in addition to Er:YAG, Ho:YAG lasers also provide this advantage.
  • [0172]
    Solid state lasers, including but not limited to those listed above, may employ a polished barrel crystal rod. The rod surface may also contain a matte finish as shown in FIG. 13. However, both of these configurations can result in halo rays that surround the central output beam. Furthermore, an all-matte finish, although capable of diminishing halo rays relative to a polished rod, will cause a relatively large decrease in the overall laser energy output. In order to reduce halo rays and otherwise affect beam mode, the matte finish can be present on bands of various lengths along the rod, each band extending around the entire circumference of the rod. Alternatively, the matte finish may be present in bands along only part of the rod's circumference. FIG. 14 shows a laser crystal element in which the matte finish is present upon the full circumference of the element along two-thirds of its length. Alternatively, as shown in FIG. 15, matte stripes may be present longitudinally along the full length of the rod. The longitudinal stripes may alternatively exist along only part of the length of the rod, such as in stripes of various lengths. A combination of the foregoing techniques may be used to affect beam shape. Other variations of patterns may also be employed in light of the beam shape desired. The specific pattern may be determined based on the starting configuration of the beam from a 100% polished element in light of the desired final beam shape and energy level. A complete matte finish element may also be used as the starting reference point.
  • [0173]
    For purposes of beam shape control, any surface finish of greater than 30 microinches is considered matte. A microinch equals one millionth (0.000001) inch, which is a common unit of measurement employed in establishing standard roughness unit values. The degree of roughness is calculated using the root-mean-square average of the distances in microinches above or below the mean reference line, by taking the square root of the mean of the sum of the squares of these distances. Although matte surfaces of greater than 500 microinches may be used to affect beam shape, such a finish will seriously reduce the amount of light energy that enters the crystal rod, thereby reducing the laser's energy.
  • [0174]
    To remove the beam halo, a matte area of approximately 50 microinches is present around the full circumference of an Er:YAG laser rod for two-thirds the length of the rod. The non-matte areas of the rod are less than 10 microinches. A baseline test of the non-matte rod can be first conducted to determine the baseline beam shape and energy of the rod. The matte areas are then obtained by roughing the polished crystal laser rod, such as with a diamond hone or grit blaster. The specific pattern of matte can be determined with respect to the desired beam shape and required beam energy level. This results in a greatly reduced beam halo. The rod may also be developed by core drilling a boule of crystal so that it leaves an overall matte finish and then polishing the desired areas, or by refining a partially matte, partially polished boule to achieve the desired pattern.
  • [0175]
    The beam shape of a crystal laser rod element may alternatively be modified as in FIG. 16 by surrounding the rod 20 in a material 160 which is transparent to the exciting light but has an index of refraction greater than the rod. Such a modification can reduce the halo of the beam by increasing the escape probability of off-axis photons within the crystal. This procedure may be used in place of or in addition to the foregoing matte procedure.
  • [0176]
    The emitted laser beam is focused down to a millimeter or submillimeter sized spot with the use of the focusing lens 28. Consideration of laser safety issues suggests that a short focal length focusing lens be used to ensure that the energy fluence rate (W/cm2) is low except at the focus of the lens where the tissue sample to be perforated or altered is positioned. Consequently, the hazard of the laser beam is minimized.
  • [0177]
    The beam can be focused so that it is narrower along one axis than the other in order to produce a slit-shaped perforation or alteration through the use of a cylindrical focusing lens 27. This lens, which focuses the beam along one axis, is placed in series with the transmitting focusing lens 28. When perforations or alterations are slit-shaped, the patient discomfort or pain associated with the perforation or alteration is considerably reduced.
  • [0178]
    Optionally, the beam can be broadened, for instance through the use of a concave diverging lens 46 (FIG. 4) prior to focusing through the focusing lens 28. This broadening of the beam results in a laser beam with an even lower energy fluence rate a short distance beyond the focal point, consequently reducing the hazard level. Furthermore, this optical arrangement reduces the optical aberrations in the laser spot at the treatment position, consequently resulting in a more precise perforation or alteration.
  • [0179]
    Also optionally, the beam can be split by means of a beam-splitter to create multiple beams capable of perforating or altering several sites simultaneously or near simultaneously. FIG. 5 provides two variations of useful beam splitters. In one version, multiple beam splitters 48 such as partially silvered mirrors, dichroic mirrors, or beam-splitting prisms can be provided after the beam is focused. Alternatively, an acousto-optic modulator 52 can be supplied with modulated high voltage to drive the modulator 52 and bend the beam. This modulator is outside the laser cavity. It functions by deflecting the laser beam sequentially and rapidly at a variety of angles to simulate the production of multiple beams.
  • [0180]
    Portability
  • [0181]
    Currently, using a portable TRANSMEDICA™ Er:YAG laser, the unit discharges once per 20-30 seconds. This can be increased by adding a battery and capacitor and cooling system to obtain a quicker cycle. Multiple capacitors can be strung together to get the discharge rate down to once every 5 or 10 seconds (sequentially charging the capacitor banks). Thus, getting a higher repetition rate than with a single capacitor.
  • [0182]
    he TRANSMEDICA™ Er:YAG laser incorporates a flashlamp, the output of which is initiated by a high-voltage pulse of electricity produced by a charged capacitor bank. Due to the high voltages required to excite the flashlamp, and because the referred to version of the laser incorporates dry cells to run (thus the charging current is much less than a wall-plug could provide), then the capacitors take about 20 seconds to sufficiently charge. Thus, if a pulse repetition rate of 1 pulse/20 seconds is desirable, it would be suitable to have multiple capacitor banks that charge sequentially (i.e. as one bank fires the flashlamp, another bank, which has been recharging, fires, and so on). Thus, the pulse repetition rate is limited only be the number of capacitor banks incorporated into the device (and is also limited by the efficiency of waste-heat removal from the laser cavity).
  • [0183]
    A small heater, such as a thermoelectric heater 32, is optionally positioned at the end of the laser applicator proximal to the site of perforation. The heater raises the temperature of the tissue to be perforated or altered prior to laser irradiation. This increases the volume of fluid collected when the device is used for that purpose. A suggested range for skin temperature is between 36° C. and 45° C., although any temperature which causes vasodilation and the resulting increase in blood flow without altering the blood chemistry is appropriate.
  • [0184]
    Container Unit
  • [0185]
    A container unit 68 is optionally fitted into the laser housing and is positioned proximal to the perforation or alteration site. The container unit reduces the intensity of the sound produced when the laser beam perforates or alters the patient's tissue, increases the efficiency of fluid, gas or other biomolecule collection, and collects the ablated tissue and other matter released by the perforation. The container unit can be shaped so as to allow easy insertion into the laser housing and to provide a friction fit within the laser housing. FIG. 8 shows a typical container unit inserted into the laser housing and placed over the perforation site.
  • [0186]
    The container unit 68 comprises a main receptacle 82, including a lens 84. The main receptacle collects the fluid, gas or other biomolecule sample, the ablated tissue, and/or other matter released by the perforation. The lens is placed such that the laser beam may pass through the lens to the perforation site but so that the matter released by the perforation does not splatter back onto the applicator. The container unit also optionally includes a base 86, attached to the receptacle. The base can optionally be formed so as to be capable of being inserted into the applicator to disengage a safety mechanism of the laser, thereby allowing the laser beam to be emitted.
  • [0187]
    As shown in FIG. 17, the shape and size of the container unit 68 are such as to allow placement next to or insertion into the applicator, and to allow collection of the fluid, gas or other biomolecule samples, ablated tissue, and/or other matter released by the perforation or alteration. Examples of shapes that the main receptacle may take include cylinders, bullet shapes, cones, polygons and free form shapes. Preferably, the container unit has a main receptacle, with a volume of around 1-2 milliliters. However, larger and smaller receptacles will also function appropriately.
  • [0188]
    The lens 84, which allows the laser beam to pass through while preventing biological and other matter from splattering back onto the applicator, is at least partially transparent. The lens is constructed of a material that transmits the laser wavelength utilized and is positioned in the pathway of the laser beam, at the end of the container unit proximal to the beam. The transmitting material can be quartz, but other examples of suitable infrared transmitting materials include rock salt, germanium, glass, crystalline sapphire, polyvinyl chloride and polyethylene. However, these materials should not contain impurities that absorb the laser beam energy. As shown in FIG. 20, the lens may optionally include a mask of non-transmitting material 85 such that the lens may shape the portion of the beam that is transmitted to the perforation site.
  • [0189]
    The main receptacle 82 is formed by the lens and a wall 88, preferably extending essentially away from the perimeter of the lens. The open end of the main receptacle or rim 90 is placed adjacent to the perforation or alteration site. The area defined by the lens, wall of the main receptacle and perforation or alteration site is thereby substantially enclosed during the operation of the laser.
  • [0190]
    The base 86 is the part of the container unit that can optionally be inserted into the applicator. The base may comprise a cylinder, a plurality of prongs or other structure. The base may optionally have threading. Optionally, the base, when fully inserted, disengages a safety mechanism of the laser, allowing the emission of the laser beam.
  • [0191]
    A typical container unit can comprise a cylindrical main receptacle 82, a cylindrical base 86, and an at least partially transparent circular lens 84 in the area between the main receptacle and base. Optionally, the lens may include a mask that shapes the beam that perforates the tissue. The interior of the main receptacle is optionally coated with anticoagulating and/or preservative chemicals. The container unit can be constructed of glass or plastic. The container unit is optionally disposable.
  • [0192]
    [0192]FIG. 19 shows examples of the use of a container unit with a laser for the purpose of drawing fluids, gases or other biomolecules or to administer pharmaceuticals. In this embodiment the applicator 30 is surrounded by the housing 34. The container unit is inserted in the applicator 30 and aligned so as to be capable of defeating the interlock 36. The base 86 of the container unit in this embodiment is within the applicator 30, while the rim 90 of the receptacle 82 is located adjacent to the tissue to be perforated.
  • [0193]
    Additionally, the container unit can be evacuated. The optional vacuum in the container unit exerts a less than interstitial fluid or the pressure of gases in the blood over the perforation or alteration site, thereby increasing the efficiency in fluid, gas or other biomolecule collection. The container unit is optionally coated with anticoagulating and/or preservative chemicals. The container unit's end proximal to the perforation or alteration site is optionally sealed air-tight with a plug 70. The plug is constructed of material of suitable flexibility to conform to the contours of the perforation site (e.g., the finger). The desired perforation or alteration site is firmly pressed against the plug. The plug's material is preferably impermeable to gas transfer. Furthermore, the plug's material is thin enough to permit perforation of the material as well as perforation of the skin by the laser. The plug can be constructed of rubber, for example.
  • [0194]
    The plug perforation center 74, as shown in FIG. 9, is preferably constructed of a thin rubber material. The thickness of the plug is such that the plug can maintain the vacuum prior to perforation, and the laser can perforate both the plug and the tissue adjacent to the plug. For use with an Er:YAG laser, the plug can be in the range of approximately about 100 to 500 microns thick.
  • [0195]
    The plug perforation center 74 is large enough to cover the perforation or alteration site. Optionally, the perforated site is a round hole with an approximate diameter ranging from about 0.1-1 mm, or slit shaped with an approximate width of about 0.05-0.5 mm and an approximate length up to about 2.5 mm. Thus, the plug perforation center is sufficiently large to cover perforation sites of these sizes.
  • [0196]
    As shown in FIG. 10, the container unit 68 can include a hole 76 through which the laser passes. In this example, the container unit optionally solely collects ablated tissue. As in the other examples, the site of irradiation is firmly pressed against the container unit. The container unit can optionally include a plug proximal to the perforation site, however it is not essential because there is no need to maintain a vacuum. The container unit reduces the noise created from interaction between the laser beam and the patient's tissue and thus alleviates the patient's anxiety and stress.
  • [0197]
    The container may also be modified to hold, or receive through an opening, a pharmaceutical or other substance, which may then be delivered simultaneously, or shortly after irradiation occurs. FIG. 11 shows an example of a container with a built-in drug reservoir and roll-on apparatus for delivery. FIG. 18 shows a container with an applicator which in turn comprises an atomizer with attached high pressure gas cylinder.
  • [0198]
    Optionally, the container unit is disposable, so that the container unit and plug can be discarded after use.
  • [0199]
    In order to sterilize the skin before perforation or alteration, a sterile alcohol-impregnated patch of paper or other thin material can optionally be placed over the site to be perforated. This material can also prevent the blowing off of potentially infected tissue in the plume released by the perforation. The material must have low bulk absorption characteristics for the wavelength of the laser beam. Examples of such material include, but are not limited to, a thin layer of glass, quartz, mica, or sapphire. Alternatively, a thin layer of plastic, such as a film of polyvinyl chloride or polyethylene, can be placed over the skin. Although the laser beam may perforate the plastic, the plastic prevents most of the plume from flying out and thus decreases any potential risk of contamination from infected tissue. Additionally, a layer of a viscous sterile substance such as vaseline can be added to the transparent material or plastic film to increase adherence of the material or plastic to the skin and further decrease plume contamination. Additionally, such a patch can be used to deliver allergens, local anesthetics or other pharmaceuticals as described below.
  • [0200]
    Examples of such a patch are provided in FIGS. 6 and 7. In FIG. 6, alcohol impregnated paper 54 is surrounded by a temporary adhesive strip 58. Side views of two alternative patches are shown in FIG. 7, where a sterilizing alcohol, antibiotic ointment, allergen, or pharmaceutical is present in the central region of the patch 60. This material is held in place by a paper or plastic layer 62, optionally with a laser-transparent material 64. Examples of such material include, but are not limited to, mica, quartz or sapphire which is transparent to the laser beam at the center of the patch. However, the material need not be totally transparent. The patch can be placed on the skin using an adhesive 66.
  • [0201]
    Modulated Laser
  • [0202]
    In addition to the pulsed lasers listed above, a modulated laser can be used to duplicate a pulsed laser for the purpose of enhancing topical drug delivery, as well as enhancing the removal of fluids, gases or other biomolecules. This is accomplished by chopping the output of the continuous—wave laser by either modulating the laser output mechanically, optically or by other means such as a saturable absorber. (See, e.g., Jeff Hecht, “The Laser Guidebook,” McGraw-Hill:NY, 1992). Examples of continuous-wave lasers include CO2 which lases over a range between 9-11 microns (e.g. Edinburgh Instruments, Edinburgh, UK), Nd:YAG, Thullium:YAG (Tm:YAG), which lases at 2.1 microns (e.g. CLR Photonics Inc., Boulder Colo.), semiconductor (diode) lasers which lase over a range from 1.0-2.0 microns (SDL Inc., San Jose, Calif.).
  • [0203]
    The chopping of the laser output (for example, with a mechanical chopper from Stanford Research Instruments Inc., Sunnyvale Calif.) will preferably result in discrete moments of irradiation with temporal widths from a few tenths of milliseconds, down to nanoseconds or picoseconds. Alternatively, in the case of diode lasers, the lasing process can be modulated by modulating the laser excitation current. A modulator for a laser diode power supply can be purchased from SDL Inc., San Jose, Calif. Alternatively, the continuous-wave beam can be optically modulated using, for example, an electro-optic cell (e.g. from New Focus Inc., Santa Clara, Calif.) or with a scanning mirror from General Scanning, Inc., Watertown Mass.
  • [0204]
    The additive effect of multiple perforations may be exploited with diode lasers. Laser diodes supplied by SDL Corporation (San Jose, Calif.) transmit a continuous beam of from 1.8 to 1.96 micron wavelength radiant energy. These diodes operate at up to 500 mW output power and may be coupled to cumulatively produce higher energies useful for stratum corneum ablation. For example, one diode bar may contain ten such diodes coupled to produce pulsed energy of 5 mJ per millisecond. It has been shown that an ablative effect may be seen with as little as 25 mJ of energy delivered to a 1 mm diameter spot. Five 5 millisecond pulses or (25) one millisecond pulses from a diode laser of this type will thus have an ablative effect approximately equivalent to one 25 mJ pulse in the same time period.
  • [0205]
    The following examples are descriptions of the use of a laser to increase the permeability of the stratum corneum for the purpose of drawing fluids, gases or other biomolecules, as well as for pharmaceutical delivery. These examples are not meant to limit the scope of the invention, but are merely embodiments.
  • EXAMPLE 1
  • [0206]
    The laser comprises a flashlamp (PSC Lamps, Webster, N.Y.), an Er:YAG crystal (Union Carbide Crystal Products, Washagoul, Wash.), optical-resonator mirrors (CVI Laser Corp., Albuquerque, N. Mex.), an infrared transmitting lens (Esco Products Inc., Oak Ridge, N.J.), as well as numerous standard electrical components such as capacitors, resistors, inductors, transistors, diodes, silicon-controlled rectifiers, fuses and switches, which can be purchased from any electrical component supply firm, such as Newark Electronics, Little Rock, Ark.
  • EXAMPLE 2
  • [0207]
    An infrared laser radiation pulse was formed using a solid state, pulsed, Er:YAG laser consisting of two flat resonator mirrors, an Er:YAG crystal as an active medium, a power supply, and a means of focusing the laser beam. The wavelength of the laser beam was 2.94 microns. Single pulses were used.
  • [0208]
    The operating parameters were as follows: The energy per pulse was 40, 80 or 120 mJ, with the size of the beam at the focal point being 2 mm, creating an energy fluence of 1.27,2.55 or 3.82 J/cm2. The pulse temporal width was 300 μs, creating an energy fluence rate of 0.42, 0.85 or 1.27×104 W/cm2.
  • [0209]
