Connect public, paid and private patent data with Google Patents Public Datasets

Ophthalmic drug delivery device

Download PDF

Info

Publication number
US20040131654A1
US20040131654A1 US10697141 US69714103A US2004131654A1 US 20040131654 A1 US20040131654 A1 US 20040131654A1 US 10697141 US10697141 US 10697141 US 69714103 A US69714103 A US 69714103A US 2004131654 A1 US2004131654 A1 US 2004131654A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
device
eye
fig
surface
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10697141
Inventor
Yoseph Yaacobi
Original Assignee
Yoseph Yaacobi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • A61K9/0051Ocular inserts, ocular implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/0008Introducing ophthalmic products into the ocular cavity or retaining products therein
    • A61F9/0017Introducing ophthalmic products into the ocular cavity or retaining products therein implantable in, or in contact with, the eye, e.g. ocular inserts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00781Apparatus for modifying intraocular pressure, e.g. for glaucoma treatment

Abstract

The present invention is directed to a drug delivery device for a human eye. The human eye has a sclera, an inferior oblique muscle, and a macula. The device of the present invention includes a pharmaceutically active agent, and a geometry that facilitates the implantation of the device on an outer surface of the sclera, beneath the inferior oblique muscle, and with the pharmaceutically active agent disposed above the macula. Methods of delivery a pharmaceutically active agent to the posterior segment of the human eye are also disclosed.

