US20040095724A1 - Heat dissipation device for server - Google Patents

Heat dissipation device for server Download PDF

Info

Publication number
US20040095724A1
US20040095724A1 US10/350,761 US35076103A US2004095724A1 US 20040095724 A1 US20040095724 A1 US 20040095724A1 US 35076103 A US35076103 A US 35076103A US 2004095724 A1 US2004095724 A1 US 2004095724A1
Authority
US
United States
Prior art keywords
heat dissipation
dissipation device
server
housing
guide cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/350,761
Other versions
US6731502B1 (en
Inventor
Cheng-Chung Hsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US6731502B1 publication Critical patent/US6731502B1/en
Publication of US20040095724A1 publication Critical patent/US20040095724A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications

Definitions

  • the present invention relates to heat dissipation devices, and more particularly, to a heat dissipation device used in a network server for enhancing heat dissipating performances.
  • a main electronic component such as central processing unit (CPU) mounted in the computer is provided with increased operating speed and enhanced ability of data processing, such that a significant amount of heat is produced during operation of the electronic component.
  • a surface temperature thereof may reach up to or above 100° C., thereby resulting in an overheating problem.
  • a general solution is to install a heat dissipation device (such as heat dissipation fans) in the computer, whereby heat produced from operation of the electronic component can be dissipation via the heat dissipation device so as to eliminate operational burden applied to the electronic component by overheat that may damage or impair the electronic component or computer system.
  • an old heat dissipation device can not effectively dissipate heat produced from the upgraded electronic component that thereby may be impaired or whose lifetime may be shortened by overheat.
  • a novel heat dissipation device which can flexibly arrange internal components thereof to facilitate heat dissipating performances, for example to concentrate heat flows in the computer system or to increase the number of heat dissipation fans, such that the heat dissipation problem in response to upgrading of the electronic component may be solved desirably.
  • heat dissipating fans of a current heat dissipation device are directly fixed to the computer without providing spare installation space for the fans; this not only makes component assembly or disassembly inconvenient to implement but also reduces flexibility in uses of the heat dissipation device. For example, if a heat dissipation fan breaks down or an electronic component of the computer is to be renewed, the entire heat dissipation device may need to be replaced, which thereby undesirably leads to increase in costs.
  • the problem to be solved herein is to provide a heat dissipation device by which heat dissipating performances can be enhanced, and heat dissipation components thereof can be easily assembled/disassembled and altered in structural arrangement to thereby reduce fabrication costs in the use of the heat dissipation device.
  • a primary objective of the present invention is to provide a heat dissipation device, which can concentrate heat flows to effectively enhance heat dissipating efficiency.
  • Another objective of the invention is to provide a heat dissipation device, which can optionally change the number of heat dissipation fans or replace the heat dissipation fans to achieve desirable heat dissipating performances.
  • a further objective of the invention is to provide a heat dissipation device having spare heat dissipation fans to prolong lifetime of the heat dissipation device.
  • a further objective of the invention is to provide a heat dissipation device in which heat dissipation fans are simple in structure and easy to be assembled/disassembled, making structural assembly or disassembly time-effective to implement.