    Transepidermal water loss (TEWL) measurements were taken of the volar aspect of the forearms of human volunteers. Subsequently the forearms were positioned at the focal point of the laser, and the laser was discharged. Subsequent TEWL measurements were collected from the irradiation sites, and from these the measurements of unirradiated controls were subtracted. The results (shown in FIG. 27) show that at pulse energies of 40, 80 and 120 mJ, the barrier function of the stratum corneum was reduced and the resulting water loss was measured to be 131, 892 and 1743 gm/m2/hr respectively. The tape stripe positive control (25 pieces of Scotch Transpore tape serially applied and quickly removed from a patch of skin) was measured to be 9.0 gm/m2/hr, greater than untouched controls; thus the laser is more efficient at reducing the barrier function of the stratum corneum than tape-stripping.
  • [0210]
    Clinical assessment was conducted 24 hours after irradiation. Only a small eschar was apparent on the site lased at high energy, and no edema was present. None of the volunteers experienced irritation or required medical treatment.
  • EXAMPLE 3
  • [0211]
    An infrared laser radiation pulse was formed using a solid state, pulsed, Er:YAG laser consisting of two flat resonator mirrors, an Er:YAG crystal as an active medium, a power supply, and a means of focusing the laser beam. The wavelength of the laser beam was 2.94 microns. A single pulse was used.
  • [0212]
    The operating parameters were as follows: The energy per pulse was 60 mJ, with the size of the beam at the focal point being 2 mm, creating an energy fluence of 1.91 J/cm2. The pulse temporal width was 300 μs, creating an energy fluence rate of 0.64×104 W/cm2.
  • [0213]
    The volar aspect of the forearm of a volunteer was placed at the focal point of the laser, and the laser was discharged. After discharge of the laser, the ablated site was topically administered a 30% liquid lidocaine solution for two minutes. A 26G-0.5 needle was subsequently inserted into the laser ablated site with no observable pain. Additionally, after a 6-minute anesthetic treatment, a 22G-1 needle was fully inserted into the laser ablated site with no observable pain. The volunteer experienced no irritation and did not require medical treatment.
  • EXAMPLE 4
  • [0214]
    Ablation threshold energy: Normally hydrated (66%) stratum corneum was sandwiched between two microscope cover slides, and exposed to a single pulse of irradiation from the Er:YAG laser. Evidence of ablation was determined by holding the sample up to a light and seeing whether any stratum corneum was left at the irradiated site. From this experiment, it was determined that the irradiation threshold energy (for a 2 mm irradiation spot) was approximately 90-120 mJ. The threshold will likely be higher when the stratum corneum is still overlying epidermis, as in normal skin, since it takes energy to remove the stratum corneum from the epidermis, to which it is adherent.
  • EXAMPLE5
  • [0215]
    Differential Scanning Calorimetry (DSC): FIG. 28 shows a DSC scan of normally hydrated (66%) human stratum corneum, and a scan of stratum corneum irradiated with the Er:YAG laser using a subablative pulse energy of 60 mJ. Defining the thermal transition peaks at approximately 65, 80 and 92° C., we determined the heat of transition (PJ), center of the transition (° C.) and the full-width at half-maximum of the transition (° C.) (FIGS. 29-31). The results shown are on normal 66% hydrated stratum corneum, dehydrated 33% stratum corneum, steam heated stratum corneum, Er:YAG laser irradiated stratum corneum, or stratum corneum that was immersed in chloroform-methanol (a lipid solvent), or beta-mercaptoethanol (a protein denaturant). The effect of laser irradiation on stratum corneum is consistent (depending on which transition you look at, 1, 2 or 3) with changes seen due to thermal damage (i.e. heated with steam), and de-lipidization. Permeation with (3H2O) and transepidermal impedance experiments on skin treated the same way showed that the result of these treatments (heat, solvent or denaturant) resulted in increased permeation. Thus, the changes induced in the stratum corneum with these treatments, changes which are consistent with those seen in laser irradiated stratum corneum, and changes which do not result in stratum corneum ablation, result in increased permeation.
  • EXAMPLE 6
  • [0216]
    Fourier Transform Infrared (FTIR) Spectroscopy: FTIR spectroscopy was used to study stratum corneum treated the same way as in the above DSC experiments, except the energy used was between 53 and 76 mJ. The spectra (see, e.g., FIGS. 32-33) show that absorption bands that are due to water, proteins and lipids change when the stratum corneum is irradiated. Some of these changes are consistent with changes seen during non-laser treatment of the stratum corneum (e.g. desiccation, thermal damage, lipid solubilization or protein denaturation). For example, the Amide I and II bands, which are due to the presence of proteins (most likely keratin, which makes up the bulk of protein in stratum corneum), shift to a larger wavenumber, consistent with the effect of desiccation alone (in the case of Amide II) or desiccation and beta-mercaptoethanol treatment (in the case of Amide I) (see, e.g., FIG. 34). The CH2, vibrations (due to bonds in lipids) always shift to a smaller wavenumber indicating that either the intermolecular association between adjacent lipid molecules has been disturbed and/or the environment around the lipid molecules has changed in such a way that the vibrational behavior of the molecules changes (see, e.g., FIG. 35).
  • EXAMPLE 7
  • [0217]
    Histology: Numerous in vivo experiments have been done on rats and humans. Usually, the skin is irradiated with the Er:YAG laser and a 2 mm spot and with a particular pulse energy, and then the irradiated site is biopsied immediately or 24 hours later. Two examples of typical results are shown in FIGS. 36 and 37. FIG. 36 shows rat skin irradiated at 80 mJ, which is an energy sufficient to make the skin permeable (to lidocaine, for instance) and yet does not show any sign of stratum corneum ablation. FIG. 37 depicts human skin 24 hours after being irradiated at 80 mJ. In this case, some change in the appearance of the stratum corneum has taken place (perhaps coagulation of some layers of stratum corneum into a darkly staining single layer), and yet the stratum corneum is still largely intact and is not ablated. Irradiation of human skin, in vivo, and subsequently examined under a dissection microscope, show that at subablative energies (less than about 90-120 mJ), the stratum corneum is still present on the skin. The irradiated stratum corneum appears slightly whitened in vivo, which might be evidence of desiccation or separation of the stratum corneum from the underlying tissues.
  • EXAMPLE 8
  • [0218]
    One way to quantify the reduction in the barrier function of the stratum corneum is to measure the reduction in the electrical impedance of the skin as a consequence of laser irradiation. In this experiment, separate 2 mm spots on the volar aspect of the forearm of a human volunteer were irradiated with a single pulse of radiant energy from the Er:YAG laser using a range of energies. An ECG electrode was then placed over the irradiated site and an unirradiated site about 20 cm away on the same forearm. A 100 Hz sine wave of magnitude 1 volt peak-to-peak was then used to measure the impedance of the skin. The results of a series of measurements are shown in FIG. 22, which shows that there is a decrease in skin impedance in skin irradiated at energies as low as 10 mJ, using the fitted curve to interpolate data.
  • EXAMPLE 9
  • [0219]
    Pieces of human skin were placed in diffusion cells and irradiated with a single pulse of radiant energy produced by an Er:YAG laser. The spot size was 2 mm and the energy of the pulse was measured with a calibrated energy meter. After irradiation, the diffusion cells were placed in a 37 degrees Celsius heating block. Phosphate buffered saline was added to the receptor chamber below the skin and a small stir bar was inserted in the receptor chamber to keep the fluid continually mixed. Control skin was left unirradiated. Small volumes of radiolabelled compounds (either corticosterone or DNA) were then added to the donor chamber and left for 15 minutes before being removed (in the case of corticosterone) or were left for the entire duration of the experiment (in the case of the DNA). Samples were then taken from the receptor chamber at various times after application of the test compound and measured in a scintillation or gamma counter. The results of this experiment are shown in FIGS. 21 and 26. The results illustrate that enhanced permeation can occur at sub-ablative laser pulse energies (see the 77 mJ/pulse data for corticosterone). Although, in the case of the DNA experiment the energy used may have been ablative, enhanced permeation may still occur when lower energies are used.
  • EXAMPLE 10
  • [0220]
    Histology studies on rat and human skin, irradiated either in vivo or in vitro, show little or no evidence of ablation when Er:YAG laser pulse energies less than about 100-200 mJ are used. (See, e.g., FIG. 25). Repeating this study showed the same results as the previous studies. An in vitro permeation study using tritiated water (3H2O) involving human skin lased at energies from 50 mJ (1.6 J/cm2) to 1250 mJ (40 J/cm2) determined (FIGS. 23 and 24) than an increase in permeation was seen at low energy fluences up to about 5 J/cm2, whereupon the permeation is more-or-less constant. This shows that there has been a lased induced enhancement of permeation (of tritiated water) at energies that are sub-ablative.
  • EXAMPLE 11
  • [0221]
    The output of the Er:YAG laser was passed through an aperture to define it's diameter as 2 mm. Human skin, purchased from a skin bank, was positioned in Franz diffusion cells. The receptor chamber of the cell was filled with 0.9% buffered saline. A single pulse, of measured energy, was used to irradiate the skin in separate diffusion cells. Control skin was left unirradiated. When the permeation of lidocaine was to be tested, a 254 mJ pulse was used, and multiple samples were irradiated. In the case of K-interferon, a 285 mJ pulse was used, and multiple samples were irradiated. In the case of insulin, a 274 mJ pulse was used, and multiple samples were irradiated. In the case of cortisone, either 77 mJ or 117 mJ was used. After irradiation, a stirring magnet was place in the receptor chamber of the diffusion cells and the cells were placed in a heating block held at 37° C. The radiolabelled lidocaine, gamma-interferon and insulin were diluted in buffered saline, and 100 μL of the resulting solutions was placed in the donor chamber of separate diffusion cells. The donor was left on the skin for the duration of the experiment. At various times post-drug-application, samples were taken from the receptor chamber and the amount of drug present was assayed with either a gamma-counter, or a liquid scintillation counter. Graphs of the resulting data are shown in FIGS. 39, 40 and 41. From this, and similar data, the permeability constants were derived and are shown as follows:
    Drug Permeability Constant, kp (× 10−3 cm/hr)
    Lidocaine 2.62 #≡˜6.9 
    K-Interferon 9.74 #≡˜2.05
    Insulin 11.3 #≡˜0.93
  • EXAMPLE 12
  • [0222]
    This data was collected during the same experiment as the TEWL results (see Example 2 and FIG. 27). In the case of the blanching assay, baseline skin color (redness) measurements were then taken of each spot using a Minolta CR-300 Chromameter (Minolta Inc., NJ). The Er:YAG laser was then used to ablate six 2 mm spots on one forearm, at energies of 40, 80 and 120 mJ. A spot (negative calorimeter control) directly adjacent to the laser irradiated spots remained untouched. Subsequently, a thin film of 1% hydrocortisone ointment was applied to six of the lased spots on the treatment arm. One untouched spot on the contralateral arm was administered a thin layer of Diprolene (β-methasone), which is a strong steroid that can permeate the intact stratum corneum in an amount sufficient to cause measurable skin blanching. An occlusive patch, consisting of simple plastic wrap, was fixed with gauze and dermatological tape over all sites on both arms and left in place for two hours, after which the administered steroids were gently removed with cotton swabs. Colorimeter measurements were then taken over every unirradiated and irradiated spot at 2, 4, 8, 10, 12 and 26 hours post-irradiation, these results are shown in FIG. 38. Finally, the skin was clinically assessed for evidence of irritation at the 26 hour evaluation.
  • [0223]
    The results of the chromameter measurements show that some erythema (reddening) of the skin occurred, but because of the opposite-acting blanching permeating hydrocortisone, the reddening was less than that seen in the control spots which did not receive hydrocortisone. The Diprolene control proved the validity of the measurements and no problems were seen in the volunteers at the 26 hour evaluation, although in some of the cases the site of irradiation was apparent as a small red spot.
  • EXAMPLE 13
  • [0224]
    The radiant output of the Er:YAG laser is focussed and collimated with optics to produce a spot size at the surface of the skin of, for example, 5 mm. The skin of the patient, being the site of, or close to the site of disease, is visually examined for anything that might affect the pharmacokinetics of the soon to be administered drug (e.g., significant erythema or a wide-spread loss of the integrity of the stratum corneum). This site, which is to be the site of irradiation, is gently cleansed to remove all debris and any extraneous compounds such as perfume or a buildup of body oils. A disposable tip attached to the laser pressed up to the skin prior to irradiation is used to contain any ablated biological debris, as well as to contain any errant radiant energy produced by the laser. A single laser pulse (approximately 350 μs long), with an energy of 950 mJ, is used to irradiate the spot. The result is a reduction or elimination of the barrier function of the stratum corneum. Subsequently, an amount of pharmaceutical, hydrocortisone for example, is spread over the irradiation site. The pharmaceutical may be in the form of an ointment so that it remains on the site of irradiation. Optionally, an occlusive patch is placed over the drug in order to keep it in place over the irradiation site.
  • EXAMPLE 14
  • [0225]
    An infrared laser radiation pulse was formed using a solid state, pulsed, Er:YAG laser consisting of two flat resonator mirrors, an Er:YAG crystal as an active medium, a power supply, and a means of focusing the laser beam. The wavelength of the laser beam was 2.94 microns. The duration of the pulse was approximately 300 μs. The spot size was approximately 2 mm, with an energy fluence of 5 J/cm2. Single pulses were used.
  • [0226]
    Three 2 mm diameter spots were created on a flaccid penis. Subsequent to ablation a pharmaceutical preparation of alprostadil (Caverject from Pharmacia & Upjohn, Kalamazoo, Mich.) was applied to a small patch consisting of tissue paper. The patch was applied to the multiple perforated areas of the skin on the then flaccid penis and held there with adhesive tape for 45 minutes. After approximately 35 minutes, the patient obtained an erection that was sustained for more than 1 hour.
  • [0227]
    The benefit of this route of administration is that it is painless. The normal method of administration of alprostadil involves injecting the compound deep into the corpus cavernosum of the penis with a hypodermic needle. Not only is such a procedure painful, but it also results in potentially infectious contaminated sharp.
  • EXAMPLE 15
  • [0228]
    An infrared laser radiation pulse can be formed using a solid state, pulsed, Er:YAG laser consisting of two flat resonator mirrors, an Er:YAG crystal as an active medium, a power supply, and a means of focusing the laser beam. The wavelength of the laser beam is preferably 2.94 microns. The duration of the pulse is preferably approximately 300 μs. The spot size is preferably approximately 2 mm, with an impulse energy of approximately 150 mJ creating an energy fluence of approximately 5 J/cm2.
  • [0229]
    Single pulses of radiant energy from the TRANSMEDICA™ Er:YAG laser, with the operating parameters described above, is preferably used to irradiate 2 mm diameter spots on areas of the scalp exhibiting hair loss. Multiple irradiation sites can be used. Subsequent to irradiation, minoxidil (for example Rogaine from Pharmacia & Upjohn, Kalamazoo, Mich.) may be applied to access interstitial spaces in the scalp, allowing greater quantities of the pharmaceutical to stimulate root follicles than is available by transcutaneous absorption alone. Alternatively, subsequent to ablation, androgen inhibitors may be applied through the laser ablated sites. These inhibitors act to counter the effects of androgens in hair loss.
  • EXAMPLE 16
  • [0230]
    Skin resurfacing is a widely used and commonly requested cosmetic procedure whereby wrinkles are removed from (generally) the face of a patient by ablating approximately the outermost 400 microns of skin with the radiant energy produced by a laser (Dover J. S., Hruza G. J., “Laser Skin Resurfacing,” Semin. Cutan. Med. Surg., 15(3):177-88, 1996). After treatment, often a “mask” made out of hydrogel (which is a gelatine-like material that consists mostly of water) is applied to the irradiated area to provide both a feeling of coolness and also to prevent undesirable desiccation of the treated skin and “weeping” of bodily fluids.
  • [0231]
    The pain associated with this procedure would be intolerable without the use of local or general anesthesia. Generally, multiple (perhaps up to 30) local injections of lidocaine are completed prior to the irradiation of the skin. These injections themselves take a significant amount of time to perform and are themselves relatively painful.
  • [0232]
    Single pulses of radiant energy from the TRANSMEDICA™ Er:YAG laser is preferably used to irradiate 2 mm diameter spots on areas of the face required for the multiple applications of lidocaine prior to skin resurfacing. The energy used in each laser pulse is preferably 150 mJ. Subsequent to irradiation, lidocaine is applied for general anesthesia. Furthermore, by incorporating lidocaine (preferably, the hydrophillic version which is lidocaine—HCl) into the hydrogel, or other patch or gel means of containment, and applying this complex (in the physical form of a “face-mask”) to the patient's face prior to the laser irradiation but after ablating the stratum corneum with the Er:YAG laser from a matrix of sites throughout the treatment area, sufficient anesthesia will be induced for the procedure to be done painlessly. It may also be beneficial to incorporate a sedative within the hydrogel to further prepare the patient for what can be a distressing medical procedure. Optionally, the “face-mask” can be segmented into several aesthetic-units suitable for single application to particular laser-treatment regions of the face. Finally, another “face-mask” incorporating beneficial pharmaccuticals, such as antibiotics (e.g. Bacitracin, Neosporin, Polysporin, and Sulphadene) or long term topical or systemic analgesics, such as fentanyl or demeral, can be applied to the patient after skin resurfacing treatment.
  • EXAMPLE 17
  • [0233]
    The growth of hairs in the nose (primarily in men) is a common cosmetic problem. The current therapy, which involves pulling the hairs out with tweezers, is painful and non-permanent. An infrared laser radiation pulse can be formed using a solid state, pulsed, Er:YAG laser consisting of two flat resonator mirrors, an Er:YAG crystal as an active medium, a power supply, and a means of focusing the laser beam. The wavelength of the laser beam is preferably 2.94 microns. The duration of the pulse approximately is preferably 300 μs. The spot size is preferably approximately 2 mm, with an impulse energy of approximately 150 mJ creating an energy fluence of approximately 5 J/cm2.
  • [0234]
    Single pulses of radiant energy from the TRANSMEDICA™ Er:YAG laser is preferably used, with the above described operating parameters, to irradiate 2 mm diameter spots on the nasal mucosa exhibiting cosmetically unappealing hair growth. Multiple irradiation sites can be used. The irradiation by itself can be sufficient to alter the tissue thereby inhibiting subsequent hair growth thus irradiation may be itself sufficient to alter the tissue, inhibiting subsequent hair growth. Alternatively, subsequent to irradiation, a dye, for example indocyanine green, which absorbs different wavelengths of radiation, can be applied. After the dye has been absorbed into the nasal passage, 810 nm radiant energy from a diode laser (GaAlAs laser) can be used to raise the temperature of the surrounding tissue. This acts to selectively damage the hair follicles in contact with the dye. As a result the nasal tissue is modified so that hair growth does not reoccur, or at least does not recur as quickly as it does after manual hair removal.
  • [0235]
    While various applications of this invention have been shown and described, it should be apparent to those skilled in the art that many modifications of the described techniques are possible without departing from the inventive concepts herein.