Description

  • [0001]
    This application is a divisional of U.S. application Ser. No. 10/187,006, filed Jul. 1, 2002, which is a continuation of U.S. application Ser. No. 09/664,790, filed Sep. 19, 2000, now U.S. Pat. No. 6,416,777, which claims priority from U.S. Provisional Application No. 60/160,673, filed Oct. 21, 1999.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention generally pertains to biocompatible implants for localized delivery of pharmaceutically active agents to body tissue. More particularly, but not by way of limitation, the present invention pertains to biocompatible implants for localized delivery of pharmaceutically active agents to the posterior segment of the eye.
  • DESCRIPTION OF THE RELATED ART
  • [0003]
    Several diseases and conditions of the posterior segment of the eye threaten vision. Age related macular degeneration (ARMD), choroidal neovascularization (CNV), retinopathies (e.g., diabetic retinopathy, vitreoretinopathy), retinitis (e.g., cytomegalovirus (CMV) retinitis), uveitis, macular edema, glaucoma, and neuropathies are several examples.
  • [0004]
    Age related macular degeneration (ARMD) is the leading cause of blindness in the elderly. ARMD attacks the center of vision and blurs it, making reading, driving, and other detailed tasks difficult or impossible. About 200,000 new cases of ARMD occur each year in the United States alone. Current estimates reveal that approximately forty percent of the population over age 75, and approximately twenty percent of the population over age 60, suffer from some degree of macular degeneration. “Wet” ARMD is the type of ARMD that most often causes blindness. In wet ARMD, newly formed choroidal blood vessels (choroidal neovascularization (CNV)) leak fluid and cause progressive damage to the retina.
  • [0005]
    In the particular case of CNV in ARMD, three main methods of treatment are currently being developed, (a) photocoagulation, (b) the use of angiogenesis inhibitors, and (c) photodynamic therapy. Photocoagulation is the most common treatment modality for CNV. However, photocoagulation can be harmful to the retina and is impractical when the CNV is near the fovea. Furthermore, over time, photocoagulation often results in recurrent CNV. Oral or parenteral (non-ocular) administration of anti-angiogenic compounds is also being tested as a systemic treatment for ARMD. However, due to drug-specific metabolic restrictions, systemic administration usually provides sub-therapeutic drug levels to the eye. Therefore, to achieve effective intraocular drug concentrations, either an unacceptably high dose or repetitive conventional doses are required. Periocular injections of these compounds often result in the drug being quickly washed out and depleted from the eye, via periocular vasculature and soft tissue, into the general circulation. Repetitive intraocular injections may result in severe, often blinding, complications such as retinal detachment and endophthalmitis. Photodynamic therapy is a new technology for which the long-term efficacy is still largely unknown.
  • [0006]
    In order to prevent complications related to the above-described treatments and to provide better ocular treatment, researchers have suggested various implants aimed at localizing delivery of anti-angiogenic compounds to the eye. U.S. Pat. No. 5,824,072 to Wong discloses a non-biodegradable polymeric implant with a pharmaceutically active agent disposed therein. The pharmaceutically active agent diffuses through the polymer body of the implant into the target tissue. The pharmaceutically active agent may include drugs for the treatment of macular degeneration and diabetic retinopathy. The implant is placed substantially within the tear fluid upon the outer surface of the eye over an avascular region, and may be anchored in the conjunctiva or sclera; episclerally or intrasclerally over an avascular region; substantially within the suprachoroidial space over an avascular region such as the pars plana or a surgically induced avascular region; or in direct communication with the vitreous.
  • [0007]
    U.S. Pat. No. 5,476,511 to Gwon et al. discloses a polymer implant for placement under the conjunctiva of the eye. The implant may be used to deliver neovascular inhibitors for the treatment of ARMD and drugs for the treatment of retinopathies, and retinitis. The pharmaceutically active agent diffuses through the polymer body of the implant.
  • [0008]
    U.S. Pat. No. 5,773,019 to Ashton et al. discloses a non-bioerodable polymer implant for delivery of certain drugs including angiostatic steroids and drugs such as cyclosporine for the treatment of uveitis. Once again, the pharmaceutically active agent diffuses through the polymer body of the implant.
  • [0009]
    All of the above-described implants require careful design and manufacture to permit controlled diffusion of the pharmaceutically active agent through a polymer body (i.e., matrix devices) or polymer membrane (i.e., reservoir devices) to the desired site of therapy. Drug release from these devices depends on the porosity and diffusion characteristics of the matrix or membrane, respectively. These parameters must be tailored for each drug moiety to be used with these devices. Consequently, these requirements generally increase the complexity and cost of such implants.
  • [0010]
    U.S. Pat. No. 5,824,073 to Peyman discloses an indentor for positioning in the eye. The indentor has a raised portion that is used to indent or apply pressure to the sclera over the macular area of the eye. This patent discloses that such pressure decreases choroidal congestion and blood flow through the subretinal neovascular membrane, which, in turn, decreases bleeding and subretinal fluid accumulation.
  • [0011]
    Therefore, a need exists in the biocompatible implant field for a surgically implantable ophthalmic drug delivery device capable of safe, effective, rate-controlled, localized delivery of a wide variety of pharmaceutically active agents. The surgical procedure for implanting such a device should be safe, simple, quick, and capable of being performed in an outpatient setting. Ideally, such a device should be easy and economical to manufacture. Furthermore, because of its versatility and capability to deliver a wide variety of pharmaceutically active agents, such an implant should be capable of use in ophthalmic clinical studies to deliver various agents that create a specific physical condition in a patient. Such an ophthalmic drug delivery device is especially needed for localized delivery of pharmaceutically active agents to the posterior segment of the eye to combat ARMD, CNV, retinopathies, retinitis, uveitis, macular edema, glaucoma, and neuropathies.
  • SUMMARY OF THE INVENTION
  • [0012]
    The present invention is directed to a drug delivery device for a human eye. The human eye has a sclera, an inferior oblique muscle, and a macula. The device of the present invention includes a pharmaceutically active agent, and a geometry that facilitates the implantation of the device on an outer surface of the sclera, beneath the inferior oblique muscle, and with the pharmaceutically active agent disposed above the macula. Because of its unique geometry, the device is especially useful for localized delivery of pharmaceutically active agents to the posterior segment of the eye to combat ARMD, CNV, retinopathies, retinitis, uveitis, macular edema, glaucoma, and neuropathies.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    For a more complete understanding of the present invention, and for further objects and advantages thereof, reference is made to the following description taken in conjunction with the accompanying drawings in which:
  • [0014]
    [0014]FIG. 1 is a side sectional view schematically illustrating the human eye and an ophthalmic drug delivery device implanted in the posterior segment of the eye according to the present invention;
  • [0015]
    [0015]FIG. 2 is detailed cross-sectional view of the eye of FIG. 1 along line 2-2;
  • [0016]
    [0016]FIG. 3 is a three dimensional schematic representation of the human eye in situ;
  • [0017]
    [0017]FIG. 4 shows the eye of FIG. 3 after partial removal of the lateral rectus muscle;
  • [0018]
    [0018]FIG. 5 is a schematic representation of the anterior view of a human eye;
  • [0019]
    [0019]FIG. 6 is a schematic representation of the posterior view of a human eye;
  • [0020]
    [0020]FIG. 7 is a perspective, orbital view of an ophthalmic drug delivery device for the right human eye according to a first preferred embodiment of the present invention;
  • [0021]
    [0021]FIG. 8 is a perspective, orbital view of the ophthalmic drug delivery device of FIGS. 7 and 9 including a ramp for mating with the inferior oblique muscle;
  • [0022]
    [0022]FIG. 9 is a perspective, scleral view of the ophthalmic drug delivery device of FIG. 7;
  • [0023]
    [0023]FIG. 10 is a perspective view of an oval shaped drug core or tablet for use with the ophthalmic drug delivery devices of the present invention;
  • [0024]
    [0024]FIG. 11 is a perspective view of two, mating half-oval shaped drug cores or tablets for use with the ophthalmic drug delivery devices of the present invention;
  • [0025]
    [0025]FIG. 12 is a perspective, orbital view of the ophthalmic drug delivery device of FIGS. 7 and 9 for the left human eye;
  • [0026]
    [0026]FIG. 13 is a perspective, orbital view of the ophthalmic drug delivery device of FIGS. 12 and 14 including a ramp for mating with the inferior oblique muscle;
  • [0027]
    [0027]FIG. 14 is a perspective, scleral view of the ophthalmic drug delivery device of FIGS. 7 and 9 for the left human eye;
  • [0028]
    [0028]FIG. 15 is a perspective, orbital view of the ophthalmic drug delivery of FIGS. 7 and 9 including a tapered longitudinal part of the device;
  • [0029]
    [0029]FIG. 16 is a perspective, orbital view of a shortened version of the ophthalmic drug delivery device of FIGS. 7 and 9;
  • [0030]
    [0030]FIG. 17 is a perspective, orbital view of the ophthalmic drug delivery device of FIG. 16 including a ramp for mating with the inferior oblique muscle;
  • [0031]
    [0031]FIG. 18 is a perspective, orbital view of an ophthalmic drug delivery device for the right human eye according to a second preferred embodiment of the present invention;
  • [0032]
    [0032]FIG. 19 is a perspective, orbital view of the ophthalmic drug delivery device of FIG. 18 including a ramp for mating with the inferior oblique muscle;
  • [0033]
    [0033]FIG. 20 is a perspective, orbital view of an ophthalmic drug delivery device for the right human eye according to a third preferred embodiment of the present invention; and
  • [0034]
    [0034]FIG. 21 is a perspective, orbital view of the ophthalmic drug delivery device of FIG. 20 including a ramp for mating with the inferior oblique muscle.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0035]
    The preferred embodiments of the present invention and their advantages are best understood by referring to FIGS. 1 through 21 of the drawings, like numerals being used for like and corresponding parts of the various drawings.
  • [0036]
    [0036]FIGS. 1 through 6 illustrate various portions of the human eye important to a complete understanding of the present invention. Referring first to FIG. 1, a human eye 90 is schematically illustrated. Eye 90 has a cornea 92, a lens 93, vitreous 95, a sclera 100, a choroid 99, a retina 97, and an optic nerve 96. Eye 90 is generally divided into an anterior segment 89 and a posterior segment 88. Anterior segment 89 of eye 90 generally includes the portions of eye 90 anterior of ora serata 11. Posterior segment 88 of eye 90 generally includes the portions of eye 90 posterior of ora serata 11. Retina 97 is physically attached to choroid 99 in a circumferential manner proximate pars plana 13, posteriorly to optic disk 19. Retina 97 has a macula 98 located slightly lateral to optic disk 19. As is well known in the ophthalmic art, macula 98 is comprised primarily of retinal cones and is the region of maximum visual acuity in retina 97. A Tenon's capsule or Tenon's membrane 101 is disposed on sclera 100. A conjunctiva 94 covers a short area of the globe of eye 90 posterior to limbus 115 (the bulbar conjunctiva) and folds up (the upper cul-de-sac) or down (the lower cul-de-sac) to cover the inner areas of upper eyelid 78 and lower eyelid 79, respectively. Conjunctiva 94 is disposed on top of Tenon's capsule 101.
  • [0037]
    As is shown in FIGS. 1 and 2, and as is described in greater detail hereinbelow, device 50 is preferably disposed directly on the outer surface of sclera 100, below Tenon's capsule 101 for treatment of most posterior segment diseases or conditions. In addition, for treatment of ARMD and CNV in humans, device 50 is preferably disposed directly on the outer surface of sclera 100, below Tenon's capsule 101, with an inner core of device 50 proximate macula 98.
  • [0038]
    [0038]FIG. 3 illustrates a left human eye 90 within its orbit 112. As can be seen from FIG. 3, inferior oblique muscle 107 runs under lateral rectus muscle 105. The insertion line 107 a of inferior oblique muscle 107 into sclera 100 is located just above the superior border of lateral rectus muscle 105. Of course, the position of the inferior oblique muscle in a right human eye 90 is a mirror image to its position on left human eye 90 of FIG. 3. Cornea 92, conjunctiva 94, superior rectus muscle 103, inferior rectus muscle 104, superior oblique muscle 106, and limbus 115 are also shown in FIG. 3.
  • [0039]
    [0039]FIG. 4 similarly shows a left human eye 90 within its orbit 112. However, a portion of lateral rectus muscle 105 is not shown in FIG. 4 to allow visibility of the portion of sclera 100 and optic nerve 96 usually hidden by the muscle. In FIG. 4, an insertion line 107 b of inferior oblique muscle 107 into sclera 100 is lower than insertion line 107 a of FIG. 3, indicating the representative physiological variability of the insertion line of the inferior oblique muscle in the human eye.
  • [0040]