  • the present invention proposes a heat dissipation device for a server, including: a fan body comprising a housing and at least a fan set, wherein the housing encompasses to form a passage; and a guide cover connected to the fan body.
  • a top side of the housing is formed with a plurality of openings by which the fan set can be inserted into the passage of the housing, and two peripheral sides of the housing are formed with a plurality of elastic members and positioning holes for securing the fan set in position.
  • the guide cover is made of a material with poor thermal conductivity and formed with an opening at a side thereof connected to a heat source of the server, the opening acting as a primary inlet for directing heat produced from the heat source into the passage of the housing and dissipating the heat to outside of the server by means of the fan set.
  • the number of openings formed on the top side of the housing can be optionally increased to accommodate additional fan sets that are used to effectively dissipate concentrated heat flows from the guide cover to outside of the server, thereby improving heat dissipating efficiency and enhancing heat dissipating performances.
  • the fan sets can be optionally decreased in number or replaced, making unused fan sets serve as spare fan sets that may be in use when the primary fan sets break down to thereby prolong lifetime of the fan body.
  • the elastic members and positioning holes formed on the housing facilitate assembly and disassembly of the fan sets, thereby providing convenience and flexibility in structural arrangement for a user using the heat dissipation device.
  • FIG. 1 is a schematic diagram of a heat dissipation device according to a preferred embodiment of the invention
  • FIG. 2 is a schematic diagram of a housing used in the heat dissipation device shown in FIG. 1
  • FIG. 3 is a schematic diagram of a fan body of the heat dissipation device shown in FIG. 1
  • FIG. 4 is a schematic diagram of a guide cover used in the heat dissipation device shown in FIG. 1;
  • FIG. 5 is a schematic diagram of installation of the heat dissipation device shown in FIG. 1 in a server computer.
  • the heat dissipation device 1 includes a fan body 10 and a guide cover 30 , wherein the fan boy 10 is composed of a housing 11 and two fan sets 12 each having a fan 12 ′ (shown in FIG. 3). Sides of the housing 11 encompass to form a passage 13 (shown in FIG. 2), and a top side of the housing 11 is formed with two openings 14 for allowing the two fan sets 12 to be inserted into the passage 13 via the openings 14 respectively.
  • the guide cover 30 is connected to the fan body 10 and formed with inlets 31 ( 31 a , 31 b , as shown in FIG.
  • the housing 11 is made of a metal material, as shown in FIGS. 2 and 3, sides of the housing 11 encompass to form a passage 13 ; in other words, the housing 11 is only formed by four sides surrounding the passage 13 without having front and back sides to thereby maximize area for airflows passing through the passage 13 . Moreover, a top side of the housing 11 is formed with two openings 14 spaced by an interposer 15 , the openings 14 being sized sufficiently for allowing the two fan sets 12 to be inserted via the openings 14 respectively into the passage 13 .
  • two peripheral sides of the housing 11 are each formed with a pair of elastic pressing members 16 and a pair of positioning holes 17 corresponding in position to the two openings 14 on the top side of the housing 11 .
  • two sides of each of the fan sets 12 are adapted to be engaged with the corresponding elastic pressing members 16 and positioning holes 17 , whereby the elastic pressing members 16 are used to secure the fan sets 12 by means of elasticity and reduce vibration of the fans 12 ′ during operation, and the positioning holes 17 are coupled to protrusions 18 (shown in FIG.
  • each of the fan sets 12 formed on the two sides of each of the fan sets 12 to enhance positioning of the fan sets 12 .
  • four stopping members 19 for clamping the side of each of the fan sets 12 inserted into the passage 13 so as to facilitate positioning of the fan sets 12 and reduction of vibration during operation of the fans 12 ′.