Claims (84)

We claim:
1. A method for preparing the skin for treatment of cutaneous or subcutaneous compounds, comprising the steps of:
a) focusing a laser beam with sufficient energy fluence to ablate or alter the skin at least as deep as the stratum corneum, but not as deep as the capillary layer;
b) firing the laser to create a site of ablation or alteration, the site having a diameter of between 0.5 microns and 5.0 cm;
c) applying a dye, a compound that alters the optical properties of stratum corneum, or a compound that stimulates the body's production of molecules that are strong absorbers of light; and
d) firing a second laser with a wavelength that is absorbed by the applied dye, the compound that stimulates the optical properties of stratum corneum or the compound that stimulates the body's production of molecules that are strong absorbers of light.
2. The method of claim 1 wherein the laser beam has a wavelength of 0.2-10 microns
3. The method of claim 1 wherein the laser beam has a wavelength of between 1.5-3.0 microns.
4. The method of claim 1 wherein the laser beam has a wavelength of about 2.94 microns.
5. The method of claim 1 wherein the laser beam is emitted by a laser selected from the group consisting of continuous wave-lasers Er:YAG, pulsed CO2, Ho:YAG, Er:YAP, Er/Cr:YSGG, Ho:YSGG, Er:GGSG, Er:YLF, Tm:YAG, Ho:YAG, Ho/Nd:Yalo3, cobalt:MgF2, HF chemical, DF chemical, carbon monoxide, deep UV lasers, and frequency tripled Nd:YAG lasers.
6. The method of claim 1 wherein the laser beam is emitted by a modulated laser selected from the group consisting of continuous-wave CO2, Nd:YAG, Thullium:YAG and diode lasers.
7. The method of claim 1 wherein the laser beam is emitted by an Er:YAG laser.
8. The method of claim 1 wherein the laser beam is focused at a site on the skin with a diameter of 0.1-5.0 mm.
9. The method of claim 1 wherein the energy fluence of the laser beam at the skin is 0.03-100,000 J/cm2.
10. The method of claim 1 wherein the energy fluence of the laser beam at the skin is 0.03-9.6 J/cm2.
11. The method of claim 1 wherein the pulse width is between 1 femtosecond and 1,000 microseconds.
12. The method of claim 1 wherein the pulse width is between 1 and 1000 microseconds.
13. The method of claim 1 wherein multiple ablations or alterations are made to prepare the skin for dye delivery.
14. The method of claim 1 further comprising a beam splitter positioned to create, simultaneously from the laser, multiple sites of ablation or alteration.
15. The method of claim 14 wherein the beam splitter is selected from a series of partially silvered mirrors, a series of dichroic mirrors, and a series of beam-splitting prisms.
16. The method of claim 14 further comprising a means to deflect the beam at different angles to create different sites of ablation alteration on the skin.
17. The method of claim 14 further comprising a means to scan the laser beam to create one continuous path of ablation or alteration.
18. The method of claim 1 wherein the dye is used to stain subcutaneous structures.
19. The method of claim 1 wherein the dye is indocyanine green.
20. The method of claim 1 wherein the dye is specific for lipids, proteins, or carbohydrates.
21. The method of claim 1 wherein the wavelength of the laser beam fired from the second laser at the site of dye delivery is about the wavelength of peak absorption of the dye.
22. The method of claim 21 wherein the wavelength of the laser beam is about 810 nm.
23. The method of claim 1 wherein the wavelength of the laser beam fired from the second laser at the site of delivery of the compound that stimulates the body's production of molecules that are strong absorbers of light is about the wavelength of peak absorption of the compound.
24. The method of claim 23 wherein the compound that stimulates the body's production of molecules that are strong absorbers of light is 5-aminolevulinic acid.
25. A method for increasing the diffusion of bodily fluids out of, or compounds into, the skin, comprising the steps of:
a) applying a compound or an absorbing material to the targeted tissue;
b) focusing a laser beam with sufficient energy fluence to create a pressure gradient within the stratum corneum, in the applied compound, or in the optional absorbing material; and
c) firing the laser with at least one short rapid pulse to create the pressure gradient.
26. The method of claim 25 wherein the laser beam has a wavelength of 0.2-10 microns.
27. The method of claim 25 wherein the laser beam has a wavelength of between 1.5-3.0 microns.
28. The method of claim 25 wherein the laser beam has a wavelength of about 2.94 microns.
29. The method of claim 25 wherein the laser beam is emitted by a laser selected from the group consisting of Er:YAG, pulsed CO2 Ho:YAG, Er:YAP, Er/Cr:YSGG, Ho:YSGG, Er:GGSG, Er:YLF, Tm:YAG, Ho:YAG, Ho/Nd:YalO3, cobalt:MgF2, HF chemical, DF chemical, carbon monoxide, deep UV lasers, and frequency tripled Nd:YAG lasers.
30. The method of claim 25 wherein the laser beam is emitted by an Er:YAG laser.
31. The method of claim 25 wherein the laser beam is emitted by a modulated laser selected from the group consisting of continuous-wave CO2, Nd:YAG, Thallium:YAG and diode lasers.
32. The method of claim 25 wherein the pulse width is between 1 femtosecond and 1,000 microseconds.
33. The method of claim 25 wherein the pulse width is between 1 and 1000 microseconds.
34. The method of claim 25 wherein the optional absorbing material is placed on or over the targeted tissue before application of the compound or firing the laser.
35. The method of claim 34 wherein the pressure gradient is created in the optional absorbing material.
36. The method of claim 34 wherein the optional absorbing material is a thin films of water.
37. The method of claim 34 wherein the optional absorbing material is a dye or a solution with a dye.
38. The method of claim 25 wherein the compound is applied before firing the laser.
39. The method of claim 25 wherein the pressure gradient is created in the stratum corneum simultaneous with the application of the compound.
40. The method of claim 38 wherein the pressure gradient is created in the compound.
41. The method of claim 38 wherein the optional absorbing material is placed on or over the compound before firing the laser.
42. The method of claim 41 wherein the pressure gradient is created in the optional absorbing material.
43. The method of claim 41 wherein the optional absorbing material is a thin film of water.
44. The method of claim 25 wherein multiple pulses are used to create the pressure gradient.
45. The method of claim 25 wherein the stratum corneum is ablated or altered before the pressure gradient is created.
46. A method for increasing the diffusion of bodily fluids out of, or compounds into, the skin, comprising the steps of:
a) focusing a laser beam with sufficient energy fluence to create plasma within the stratum corneum or in an optional absorbing material on or over the targeted tissue;
b) firing the laser with at least one short rapid pulse to create a site of plasma, the site having a diameter of between 0.5 microns and 5 mm; and
c) removing bodily fluids from the targeted tissue or applying a compound to the targeted tissue.
47. The method of claim 46 wherein the laser beam has a wavelength of 0.2-10 microns.
48. The method of claim 46 wherein the laser beam has a wavelength of between 1.5-3.0 microns.
49. The method of claim 46 wherein the laser beam has a wavelength of about 2.94 microns.
50. The method of claim 46 wherein the laser beam is emitted by a laser selected from the group consisting of Er:YAG, pulsed CO2 Ho:YAG, Er:YAP, Er/Cr:YSGG, Ho:YSGG, Er:GGSG, Er:YLF, Tm:YAG, Ho:YAG, Ho/Nd:YalO3, cobalt:MgF2, HF chemical, DF chemical, carbon monoxide, deep UV lasers, and frequency tripled Nd:YAG lasers.
51. The method of claim 46 wherein the laser beam is emitted by an Er:YAG laser.
52. The method of claim 46 wherein the laser beam is emitted by a modulated laser selected from the group consisting of continuous-wave CO2, Nd:YAG, Thallium:YAG and diode lasers.
53. The method of claim 46 wherein the pulse width is between 1 femtosecond and 1,000 microseconds.
54. The method of claim 46 wherein the pulse width is between 1 and 1000 microseconds.
55. The method of claim 46 wherein multiple pulses are used to create multiple sites of plasma.
56. The method of claim 46 wherein plasma is created in the stratum corneum.
57. The method of claim 46 wherein the optional absorbing material is placed on or over the targeted tissue before firing the laser.
58. The method of claim 57 wherein plasma is created in the optional Absorbing material.
59. The method of claim 57 wherein the optional absorbing material is a thin film of water.
60. The method of claim 57 wherein the optional absorbing material is a dye or a solution with a dye.
61. The method of claim 46 wherein the compound is applied before firing the laser.
62. The method of claim 61 wherein plasma is created in the applied compound.
63. A method for increasing the diffusion of bodily fluids out of, or compounds into, the skin, comprising the steps of:
a) focusing a laser beam with sufficient energy fluence to create cavitation bubbles in the stratum corneum, in an applied compound, or in an optional absorbing material;
b) firing the laser with at least one short rapid pulse to create a site of cavitation bubbles, the site having a diameter of between 0.5 microns and 5 mm; and
c) removing bodily fluids from the targeted tissue or applying a compound to the targeted tissue.
64. The method of claim 63 wherein the laser beam has a wavelength of 0.2-10 microns.
65. The method of claim 63 wherein the laser beam has a wavelength of between 1.5-3.0 microns.
66. The method of claim 63 wherein the laser beam has a wavelength of about 2.94 microns.
67. The method of claim 63 wherein the laser beam is emitted by a laser selected from the group consisting of Er:YAG, pulsed CO2 Ho:YAG, Er:YAP, Er/Cr:YSGG, Ho:YSGG, Er:GGSG, Er:YLF, Tm:YAG, Ho:YAG, Ho/Nd:YalO3, cobalt:MgF2, HF chemical, DF chemical, carbon monoxide, deep UV lasers, and frequency tripled Nd:YAG lasers.
68. The method of claim 63 wherein the laser beam is emitted by an Er:YAG laser.
69. The method of claim 63 wherein the pulse width is between 1 femtosecond and 1,000 microseconds.
70. The method of claim 63 wherein the pulse width is between 1 and 1000 microseconds.
71. The method of claim 63 wherein the laser beam is emitted by a modulated laser selected from the group consisting of continuous-wave CO2, Nd:YAG, Thallium:YAG and diode lasers.
72. The method of claim 63 wherein multiple pulses are used to create multiple sites of cavitation bubbles.
73. The method of claim 63 wherein cavitation bubbles are created in the stratum corneum before firing the laser.
74. The method of claim 63 wherein the optional absorbing material is placed on or over the targeted tissue before firing the laser.
75. The method of claim 74 wherein the cavitation bubbles are created in the optional absorbing material.
76. The method of claim 74 wherein the optional absorbing material is a thin film of water.
77. The method of claim 74 wherein the optional absorbing material is a dye or a solution with a dye.
78. The method of claim 63 wherein the compound is applied before firing the laser.
79. The method of claim 78 wherein the cavitation bubbles are created in the applied compound.
80. A laser device for ablating or altering skin comprising:
a) a lasing element which emits a beam at a wavelength of between 0.2 microns and 10 microns;
b) a power source;
c) a high voltage pulse-forming network linked to the power source;
d) a means for exciting the lasing element, linked to the pulse-forming network;
e) a laser cavity; and
f) a marking means which marks the site of ablation or alteration.
81. The device of claim 80 wherein a disposable safety tip contains a pigment and the site of ablation or alteration is marked by the pigment.
82. The device of claim 80 wherein a pigment is sprayed at the site of ablation or alteration.
83. The device of claim 80 wherein the site of ablation or alternation is marked before firing the laser.
84. The device of claim 80 wherein the site of ablation or alteration is marked after firing the laser.
US10747988 1992-10-28 2003-12-29 Removable tip for laser device with safety interlock Abandoned US20040143248A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08126241 US5643252A (en) 1992-10-28 1993-09-24 Laser perforator
US79233597 true 1997-01-31 1997-01-31
US08955789 US6315772B1 (en) 1993-09-24 1997-10-22 Laser assisted pharmaceutical delivery and fluid removal
US09457953 US6443945B1 (en) 1993-09-24 1999-12-09 Laser assisted pharmaceutical delivery and fluid removal
US10091957 US20030045867A1 (en) 1993-09-24 2002-03-05 Removable tip for laser device with safety interlock
US10747988 US20040143248A1 (en) 1993-09-24 2003-12-29 Removable tip for laser device with safety interlock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10747988 US20040143248A1 (en) 1993-09-24 2003-12-29 Removable tip for laser device with safety interlock