    [0040]FIG. 5 schematically illustrates an anterior view of human eye 90 with its four recti muscles, the superior rectus muscle 103, the medial rectus muscle 108, the inferior rectus muscle 104, and the lateral rectus muscle 105. FIG. 5 also shows the relationship between the limbus, represented in FIG. 5 by circumferential line 115, and the insertion lines of the recti muscles, represented in FIG. 5 by circumferential lines 113.
  • [0041]
    The posterior view of human eye 90 is schematically illustrated in FIG. 6. FIG. 6 shows the locations of the superior rectus muscle 103, the lateral rectus muscle 105, the inferior rectus muscle 104, the medial rectus muscle 108, the superior oblique muscle 106, the inferior oblique muscle 107 and its insertion line 107 a, the optic nerve 96, the cilliary vessels 109, the sclera 100, the scleral area 110 above macula 98, the long cilliary arteries 111, and the vortex veins 114.
  • [0042]
    [0042]FIGS. 7 and 9 schematically illustrate an ophthalmic drug delivery device 50 for the right human eye according to a first preferred embodiment of the present invention. Device 50 may be used in any case where localized delivery of a pharmaceutically active agent to the eye is required. Device 50 is particularly useful for localized delivery of pharmaceutically active agents to the posterior segment of the eye. A preferred use for device 50 is the delivery of pharmaceutically active agents to the retina proximate the macula for treating ARMD, choroidial neovascularization (CNV), retinopathies, retinitis, uveitis, macular edema, glaucoma, and neuropathies.
  • [0043]
    Device 50 generally includes a body 21 having a convex, dome-shaped, orbital surface 12 and a concave, dome-shaped, scleral surface 14. Scleral surface 14 is designed with a radius of curvature that facilitates direct contact with sclera 100. Most preferably, scleral surface 14 is designed with a radius of curvature equal to the radius of curvature 91 of an average human eye 90. (See FIG. 1) Orbital surface 12 is preferably designed with a radius of curvature that facilitates implantation under Tenon's capsule 101. When viewed from the top, body 21 preferably has a generally “F-shaped” geometry with a longitudinal part 15, a transversal part 18, and a knee 32 therebetween. Longitudinal part 15 and transversal part 18 are preferably joined at knee 32 to form an angle of about ninety degrees. Longitudinal part 15 has a proximal end 25, a rounded edge 24, a stopper 36, and a notch 42. As is described in more detail hereinbelow, notch 42 is designed to accommodate the origin of inferior oblique muscle 107. Stopper 36 defines the lower portion of notch 42 and is preferably slightly elevated from the remainder of the generally convex orbital surface 12. As is described in greater detail hereinbelow, stopper 36 is designed to prevent excessive advancement of device 50 toward optic nerve 96 through contact on the anterior border of inferior oblique muscle 107. Transversal part 18 has a distal end 58, a rounded edge 28, and a well or cavity 20 having an opening 64 to scleral surface 14. Well 20 and opening 64 preferably have a generally oval shape. As is explained in more detail hereinbelow, transversal part 18 allows cavity 20 to be placed more directly over the area of sclera 100 overlying macula 98.
  • [0044]
    An inner core 81, which is shown in FIG. 10, is preferably disposed in well 20. As shown in FIG. 10, inner core 81 is preferably a tablet comprising one or more pharmaceutically active agents. Tablet 81 preferably has a generally oval body 46 with a concave, dome-shaped, scleral surface 85 and a convex, dome-shaped, orbital surface 86. Body 46 also preferably has a peripheral bevel 87 disposed thereon. Alternatively, as shown in FIG. 11, the inner core may comprise mating, half-oval tablets 82 a and 82 b. Tablet 82 a preferably has a body 47 identical to one half of body 46 of tablet 81. Tablet 82 b preferably has a body 48 equal to the opposite half of body 46 of tablet 81. Still further in the alternative, inner core 81, or inner cores 82 a and 82 b, may comprise a conventional hydrogel, gel, paste, or other semi-solid dosage form having one or more pharmaceutically active agents disposed therein.
  • [0045]
    Returning to FIG. 9, a retaining member 62 is preferably disposed proximate opening 64. Retaining member 62 prevents inner core 81 from falling out of well 20. When inner core 81 is a tablet, retaining member 62 is preferably a continuous rim or lip disposed circumferentially around opening 64 that is designed to accommodate bevel 87 of tablet 81. Alternatively, retaining member 62 may comprise one or more members that extend from body 21 into opening 64.
  • [0046]
    Although not shown in FIGS. 9 through 11, inner core 81 may alternatively comprise a suspension, solution, powder, or combination thereof containing one or more pharmaceutically active agents. In this embodiment, scleral surface 14 is formed without opening 64, and the suspension, solution, powder, or combination thereof diffuses through a relatively thin extension of scleral surface 14 or other membrane below inner core 81. Still further in the alternative, device 50 may be formed without well 20 or inner core 81, and the pharmaceutically active agent(s) in the form of a suspension, solution, powder, or combination thereof may be dispersed throughout body 21 of device 50. In this embodiment, the pharmaceutically active agent diffuses through body 21 into the target tissue.
  • [0047]
    The geometry and dimensions of device 50 maximize communication between the pharmaceutically active agent of inner core 81 and the tissue underlying scleral surface 14. Scleral surface 14 preferably physically contacts the outer surface of sclera 100. Alternatively, scleral surface 14 may be disposed proximate the outer surface of sclera 100. By way of example, device 50 may be disposed in the periocular tissues just above the outer surface of sclera 100 or intra-lamellarly within sclera 100.
  • [0048]
    Body 21 preferably comprises a biocompatible, non-bioerodable material. Body 21 more preferably comprises a biocompatible, non-bioerodable polymeric composition. Said polymeric composition may be a homopolymer, a copolymer, straight, branched, cross-linked, or a blend. Examples of polymers suitable for use in said polymeric composition include silicone, polyvinyl alcohol, ethylene vinyl acetate, polylactic acid, nylon, polypropylene, polycarbonate, cellulose, cellulose acetate, polyglycolic acid, polylactic-glycolic acid, cellulose esters, polyethersulfone, acrylics, their derivatives, and combinations thereof. Examples of suitable soft acrylics are more fully disclosed in U.S. Pat. No. 5,403,901, which is incorporated herein in its entirety by reference. Said polymeric composition most preferably comprises silicone. Of course, said polymeric composition may also comprise other conventional materials that affect its physical properties, including, but not limited to, porosity, tortuosity, permeability, rigidity, hardness, and smoothness. Exemplary materials affecting certain ones of these physical properties include conventional plasticizers, fillers, and lubricants. Said polymeric composition may comprise other conventional materials that affect its chemical properties, including, but not limited to, toxicity, hydrophobicity, and body 21—inner core 81 interaction. Body 21 is preferably impermeable to the pharmaceutically active agent of inner core 81. When body 21 is made from a generally elastic polymeric composition, the shape of well 20 may be made slightly smaller than the shape of inner core 81. This frictional fit secures inner core 81 within well 20. In this embodiment, body 21 may be formed with or without retaining member 62, and inner core 81 may be formed with or without bevel 87, if desired.
  • [0049]
    Inner core 81 may comprise any ophthalmically acceptable pharmaceutically active agents suitable for localized delivery. Examples of pharmaceutically active agents suitable for inner core 81 are anti-infectives, including, without limitation, antibiotics, antivirals, and antifungals; antiallergenics and mast cell stabilizers; steroidal and non-steroidal anti-inflammatory agents; cyclooxygenase inhibitors, including, without limitation, Cox I and Cox II inhibitors; combinations of anti-infective and anti-inflammatory agents; anti-glaucoma agents, including, without limitation, adrenergics, β-adrenergic blocking agents, α-adrenergic agonists, parasypathomimetic agents, cholinesterase inhibitors, carbonic anhydrase inhibitors, and prostaglandins; combinations of anti-glaucoma agents; antioxidants; nutritional supplements; drugs for the treatment of cystoid macular edema including, without limitation, non-steroidal anti-inflammatory agents; drugs for the treatment of ARMD, including, without limitation, angiogenesis inhibitors and nutritional supplements; drugs for the treatment of herpetic infections and CMV ocular infections; drugs for the treatment of proliferative vitreoretinopathy including, without limitation, antimetabolites and fibrinolytics; wound modulating agents, including, without limitation, growth factors; antimetabolites; neuroprotective drugs, including, without limitation, eliprodil; and angiostatic steroids for the treatment of diseases or conditions of the posterior segment of the eye, including, without limitation, ARMD, CNV, retinopathies, retinitis, uveitis, macular edema, and glaucoma. Such angiostatic steroids are more fully disclosed in U.S. Pat. Nos. 5,679,666 and 5,770,592, which are incorporated herein in their entirety by reference. Preferred ones of such angiostatic steroids include 4,9(11)-Pregnadien-17α,21-diol-3,20-dione and 4,9(11) -Pregnadien-17α,21-diol-3,20-dione-21-acetate. A preferred non-steroidal anti-inflammatory for the treatment of cystoid macular edema is nepafenac. Inner core 81 may also comprise conventional non-active excipients to enhance the stability, solubility, penetrability, or other properties of the active agent or the drug core.
  • [0050]
    If inner core 81 is a tablet, it may further comprise conventional excipients necessary for tableting, such as fillers and lubricants. Such tablets may be produced using conventional tableting methods. The pharmaceutically active agent is preferably distributed evenly throughout the tablet. In addition to conventional tablets, inner core 81 may comprise a special tablet that bioerodes at a controlled rate, releasing the pharmaceutically active agent. By way of example, such bioerosion may occur through hydrolosis or enzymatic cleavage. If inner core 81 is a hydrogel or other gel, such gels may bioerode at a controlled rate, releasing the pharmaceutically active agent. Alternatively, such gels may be non-bioerodable but allow diffusion of the pharmaceutically active agent.
  • [0051]
    Device 50 may be made by conventional polymer processing methods, including, but not limited to, injection molding, extrusion molding, transfer molding, and compression molding. Preferably, device 50 is formed using conventional injection molding techniques. Inner core 81 is preferably disposed in well 20 after the formation of body 21 of device 50. Retaining member 62 is preferably resilient enough to allow bevel 87 of inner core 81 to be inserted through opening 64 and then to return to its original position.
  • [0052]
    Device 50 is preferably surgically placed directly on the outer surface of sclera 100 below Tenon's capsule 101 with well 20 and inner core 81 directly over the area of sclera 100 above macula 98 using the following preferred technique that is capable of being performed in an outpatient setting. The surgeon first performs an 8 mm peritomy in one of the quadrants of eye 90. Preferably, the surgeon performs the peritomy in the infratemporal quadrant, about 3 mm posterior to limbus 115 of eye 90. Once this incision is made, the surgeon performs a blunt dissection to separate Tenon's capsule 101 from sclera 100. Using scissors and blunt dissection, an antero-posterior tunnel is formed along the outer surface of sclera 100 and below inferior oblique muscle 107, preferably following the inferior border of lateral rectus muscle 105. The inferior oblique muscle 107 is then engaged with a Jamison muscle hook. The tip of the hook is then advanced just posterior to the inferior oblique muscle to form a portion of the tunnel that will accommodate transversal part 18 of device 50. Once the tunnel is formed, the surgeon uses Nuggett forceps to hold transversal part 18 of device 50 with scleral surface 14 facing sclera 100 and distal end 58 of transversal part 18 away from the surgeon. The surgeon then introduces device 50, distal end 58 first, into the tunnel at the level of the peritomy. Once in the tunnel, the surgeon advances device 50 along the tunnel toward inferior oblique muscle 107 until stopper 36 contacts the anterior border of muscle 107. At the level of the visualized inferior oblique muscle 107, the surgeon rotates device 50 underneath muscle 107 so that transversal portion 18 of device 50 enters the portion of the tunnel just posterior to inferior oblique muscle 107. When the surgeon feels that knee 32 cannot advance any further, the surgeon slightly moves device 50 in an antero-posterior direction to allow for the accommodation of inferior oblique muscle 107 within notch 42 between transversal part 18 and stopper 36. Due to the notch 42 and the location of well 20 near distal end 58 of transversal part 18, inner core 81 is positioned directly over the portion of sclera 100 above macula 98. Proximal end 25 of longitudinal part 15 may then be sutured to sclera 100. The surgeon then closes the peritomy by suturing Tenon's capsule 101 and conjunctiva 94 to sclera 100. After closing, the surgeon places a strip of antibiotic ointment on the surgical wound. All sutures are preferably 7-0 Vicryl sutures. For the treatment of ARMD and CNV, the pharmaceutically active agent of inner core 81 is preferably one of the angiostatic steroids disclosed in U.S. Pat. Nos. 5,679,666 and 5,770,592.
  • [0053]