  • the above elastic pressing members 16 , positioning holes 17 and stopping members 19 formed on the housing 11 further function for simplifying assembly and disassembly of the fan sets 12 ; in particular, a user can optionally assemble or disassemble the fan sets 12 easily without having to use extra tools.
  • one or two fan sets 12 are optionally utilized, or when any one of the fan sets 12 breaks down, it can be easily removed without affecting operation of the other fan set 12 ; as shown in FIG. 3, a lid 20 is attached to and seals an opening 14 by means of a screw 25 if no fan set 12 is provided for the opening 14 formed on the top side of the housing 11 .
  • the guide cover 30 is made of a material with poor thermal conductivity; as shown in FIG. 4, the guide cover 30 is shaped in compliance with a structural arrangement of a server system where the heat dissipation device 1 is installed.
  • the guide cover 30 is formed with a step-structured body 33 having differently-sized square openings 31 a , 32 , wherein the larger opening 32 is connected to the housing 11 of the fan body 10 and acts as a connection opening, and the smaller opening 31 a is connected to a system heat source and acts as a primary inlet for the guide cover 30
  • a top side of the step-structured body 33 is formed with a plurality of auxiliary inlets 31 b for increasing heat flows flowing into the guide cover 30 to facilitate improvement in heat dissipation performances the server system.
  • a turning portion of the step-structured body 33 is provided with a triangular member 34 integrally formed with the body 33 and serving as a handle for the guide cover 30 .
  • FIG. 1 in the heat dissipation device 1 according to this embodiment, the fan body 10 is engaged with the guide cover 30 in a manner that two hooks 35 integrally formed on the top side of the step-structured body 33 in proximity to the connection opening 32 , are coupled to two apertures 21 (shown in FIG. 2) formed on the top side of the housing 11 , making the guide cover 30 cover and abut against the top side and two peripheral sides of the housing 11 free of any gap between the guide cover 30 and the housing 11 .
  • heat flows in the guide cover 30 can be entirely and completely directed into the passage 13 of the housing 11 and dissipated to outside by means of the fan sets 12 .
  • FIG. 1 further shows screws 25 ′, 25 ′′ respectively provided on the fan body 11 and the guide cover 30 , which are used to fix the heat dissipation device 1 to the server computer in a manner as shown in FIG. 5.
  • the heat dissipation device 1 is beneficial with provision of the guide cover 3 for concentrating heat flows, the fan sets that are replaceable and easy to be assembled/disassembled, and spare openings 14 formed on the housing 11 for accommodating additional fan sets 12 , such that heat dissipation performances and operational convenience for users both can be enhanced.
  • the number of fan sets 12 and corresponding openings 14 are not limited to those shown in the drawings, but can be flexibly increased according to different requirements and designs to improve heat dissipating efficiency, or flexibly adjusted in arrangement of the fan sets 12 in the use of the heat dissipation device 1 according to the invention.
  • the guide cover 30 is not limitedly shaped as the foregoing step-like structure but can be flexibly shaped in compliance with a spatial arrangement of the server computer.
  • the location and number of auxiliary inlets 31 b on the guide cover 30 can also be optionally altered in accordance with the location of system heat source and an amount of heat being produced.
  • the heat dissipation device 1 can also be applied to a desktop computer, notebook computer or domestic appliance that produces heat during operation and needs to dissipate the heat to outside, for the purposes of enhancing heat dissipation performances and facilitating convenience in assembly/disassembly of the heat dissipation device 1 .