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10091957 Continuation US20030045867A1 (en) 1992-10-28 2002-03-05 Removable tip for laser device with safety interlock

Publications (1)

Publication Number Publication Date
US20040143248A1 true true US20040143248A1 (en) 2004-07-22

Family

ID=25156545

Family Applications (13)

Application Number Title Priority Date Filing Date
US08955982 Expired - Fee Related US6056738A (en) 1997-01-31 1997-10-22 Interstitial fluid monitoring
US08955545 Expired - Fee Related US6251100B1 (en) 1992-10-28 1997-10-22 Laser assisted topical anesthetic permeation
US08955789 Expired - Fee Related US6315772B1 (en) 1992-10-28 1997-10-22 Laser assisted pharmaceutical delivery and fluid removal
US09443782 Expired - Fee Related US6387059B1 (en) 1992-10-28 1999-11-19 Interstitial fluid monitoring
US09457953 Expired - Fee Related US6443945B1 (en) 1992-10-28 1999-12-09 Laser assisted pharmaceutical delivery and fluid removal
US09589865 Expired - Fee Related US6419642B1 (en) 1992-10-28 2000-06-08 Irradiation enhanced permeation and delivery
US09590150 Expired - Fee Related US6425873B1 (en) 1992-10-28 2000-06-08 Irradiation enhanced permeation and collection
US10083088 Abandoned US20020133147A1 (en) 1992-10-28 2002-02-26 Removable tip for laser device
US10091957 Abandoned US20030045867A1 (en) 1992-10-28 2002-03-05 Removable tip for laser device with safety interlock
US10098909 Abandoned US20030097123A1 (en) 1992-10-28 2002-03-13 Removable tip for laser device with transparent lens
US10734529 Abandoned US20040127815A1 (en) 1992-10-28 2003-12-11 Removable tip for laser device
US10747988 Abandoned US20040143248A1 (en) 1992-10-28 2003-12-29 Removable tip for laser device with safety interlock
US10831641 Abandoned US20050010198A1 (en) 1992-10-28 2004-04-23 Removable tip for laser device with transparent lens

Family Applications Before (11)

Application Number Title Priority Date Filing Date
US08955982 Expired - Fee Related US6056738A (en) 1997-01-31 1997-10-22 Interstitial fluid monitoring
US08955545 Expired - Fee Related US6251100B1 (en) 1992-10-28 1997-10-22 Laser assisted topical anesthetic permeation
US08955789 Expired - Fee Related US6315772B1 (en) 1992-10-28 1997-10-22 Laser assisted pharmaceutical delivery and fluid removal
US09443782 Expired - Fee Related US6387059B1 (en) 1992-10-28 1999-11-19 Interstitial fluid monitoring
US09457953 Expired - Fee Related US6443945B1 (en) 1992-10-28 1999-12-09 Laser assisted pharmaceutical delivery and fluid removal
US09589865 Expired - Fee Related US6419642B1 (en) 1992-10-28 2000-06-08 Irradiation enhanced permeation and delivery
US09590150 Expired - Fee Related US6425873B1 (en) 1992-10-28 2000-06-08 Irradiation enhanced permeation and collection
US10083088 Abandoned US20020133147A1 (en) 1992-10-28 2002-02-26 Removable tip for laser device
US10091957 Abandoned US20030045867A1 (en) 1992-10-28 2002-03-05 Removable tip for laser device with safety interlock
US10098909 Abandoned US20030097123A1 (en) 1992-10-28 2002-03-13 Removable tip for laser device with transparent lens
US10734529 Abandoned US20040127815A1 (en) 1992-10-28 2003-12-11 Removable tip for laser device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10831641 Abandoned US20050010198A1 (en) 1992-10-28 2004-04-23 Removable tip for laser device with transparent lens

Country Status (6)

Country Link
US (13) US6056738A (en)
JP (1) JP2001511668A (en)
CN (1) CN1191793C (en)
CA (1) CA2282635A1 (en)
EP (2) EP1281367A3 (en)
WO (1) WO1998033444A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245998A1 (en) * 2004-04-30 2005-11-03 Led Healing Light, Llc Hand held pulse laser for therapeutic use
US20080071258A1 (en) * 2006-04-12 2008-03-20 Vladimir Lemberg System and method for microablation of tissue
US20110077627A1 (en) * 2006-04-12 2011-03-31 Vladimir Lemberg System and method for Microablation of tissue
US20120179229A1 (en) * 2011-01-12 2012-07-12 Fotona D.D. Laser System for Non Ablative Treatment of Mucosa Tissue
EP2552323A1 (en) * 2010-03-29 2013-02-06 Follica, Inc. Combination therapy