    The geometry of body 21 of device 50, including the concave nature of scleral surface 14; the shape and locations of transversal portion 18, well 20, opening 64, inner core 81, and retaining member 62; and the shape and locations of notch 42 and stopper 36, all facilitate the delivery of a pharmaceutically effective amount of the pharmaceutically active agent from inner core 81 through sclera 100, choroid 99, and into retina 97, and more particularly into macula 98. The absence of a polymer layer or membrane between inner core 20 and sclera 100 also greatly enhances and simplifies the delivery of an active agent to retina 97.
  • [0054]
    It is believed that device 50 can be used to deliver a pharmaceutically effective amount of a pharmaceutically active agent to retina 97 for many years, depending on the particular physicochemical properties of the pharmaceutically active agent employed. Important physicochemical properties include hydrophobicity, solubility, dissolution rate, diffusion coefficient, partitioning coefficient, and tissue affinity. After inner core 20 no longer contains active agent, the surgeon may easily remove device 50. In addition, the “pre-formed” tunnel facilitates the replacement of an old device 50 with a new device 50.
  • [0055]
    [0055]FIG. 8 illustrates an ophthalmic drug delivery device 60, a slight modification of ophthalmic drug delivery device 50 that is useful for certain implantations of the present invention. As shown in FIG. 8, device 60 has a geometry substantially similar to device 50 of FIGS. 7 and 9, with the exception that a ramp 45 has been added to orbital surface 12 of body 21 proximate notch 42. Ramp 45 is a slanted surface that preferably travels from scleral surface 14, on a first end, to orbital surface 12 on a second end. Alternatively, ramp 45 may travel from a location within edge 24 of longitudinal part 15, on a first end, to orbital surface 12 on a second end. Ramp 45 facilitates the accommodation of inferior oblique muscle 107 within notch 42 between transversal part 18 and stopper 36 when device 60 is implanted within eye 90, as described hereinabove in connection with device 50. Device 60 may be made using techniques substantially similar to device 50.
  • [0056]
    [0056]FIGS. 12 and 14 schematically illustrates an ophthalmic drug delivery device 70 for the left human eye. The geometry of device 70 is a mirror image of the geometry of device 50 for the right human eye as described hereinabove in connection with FIGS. 7 and 9. The use of device 70 is substantially identical to the use of device 50, and device 70 may be made using techniques substantially similar to device 50.
  • [0057]
    [0057]FIG. 13 illustrates an ophthalmic drug delivery device 75 for the left human eye, a slight modification of ophthalmic drug delivery device 70 that is useful for certain implantations of the present invention. The geometry and use of device 75 of FIG. 13 is substantially similar to the geometry and use of device 60 of FIG. 8, except that device 75 is a mirror image of device 60.
  • [0058]
    [0058]FIG. 15 schematically illustrates an ophthalmic drug delivery device 30, a slight modification of ophthalmic drug delivery device 50 that is useful for certain implantations of the present invention. As shown in FIG. 15, device 30 has a geometry substantially similar to device 50 of FIGS. 7 and 9, with the exception that longitudinal part 15 has a tapered thickness, when viewed from edge 24, preferably beginning at a location 33 and continuing to proximal end 25. This portion of longitudinal part 15 is disposed anteriorly within eye 90 and may be visible to others. Therefore, due to this tapered thickness, device 30 may be more comfortable or cosmetically acceptable to the patient. The use of device 30 of FIG. 15 is substantially similar to the use of device 50, and device 30 may be made using techniques substantially similar to device 50.
  • [0059]
    [0059]FIG. 16 schematically illustrates an ophthalmic drug delivery device 40, a slight modification of ophthalmic drug delivery device 50 that is useful for certain implantations of the present invention. As shown in FIG. 16, device 40 has a geometry substantially similar to device 50 of FIGS. 7 and 9, with the exception that a length of longitudinal part 15 in device 40 has been shortened relative to device 50. Similar to device 30, this shortening of longitudinal part 15 may result in device 40 being more comfortable or cosmetically acceptable to the patient. The use of device 40 of FIG. 16 is substantially similar to the use of device 50, and device 40 may be made using techniques substantially similar to device 50.
  • [0060]
    [0060]FIG. 17 illustrates an ophthalmic drug delivery device 80, a slight modification of ophthalmic drug delivery device 40 that is useful for certain implantations of the present invention. As shown in FIG. 17, device 80 has a geometry substantially similar to device 40 of FIG. 16, with the exception that a ramp 45 has been added to orbital surface 12 of body 21 proximate notch 42. Ramp 45 is a slanted surface that preferably travels from scleral surface 14, on a first end, to orbital surface 12 on a second end. Alternatively, ramp 45 may travel from a point within edge 24 of longitudinal part 15, on a first end, to orbital surface 12 on a second end. Ramp 45 facilitates the accommodation of inferior oblique muscle 107 within notch 42 between transversal part 18 and stopper 36 when device 80 is implanted within eye 90, as described hereinabove in connection with device 50. Device 80 may be made using techniques substantially similar to device 50.
  • [0061]
    [0061]FIG. 18 schematically illustrates an ophthalmic drug delivery device 65 for the right human eye according a second preferred embodiment of the present invention. Device 65 may be used in any case where localized delivery of a pharmaceutically active agent to the eye is required. Device 65 is particularly useful for localized delivery of active agents to the posterior segment of the eye. A preferred use for device 65 is the delivery of pharmaceutically active agents to the retina proximate the macula for treating ARMD, choroidial neovascularization (CNV), retinopathies, retinitis, uveitis, macular edema, glaucoma, and neuropathies.
  • [0062]
    Device 65 generally includes a body 29 having a convex, dome-shaped, orbital surface 12 and a concave, dome-shaped, scleral surface 14 (not shown). Scleral surface 14 is designed with a radius of curvature that facilitates direct contact with sclera 100. Most preferably, scleral surface 14 is designed with a radius of curvature equal to the radius of curvature 91 of an average human eye 90. Orbital surface 12 is preferably designed with a radius of curvature that facilitates implantation under Tenon's capsule 101. When viewed from the top, body 21 preferably has a generally “C-shaped” geometry with a longitudinal part 17, a transversal part 18, and a knee 32 therebetween. Longitudinal part 17 and transversal part 18 are preferably joined at knee 32 to form an angle of about ninety degrees. Longitudinal part 17 has a proximal end 25 and a rounded edge 24. A stopper 37 forms the “lower” part of the C-shaped geometry and is preferably slightly elevated from the remainder of the generally convex orbital surface 12. A notch 42 is located in longitudinal part 17 and is defined by transversal part 18 and stopper 37. Similar to notch 42 of device 50 of FIGS. 7 and 9, notch 42 of device 65 is designed to accommodate the origin of inferior oblique muscle 107. Similar to stopper 36 of device 50, stopper 37 is designed to prevent excessive advancement of device 65 toward optic nerve 96 through contact on the anterior border of inferior oblique muscle 107. Transversal part 18 has a distal end 58, a rounded edge 28, and a well or cavity 20 having an opening 64 (not shown) to scleral surface 14 (not shown) for holding an inner core similar to those described above in connection with FIGS. 10 and 11. Well 20 and opening 64 preferably have a generally oval shape.
  • [0063]
    The use of device 65 is substantially similar to the use of device 50 as described hereinabove. Device 65 may be made using techniques substantially similar to device 50.
  • [0064]
    [0064]FIG. 19 illustrates an ophthalmic drug delivery device 67, a slight modification of ophthalmic drug delivery device 65 that is useful for certain implantations of the present invention. As shown in FIG. 19, device 67 has a geometry substantially similar to device 65 of FIG. 19, with the exception that a ramp 45 has been added to orbital surface 12 of body 29 proximate notch 42. Ramp 45 is a slanted surface that preferably travels from scleral surface 14, on a first end, to orbital surface 12 on a second end. Alternatively, ramp 45 may travel from a point within edge 24 of longitudinal part 17, on a first end, to orbital surface 12 on a second end. Ramp 45 facilitates the accommodation of inferior oblique muscle 107 within notch 42 between transversal part 18 and stopper 37 when device 67 is implanted within eye 90, as described hereinabove in connection with device 50. Device 67 may be made using techniques substantially similar to device 50.
  • [0065]
    [0065]FIG. 20 schematically illustrates an ophthalmic drug delivery device 52 for the right human eye according a third preferred embodiment of the present invention. Device 52 may be used in any case where localized delivery of a pharmaceutically active agent to the eye is required. Device 52 is particularly useful for localized delivery of active agents to the posterior segment of the eye. A preferred use for device 52 is the delivery of pharmaceutically active agents to the retina proximate the macula for treating ARMD, choroidial neovascularization (CNV), retinopathies, retinitis, uveitis, macular edema, glaucoma, and neuropathies.
  • [0066]
    Device 52 generally includes a body 39 having a convex, dome-shaped, orbital surface 12 and a concave, dome-shaped scleral surface 14 (not shown). Scleral surface 14 is designed with a radius of curvature that facilitates direct contact with sclera 100. Most preferably, scleral surface 14 is designed with a radius of curvature equal to the radius of curvature 91 of an average human eye 90. Orbital surface 12 is preferably designed with a radius of curvature that facilitates implantation under Tenon's capsule 101. When viewed from the top, body 39 preferably has a generally “L-shaped” geometry with a longitudinal part 15, a transversal part 18, and a knee 32 therebetween. Longitudinal part 15 and transversal part 18 are preferably joined at knee 32 to form an angle of about ninety degrees. Similar to notch 42 of device 50 of FIGS. 7 and 9, longitudinal part 15 and transversal part 18 of device 52 form a region 43 designed to accommodate the origin of inferior oblique muscle 107. Longitudinal part 15 has a proximal end 25 and a rounded edge 24. Transversal part 18 has a distal end 58, a rounded edge 28, and a well or cavity 20 having an opening 64 (not shown) to scleral surface 14 for holding an inner core similar to those described above in connection with FIGS. 10 and 11. Well 20 and opening 64 preferably have a generally oval shape.
  • [0067]
    The use of device 52 is substantially similar is substantially similar to the use of device 50 as described hereinabove. Device 52 may be made using techniques substantially similar to device 50.
  • [0068]
    [0068]FIG. 21 illustrates an ophthalmic drug delivery device 54, a slight modification of ophthalmic drug delivery device 52 that is useful for certain implantations of the present invention. As shown in FIG. 21, device 54 has a geometry substantially similar to device 52 of FIG. 20, with the exception that a ramp 45 has been added to orbital surface 12 of body 29 proximate region 43. Ramp 45 is a slanted surface that preferably travels from scleral surface 14, on a first end, to orbital surface 12 on a second end. Alternatively, ramp 45 may travel from a point within edge 24 of longitudinal part 15, on a first end, to orbital surface 12 on a second end. Ramp 45 facilitates the accommodation of inferior oblique muscle 107 within region 43 when device 54 is implanted within eye 90, as described hereinabove in connection with device 50. Device 54 may be made using techniques substantially similar to device 50.
  • [0069]
    From the above, it may be appreciated that the present invention provides improved devices and methods for safe, effective, rate-controlled, localized delivery of a variety of pharmaceutically active agents to the eye, and particularly to the posterior segment of the eye to combat ARMD, CNV, retinopathies, retinitis, uveitis, macular edema, glaucoma, and neuropathies. The surgical procedure for implanting such devices is safe, simple, quick, and capable of being performed in an outpatient setting. Such devices are easy and economical to manufacture. Furthermore, because of their capability to deliver a wide variety of pharmaceutically active agents, such devices are useful in clinical studies to deliver various ophthalmic agents that create a specific physical condition in a patient.
  • [0070]
    The present invention is illustrated herein by example, and various modifications may be made by a person of ordinary skill in the art. For example, although the present invention is described hereinabove with reference to an ophthalmic drug delivery device having a generally “F-shaped”, “C-shaped”, or “L-shaped” geometry when viewed from the top, other geometries may be used, especially if they facilitate the placement of the device under the inferior oblique muscle and the location of pharmaceutically active agent over the macula when the device is implanted on the outer surface of the sclera and below the Tenon's capsule of the human eye.
  • [0071]
    It is believed that the operation and construction of the present invention will be apparent from the foregoing description. While the apparatus and methods shown or described above have been characterized as being preferred, various changes and modifications may be made therein without departing from the spirit and scope of the invention as defined in the following claims.