Abstract

A heat dissipation device for a server is provided, composed of a fan body and a guide cover for concentrating airflows. The guide cover concentrates heat flows from a server computer and directs the heat flows to the fan body connected with the guide cover. The fan body includes a housing and at least a fan set, wherein the fan set is inserted into a passage formed by the housing, and a fan of the fan set operates to dissipate heat flows directed by the guide cover to outside of the server computer so as to enhance heat dissipation performances. Moreover, the fan set can be easily assembled or disassembled, and optionally replaced or altered in number thereof provided for the fan body, thereby attaining to flexibly in the use of the heat dissipation device.

Description

    FIELD OF THE INVENTION
  • The present invention relates to heat dissipation devices, and more particularly, to a heat dissipation device used in a network server for enhancing heat dissipating performances. [0001]
  • BACKGROUND OF THE INVENTION
  • In respect of a commonly used computer system, a main electronic component such as central processing unit (CPU) mounted in the computer is provided with increased operating speed and enhanced ability of data processing, such that a significant amount of heat is produced during operation of the electronic component. For example, when the electronic component operates in full load, a surface temperature thereof may reach up to or above 100° C., thereby resulting in an overheating problem. A general solution is to install a heat dissipation device (such as heat dissipation fans) in the computer, whereby heat produced from operation of the electronic component can be dissipation via the heat dissipation device so as to eliminate operational burden applied to the electronic component by overheat that may damage or impair the electronic component or computer system. [0002]
  • With improvement in operating speed of electronic components, current heat dissipation devices fail to provide satisfactory heat dissipating efficiency. Especially for a CPU used in a network server that normally renders longer term or more complicated operation than a personal computer (PC) in terms of usage time, the number of distant end users, data processing and data accessing times, for solving the heat dissipation problem thereof, it thus requires an advance heat dissipation device or additional heat dissipation devices to improve heat dissipating performances. However, such an arrangement may undesirably increase fabrication costs and makes structural assembly or disassembly relatively inconvenient to implement. In another aspect, if an electronic component in the network server is upgraded with increased operating speed but not for the heat dissipation device, such an old heat dissipation device can not effectively dissipate heat produced from the upgraded electronic component that thereby may be impaired or whose lifetime may be shortened by overheat. As such, it is desired to develop a novel heat dissipation device, which can flexibly arrange internal components thereof to facilitate heat dissipating performances, for example to concentrate heat flows in the computer system or to increase the number of heat dissipation fans, such that the heat dissipation problem in response to upgrading of the electronic component may be solved desirably. [0003]
  • Furthermore, internal components such as heat dissipating fans of a current heat dissipation device are directly fixed to the computer without providing spare installation space for the fans; this not only makes component assembly or disassembly inconvenient to implement but also reduces flexibility in uses of the heat dissipation device. For example, if a heat dissipation fan breaks down or an electronic component of the computer is to be renewed, the entire heat dissipation device may need to be replaced, which thereby undesirably leads to increase in costs. [0004]
  • Therefore, the problem to be solved herein is to provide a heat dissipation device by which heat dissipating performances can be enhanced, and heat dissipation components thereof can be easily assembled/disassembled and altered in structural arrangement to thereby reduce fabrication costs in the use of the heat dissipation device. [0005]
  • SUMMARY OF THE INVENTION
  • A primary objective of the present invention is to provide a heat dissipation device, which can concentrate heat flows to effectively enhance heat dissipating efficiency. [0006]
  • Another objective of the invention is to provide a heat dissipation device, which can optionally change the number of heat dissipation fans or replace the heat dissipation fans to achieve desirable heat dissipating performances. [0007]
  • A further objective of the invention is to provide a heat dissipation device having spare heat dissipation fans to prolong lifetime of the heat dissipation device. [0008]