Families Citing this family (405)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240306B1 (en) 1995-08-09 2001-05-29 Rio Grande Medical Technologies, Inc. Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US7415050B2 (en) * 2006-09-18 2008-08-19 Biolase Technology, Inc. Electromagnetic energy distributions for electromagnetically induced mechanical cutting
US20090105707A1 (en) * 1995-08-31 2009-04-23 Rizoiu Ioana M Drill and flavored fluid particles combination
US20060240381A1 (en) * 1995-08-31 2006-10-26 Biolase Technology, Inc. Fluid conditioning system
US7320594B1 (en) * 1995-08-31 2008-01-22 Biolase Technology, Inc. Fluid and laser system
US20100125291A1 (en) * 1995-08-31 2010-05-20 Rizoiu Ioana M Drill and flavored fluid particles combination
US20090143775A1 (en) * 1995-08-31 2009-06-04 Rizoiu Ioana M Medical laser having controlled-temperature and sterilized fluid output
US20070190482A1 (en) * 2003-05-09 2007-08-16 Rizoiu Ioana M Fluid conditioning system
US20080157690A1 (en) * 2001-05-02 2008-07-03 Biolase Technology, Inc. Electromagnetic energy distributions for electromagnetically induced mechanical cutting
US20050281887A1 (en) * 1995-08-31 2005-12-22 Rizoiu Ioana M Fluid conditioning system
US20090298004A1 (en) * 1997-11-06 2009-12-03 Rizoiu Ioana M Tunnelling probe
US7970030B2 (en) * 2004-07-27 2011-06-28 Biolase Technology, Inc. Dual pulse-width medical laser with presets
US20100151406A1 (en) 2004-01-08 2010-06-17 Dmitri Boutoussov Fluid conditioning system
US20060241574A1 (en) * 1995-08-31 2006-10-26 Rizoiu Ioana M Electromagnetic energy distributions for electromagnetically induced disruptive cutting
US20070208328A1 (en) * 1995-08-31 2007-09-06 Dmitri Boutoussov Contra-angel rotating handpiece having tactile-feedback tip ferrule
US6669685B1 (en) * 1997-11-06 2003-12-30 Biolase Technology, Inc. Tissue remover and method
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US7204832B2 (en) * 1996-12-02 2007-04-17 Pálomar Medical Technologies, Inc. Cooling system for a photo cosmetic device
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US7135033B2 (en) 2002-05-23 2006-11-14 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US6050950A (en) 1996-12-18 2000-04-18 Aurora Holdings, Llc Passive/non-invasive systemic and pulmonary blood pressure measurement
US6527716B1 (en) 1997-12-30 2003-03-04 Altea Technologies, Inc. Microporation of tissue for delivery of bioactive agents
JP5087192B2 (en) 1999-11-30 2012-11-28 インテレクソン コーポレイション Method and apparatus for selectively attaching sight to specific cells in the cell groups
US5874266A (en) * 1997-03-27 1999-02-23 Palsson; Bernhard O. Targeted system for removing tumor cells from cell populations
US6753161B2 (en) * 1997-03-27 2004-06-22 Oncosis Llc Optoinjection methods
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
JP4056091B2 (en) * 1997-05-15 2008-03-05 ザ ジェネラル ホスピタル コーポレーション Dermatology treatment method and apparatus
US6288499B1 (en) * 1997-06-12 2001-09-11 Biolase Technology, Inc. Electromagnetic energy distributions for electromagnetically induced mechanical cutting
FR2766115B1 (en) * 1997-07-18 1999-08-27 Commissariat Energie Atomique Device and method of cutting distance extended by laser, in pulse mode
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US20030078499A1 (en) * 1999-08-12 2003-04-24 Eppstein Jonathan A. Microporation of tissue for delivery of bioactive agents
EP1066086B1 (en) * 1998-03-27 2013-01-02 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
DE19823947A1 (en) * 1998-05-28 1999-12-02 Baasel Carl Lasertech Method and apparatus for the superficial heating of tissue
EP1987854A1 (en) 1998-07-14 2008-11-05 Altea Therapeutics Corporation Controlled removal of biological membrane by pyrotechnic charge for transmembrane transport
USRE46208E1 (en) 1998-10-16 2016-11-22 Reliant Technologies, Llc Method for cryogenically treating tissue below the skin surface
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US7892229B2 (en) 2003-01-18 2011-02-22 Tsunami Medtech, Llc Medical instruments and techniques for treating pulmonary disorders
US8016823B2 (en) 2003-01-18 2011-09-13 Tsunami Medtech, Llc Medical instrument and method of use
US6514242B1 (en) * 1998-12-03 2003-02-04 David Vasily Method and apparatus for laser removal of hair
US6402739B1 (en) * 1998-12-08 2002-06-11 Y-Beam Technologies, Inc. Energy application with cooling
US6183773B1 (en) 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US6532387B1 (en) * 1999-03-26 2003-03-11 Kevin S. Marchitto Catheter for delivering electromagnetic energy for enhanced permeation of substances
WO2000057951A1 (en) * 1999-03-26 2000-10-05 Flock Stephen T Delivery of pharmaceutical compounds and collection of biomolecules using electromagnetic energy and uses thereof
US20050055055A1 (en) * 1999-04-13 2005-03-10 Joseph Neev Method for treating acne
US20050020524A1 (en) * 1999-04-15 2005-01-27 Monash University Hematopoietic stem cell gene therapy
US20040265285A1 (en) * 1999-04-15 2004-12-30 Monash University Normalization of defective T cell responsiveness through manipulation of thymic regeneration
US20040258672A1 (en) * 1999-04-15 2004-12-23 Monash University Graft acceptance through manipulation of thymic regeneration
US20040259803A1 (en) * 1999-04-15 2004-12-23 Monash University Disease prevention by reactivation of the thymus
US20070274946A1 (en) * 1999-04-15 2007-11-29 Norwood Immunoloty, Ltd. Tolerance to Graft Prior to Thymic Reactivation
US20040241842A1 (en) * 1999-04-15 2004-12-02 Monash University Stimulation of thymus for vaccination development
WO2000064537A1 (en) * 1999-04-27 2000-11-02 The General Hospital Corporation Doing Business As Massachusetts General Hospital Phototherapy method for treatment of acne
US6334851B1 (en) 1999-05-10 2002-01-01 Microfab Technologies, Inc. Method for collecting interstitial fluid from the skin
CA2382647A1 (en) 1999-05-17 2000-11-23 Kevin S. Marchitto Electromagnetic energy driven separation methods
WO2000069515A1 (en) * 1999-05-17 2000-11-23 Marchitto Kevin S Remote and local controlled delivery of pharmaceutical compounds using electromagnetic energy
US7141034B2 (en) * 2000-06-08 2006-11-28 Altea Therapeutics Corporation Transdermal drug delivery device, method of making same and method of using same
US6951411B1 (en) 1999-06-18 2005-10-04 Spectrx, Inc. Light beam generation, and focusing and redirecting device
CA2377331A1 (en) * 1999-06-18 2000-12-28 Altea Technologies, Inc. Light beam generation and focusing device
US6816605B2 (en) 1999-10-08 2004-11-09 Lumidigm, Inc. Methods and systems for biometric identification of individuals using linear optical spectroscopy
US6355054B1 (en) * 1999-11-05 2002-03-12 Ceramoptec Industries, Inc. Laser system for improved transbarrier therapeutic radiation delivery
US7723642B2 (en) * 1999-12-28 2010-05-25 Gsi Group Corporation Laser-based system for memory link processing with picosecond lasers
WO2001050963A1 (en) * 2000-01-10 2001-07-19 Transmedica International, Inc. Improved laser assisted pharmaceutical delivery and fluid removal
US8078263B2 (en) * 2000-01-19 2011-12-13 Christie Medical Holdings, Inc. Projection of subsurface structure onto an object's surface
US7239909B2 (en) * 2000-01-19 2007-07-03 Luminetx Technologies Corp. Imaging system using diffuse infrared light
EP1251791A1 (en) * 2000-01-25 2002-10-30 Palomar Medical Technologies, Inc. Method and apparatus for medical treatment utilizing long duration electromagnetic radiation
US8206379B2 (en) * 2001-02-02 2012-06-26 Homer Gregg S Techniques for alteration of iris pigment
US20060009763A1 (en) * 2000-02-22 2006-01-12 Rhytech Limited Tissue treatment system
US6428504B1 (en) * 2000-04-06 2002-08-06 Varian Medical Systems, Inc. Multipurpose template and needles for the delivery and monitoring of multiple minimally invasive therapies
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
CA2409826C (en) 2000-06-01 2010-02-02 Science Applications International Corporation Systems and methods for monitoring health and delivering drugs transdermally
US8116860B2 (en) * 2002-03-11 2012-02-14 Altea Therapeutics Corporation Transdermal porator and patch system and method for using same
GB0019283D0 (en) * 2000-08-04 2000-09-27 Novartis Ag Organic compounds
CA2422865C (en) 2000-08-16 2012-10-16 The General Hospital Corporation D/B/A Massachusetts General Hospital Aminolevulinic acid photodynamic therapy for treating sebaceous gland disorders
US7549987B2 (en) 2000-12-09 2009-06-23 Tsunami Medtech, Llc Thermotherapy device
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US8444636B2 (en) 2001-12-07 2013-05-21 Tsunami Medtech, Llc Medical instrument and method of use
WO2002026149A1 (en) * 2000-09-25 2002-04-04 Transmedica, International, Inc. Irradiation enhanced permeation and delivery
WO2002026148A1 (en) * 2000-09-25 2002-04-04 Transmedica International, Inc. Irradiation enhanced permeation and collection
US20030017153A1 (en) * 2000-10-13 2003-01-23 Richard Boyd Diagnostic indicator of thymic function
US20060088512A1 (en) * 2001-10-15 2006-04-27 Monash University Treatment of T cell disorders
WO2002037938A3 (en) 2000-10-24 2002-09-26 Timothy M Eisfeld Method and device for selectively targeting cells within a three -dimensional specimen
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
DE10057832C1 (en) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US6734964B1 (en) * 2000-11-30 2004-05-11 The Regents Of The University Of California Pulsed, atmospheric pressure plasma source for emission spectrometry
US20030130649A1 (en) * 2000-12-15 2003-07-10 Murray Steven C. Method and system for treatment of benign prostatic hypertrophy (BPH)
CA2433022C (en) * 2000-12-28 2016-12-06 Palomar Medical Technologies, Inc. Method and apparatus for therapeutic emr treatment of the skin
US6546284B2 (en) * 2001-01-25 2003-04-08 Iomed, Inc. Fluid retention assembly for an iontophoretic delivery device and associated method for preparing the same
US6697668B2 (en) * 2001-01-25 2004-02-24 Iomed, Inc. Ocular iontophoretic device and method for using the same
US6888319B2 (en) * 2001-03-01 2005-05-03 Palomar Medical Technologies, Inc. Flashlamp drive circuit
US8372016B2 (en) * 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US20070100255A1 (en) * 2002-04-19 2007-05-03 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7126682B2 (en) * 2001-04-11 2006-10-24 Rio Grande Medical Technologies, Inc. Encoded variable filter spectrometer
US6574490B2 (en) 2001-04-11 2003-06-03 Rio Grande Medical Technologies, Inc. System for non-invasive measurement of glucose in humans
DE10122335C1 (en) * 2001-05-08 2002-07-25 Schott Glas Process for marking glass comprises selecting the marking position along a drawing process having a glass transition temperature above the transformation temperature
US6549796B2 (en) 2001-05-25 2003-04-15 Lifescan, Inc. Monitoring analyte concentration using minimally invasive devices
US7890158B2 (en) * 2001-06-05 2011-02-15 Lumidigm, Inc. Apparatus and method of biometric determination using specialized optical spectroscopy systems
WO2003039671A3 (en) * 2001-06-06 2003-10-02 Univ Michigan Method and device for human skin tanning with reduced skin damage
US20070142748A1 (en) * 2002-04-19 2007-06-21 Ajay Deshmukh Tissue penetration device
US7291117B2 (en) * 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7374544B2 (en) * 2002-04-19 2008-05-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7717863B2 (en) * 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7229458B2 (en) * 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) * 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7244265B2 (en) * 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7491178B2 (en) * 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
WO2002100460A3 (en) * 2001-06-12 2003-05-08 Don Alden Electric lancet actuator
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
EP1404235A4 (en) * 2001-06-12 2008-08-20 Pelikan Technologies Inc Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7344507B2 (en) * 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US7524293B2 (en) * 2002-04-19 2009-04-28 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7699791B2 (en) 2001-06-12 2010-04-20 Pelikan Technologies, Inc. Method and apparatus for improving success rate of blood yield from a fingerstick
US7485128B2 (en) * 2002-04-19 2009-02-03 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8360992B2 (en) * 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) * 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7582099B2 (en) * 2002-04-19 2009-09-01 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) * 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6914928B2 (en) * 2001-06-14 2005-07-05 The United States Of America As Represented By The Secretary Of The Army Diode array end pumped slab laser
JP2003001470A (en) * 2001-06-22 2003-01-08 Canon Inc Laser beam machining device and laser beam machining method
WO2003003903A3 (en) 2001-07-02 2003-12-11 Palomar Medical Tech Inc Laser device for medical/cosmetic procedures
US6840910B2 (en) 2001-08-01 2005-01-11 Johnson & Johnson Consumer Companies, Inc. Method of distributing skin care products
US6790179B2 (en) 2001-08-01 2004-09-14 Johnson & Johnson Consumer Companies, Inc. Method of examining and diagnosing skin health
US6855117B2 (en) 2001-08-01 2005-02-15 Johnson & Johnson Consumer Companies, Inc. Method of treating the skin of a subject
WO2003013653A1 (en) * 2001-08-10 2003-02-20 Kemeny Lajos Phototherapeutical apparatus
US6648904B2 (en) * 2001-11-29 2003-11-18 Palomar Medical Technologies, Inc. Method and apparatus for controlling the temperature of a surface
CN1615165A (en) * 2001-12-05 2005-05-11 诺伍德·阿比有限公司 Applicator for facilitating delivery of a solution to a surface
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US7044959B2 (en) * 2002-03-12 2006-05-16 Palomar Medical Technologies, Inc. Method and apparatus for hair growth management
EP1494572A4 (en) * 2002-03-27 2010-11-10 Hadasit Med Res Service Controlled laser treatment for non-invasive tissue alteration, treatment and diagnostics with minimal collateral damage
US9440046B2 (en) 2002-04-04 2016-09-13 Angiodynamics, Inc. Venous insufficiency treatment method
US7043288B2 (en) 2002-04-04 2006-05-09 Inlight Solutions, Inc. Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US6654125B2 (en) 2002-04-04 2003-11-25 Inlight Solutions, Inc Method and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
US20070191736A1 (en) * 2005-10-04 2007-08-16 Don Alden Method for loading penetrating members in a collection device
US8702624B2 (en) * 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
KR20050026404A (en) 2002-06-19 2005-03-15 팔로마 메디칼 테크놀로지스, 인코포레이티드 Method and apparatus for photothermal treatment of tissue at depth
EP1556061B1 (en) * 2002-10-04 2007-04-18 Photokinetix Inc Photokinetic delivery of biologically active substances using pulsed incoherent light
WO2004033040A1 (en) * 2002-10-07 2004-04-22 Palomar Medical Technologies, Inc. Apparatus for performing photobiostimulation
US7727181B2 (en) * 2002-10-09 2010-06-01 Abbott Diabetes Care Inc. Fluid delivery device with autocalibration
US7993108B2 (en) 2002-10-09 2011-08-09 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
CA2501825C (en) 2002-10-09 2009-12-01 Therasense, Inc. Fluid delivery device, system and method
US7233817B2 (en) * 2002-11-01 2007-06-19 Brian Yen Apparatus and method for pattern delivery of radiation and biological characteristic analysis
WO2004044557A3 (en) * 2002-11-12 2005-03-10 Argose Inc Non-invasive measurement of analytes
US20040106163A1 (en) * 2002-11-12 2004-06-03 Workman Jerome James Non-invasive measurement of analytes
CN101827124B (en) * 2002-11-13 2011-12-28 教育考试服务中心 System and method for examination on a distributed network
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7901355B2 (en) * 2003-01-23 2011-03-08 L'oreal Skin analysis apparatus including an ultrasound probe
US20050064137A1 (en) * 2003-01-29 2005-03-24 Hunt Alan J. Method for forming nanoscale features and structures produced thereby
US20040267240A1 (en) * 2003-01-29 2004-12-30 Yossi Gross Active drug delivery in the gastrointestinal tract
US20040253304A1 (en) * 2003-01-29 2004-12-16 Yossi Gross Active drug delivery in the gastrointestinal tract
CA2515695A1 (en) * 2003-02-10 2004-10-07 Palomar Medical Technologies, Inc. Light emitting oral appliance and method of use
US20040186373A1 (en) * 2003-03-21 2004-09-23 Dunfield John Stephen Method and device for targeted epithelial delivery of medicinal and related agents
DE202004021226U1 (en) 2003-03-27 2007-07-26 The General Hospital Corp., Boston Device for dermatological treatment and fractional resurfacing the skin
US7668350B2 (en) * 2003-04-04 2010-02-23 Lumidigm, Inc. Comparative texture analysis of tissue for biometric spoof detection
US7751594B2 (en) * 2003-04-04 2010-07-06 Lumidigm, Inc. White-light spectral biometric sensors
US7347365B2 (en) * 2003-04-04 2008-03-25 Lumidigm, Inc. Combined total-internal-reflectance and tissue imaging systems and methods
US7627151B2 (en) * 2003-04-04 2009-12-01 Lumidigm, Inc. Systems and methods for improved biometric feature definition
US8787630B2 (en) 2004-08-11 2014-07-22 Lumidigm, Inc. Multispectral barcode imaging
EP1611541B1 (en) * 2003-04-04 2010-12-15 Lumidigm, Inc. Multispectral biometric sensor
US20080279812A1 (en) * 2003-12-05 2008-11-13 Norwood Immunology, Ltd. Disease Prevention and Vaccination Prior to Thymic Reactivation
US7679407B2 (en) 2003-04-28 2010-03-16 Abbott Diabetes Care Inc. Method and apparatus for providing peak detection circuitry for data communication systems
EP1628567B1 (en) 2003-05-30 2010-08-04 Pelikan Technologies Inc. Method and apparatus for fluid injection
US7351241B2 (en) 2003-06-02 2008-04-01 Carl Zeiss Meditec Ag Method and apparatus for precision working of material
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US6954121B2 (en) * 2003-06-09 2005-10-11 Agilent Technologies, Inc. Method for controlling piezoelectric coupling coefficient in film bulk acoustic resonators and apparatus embodying the method
US20050007582A1 (en) * 2003-07-07 2005-01-13 Lumidigm, Inc. Methods and apparatus for collection of optical reference measurements for monolithic sensors
DE10335231B4 (en) * 2003-08-01 2007-06-28 Lts Lohmann Therapie-Systeme Ag A method for improving the permeability of human skin and patch for the transdermal delivery of active substances
WO2005033659A3 (en) 2003-09-29 2007-01-18 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
US20050073690A1 (en) * 2003-10-03 2005-04-07 Abbink Russell E. Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL)
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
US8016811B2 (en) 2003-10-24 2011-09-13 Altea Therapeutics Corporation Method for transdermal delivery of permeant substances
US20050095578A1 (en) * 2003-10-31 2005-05-05 Koller Manfred R. Method and apparatus for cell permeabilization
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US20050143792A1 (en) * 2003-12-24 2005-06-30 Harvey Jay Hair treatment method
US7090670B2 (en) 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
WO2005065414A3 (en) 2003-12-31 2005-12-29 Pelikan Technologies Inc Method and apparatus for improving fluidic flow and sample capture
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US20050256517A1 (en) * 2004-01-22 2005-11-17 Dmitri Boutoussov Electromagnetically induced treatment devices and methods
US20050167438A1 (en) * 2004-02-02 2005-08-04 Max Minyayev Secure spill-proof configuration for child training cup
EP1716886A1 (en) * 2004-02-20 2006-11-02 Villacampa Francisco Javier Arcusa Equipment and method for reducing and eliminating wrinkles in the skin
US7425426B2 (en) * 2004-03-15 2008-09-16 Cyntellect, Inc. Methods for purification of cells based on product secretion
EP1742588B1 (en) 2004-04-01 2016-10-19 The General Hospital Corporation Apparatus for dermatological treatment and tissue reshaping
US20050251117A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method for treating biological external tissue
US7842029B2 (en) * 2004-05-07 2010-11-30 Aesthera Apparatus and method having a cooling material and reduced pressure to treat biological external tissue
US8571648B2 (en) * 2004-05-07 2013-10-29 Aesthera Apparatus and method to apply substances to tissue
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
EP1755733A4 (en) * 2004-05-28 2010-04-21 Georgia Tech Res Inst Methods and devices for thermal treatment
US20090318846A1 (en) * 2004-05-28 2009-12-24 Georgia Tech Research Corporation Methods and apparatus for surface ablation
US7539330B2 (en) * 2004-06-01 2009-05-26 Lumidigm, Inc. Multispectral liveness determination
US7460696B2 (en) 2004-06-01 2008-12-02 Lumidigm, Inc. Multispectral imaging biometrics