Claims (5)

What is claimed is:
1. A method of delivering a pharmaceutically active agent to the eye, said eye having a sclera, a Tenon's capsule, a macula, and an orbit, comprising the steps of:
providing a tablet having a concave, dome-shaped scleral surface and pharmaceutically active agent disposed therein; and
disposing said tablet on an outer surface of said sclera and below said Tenon's capsule.
2. The method of claim 1 wherein said disposing step comprises disposing said tablet proximate said macula.
3. The method of claim 2 wherein said disposing step comprises disposing said tablet generally above said macula.
4. The method of claim 1 wherein said tablet is formulated to bioerode and release said pharmaceutically active agent at a controlled rate.
5. The method of claim 1 wherein said tablet has a convex, dome-shaped orbital surface.
US10697141 1999-10-21 2003-10-30 Ophthalmic drug delivery device Abandoned US20040131654A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16067399 true 1999-10-21 1999-10-21
US09664790 US6416777B1 (en) 1999-10-21 2000-09-19 Ophthalmic drug delivery device
US10187006 US6669950B2 (en) 1999-10-21 2002-07-01 Ophthalmic drug delivery device
US10697141 US20040131654A1 (en) 1999-10-21 2003-10-30 Ophthalmic drug delivery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10697141 US20040131654A1 (en) 1999-10-21 2003-10-30 Ophthalmic drug delivery device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10187006 Division US6669950B2 (en) 1999-10-21 2002-07-01 Ophthalmic drug delivery device

Publications (1)

Publication Number Publication Date
US20040131654A1 true true US20040131654A1 (en) 2004-07-08

Family

ID=26857116

Family Applications (4)

Application Number Title Priority Date Filing Date
US09664790 Active US6416777B1 (en) 1999-10-21 2000-09-19 Ophthalmic drug delivery device
US10187006 Active US6669950B2 (en) 1999-10-21 2002-07-01 Ophthalmic drug delivery device
US10697423 Abandoned US20040131655A1 (en) 1999-10-21 2003-10-30 Ophthalmic drug delivery device
US10697141 Abandoned US20040131654A1 (en) 1999-10-21 2003-10-30 Ophthalmic drug delivery device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09664790 Active US6416777B1 (en) 1999-10-21 2000-09-19 Ophthalmic drug delivery device
US10187006 Active US6669950B2 (en) 1999-10-21 2002-07-01 Ophthalmic drug delivery device
US10697423 Abandoned US20040131655A1 (en) 1999-10-21 2003-10-30 Ophthalmic drug delivery device

Country Status (9)

Country Link
US (4) US6416777B1 (en)
JP (1) JP4685311B2 (en)
CN (1) CN100341470C (en)
CA (1) CA2384255C (en)
DE (2) DE60018298D1 (en)
DK (1) DK1221919T3 (en)
EP (1) EP1221919B1 (en)
ES (1) ES2237463T3 (en)
WO (1) WO2001028474A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277830B2 (en) 2009-01-29 2012-10-02 Forsight Vision4, Inc. Posterior segment drug delivery
US8486052B2 (en) 2001-06-12 2013-07-16 The Johns Hopkins University School Of Medicine Reservoir device for intraocular drug delivery
US8623395B2 (en) 2010-01-29 2014-01-07 Forsight Vision4, Inc. Implantable therapeutic device
US8905963B2 (en) 2010-08-05 2014-12-09 Forsight Vision4, Inc. Injector apparatus and method for drug delivery
US9474756B2 (en) 2014-08-08 2016-10-25 Forsight Vision4, Inc. Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof
US9492315B2 (en) 2010-08-05 2016-11-15 Forsight Vision4, Inc. Implantable therapeutic device
US9526654B2 (en) 2013-03-28 2016-12-27 Forsight Vision4, Inc. Ophthalmic implant for delivering therapeutic substances
US9883968B2 (en) 2012-09-13 2018-02-06 Forsight Vision4, Inc. Fluid exchange apparatus and methods