  • A further objective of the invention is to provide a heat dissipation device in which heat dissipation fans are simple in structure and easy to be assembled/disassembled, making structural assembly or disassembly time-effective to implement. [0009]
  • In accordance of the foregoing and other objectives, the present invention proposes a heat dissipation device for a server, including: a fan body comprising a housing and at least a fan set, wherein the housing encompasses to form a passage; and a guide cover connected to the fan body. A top side of the housing is formed with a plurality of openings by which the fan set can be inserted into the passage of the housing, and two peripheral sides of the housing are formed with a plurality of elastic members and positioning holes for securing the fan set in position. Moreover, the guide cover is made of a material with poor thermal conductivity and formed with an opening at a side thereof connected to a heat source of the server, the opening acting as a primary inlet for directing heat produced from the heat source into the passage of the housing and dissipating the heat to outside of the server by means of the fan set. [0010]
  • The number of openings formed on the top side of the housing can be optionally increased to accommodate additional fan sets that are used to effectively dissipate concentrated heat flows from the guide cover to outside of the server, thereby improving heat dissipating efficiency and enhancing heat dissipating performances. On the contrary, the fan sets can be optionally decreased in number or replaced, making unused fan sets serve as spare fan sets that may be in use when the primary fan sets break down to thereby prolong lifetime of the fan body. Furthermore, the elastic members and positioning holes formed on the housing facilitate assembly and disassembly of the fan sets, thereby providing convenience and flexibility in structural arrangement for a user using the heat dissipation device.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein: [0012]
  • FIG. 1 is a schematic diagram of a heat dissipation device according to a preferred embodiment of the invention; FIG. 2 is a schematic diagram of a housing used in the heat dissipation device shown in FIG. 1; FIG. 3 is a schematic diagram of a fan body of the heat dissipation device shown in FIG. 1; FIG. 4 is a schematic diagram of a guide cover used in the heat dissipation device shown in FIG. 1; and [0013]
  • FIG. 5 is a schematic diagram of installation of the heat dissipation device shown in FIG. 1 in a server computer.[0014]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Preferred embodiments of a heat dissipation device for a server proposed in the present invention are described in detail with reference to FIGS. [0015] 1 to 5.
  • As shown in FIG. 1, the heat dissipation device [0016] 1 according to a preferred embodiment of the invention includes a fan body 10 and a guide cover 30, wherein the fan boy 10 is composed of a housing 11 and two fan sets 12 each having a fan 12′ (shown in FIG. 3). Sides of the housing 11 encompass to form a passage 13 (shown in FIG. 2), and a top side of the housing 11 is formed with two openings 14 for allowing the two fan sets 12 to be inserted into the passage 13 via the openings 14 respectively. The guide cover 30 is connected to the fan body 10 and formed with inlets 31 (31 a, 31 b, as shown in FIG. 4) used to concentrate airflows and to direct heat produced from a system heat source into the passage 13 of the fan body 10 by which heat can be dissipated by the fans 12 to outside, wherein an airflow direction in the passage 13 is parallel to an axial direction of the fan sets 12.
  • The [0017] housing 11 is made of a metal material, as shown in FIGS. 2 and 3, sides of the housing 11 encompass to form a passage 13; in other words, the housing 11 is only formed by four sides surrounding the passage 13 without having front and back sides to thereby maximize area for airflows passing through the passage 13. Moreover, a top side of the housing 11 is formed with two openings 14 spaced by an interposer 15, the openings 14 being sized sufficiently for allowing the two fan sets 12 to be inserted via the openings 14 respectively into the passage 13. In order to secure the fan sets 12 in position after being inserted into the openings 14 and to reduce vibration produced by operation of the fans 12′, two peripheral sides of the housing 11 are each formed with a pair of elastic pressing members 16 and a pair of positioning holes 17 corresponding in position to the two openings 14 on the top side of the housing 11. When the two fan sets 12 are inserted into the openings 14 respectively, two sides of each of the fan sets 12 are adapted to be engaged with the corresponding elastic pressing members 16 and positioning holes 17, whereby the elastic pressing members 16 are used to secure the fan sets 12 by means of elasticity and reduce vibration of the fans 12′ during operation, and the positioning holes 17 are coupled to protrusions 