US8229185B2 (en) 2004-06-01 2012-07-24 Lumidigm, Inc. Hygienic biometric sensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US7413572B2 (en) 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
US20090067189A1 (en) * 2005-06-07 2009-03-12 Dmitri Boutoussov Contra-angle rotating handpiece having tactile-feedback tip ferrule
CN101432102A (en) * 2004-07-27 2009-05-13 生物激光科技公司 Contra-angle rotating handpiece having tactile-feedback tip ferrule
EP2299275A3 (en) 2004-07-30 2011-08-03 Adeza Biomedical Corporation Classification of the oncofetal fibronection level for the indication of diseases and other conditions
CA2575667A1 (en) * 2004-08-13 2006-04-06 Biolase Technology, Inc. Laser handpiece architecture and methods
US20060079947A1 (en) * 2004-09-28 2006-04-13 Tankovich Nikolai I Methods and apparatus for modulation of the immune response using light-based fractional treatment
CN101080200A (en) * 2004-10-21 2007-11-28 拜尔健康护理有限责任公司 Method of determining the concentration of an analyte in a body fluid and system therefor
US20060122584A1 (en) * 2004-10-27 2006-06-08 Bommannan D B Apparatus and method to treat heart disease using lasers to form microchannels
CN101060881B (en) * 2004-11-17 2012-10-17 大冢制药美国公司 Fluid application device and method
EP1827219A4 (en) * 2004-12-09 2009-09-30 Flexible Medical Systems Llc Apparatus and method for continuous real-time trace biomolecular sampling, analysis and delivery
US8333874B2 (en) * 2005-12-09 2012-12-18 Flexible Medical Systems, Llc Flexible apparatus and method for monitoring and delivery
CN101115527A (en) * 2004-12-09 2008-01-30 帕洛玛医疗技术公司 Oral appliance with heat transfer mechanism
EP1827388A2 (en) * 2004-12-14 2007-09-05 E-Pill Pharma Ltd. Local delivery of drugs or substances using electronic permeability increase
US7635362B2 (en) * 2004-12-30 2009-12-22 Lutronic Corporation Method and apparatus treating area of the skin by using multipulse laser
US20080214917A1 (en) * 2004-12-30 2008-09-04 Dirk Boecker Method and apparatus for analyte measurement test time
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20060184065A1 (en) * 2005-02-10 2006-08-17 Ajay Deshmukh Method and apparatus for storing an analyte sampling and measurement device
EP1863559A4 (en) 2005-03-21 2008-07-30 Abbott Diabetes Care Inc Method and system for providing integrated medication infusion and analyte monitoring system
WO2006111201A1 (en) 2005-04-18 2006-10-26 Pantec Biosolutions Ag Laser microporator
US7801338B2 (en) 2005-04-27 2010-09-21 Lumidigm, Inc. Multispectral biometric sensors
US7768408B2 (en) 2005-05-17 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing data management in data monitoring system
RU2007146596A (en) * 2005-05-19 2009-06-27 И-Пилл Фарма, Лтд. (Il) Ingestible device for producing nitric oxide in tissues
US7620437B2 (en) 2005-06-03 2009-11-17 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
EP1888001B1 (en) * 2005-06-10 2014-08-06 Syneron Medical Ltd. Patch for transdermal drug delivery
CA2610289A1 (en) * 2005-06-24 2007-01-04 Biolase Technology, Inc. Visual feedback implements for electromagnetic energy output devices
EP2465925A1 (en) 2005-07-22 2012-06-20 The Board Of Trustees Of The Leland Light-activated cation channel and uses thereof
US20070032785A1 (en) 2005-08-03 2007-02-08 Jennifer Diederich Tissue evacuation device
JP2009506835A (en) 2005-08-29 2009-02-19 リライアント・テクノロジーズ・インコーポレイテッドReliant Technologies, Inc. Method and apparatus for monitoring and controlling the thermally-induced tissue treatment
CN101309631A (en) 2005-09-15 2008-11-19 帕洛玛医疗技术公司 Skin optical characterization device
US20070083120A1 (en) * 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
US8057408B2 (en) * 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US20090177085A1 (en) * 2005-09-22 2009-07-09 Adam Maxwell Histotripsy for thrombolysis
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US8690863B2 (en) * 2005-10-10 2014-04-08 Reliant Technologies, Llc Laser-induced transepidermal elimination of content by fractional photothermolysis
US7583190B2 (en) 2005-10-31 2009-09-01 Abbott Diabetes Care Inc. Method and apparatus for providing data communication in data monitoring and management systems
US20100023003A1 (en) * 2005-12-22 2010-01-28 Spamedica International Srl Skin rejuvination resurfacing device and method of use
US7618429B2 (en) * 2005-12-22 2009-11-17 Spamedica International Srl Skin rejuvination resurfacing method
US8344966B2 (en) 2006-01-31 2013-01-01 Abbott Diabetes Care Inc. Method and system for providing a fault tolerant display unit in an electronic device
WO2007095183A3 (en) * 2006-02-13 2008-05-08 Leonard C Debenedictis Laser system for treatment of skin laxity
US7814915B2 (en) * 2006-03-03 2010-10-19 Cutera, Inc. Aesthetic treatment for wrinkle reduction and rejuvenation
EP1998700B1 (en) * 2006-03-03 2015-01-21 Alma Lasers Ltd Method for light-based hair removal
WO2007099546A3 (en) * 2006-03-03 2009-04-16 Alma Lasers Ltd Method and apparatus for light-based hair removal using incoherent light pulses
US20070212335A1 (en) * 2006-03-07 2007-09-13 Hantash Basil M Treatment of alopecia by micropore delivery of stem cells
EP1997431A1 (en) * 2006-03-22 2008-12-03 Panasonic Corporation Biosensor and apparatus for measuring concentration of components
KR101012232B1 (en) * 2006-03-22 2011-02-08 파나소닉 주식회사 Blood inspection device
EP1997433B1 (en) * 2006-03-22 2013-05-15 Panasonic Corporation Laser perforation device and laser perforation method
WO2007119946A1 (en) * 2006-04-14 2007-10-25 Book Hyun Jang Laser. kidney stone. magnetic force. gold needle. cupping glass. creation. curer.
EP2010276B1 (en) * 2006-04-26 2014-01-22 Covidien LP Multi-stage microporation device
US8460280B2 (en) * 2006-04-28 2013-06-11 Cutera, Inc. Localized flashlamp skin treatments
US8246611B2 (en) 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
US7862555B2 (en) * 2006-07-13 2011-01-04 Reliant Technologies Apparatus and method for adjustable fractional optical dermatological treatment
US8175346B2 (en) 2006-07-19 2012-05-08 Lumidigm, Inc. Whole-hand multispectral biometric imaging
US7995808B2 (en) * 2006-07-19 2011-08-09 Lumidigm, Inc. Contactless multispectral biometric capture
CN101506826A (en) * 2006-07-19 2009-08-12 光谱辨识公司 Multibiometric multispectral imager
US7804984B2 (en) 2006-07-31 2010-09-28 Lumidigm, Inc. Spatial-spectral fingerprint spoof detection
US7801339B2 (en) 2006-07-31 2010-09-21 Lumidigm, Inc. Biometrics with spatiospectral spoof detection
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US8200312B2 (en) * 2006-09-06 2012-06-12 Yeda Research And Development Co. Ltd. Apparatus for monitoring a system pressure in space with time and method for assessing drug delivery and resistance to therapy and product
US20100004582A1 (en) * 2006-10-25 2010-01-07 Pantec Biosolutions Ag Wide-Area Parasystemic Treatment of Skin Related Conditions
US20080208179A1 (en) * 2006-10-26 2008-08-28 Reliant Technologies, Inc. Methods of increasing skin permeability by treatment with electromagnetic radiation
US20080119830A1 (en) * 2006-10-31 2008-05-22 Ramstad Paul O Disposable tip for laser handpiece
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US20080154247A1 (en) * 2006-12-20 2008-06-26 Reliant Technologies, Inc. Apparatus and method for hair removal and follicle devitalization
US20080152592A1 (en) * 2006-12-21 2008-06-26 Bayer Healthcare Llc Method of therapeutic drug monitoring
WO2008086470A1 (en) * 2007-01-10 2008-07-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
WO2008087982A1 (en) * 2007-01-17 2008-07-24 Panasonic Corporation Blood inspection device
US8523926B2 (en) * 2007-01-19 2013-09-03 Joseph Neev Devices and methods for generation of subsurface microdisruptions for biomedical applications
US7695469B2 (en) * 2007-01-25 2010-04-13 Biolase Technology, Inc. Electromagnetic energy output system
US20090225060A1 (en) * 2007-05-03 2009-09-10 Rizoiu Ioana M Wrist-mounted laser with animated, page-based graphical user-interface
US20080276192A1 (en) * 2007-05-03 2008-11-06 Biolase Technology, Inc. Method and apparatus for controlling an electromagnetic energy output system
US7815630B2 (en) * 2007-01-25 2010-10-19 Biolase Technology, Inc. Target-close electromagnetic energy emitting device
US9101377B2 (en) * 2007-01-25 2015-08-11 Biolase, Inc. Electromagnetic energy output system
US8401609B2 (en) 2007-02-14 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
WO2008106694A3 (en) 2007-03-01 2009-02-19 Univ Leland Stanford Junior Systems, methods and compositions for optical stimulation of target cells
WO2008115224A2 (en) * 2007-03-20 2008-09-25 Bayer Healthcare Llc Method of analyzing an analyte
WO2008134135A3 (en) 2007-03-21 2009-06-18 Lumidigm Inc Biometrics based on locally consistent features
US8355545B2 (en) 2007-04-10 2013-01-15 Lumidigm, Inc. Biometric detection using spatial, temporal, and/or spectral techniques
US8435235B2 (en) * 2007-04-27 2013-05-07 Covidien Lp Systems and methods for treating hollow anatomical structures
CN101707872B (en) * 2007-04-27 2014-10-22 回声治疗有限公司 Skin penetration means for sensing an analyte, or transdermal administration
US8034091B2 (en) * 2007-06-08 2011-10-11 Laserix Sarl Method for the ablation of cartilage tissue in a knee joint using indocyanine
EP2164418B1 (en) 2007-06-27 2014-01-08 The General Hospital Corporation Apparatus for optical inhibition of photodynamic therapy
US20090012434A1 (en) * 2007-07-03 2009-01-08 Anderson Robert S Apparatus, method, and system to treat a volume of skin
WO2009009398A1 (en) 2007-07-06 2009-01-15 Tsunami Medtech, Llc Medical system and method of use
US20120065576A1 (en) * 2007-08-14 2012-03-15 Stryker Corporation Drug delivery system
US8048044B2 (en) * 2007-08-14 2011-11-01 Stryker Corporation Drug delivery system
US20090069795A1 (en) * 2007-09-10 2009-03-12 Anderson Robert S Apparatus and method for selective treatment of tissue
US20090093864A1 (en) * 2007-10-08 2009-04-09 Anderson Robert S Methods and devices for applying energy to tissue
JP5612474B2 (en) * 2007-10-17 2014-10-22 トランスファーマ メディカル リミテッド Verification of the dissolution rate
US20090247984A1 (en) * 2007-10-24 2009-10-01 Masimo Laboratories, Inc. Use of microneedles for small molecule metabolite reporter delivery
WO2009052866A1 (en) * 2007-10-25 2009-04-30 Pantec Biosolutions Ag Laser device and method for ablating biological tissue
CA2704164A1 (en) 2007-10-29 2009-05-07 Transpharma Medical Ltd. Vertical patch drying
EP2214770A4 (en) * 2007-11-05 2011-01-05 Puretech Ventures Methods, kits, and compositions for administering pharmaceutical compounds
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US8280484B2 (en) * 2007-12-18 2012-10-02 The Invention Science Fund I, Llc System, devices, and methods for detecting occlusions in a biological subject
US9672471B2 (en) * 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US20090281413A1 (en) * 2007-12-18 2009-11-12 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods for detecting occlusions in a biological subject
US20090287076A1 (en) * 2007-12-18 2009-11-19 Boyden Edward S System, devices, and methods for detecting occlusions in a biological subject
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090204184A1 (en) * 2008-02-12 2009-08-13 Pingal Frederick J Light enhanced acupuncture
EP2278992B1 (en) 2008-03-27 2015-07-22 Clinuvel Pharmaceuticals Limited Therapy for vitiligo
US20090247932A1 (en) * 2008-04-01 2009-10-01 Daniel Barolet Method for the treatment of skin tissues
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2009129483A1 (en) * 2008-04-17 2009-10-22 Musculoskeletal Transplant Foundation Ultrashort pulse laser applications
WO2009137609A3 (en) 2008-05-06 2010-03-11 Cellutions, Inc. Apparatus and systems for treating a human tissue condition
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US20090287110A1 (en) * 2008-05-14 2009-11-19 Searete Llc Circulatory monitoring systems and methods
US20090292222A1 (en) * 2008-05-14 2009-11-26 Searete Llc Circulatory monitoring systems and methods
US8000878B2 (en) * 2008-05-15 2011-08-16 Honeywell International Inc. Parallel sequential turbocharger architecture using engine cylinder variable valve lift system
US20090287093A1 (en) * 2008-05-15 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
JP5759367B2 (en) * 2008-05-15 2015-08-05 バイオリテック ファーマ マーケティング リミテッド Percutaneous vascular treatment methods and apparatus
US20090312693A1 (en) * 2008-06-13 2009-12-17 Vytronus, Inc. System and method for delivering energy to tissue
US8579888B2 (en) 2008-06-17 2013-11-12 Tsunami Medtech, Llc Medical probes for the treatment of blood vessels
US20100036209A1 (en) * 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20100036269A1 (en) * 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20100036268A1 (en) * 2008-08-07 2010-02-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US8721632B2 (en) 2008-09-09 2014-05-13 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US9561068B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
US9700365B2 (en) 2008-10-06 2017-07-11 Santa Anna Tech Llc Method and apparatus for the ablation of gastrointestinal tissue
US9561066B2 (en) 2008-10-06 2017-02-07 Virender K. Sharma Method and apparatus for tissue ablation
JP5401918B2 (en) * 2008-10-29 2014-01-29 パナソニック株式会社 The puncture device
CN102264434B (en) * 2008-12-02 2016-02-03 拜欧利泰克投资二代公司 Steam / plasma mediated process and apparatus for the medical laser induced
US20100187132A1 (en) * 2008-12-29 2010-07-29 Don Alden Determination of the real electrochemical surface areas of screen printed electrodes
RU2533584C9 (en) * 2008-12-30 2015-04-20 Оцука Фармасьютикал Фэктори, Инк. Fluid application device and method
EP2376176B1 (en) * 2008-12-30 2016-04-20 Otsuka America Pharmaceutical, Inc. Fluid application device and method
KR20110106436A (en) * 2009-01-09 2011-09-28 신텔렉트 인코포레이티드 Genetic analysis of cells
JP2012514981A (en) 2009-01-12 2012-07-05 イントレクソン コーポレイション Sectioned and transition interposed the laser cell colonies
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US20100234836A1 (en) * 2009-03-10 2010-09-16 Bwt Property, Inc. LED Based Light Surgery Apparatus
US8781576B2 (en) 2009-03-17 2014-07-15 Cardiothrive, Inc. Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current
CN102427851B (en) * 2009-03-17 2015-04-15 卡迪欧思莱夫公司 External Defibrillator
US20100241058A1 (en) * 2009-03-19 2010-09-23 Ahmed Syed Yosuf Oct guided tissue ablation
WO2010129375A1 (en) 2009-04-28 2010-11-11 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US8414559B2 (en) 2009-05-07 2013-04-09 Rainbow Medical Ltd. Gastroretentive duodenal pill
US20100286587A1 (en) * 2009-05-07 2010-11-11 Yossi Gross Sublingual electrical drug delivery
WO2010129899A1 (en) * 2009-05-08 2010-11-11 Cellutions, Inc. Treatment system with a pulse forming network for achieving plasma in tissue
EP2253413A1 (en) * 2009-05-15 2010-11-24 National University of Ireland Galway Method for laser ablation
WO2010144257A1 (en) 2009-05-26 2010-12-16 The General Hospital Corporation Method and apparatus for dermal delivery of a substance
US8932055B2 (en) * 2009-06-11 2015-01-13 Roberto Armanino Method employing electric fields to selectively kill microbes in a root canal preparation
EP2456351B1 (en) 2009-07-23 2016-10-12 Abbott Diabetes Care, Inc. Real time management of data relating to physiological control of glucose levels
EP2467062B1 (en) 2009-08-17 2017-01-18 Histosonics, Inc. Disposable acoustic coupling medium container
US8731250B2 (en) 2009-08-26 2014-05-20 Lumidigm, Inc. Multiplexed biometric imaging
US8435437B2 (en) * 2009-09-04 2013-05-07 Abbott Cardiovascular Systems Inc. Setting laser power for laser machining stents from polymer tubing
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US8570149B2 (en) 2010-03-16 2013-10-29 Lumidigm, Inc. Biometric imaging using an optical adaptive interface
CN106011073A (en) 2010-03-17 2016-10-12 小利兰·斯坦福大学托管委员会 Light-sensitive ion-passing molecules
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8617181B2 (en) 2010-08-06 2013-12-31 MoMelan Technologies, Inc. Methods for preparing a skin graft
US9173674B2 (en) 2010-08-06 2015-11-03 MoMelan Technologies, Inc. Devices for harvesting a skin graft
US9597111B2 (en) 2010-08-06 2017-03-21 Kci Licensing, Inc. Methods for applying a skin graft
US8926631B2 (en) 2010-08-06 2015-01-06 MoMelan Technologies, Inc. Methods for preparing a skin graft without culturing or use of biologics
US8562626B2 (en) 2010-08-06 2013-10-22 MoMelan Technologies, Inc. Devices for harvesting a skin graft
US9610093B2 (en) 2010-08-06 2017-04-04 Kci Licensing, Inc. Microblister skin grafting
CN103492564B (en) 2010-11-05 2017-04-19 斯坦福大学托管董事会 Light-activated chimeric proteins and method of use depends
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9451913B2 (en) 2010-12-10 2016-09-27 Touchtek Labs, Llc Transdermal sampling and analysis device
CN103492020B (en) * 2011-04-19 2016-03-09 科英布拉大学 Using a light-absorbing film for efficient delivery to the compound through the skin or device or a biological barrier
US8661874B2 (en) * 2011-04-28 2014-03-04 Honeywell International Inc. Photoacoustic detector with background signal correction
EP2708229A4 (en) 2011-05-10 2014-11-19 Itochu Chemical Frontier Corp Non-aqueous patch
US8992513B2 (en) 2011-06-30 2015-03-31 Angiodynamics, Inc Endovascular plasma treatment device and method of use
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US8978234B2 (en) 2011-12-07 2015-03-17 MoMelan Technologies, Inc. Methods of manufacturing devices for generating skin grafts
JP2015502364A (en) 2011-12-16 2015-01-22 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ Opsin polypeptides and methods of use thereof
US9078681B2 (en) 2012-02-01 2015-07-14 Lumenis Ltd. Reconfigurable handheld laser treatment systems and methods
US9149332B2 (en) 2012-02-01 2015-10-06 Lumenis Ltd. Reconfigurable handheld laser treatment systems and methods
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
EP2839552A4 (en) 2012-04-18 2015-12-30 Cynosure Inc Picosecond laser apparatus and methods for treating target tissues with same
US9636133B2 (en) 2012-04-30 2017-05-02 The Regents Of The University Of Michigan Method of manufacturing an ultrasound system
US20140163543A1 (en) * 2012-11-30 2014-06-12 Intuitive Surgical Operations, Inc. Apparatus and method for delivery and monitoring of ablation therapy
EP2945556A4 (en) 2013-01-17 2016-08-31 Virender K Sharma Method and apparatus for tissue ablation
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US9518551B2 (en) * 2013-04-25 2016-12-13 Ford Global Technologies, Llc Laser ignition safety interlock system and method
US9833630B2 (en) 2013-06-14 2017-12-05 Cardiothrive, Inc. Biphasic or multiphasic pulse waveform and method
US9656094B2 (en) 2013-06-14 2017-05-23 Cardiothrive, Inc. Biphasic or multiphasic pulse generator and method
US9616243B2 (en) 2013-06-14 2017-04-11 Cardiothrive, Inc. Dynamically adjustable multiphasic defibrillator pulse system and method
US20150025444A1 (en) * 2013-07-18 2015-01-22 International Business Machines Corporation Laser-assisted transdermal delivery of nanoparticulates and hydrogels
US8888714B1 (en) * 2013-09-20 2014-11-18 Richard Soto Automatic blood draw system and method
WO2015118427A1 (en) * 2014-02-06 2015-08-13 Algosfree Kft Apparatus for the transdermal administration of products, for example of phytotherapy products or the like
KR101549966B1 (en) 2014-02-24 2015-09-03 서울대학교산학협력단 Microjet Drug Delivery Apparatus and Drug Delivery Method Therewith
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
USD755378S1 (en) * 2014-09-30 2016-05-03 Fujifilm Corporation Endoscope
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
KR101781843B1 (en) 2016-07-28 2017-09-26 서울대학교 산학협력단 Microjet Drug Delivery System with Enhanced Drug Penetration Performance by Fractional Laser Pre-ablation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622743A (en) * 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
US4705036A (en) * 1984-12-06 1987-11-10 Hughes Technology Pty Ltd. Hygienic attachments for therapy lasers
US4850352A (en) * 1986-12-24 1989-07-25 Johnson Gerald W Laser-surgical instrument with evacuation tip
US4985029A (en) * 1989-01-11 1991-01-15 Masahiko Hoshino Laser apparatus for medical treatment
US5030217A (en) * 1988-04-14 1991-07-09 Heraeus Lasersonics, Inc. Medical laser probe and method of delivering CO2 radiation
US5029581A (en) * 1986-11-19 1991-07-09 Fuji Electric Co., Ltd. Laser therapeutic apparatus
US5074860A (en) * 1989-06-09 1991-12-24 Heraeus Lasersonics, Inc. Apparatus for directing 10.6 micron laser radiation to a tissue site
US5281214A (en) * 1992-04-21 1994-01-25 Laserscope Disposable surgical probe having fiber diverter
US5324200A (en) * 1988-08-25 1994-06-28 American Dental Technologies, Inc. Method for enlarging and shaping a root canal
US5553629A (en) * 1993-03-11 1996-09-10 The United States Of America As Represented By The Secretary Of The Air Force Portable medical laser pack system