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1040837A3 (en) * 1999-02-26 2002-01-02 Erasmus Universiteit Rotterdam Medicaments for the treatment of a choroidal neovascularization (CNV) related disorder
CA2368342A1 (en) 1999-04-26 2000-11-02 Gmp Vision Solutions, Inc. Stent device and method for treating glaucoma
US6416777B1 (en) * 1999-10-21 2002-07-09 Alcon Universal Ltd. Ophthalmic drug delivery device
US7943162B2 (en) * 1999-10-21 2011-05-17 Alcon, Inc. Drug delivery device
US20050119737A1 (en) * 2000-01-12 2005-06-02 Bene Eric A. Ocular implant and methods for making and using same
US6638239B1 (en) 2000-04-14 2003-10-28 Glaukos Corporation Apparatus and method for treating glaucoma
US7708711B2 (en) 2000-04-14 2010-05-04 Glaukos Corporation Ocular implant with therapeutic agents and methods thereof
DK1309322T3 (en) * 2000-08-14 2006-10-23 Alcon Inc Use of 3-benzoylphenylacetic acids derivatives to treat retinal disorders
EP1309323B1 (en) * 2000-08-14 2006-11-15 Alcon Inc. Treatment of angiogenesis-related disorders using benzoyl phenylacetic acid derivatives
US7181287B2 (en) * 2001-02-13 2007-02-20 Second Sight Medical Products, Inc. Implantable drug delivery device
US6646003B2 (en) * 2001-04-02 2003-11-11 Alcon, Inc. Method of treating ocular inflammatory and angiogenesis-related disorders of the posterior segment of the eye using an amide derivative of flurbiprofen or ketorolac
US20020143284A1 (en) * 2001-04-03 2002-10-03 Hosheng Tu Drug-releasing trabecular implant for glaucoma treatment
US9301875B2 (en) 2002-04-08 2016-04-05 Glaukos Corporation Ocular disorder treatment implants with multiple opening
US7431710B2 (en) 2002-04-08 2008-10-07 Glaukos Corporation Ocular implants with anchors and methods thereof
WO2002080811A3 (en) 2001-04-07 2004-03-11 Glaukos Corp Glaucoma stent and methods thereof for glaucoma treatment
US7867186B2 (en) 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
US7678065B2 (en) 2001-05-02 2010-03-16 Glaukos Corporation Implant with intraocular pressure sensor for glaucoma treatment
WO2002089699A9 (en) 2001-05-03 2003-10-30 Glaukos Corp Medical device and methods of use for glaucoma treatment
JP4249611B2 (en) * 2001-07-23 2009-04-02 アルコン,インコーポレイティド Eye drug Device Device
DK1409065T3 (en) 2001-07-23 2007-05-21 Alcon Inc Ophthalmic drug delivery device
US7331984B2 (en) 2001-08-28 2008-02-19 Glaukos Corporation Glaucoma stent for treating glaucoma and methods of use
US7195774B2 (en) * 2001-08-29 2007-03-27 Carvalho Ricardo Azevedo Ponte Implantable and sealable system for unidirectional delivery of therapeutic agents to tissues
US7749528B2 (en) * 2001-08-29 2010-07-06 Ricardo Azevedo Pontes De Carvalho Implantable and sealable medical device for unidirectional delivery of therapeutic agents to tissues
US7951155B2 (en) 2002-03-15 2011-05-31 Glaukos Corporation Combined treatment for cataract and glaucoma treatment
US7186232B1 (en) 2002-03-07 2007-03-06 Glaukoa Corporation Fluid infusion methods for glaucoma treatment
US7621907B2 (en) 2002-03-11 2009-11-24 Alcon, Inc. Implantable drug delivery system
CA2483275A1 (en) * 2002-05-03 2003-11-13 Alcon, Inc. Method of treating vascular endothelial growth factor mediated vascular disorders using amfenac or nepafenac
WO2004012742A1 (en) * 2002-08-05 2004-02-12 Alcon, Inc. Use of anecortave acetate for the protection of visual acuity in patients with age related macular degeneration
DE10238310A1 (en) * 2002-08-21 2004-03-04 Erich Jaeger Gmbh electrode assembly
US7488303B1 (en) * 2002-09-21 2009-02-10 Glaukos Corporation Ocular implant with anchor and multiple openings
CA2498489C (en) * 2002-09-29 2010-02-23 Surmodics, Inc. Method for subretinal administration of therapeutics including steroids;method for localizing pharmacodynamic action at the choroid and the retina; and related methods for treatment and/or prevention of retinal diseases
US20030187072A1 (en) * 2003-02-14 2003-10-02 Kapin Michael A. Method of treating angiogenesis-related disorders
EP1670480A4 (en) * 2003-02-20 2007-10-10 Alcon Inc Use of steroids to treat ocular disorders
RU2005129278A (en) * 2003-02-20 2006-01-27 Алькон, Инк. (Ch) Glucocorticoid formulations for the treatment of eye pathological angiogenesis
US20040236343A1 (en) * 2003-05-23 2004-11-25 Taylor Jon B. Insertion tool for ocular implant and method for using same
US20040259765A1 (en) * 2003-06-13 2004-12-23 Bingaman David P. Formulations of non-steroidal anti-inflammatory agents to treat pathologic ocular angiogenesis
JP2007521274A (en) * 2003-06-20 2007-08-02 アルコン,インコーポレイテッド Treatment of age-related macular degeneration using a combination of multiple components
US20050009910A1 (en) * 2003-07-10 2005-01-13 Allergan, Inc. Delivery of an active drug to the posterior part of the eye via subconjunctival or periocular delivery of a prodrug
CN1805719A (en) * 2003-07-10 2006-07-19 爱尔康公司 Ophthalmic drug delivery device
CA2536454C (en) 2003-08-26 2013-03-26 Vista Scientific Ocular drug delivery device
EP1682132A1 (en) 2003-09-18 2006-07-26 Macusight, Inc. Transscleral delivery
US20050158365A1 (en) * 2003-12-22 2005-07-21 David Watson Drug delivery device with mechanical locking mechanism
US7276050B2 (en) * 2004-03-02 2007-10-02 Alan Franklin Trans-scleral drug delivery method and apparatus
WO2005105133A3 (en) * 2004-04-23 2006-03-02 Massachusetts Eye & Ear Infirm Methods and compositions for preserving the viability of photoreceptor cells
WO2006014484A3 (en) 2004-07-02 2006-06-22 Juan Eugene De Methods and devices for the treatment of ocular conditions
US7722669B2 (en) * 2004-08-13 2010-05-25 Richard Foulkes Method and insert for modifying eye color
US8246569B1 (en) 2004-08-17 2012-08-21 California Institute Of Technology Implantable intraocular pressure drain
CN100428958C (en) 2004-09-06 2008-10-29 段亚东 Implant agent for treating ophthalmopathy
US8663639B2 (en) 2005-02-09 2014-03-04 Santen Pharmaceutical Co., Ltd. Formulations for treating ocular diseases and conditions
EP3025713A1 (en) 2005-02-09 2016-06-01 Santen Pharmaceutical Co., Ltd Liquid formulations for treatment of diseases or conditions
JP2008533204A (en) * 2005-03-21 2008-08-21 マクサイト, インコーポレイテッド Drug delivery system for the treatment of a disease or condition
CN101180086A (en) 2005-04-08 2008-05-14 苏尔莫迪克斯公司 Sustained release implants for subretinal delivery
US20060258994A1 (en) * 2005-05-12 2006-11-16 Avery Robert L Implantable delivery device for administering pharmacological agents to an internal portion of a body
EP1909812A4 (en) 2005-07-27 2009-11-25 Univ Florida Small compounds that correct protein misfolding and uses thereof
US20070212397A1 (en) * 2005-09-15 2007-09-13 Roth Daniel B Pharmaceutical delivery device and method for providing ocular treatment
WO2007047626A1 (en) * 2005-10-14 2007-04-26 Alcon, Inc. Combination treatment with anecortave acetate and bevacizumab or ranibizumab for pathologic ocular angiogenesis
WO2007064752A3 (en) 2005-11-29 2008-08-14 Richard Anthony Brigandi Treatment of ocular neovascular disorders such as macular degeneration, angiod streaks, uveitis and macular edema
WO2007092620A3 (en) 2006-02-09 2009-03-26 Macusight Inc Stable formulations, and methods of their preparation and use
EP1998829B1 (en) * 2006-03-14 2011-02-09 University Of Southern California Mems device for delivery of therapeutic agents
EP2001466B1 (en) 2006-03-23 2016-01-06 Santen Pharmaceutical Co., Ltd Low-dose rapamycin for the treatment of vascular permeability-related diseases
US20070293807A1 (en) * 2006-05-01 2007-12-20 Lynch Mary G Dual drainage pathway shunt device and method for treating glaucoma
US8216603B2 (en) * 2006-05-04 2012-07-10 Herbert Edward Kaufman Method, device, and system for delivery of therapeutic agents to the eye
WO2008061043A3 (en) 2006-11-10 2008-09-25 Glaukos Corp Uveoscleral shunt and methods for implanting same
WO2008063639A3 (en) * 2006-11-21 2008-07-31 Massachusetts Eye & Ear Infirm Compositions and methods for preserving cells of the eye
EP2091481A2 (en) * 2006-12-18 2009-08-26 Alcon Research, Ltd. Devices and methods for ophthalmic drug delivery
DE102007024642A1 (en) 2007-05-24 2008-11-27 Eyesense Ag Hydrogel implant for sensors of metabolites on the eye
WO2009086112A3 (en) * 2007-12-20 2009-10-15 University Of Southern California Apparatus and methods for delivering therapeutic agents
ES2577502T3 (en) * 2008-01-03 2016-07-15 University Of Southern California Implantable drug delivery devices and apparatus to recharge devices
US8231608B2 (en) 2008-05-08 2012-07-31 Minipumps, Llc Drug-delivery pumps and methods of manufacture
DK2320989T3 (en) * 2008-05-08 2015-06-22 Minipumps Llc Implantable pumps and needles thereof
US9333297B2 (en) 2008-05-08 2016-05-10 Minipumps, Llc Drug-delivery pump with intelligent control
US8348897B2 (en) * 2008-05-08 2013-01-08 Minipumps, Llc Implantable drug-delivery devices, and apparatus and methods for filling the devices
CN102026599A (en) 2008-05-12 2011-04-20 犹他大学研究基金会 Intraocular drug delivery device and associated methods
US9095404B2 (en) 2008-05-12 2015-08-04 University Of Utah Research Foundation Intraocular drug delivery device and associated methods
WO2010056677A1 (en) 2008-11-12 2010-05-20 Duke University Methods of inhibiting cancer cell growth with hdac inhibitors and methods of screening for hdac10 inhibitors
US8372036B2 (en) 2009-05-06 2013-02-12 Alcon Research, Ltd. Multi-layer heat assembly for a drug delivery device
CA2764063A1 (en) 2009-06-03 2010-12-09 Forsight Labs, Llc Anterior segment drug delivery
ES2610429T3 (en) 2009-06-16 2017-04-27 Bikam Pharmaceuticals, Inc. Opsin binding ligands, compositions and methods of use
EP2467797B1 (en) * 2009-08-18 2017-07-19 MiniPumps, LLC Electrolytic drug-delivery pump with adaptive control
WO2011039648A1 (en) 2009-09-30 2011-04-07 Glaxo Wellcome Manufacturing Pte Ltd. Methods of administration and treatment
US8177747B2 (en) 2009-12-22 2012-05-15 Alcon Research, Ltd. Method and apparatus for drug delivery
WO2011133964A3 (en) 2010-04-23 2012-08-09 Massachusetts Eye And Ear Infirmary Methods and compositions for preserving photoreceptor and retinal pigment epithelial cells
WO2011146483A1 (en) 2010-05-17 2011-11-24 Aerie Pharmaceuticals, Inc. Drug delivery devices for delivery of ocular therapeutic agents
US8689439B2 (en) 2010-08-06 2014-04-08 Abbott Laboratories Method for forming a tube for use with a pump delivery system
US8377001B2 (en) 2010-10-01 2013-02-19 Abbott Laboratories Feeding set for a peristaltic pump system
US8377000B2 (en) 2010-10-01 2013-02-19 Abbott Laboratories Enteral feeding apparatus having a feeding set
US20120109054A1 (en) * 2010-10-29 2012-05-03 Vista Scientific Llc Devices with an erodible surface for delivering at least one active agent to tissue over a prolonged period of time
WO2012061045A3 (en) 2010-11-01 2013-07-11 Massachusetts Eye And Ear Infirmary Methods and compositions for preserving retinal ganglion cells
US9603997B2 (en) 2011-03-14 2017-03-28 Minipumps, Llc Implantable drug pumps and refill devices therefor
US20150005254A1 (en) 2011-06-27 2015-01-01 Massachusetts Eye And Ear Infirmary Methods for treating ocular inflammatory disorders
WO2013025840A1 (en) 2011-08-15 2013-02-21 Massachusetts Eye And Ear Infirmary Methods for preserving photoreceptor cell viability following retinal detachment
WO2013040238A3 (en) 2011-09-13 2015-07-16 Vista Scientific Llc Sustained release ocular drug delivery devices and methods of manufacture
CN103917202B (en) 2011-09-14 2016-06-29 弗赛特影像5股份有限公司 Ocular insert devices and methods
EP2768307A4 (en) 2011-10-19 2015-08-26 Bikam Pharmaceuticals Inc Opsin-binding ligands, compositions and methods of use
US9353063B2 (en) 2011-11-30 2016-05-31 Bikam Pharmaceuticals, Inc. Opsin-binding ligands, compositions and methods of use
WO2013081642A1 (en) 2011-12-01 2013-06-06 Bikam Pharmaceuticals, Inc. Opsin-binding ligands, compositions and methods of use
US9750636B2 (en) 2012-10-26 2017-09-05 Forsight Vision5, Inc. Ophthalmic system for sustained release of drug to eye
US9730638B2 (en) 2013-03-13 2017-08-15 Glaukos Corporation Intraocular physiological sensor
US9592151B2 (en) 2013-03-15 2017-03-14 Glaukos Corporation Systems and methods for delivering an ocular implant to the suprachoroidal space within an eye
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US20170073674A1 (en) 2014-03-05 2017-03-16 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating usher syndrome and retinitis pigmentosa
WO2017075475A1 (en) 2015-10-30 2017-05-04 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating herpes simplex virus
CN105997338A (en) * 2016-03-09 2016-10-12 泰山医学院 Drug delivery system through vitreous body nano-material