18 (shown in FIG. 3) formed on the two sides of each of the fan sets 12 to enhance positioning of the fan sets 12. Furthermore, on an inner surface of each of the two peripheral sides of the housing 11 there are formed four stopping members 19 for clamping the side of each of the fan sets 12 inserted into the passage 13 so as to facilitate positioning of the fan sets 12 and reduction of vibration during operation of the fans 12′. The above elastic pressing members 16, positioning holes 17 and stopping members 19 formed on the housing 11 further function for simplifying assembly and disassembly of the fan sets 12; in particular, a user can optionally assemble or disassemble the fan sets 12 easily without having to use extra tools. Besides, one or two fan sets 12 are optionally utilized, or when any one of the fan sets 12 breaks down, it can be easily removed without affecting operation of the other fan set 12; as shown in FIG. 3, a lid 20 is attached to and seals an opening 14 by means of a screw 25 if no fan set 12 is provided for the opening 14 formed on the top side of the housing 11.
  • The [0018] guide cover 30 is made of a material with poor thermal conductivity; as shown in FIG. 4, the guide cover 30 is shaped in compliance with a structural arrangement of a server system where the heat dissipation device 1 is installed. The guide cover 30 is formed with a step-structured body 33 having differently- sized square openings 31 a, 32, wherein the larger opening 32 is connected to the housing 11 of the fan body 10 and acts as a connection opening, and the smaller opening 31 a is connected to a system heat source and acts as a primary inlet for the guide cover 30 When heat flows from the system heat source enter into the guide cover 30 via the primary inlet 31a, they pass through the step-structured body 33 and go into the passage 13 of the housing 11 via the connection opening 32 to thereby be dissipated by the fan sets 12 to outside of the server system. Moreover, a top side of the step-structured body 33 is formed with a plurality of auxiliary inlets 31 b for increasing heat flows flowing into the guide cover 30 to facilitate improvement in heat dissipation performances the server system. A turning portion of the step-structured body 33 is provided with a triangular member 34 integrally formed with the body 33 and serving as a handle for the guide cover 30.
  • As shown in FIG. 1, in the heat dissipation device [0019] 1 according to this embodiment, the fan body 10 is engaged with the guide cover 30 in a manner that two hooks 35 integrally formed on the top side of the step-structured body 33 in proximity to the connection opening 32, are coupled to two apertures 21 (shown in FIG. 2) formed on the top side of the housing 11, making the guide cover 30 cover and abut against the top side and two peripheral sides of the housing 11 free of any gap between the guide cover 30 and the housing 11. As a result, heat flows in the guide cover 30 can be entirely and completely directed into the passage 13 of the housing 11 and dissipated to outside by means of the fan sets 12. FIG. 1 further shows screws 25′, 25″ respectively provided on the fan body 11 and the guide cover 30, which are used to fix the heat dissipation device 1 to the server computer in a manner as shown in FIG. 5.
  • Therefore, compared to the prior art, the heat dissipation device [0020] 1 according to the invention is beneficial with provision of the guide cover 3 for concentrating heat flows, the fan sets that are replaceable and easy to be assembled/disassembled, and spare openings 14 formed on the housing 11 for accommodating additional fan sets 12, such that heat dissipation performances and operational convenience for users both can be enhanced.
  • Furthermore, the number of [0021] fan sets 12 and corresponding openings 14 are not limited to those shown in the drawings, but can be flexibly increased according to different requirements and designs to improve heat dissipating efficiency, or flexibly adjusted in arrangement of the fan sets 12 in the use of the heat dissipation device 1 according to the invention. The guide cover 30 is not limitedly shaped as the foregoing step-like structure but can be flexibly shaped in compliance with a spatial arrangement of the server computer. The location and number of auxiliary inlets 31 b on the guide cover 30 can also be optionally altered in accordance with the location of system heat source and an amount of heat being produced.
  • In addition, besides the server computer, the heat dissipation device [0022] 1 according to the invention can also be applied to a desktop computer, notebook computer or domestic appliance that produces heat during operation and needs to dissipate the heat to outside, for the purposes of enhancing heat dissipation performances and facilitating convenience in assembly/disassembly of the heat dissipation device 1.
  • The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements. [0023]