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3865113A (en) * 1972-10-17 1975-02-11 Laser Ind Ltd Laser device particularly useful as surgical scalpel
US4028636A (en) 1973-06-28 1977-06-07 The United States Of America As Represented By The Secretary Of The Navy Acousto-optical deflector tuned organic dye laser
EP0202265B1 (en) 1984-10-25 1990-04-04 Candela Laser Corporation Long pulse tunable dye laser
US4641912A (en) * 1984-12-07 1987-02-10 Tsvi Goldenberg Excimer laser delivery system, angioscope and angioplasty system incorporating the delivery system and angioscope
US4960467A (en) * 1985-02-11 1990-10-02 The United States Of America As Represented By The Secretary Of The Army Dermal substance collection device
US4648892A (en) 1985-03-22 1987-03-10 Massachusetts Institute Of Technology Method for making optical shield for a laser catheter
CA1262757A (en) 1985-04-25 1989-11-07 Richard M. Dwyer Method and apparatus for laser surgery
US4628416A (en) 1985-05-03 1986-12-09 Coopervision, Inc. Variable spot size illuminator with constant convergence angle
DE3686621D1 (en) 1985-07-31 1992-10-08 Bard Inc C R Infrared laser kathetergeraet.
DE3679638D1 (en) * 1985-09-12 1991-07-11 Summit Technology Inc lasers Oberflaechenabtragung followed using.
US4710940A (en) * 1985-10-01 1987-12-01 California Institute Of Technology Method and apparatus for efficient operation of optically pumped laser
US4775361A (en) * 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4712537A (en) 1986-08-13 1987-12-15 Pender Daniel J Apparatus for treating recurrent ear infections
US4882492A (en) * 1988-01-19 1989-11-21 Biotronics Associates, Inc. Non-invasive near infrared measurement of blood analyte concentrations
US4931053A (en) 1988-01-27 1990-06-05 L'esperance Medical Technologies, Inc. Method and apparatus for enhanced vascular or other growth
US5423798A (en) 1988-04-20 1995-06-13 Crow; Lowell M. Ophthalmic surgical laser apparatus
US5074861A (en) 1988-05-23 1991-12-24 Schneider Richard T Medical laser device and method
US4940411A (en) 1988-08-25 1990-07-10 American Dental Laser, Inc. Dental laser method
US5013119A (en) * 1989-12-21 1991-05-07 At&T Bell Laboratories Fabrication of an integrated optical fiber bus
US5231975A (en) 1990-02-23 1993-08-03 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
US5115805A (en) * 1990-02-23 1992-05-26 Cygnus Therapeutic Systems Ultrasound-enhanced delivery of materials into and through the skin
EP0519964B1 (en) 1990-03-14 1994-08-10 Candela Laser Corporation Apparatus of treating pigmented lesions using pulsed irradiation
US5066291A (en) 1990-04-25 1991-11-19 Cincinnati Sub-Zero Products, Inc. Solid-state laser frequency conversion system
US5182759A (en) 1990-05-16 1993-01-26 Amoco Corporation Apparatus and method for pumping of a weakly absorbing lasant material
DE4032860A1 (en) * 1990-10-12 1992-04-16 Zeiss Carl Fa A force-controlled contact applicator for laser radiation
WO1992014514A1 (en) 1991-02-13 1992-09-03 Applied Medical Resources, Inc. Surgical trocar
RU2027450C1 (en) 1991-03-29 1995-01-27 Научно-исследовательский институт "Полюс" Apparatus for perforating skin for sampling patient's blood
JPH07102209B2 (en) * 1991-04-12 1995-11-08 株式会社ヒューテック For blood collection laser device
US5217455A (en) 1991-08-12 1993-06-08 Tan Oon T Laser treatment method for removing pigmentations, lesions, and abnormalities from the skin of a living human
RU2005515C1 (en) 1991-09-16 1994-01-15 Научно-производственная внедренческая фирма "Созет" Device for contact-free perforation of skin for taking blood samples
US5713845A (en) 1991-10-29 1998-02-03 Thermolase Corporation Laser assisted drug delivery
US5423803A (en) * 1991-10-29 1995-06-13 Thermotrex Corporation Skin surface peeling process using laser
US5246436A (en) * 1991-12-18 1993-09-21 Alcon Surgical, Inc. Midinfrared laser tissue ablater
WO1993011699A1 (en) * 1991-12-19 1993-06-24 Meditron Devices, Inc. Arthroscope having five functions
US5165418B1 (en) * 1992-03-02 1999-12-14 Nikola I Tankovich Blood sampling device and method using a laser
US5468239A (en) 1992-04-13 1995-11-21 Sorenson Laboratories, Inc. Apparatus and methods for using a circumferential light-emitting surgical laser probe
US5437658A (en) 1992-10-07 1995-08-01 Summit Technology, Incorporated Method and system for laser thermokeratoplasty of the cornea
US5421816A (en) 1992-10-14 1995-06-06 Endodermic Medical Technologies Company Ultrasonic transdermal drug delivery system
US5342355A (en) 1992-10-19 1994-08-30 Laser Centers Of America Energy delivering cap element for end of optic fiber conveying laser energy
US5643252A (en) * 1992-10-28 1997-07-01 Venisect, Inc. Laser perforator
US5614502A (en) 1993-01-15 1997-03-25 The General Hospital Corporation High-pressure impulse transient drug delivery for the treatment of proliferative diseases
US5658892A (en) 1993-01-15 1997-08-19 The General Hospital Corporation Compound delivery using high-pressure impulse transients
US5360447A (en) 1993-02-03 1994-11-01 Coherent, Inc. Laser assisted hair transplant method
US5304170A (en) 1993-03-12 1994-04-19 Green Howard A Method of laser-induced tissue necrosis in carotenoid-containing skin structures
US5461212A (en) 1993-06-04 1995-10-24 Summit Technology, Inc. Astigmatic laser ablation of surfaces
US5397327A (en) 1993-07-27 1995-03-14 Coherent, Inc. Surgical laser handpiece for slit incisions
JPH0739542A (en) 1993-07-30 1995-02-10 Shibuya Kogyo Co Ltd Device for collecting blood
US5582184A (en) * 1993-10-13 1996-12-10 Integ Incorporated Interstitial fluid collection and constituent measurement
US5458140A (en) 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
US5445611A (en) 1993-12-08 1995-08-29 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal delivery with ultrasound and chemical enhancers
US5556612A (en) * 1994-03-15 1996-09-17 The General Hospital Corporation Methods for phototherapeutic treatment of proliferative skin diseases
WO1995029737A1 (en) 1994-05-03 1995-11-09 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
US5586981A (en) 1994-08-25 1996-12-24 Xin-Hua Hu Treatment of cutaneous vascular and pigmented lesions
US5554153A (en) * 1994-08-29 1996-09-10 Cell Robotics, Inc. Laser skin perforator
US5522813A (en) 1994-09-23 1996-06-04 Coherent, Inc. Method of treating veins
US5624434A (en) 1995-02-03 1997-04-29 Laser Industries, Ltd. Laser preparation of recipient holes for graft implantation in the treatment of icepick scars
US5611795A (en) 1995-02-03 1997-03-18 Laser Industries, Ltd. Laser facial rejuvenation
WO1996033538A1 (en) 1995-04-17 1996-10-24 Coherent, Inc. High repetition rate erbium: yag laser for tissue ablation
ES2536459T3 (en) * 1995-08-29 2015-05-25 Nitto Denko Corporation Microporation of human skin for drug delivery and monitoring applications
US5630811A (en) 1996-03-25 1997-05-20 Miller; Iain D. Method and apparatus for hair removal
US6156030A (en) * 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622743A (en) * 1969-04-28 1971-11-23 Hrand M Muncheryan Laser eraser and microwelder
US4705036A (en) * 1984-12-06 1987-11-10 Hughes Technology Pty Ltd. Hygienic attachments for therapy lasers
US5029581A (en) * 1986-11-19 1991-07-09 Fuji Electric Co., Ltd. Laser therapeutic apparatus
US4850352A (en) * 1986-12-24 1989-07-25 Johnson Gerald W Laser-surgical instrument with evacuation tip
US5030217A (en) * 1988-04-14 1991-07-09 Heraeus Lasersonics, Inc. Medical laser probe and method of delivering CO2 radiation
US5324200A (en) * 1988-08-25 1994-06-28 American Dental Technologies, Inc. Method for enlarging and shaping a root canal
US4985029A (en) * 1989-01-11 1991-01-15 Masahiko Hoshino Laser apparatus for medical treatment
US5074860A (en) * 1989-06-09 1991-12-24 Heraeus Lasersonics, Inc. Apparatus for directing 10.6 micron laser radiation to a tissue site
US5281214A (en) * 1992-04-21 1994-01-25 Laserscope Disposable surgical probe having fiber diverter
US5553629A (en) * 1993-03-11 1996-09-10 The United States Of America As Represented By The Secretary Of The Air Force Portable medical laser pack system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245998A1 (en) * 2004-04-30 2005-11-03 Led Healing Light, Llc Hand held pulse laser for therapeutic use
US20080071258A1 (en) * 2006-04-12 2008-03-20 Vladimir Lemberg System and method for microablation of tissue
US20110077627A1 (en) * 2006-04-12 2011-03-31 Vladimir Lemberg System and method for Microablation of tissue
US9078680B2 (en) * 2006-04-12 2015-07-14 Lumenis Ltd. System and method for microablation of tissue
US8496696B2 (en) 2006-04-12 2013-07-30 Lumenis Ltd. System and method for microablation of tissue
EP2552323A4 (en) * 2010-03-29 2013-09-25 Follica Inc Combination therapy
EP2552323A1 (en) * 2010-03-29 2013-02-06 Follica, Inc. Combination therapy
WO2011130389A2 (en) 2010-04-15 2011-10-20 Lumenis Ltd. System and method for microablation of tissue
EP2558018A4 (en) * 2010-04-15 2014-07-09 Lumenis Ltd System and method for microablation of tissue
EP2558018A2 (en) * 2010-04-15 2013-02-20 Lumenis Ltd. System and method for microablation of tissue
US8709057B2 (en) * 2011-01-12 2014-04-29 Fotona D.D. Laser system for non ablative treatment of mucosa tissue
US20120179229A1 (en) * 2011-01-12 2012-07-12 Fotona D.D. Laser System for Non Ablative Treatment of Mucosa Tissue