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416530A (en) * 1966-03-02 1968-12-17 Richard A. Ness Eyeball medication dispensing tablet
US3828777A (en) * 1971-11-08 1974-08-13 Alza Corp Microporous ocular device
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
US4300557A (en) * 1980-01-07 1981-11-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method for treating intraocular malignancies
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US4853224A (en) * 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4946450A (en) * 1989-04-18 1990-08-07 Biosource Genetics Corporation Glucan/collagen therapeutic eye shields
US4997652A (en) * 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US5147647A (en) * 1986-10-02 1992-09-15 Sohrab Darougar Ocular insert for the fornix
US5164188A (en) * 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5178635A (en) * 1992-05-04 1993-01-12 Allergan, Inc. Method for determining amount of medication in an implantable device
US5322691A (en) * 1986-10-02 1994-06-21 Sohrab Darougar Ocular insert with anchoring protrusions
US5378475A (en) * 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
US5403901A (en) * 1990-11-07 1995-04-04 Nestle S.A. Flexible, high refractive index polymers
US5443505A (en) * 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5466466A (en) * 1989-02-18 1995-11-14 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Therapeutic system for the retarded and controlled transdermal or transmucous administration of active substrates II
US5516522A (en) * 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US5632984A (en) * 1993-07-22 1997-05-27 Oculex Pharmaceuticals, Inc. Method of treatment of macular degeneration
US5679666A (en) * 1991-11-22 1997-10-21 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization by treatment with angiostatic steroids
US5710165A (en) * 1994-07-06 1998-01-20 Synthelabo Use of polyamine antagonists for the treatment of glaucoma
US5725493A (en) * 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5743274A (en) * 1996-03-18 1998-04-28 Peyman; Gholam A. Macular bandage for use in the treatment of subretinal neovascular members
US5766619A (en) * 1992-05-05 1998-06-16 Aiache; Jean-Marc Pharmaceutical dosage form for ocular administration and preparation process
US5770592A (en) * 1991-11-22 1998-06-23 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization using angiostatic steroids
US5773019A (en) * 1995-09-27 1998-06-30 The University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
US5797898A (en) * 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
US5824073A (en) * 1996-03-18 1998-10-20 Peyman; Gholam A. Macular indentor for use in the treatment of subretinal neovascular membranes
US5836935A (en) * 1994-11-10 1998-11-17 Ashton; Paul Implantable refillable controlled release device to deliver drugs directly to an internal portion of the body
US5902598A (en) * 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US5904144A (en) * 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
US5916584A (en) * 1994-10-25 1999-06-29 Daratech Proprietary Limited Controlled release container with core and outer shell
US6074661A (en) * 1997-08-11 2000-06-13 Allergan Sales, Inc. Sterile bioerodible occular implant device with a retinoid for improved biocompatability
US6120460A (en) * 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US6146366A (en) * 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
US6217895B1 (en) * 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6375972B1 (en) * 2000-04-26 2002-04-23 Control Delivery Systems, Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
US6413540B1 (en) * 1999-10-21 2002-07-02 Alcon Universal Ltd. Drug delivery device
US6669950B2 (en) * 1999-10-21 2003-12-30 Alcon, Inc. Ophthalmic drug delivery device
US6719750B2 (en) * 2000-08-30 2004-04-13 The Johns Hopkins University Devices for intraocular drug delivery

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756478A (en) * 1971-02-03 1973-09-04 D Podell Eye drop dispenser with liquid metering device
EP0486589B1 (en) * 1989-08-14 1998-03-04 PHOTOGENESIS Incorporated Surgical instrument and cell isolation
DE4022553A1 (en) 1990-07-16 1992-01-23 Hund Helmut Gmbh Medical contact lens - with recess contg. therapeutically or diagnostically active substance
WO1993020785A1 (en) * 1992-04-20 1993-10-28 Basilice Vincent P Improvements in dispensing eye drops
US5387202A (en) * 1992-07-20 1995-02-07 Aaron Medical Industries Eye drop dispensing device
WO1994005257A1 (en) 1992-09-08 1994-03-17 Allergan, Inc. Sustained release of ophthalmic drugs from a soluble polymer drug delivery vehicle
US5707643A (en) * 1993-02-26 1998-01-13 Santen Pharmaceutical Co., Ltd. Biodegradable scleral plug
CA2158443C (en) * 1993-03-16 2003-11-25 Stephen E. Hughes Method for preparation and transplantation of volute grafts and surgical instrument therefor
CA2185699A1 (en) 1994-04-04 1995-10-12 William R. Freeman Use of phosphonylmethoxyalkyl nucleosides for the treatment of raised intraocular pressure
US5466233A (en) 1994-04-25 1995-11-14 Escalon Ophthalmics, Inc. Tack for intraocular drug delivery and method for inserting and removing same
EP0957949B1 (en) 1995-05-14 2004-08-04 Optonol Ltd. Intraocular implant, delivery device, and method of implantation
WO1997014415A1 (en) 1995-10-19 1997-04-24 F.H. Faulding & Co. Limited Analgesic immediate and controlled release pharmaceutical composition
JP3309175B2 (en) 1996-03-25 2002-07-29 参天製薬株式会社 Proteinaceous drug-containing scleral plug
US5941250A (en) * 1996-11-21 1999-08-24 University Of Louisville Research Foundation Inc. Retinal tissue implantation method
WO1998023228A1 (en) 1996-11-25 1998-06-04 Alza Corporation Directional drug delivery stent
DE69816980D1 (en) 1997-03-31 2003-09-11 Alza Corp Implantable diffusion delivery system
JPH1170138A (en) * 1997-07-02 1999-03-16 Santen Pharmaceut Co Ltd Polylactic acid scleral plug
US6066671A (en) * 1997-12-19 2000-05-23 Alcon Laboratories, Inc. Treatment of GLC1A glaucoma with 3-benzoyl-phenylacetic acids, esters, or amides
JP2002506028A (en) 1998-03-13 2002-02-26 ジョンズ ホプキンズ ユニヴァーシティ スクール オヴ メディシン Use of a protein tyrosine inhibitors such as genistein in the treatment of diabetic retinopathy or ocular inflammation
US6399655B1 (en) 1998-12-22 2002-06-04 Johns Hopkins University, School Of Medicine Method for the prophylactic treatment of cataracts
RU2149615C1 (en) 1999-11-10 2000-05-27 Нестеров Аркадий Павлович Method for introducing drugs in treating posterior eye segment diseases