Claims (11)

What is claimed is:
1. A heat dissipation device for a server, comprising:
a fan body comprising a housing and at least a fan set, wherein the housing encompasses to form a first passage and a side of the housing is formed with a plurality of openings by which the fan set is inserted into the first passage, allowing an airflow direction in the first passage to be parallel to an axial direction of the fan set, and the housing is formed with at least a coupling member for fixing the fan set to the housing; and
a guide cover having a second passage and connected to the fan body, for concentrating heat flows and directing heat produced from a heat source of the server via the second passage of the guide cover into the first passage of the fan body, so as to allow the heat to be dissipated to outside by the fan set.
2. The heat dissipation device for a server of claim 1, wherein a hook integrally formed on the guide cover is engaged with an aperture formed through the housing for connecting the guide cover to the fan body.
3. The heat dissipation device for a server of claim 1, wherein the coupling member formed on the housing includes at least a set of elastic pressing member and positioning hole for securing the fan set in position.
4. The heat dissipation device for a server of claim 1, wherein the openings of the housing not inserted with the fan set are covered by a lid.
5. The heat dissipation device for a server of claim 1, wherein the guide cover is formed with an opening at a side thereof connected to the heat source, the opening of the guide cover acting as a primary inlet for concentrating the heat flows.
6. The heat dissipation device for a server of claim 5, wherein at least an auxiliary inlet is formed on a side other of the guide cover than the side formed with the primary inlet, so as to increase the heat flows directed into the guide cover by means of the auxiliary inlet.
7. The heat dissipation device for a server of claim 1, wherein the heat source is an electronic component of the server.
8. The heat dissipation device for a server of claim 7, wherein the electronic component is a central processing unit (CPU).
9. The heat dissipation device for a server of claim 1, wherein the housing of the fan body is made of a metal material.
10. The heat dissipation device for a server of claim 1, wherein the guide cover is made of a material with poor thermal conductivity.
11. The heat dissipation device for a server of claim 1, wherein the heat dissipation device is applicable to a desktop computer, notebook computer or domestic appliance.
US10/350,761 2002-11-14 2003-01-23 Heat dissipation device for server Expired - Lifetime US6731502B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
TW91218272U 2002-11-14
TW091218272U TW592344U (en) 2002-11-14 2002-11-14 Heat dissipating mechanism for server
TW091218272 2002-11-14

Publications (2)

Publication Number Publication Date
US6731502B1 US6731502B1 (en) 2004-05-04
US20040095724A1 true US20040095724A1 (en) 2004-05-20

Family

ID=32173911

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/350,761 Expired - Lifetime US6731502B1 (en) 2002-11-14 2003-01-23 Heat dissipation device for server

Country Status (2)

Country Link
US (1) US6731502B1 (en)
TW (1) TW592344U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110075359A1 (en) * 2009-09-30 2011-03-31 Kmc Music, Inc. Audio Amplifier in Compact Case with Peak Voltage and Current Limiting Circuit and Thermal Cooling Tunnel
US20110155345A1 (en) * 2009-12-25 2011-06-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd Mounting apparatus for heat dissipating member
WO2013060519A1 (en) * 2011-10-28 2013-05-02 Fujitsu Technology Solutions Intellectual Property Gmbh Flow-guiding hood for guiding a flow of air