Also Published As

Publication number Publication date Type
US20030045867A1 (en) 2003-03-06 application
US6419642B1 (en) 2002-07-16 grant
EP1281367A3 (en) 2006-02-01 application
US20030097123A1 (en) 2003-05-22 application
US6315772B1 (en) 2001-11-13 grant
US20050010198A1 (en) 2005-01-13 application
US6443945B1 (en) 2002-09-03 grant
US20040127815A1 (en) 2004-07-01 application
US20020133147A1 (en) 2002-09-19 application
CN1251508A (en) 2000-04-26 application
JP2001511668A (en) 2001-08-14 application
US6425873B1 (en) 2002-07-30 grant
EP1006902A1 (en) 2000-06-14 application
CN1191793C (en) 2005-03-09 grant
EP1281367A2 (en) 2003-02-05 application
US6387059B1 (en) 2002-05-14 grant
CA2282635A1 (en) 1998-08-06 application
US6056738A (en) 2000-05-02 grant
US6251100B1 (en) 2001-06-26 grant
WO1998033444A1 (en) 1998-08-06 application

Similar Documents

Publication Publication Date Title
Kaufmann et al. Pulsed erbium: YAG laser ablation in cutaneous surgery
US5282797A (en) Method for treating cutaneous vascular lesions
US6086580A (en) Laser treatment/ablation of skin tissue
Grevelink et al. Melanocytic Nevi After Single Treatment With Q-Switched Lasers
US5425728A (en) Hair removal device and method
US5871480A (en) Hair removal using photosensitizer and laser
US20010041886A1 (en) Method of treating disorders associated with sebaceous follicles
US20080294150A1 (en) Photoselective Islets In Skin And Other Tissues
US6503209B2 (en) Non-invasive focused energy blood withdrawal and analysis system
Lask et al. Laser‐assisted hair removal by selective photothermolysis preliminary results
US6607498B2 (en) Method and apparatus for non-invasive body contouring by lysing adipose tissue
US5735844A (en) Hair removal using optical pulses
US20080215039A1 (en) Method and Apparatus for Inhibiting Pain Signals During Vacuum-Assisted Medical Treatments of the Skin
US5853407A (en) Method and apparatus for hair removal
US5814040A (en) Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery
US6620123B1 (en) Method and apparatus for producing homogenous cavitation to enhance transdermal transport
Kauvar et al. A Histopathological Comparison of “Char‐free” Carbon Dioxide Lasers
US6723090B2 (en) Fiber laser device for medical/cosmetic procedures
Wheeland Clinical uses of lasers in dermatology
Kaufmann et al. Cutting and skin‐ablative properties of pulsed mid‐infrared laser surgery
US6251099B1 (en) Compound delivery using impulse transients
US20060155266A1 (en) Method and apparatus for dermatological treatment and fractional skin resurfacing
US3693623A (en) Photocoagulation means and method for depilation
US6610052B2 (en) Laser system and method for treatment of biologic targets
US20050203495A1 (en) Methods and devices for plasmon enhanced medical and cosmetic procedures