Patent Citations (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416530A (en) * 1966-03-02 1968-12-17 Richard A. Ness Eyeball medication dispensing tablet
US3828777A (en) * 1971-11-08 1974-08-13 Alza Corp Microporous ocular device
US4014335A (en) * 1975-04-21 1977-03-29 Alza Corporation Ocular drug delivery device
US4300557A (en) * 1980-01-07 1981-11-17 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Method for treating intraocular malignancies
US4327725A (en) * 1980-11-25 1982-05-04 Alza Corporation Osmotic device with hydrogel driving member
US5322691A (en) * 1986-10-02 1994-06-21 Sohrab Darougar Ocular insert with anchoring protrusions
US5147647A (en) * 1986-10-02 1992-09-15 Sohrab Darougar Ocular insert for the fornix
US4853224A (en) * 1987-12-22 1989-08-01 Visionex Biodegradable ocular implants
US4997652A (en) * 1987-12-22 1991-03-05 Visionex Biodegradable ocular implants
US5466466A (en) * 1989-02-18 1995-11-14 Lts Lohmann Therapie-Systeme Gmbh & Co. Kg Therapeutic system for the retarded and controlled transdermal or transmucous administration of active substrates II
US4946450A (en) * 1989-04-18 1990-08-07 Biosource Genetics Corporation Glucan/collagen therapeutic eye shields
US5164188A (en) * 1989-11-22 1992-11-17 Visionex, Inc. Biodegradable ocular implants
US5403901A (en) * 1990-11-07 1995-04-04 Nestle S.A. Flexible, high refractive index polymers
US5378475A (en) * 1991-02-21 1995-01-03 University Of Kentucky Research Foundation Sustained release drug delivery devices
US5679666A (en) * 1991-11-22 1997-10-21 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization by treatment with angiostatic steroids
US5770592A (en) * 1991-11-22 1998-06-23 Alcon Laboratories, Inc. Prevention and treatment of ocular neovascularization using angiostatic steroids
US5300114A (en) * 1992-05-04 1994-04-05 Allergan, Inc. Subconjunctival implants for ocular drug delivery
US5476511A (en) * 1992-05-04 1995-12-19 Allergan, Inc. Subconjunctival implants for ocular drug delivery
US5178635A (en) * 1992-05-04 1993-01-12 Allergan, Inc. Method for determining amount of medication in an implantable device
US5766619A (en) * 1992-05-05 1998-06-16 Aiache; Jean-Marc Pharmaceutical dosage form for ocular administration and preparation process
US5632984A (en) * 1993-07-22 1997-05-27 Oculex Pharmaceuticals, Inc. Method of treatment of macular degeneration
US5443505A (en) * 1993-11-15 1995-08-22 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5766242A (en) * 1993-11-15 1998-06-16 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5824072A (en) * 1993-11-15 1998-10-20 Oculex Pharmaceuticals, Inc. Biocompatible ocular implants
US5516522A (en) * 1994-03-14 1996-05-14 Board Of Supervisors Of Louisiana State University Biodegradable porous device for long-term drug delivery with constant rate release and method of making the same
US5710165A (en) * 1994-07-06 1998-01-20 Synthelabo Use of polyamine antagonists for the treatment of glaucoma
US5916584A (en) * 1994-10-25 1999-06-29 Daratech Proprietary Limited Controlled release container with core and outer shell
US5836935A (en) * 1994-11-10 1998-11-17 Ashton; Paul Implantable refillable controlled release device to deliver drugs directly to an internal portion of the body
US5725493A (en) * 1994-12-12 1998-03-10 Avery; Robert Logan Intravitreal medicine delivery
US5830173A (en) * 1994-12-12 1998-11-03 Avery; Robert Logan Intravitreal medicine delivery
US5773019A (en) * 1995-09-27 1998-06-30 The University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
US6001386A (en) * 1995-09-27 1999-12-14 University Of Kentucky Research Foundation Implantable controlled release device to deliver drugs directly to an internal portion of the body
US5824073A (en) * 1996-03-18 1998-10-20 Peyman; Gholam A. Macular indentor for use in the treatment of subretinal neovascular membranes
US6126687A (en) * 1996-03-18 2000-10-03 Peyman; Gholam A. Macular bandage for use in the treatment of subretinal neovascular membranes
US5743274A (en) * 1996-03-18 1998-04-28 Peyman; Gholam A. Macular bandage for use in the treatment of subretinal neovascular members
US5904144A (en) * 1996-03-22 1999-05-18 Cytotherapeutics, Inc. Method for treating ophthalmic diseases
US5797898A (en) * 1996-07-02 1998-08-25 Massachusetts Institute Of Technology Microchip drug delivery devices
US6120460A (en) * 1996-09-04 2000-09-19 Abreu; Marcio Marc Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions
US6074661A (en) * 1997-08-11 2000-06-13 Allergan Sales, Inc. Sterile bioerodible occular implant device with a retinoid for improved biocompatability
US6110485A (en) * 1997-08-11 2000-08-29 Allergan Sales, Inc. Sterile bioerodible implant device with a retinoid for improved biocompatability
US5902598A (en) * 1997-08-28 1999-05-11 Control Delivery Systems, Inc. Sustained release drug delivery devices
US6146366A (en) * 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
US6217895B1 (en) * 1999-03-22 2001-04-17 Control Delivery Systems Method for treating and/or preventing retinal diseases with sustained release corticosteroids
US6413540B1 (en) * 1999-10-21 2002-07-02 Alcon Universal Ltd. Drug delivery device
US6669950B2 (en) * 1999-10-21 2003-12-30 Alcon, Inc. Ophthalmic drug delivery device
US6808719B2 (en) * 1999-10-21 2004-10-26 Alcon, Inc. Drug delivery device
US6375972B1 (en) * 2000-04-26 2002-04-23 Control Delivery Systems, Inc. Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
US6719750B2 (en) * 2000-08-30 2004-04-13 The Johns Hopkins University Devices for intraocular drug delivery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180046B2 (en) 2001-06-12 2015-11-10 The Johns Hopkins University School Of Medicine Reservoir device for intraocular drug delivery
US9522082B2 (en) 2001-06-12 2016-12-20 The Johns Hopkins University Reservoir device for intraocular drug delivery
US8486052B2 (en) 2001-06-12 2013-07-16 The Johns Hopkins University School Of Medicine Reservoir device for intraocular drug delivery
US8399006B2 (en) 2009-01-29 2013-03-19 Forsight Vision4, Inc. Posterior segment drug delivery
US9851351B2 (en) 2009-01-29 2017-12-26 Forsight Vision4, Inc. Posterior segment drug delivery
US8795712B2 (en) 2009-01-29 2014-08-05 Forsight Vision4, Inc. Posterior segment drug delivery
US8808727B2 (en) 2009-01-29 2014-08-19 Forsight Vision4, Inc. Posterior segment drug delivery
US8298578B2 (en) 2009-01-29 2012-10-30 Forsight Vision4, Inc. Posterior segment drug delivery
US9417238B2 (en) 2009-01-29 2016-08-16 Forsight Vision4, Inc. Posterior segment drug delivery
US9066779B2 (en) 2009-01-29 2015-06-30 Forsight Vision4, Inc. Implantable therapeutic device
US8277830B2 (en) 2009-01-29 2012-10-02 Forsight Vision4, Inc. Posterior segment drug delivery
US8623395B2 (en) 2010-01-29 2014-01-07 Forsight Vision4, Inc. Implantable therapeutic device
US9033911B2 (en) 2010-08-05 2015-05-19 Forsight Vision4, Inc. Injector apparatus and method for drug delivery
US9492315B2 (en) 2010-08-05 2016-11-15 Forsight Vision4, Inc. Implantable therapeutic device
US8905963B2 (en) 2010-08-05 2014-12-09 Forsight Vision4, Inc. Injector apparatus and method for drug delivery
US9861521B2 (en) 2010-08-05 2018-01-09 Forsight Vision4, Inc. Injector apparatus and method for drug delivery
US9883968B2 (en) 2012-09-13 2018-02-06 Forsight Vision4, Inc. Fluid exchange apparatus and methods
US9526654B2 (en) 2013-03-28 2016-12-27 Forsight Vision4, Inc. Ophthalmic implant for delivering therapeutic substances
US9474756B2 (en) 2014-08-08 2016-10-25 Forsight Vision4, Inc. Stable and soluble formulations of receptor tyrosine kinase inhibitors, and methods of preparation thereof

Also Published As

Publication number Publication date Type
CN100341470C (en) 2007-10-10 grant
WO2001028474A1 (en) 2001-04-26 application
EP1221919A1 (en) 2002-07-17 application
US6416777B1 (en) 2002-07-09 grant
DE60018298T2 (en) 2006-01-12 grant
CA2384255A1 (en) 2001-04-26 application
CA2384255C (en) 2010-01-26 grant
US20040131655A1 (en) 2004-07-08 application
CN1376042A (en) 2002-10-23 application
US20030003129A1 (en) 2003-01-02 application
DE60018298D1 (en) 2005-03-31 grant
JP2003511205A (en) 2003-03-25 application
JP4685311B2 (en) 2011-05-18 grant
US6669950B2 (en) 2003-12-30 grant
ES2237463T3 (en) 2005-08-01 grant
DK1221919T3 (en) 2005-06-20 grant
EP1221919B1 (en) 2005-02-23 grant

Similar Documents

Publication Publication Date Title
Cardillo et al. Single intraoperative application versus postoperative mitomycin C eye drops in pterygium surgery
US5147647A (en) Ocular insert for the fornix
US6719750B2 (en) Devices for intraocular drug delivery
Handa et al. Extracapsular cataract extraction with posterior chamber lens implantation in patients with glaucoma
US5830173A (en) Intravitreal medicine delivery
Zaldivar et al. Combined posterior chamber phakic intraocular lens and laser in situ keratomileusis: bioptics for extreme myopia
US7195774B2 (en) Implantable and sealable system for unidirectional delivery of therapeutic agents to tissues
Kane et al. Iluvien™: a new sustained delivery technology for posterior eye disease
US20070243230A1 (en) Nasolacrimal Drainage System Implants for Drug Therapy
US7883717B2 (en) Reservoir device for intraocular drug delivery
US6378526B1 (en) Methods of ophthalmic administration
Pesando et al. Posterior chamber phakic intraocular lens (ICL) for hyperopia: ten-year follow-up
US20060241749A1 (en) Glaucoma stent system
Epstein et al. Neodymium-YAG laser therapy to the anterior hyaloid in aphakic malignant (ciliovitreal block) glaucoma
US5466233A (en) Tack for intraocular drug delivery and method for inserting and removing same
US7708711B2 (en) Ocular implant with therapeutic agents and methods thereof
US5472436A (en) Ocular appliance for delivering medication
EP0228185B1 (en) Tissue-implantable fluid-dissipating device
US20050064010A1 (en) Transscleral delivery
US7163543B2 (en) Combined treatment for cataract and glaucoma treatment
US20050143363A1 (en) Method for subretinal administration of therapeutics including steroids; method for localizing pharmacodynamic action at the choroid of the retina; and related methods for treatment and/or prevention of retinal diseases
US20050232972A1 (en) Drug delivery via punctal plug
Spiegel et al. Coexistent primary open-angle glaucoma and cataract: interim analysis of a trabecular micro-bypass stent and concurrent cataract surgery
US20070118147A1 (en) Combined treatment for cataract and glaucoma treatment
US20090104248A1 (en) Lacrimal implants and related methods