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6970353B2 (en) * 2003-05-29 2005-11-29 Sun Microsystems, Inc. Fan holder and components cooling duct assembly
TWM245513U (en) * 2003-11-14 2004-10-01 Tatung Co Improved structure of backup fan
US7002797B1 (en) * 2003-11-17 2006-02-21 Nvidia Corporation Noise-reducing blower structure
TWM246696U (en) * 2003-11-18 2004-10-11 Quanta Comp Inc Removable fan module
US6951446B2 (en) * 2003-12-29 2005-10-04 Kuo-Chuan Hung Fan cover heat dissipation assembly for a host computer CPU
TWI231418B (en) * 2004-02-05 2005-04-21 Delta Electronics Inc Fan assembly
US7097556B2 (en) * 2004-07-22 2006-08-29 Enermax Technology Corporation Power supply capable of dissipating heat from computer unit
US20070058341A1 (en) * 2005-09-12 2007-03-15 Tsung-Te Hsiao Fan duct
TWM293476U (en) * 2005-12-29 2006-07-01 Inventec Corp Structure of a heat-dissipating device of a computer mainframe
US20070243817A1 (en) * 2006-03-31 2007-10-18 Inventec Corporation Air ducting cover
JP5286689B2 (en) * 2007-04-17 2013-09-11 日本電産株式会社 Cooling fan unit
US20090009958A1 (en) * 2007-07-02 2009-01-08 John Pflueger System and Method for Rack Mounted Information Handling System Supplemental Cooling
US7898804B2 (en) * 2008-10-28 2011-03-01 Oracle America, Inc. Air flow snorkel for computer system
CN201348761Y (en) * 2008-12-31 2009-11-18 鸿富锦精密工业(深圳)有限公司 Wind-guiding apparatus
TW201328530A (en) * 2011-12-26 2013-07-01 Hon Hai Prec Ind Co Ltd Housing of server
US9829774B2 (en) * 2014-11-25 2017-11-28 Hon Hai Precision Industry Co., Ltd. Enclosure assembly
US10617580B2 (en) 2018-07-17 2020-04-14 Gerald M. Steiner Wheelchair with ratchet/pawl drive system
CN108874102A (en) * 2018-07-26 2018-11-23 郑州云海信息技术有限公司 A kind of smart rack node server radiator
CN111491491A (en) * 2020-04-17 2020-08-04 苏州浪潮智能科技有限公司 Efficient heat dissipation rack-mounted server
CN113126729B (en) * 2021-04-15 2023-11-17 深圳市国鑫恒运信息安全有限公司 Heat radiation fan with dislocation design and server thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040981A (en) * 1999-01-26 2000-03-21 Dell Usa, L.P. Method and apparatus for a power supply cam with integrated cooling fan
US6244953B1 (en) * 1999-05-25 2001-06-12 3Com Corporation Electronic device fan mounting system
US6297444B1 (en) * 2000-02-24 2001-10-02 Delta Electronics, Inc. Fixing device
US6343011B1 (en) * 2000-08-03 2002-01-29 Lite-On Enclosure Inc. Screwless wind conduit positioning device
US6438984B1 (en) * 2001-08-29 2002-08-27 Sun Microsystems, Inc. Refrigerant-cooled system and method for cooling electronic components
US6464578B1 (en) * 2001-10-24 2002-10-15 Enlight Corporation Fan and hood arrangement
US6556437B1 (en) * 2000-08-10 2003-04-29 Dell Products L.P. Ergonomic carrier for hot-swap computer components
US6587335B1 (en) * 2000-06-30 2003-07-01 Intel Corporation Converging cooling duct for a computer cooling system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040981A (en) * 1999-01-26 2000-03-21 Dell Usa, L.P. Method and apparatus for a power supply cam with integrated cooling fan
US6244953B1 (en) * 1999-05-25 2001-06-12 3Com Corporation Electronic device fan mounting system
US6297444B1 (en) * 2000-02-24 2001-10-02 Delta Electronics, Inc. Fixing device
US6587335B1 (en) * 2000-06-30 2003-07-01 Intel Corporation Converging cooling duct for a computer cooling system
US6343011B1 (en) * 2000-08-03 2002-01-29 Lite-On Enclosure Inc. Screwless wind conduit positioning device
US6556437B1 (en) * 2000-08-10 2003-04-29 Dell Products L.P. Ergonomic carrier for hot-swap computer components
US6438984B1 (en) * 2001-08-29 2002-08-27 Sun Microsystems, Inc. Refrigerant-cooled system and method for cooling electronic components
US6464578B1 (en) * 2001-10-24 2002-10-15 Enlight Corporation Fan and hood arrangement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110075359A1 (en) * 2009-09-30 2011-03-31 Kmc Music, Inc. Audio Amplifier in Compact Case with Peak Voltage and Current Limiting Circuit and Thermal Cooling Tunnel
US8130495B2 (en) * 2009-09-30 2012-03-06 Kmc Music, Inc. Audio amplifier in compact case with peak voltage and current limiting circuit and thermal cooling tunnel
US20110155345A1 (en) * 2009-12-25 2011-06-30 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd Mounting apparatus for heat dissipating member
WO2013060519A1 (en) * 2011-10-28 2013-05-02 Fujitsu Technology Solutions Intellectual Property Gmbh Flow-guiding hood for guiding a flow of air
US9298229B2 (en) 2011-10-28 2016-03-29 Fujitsu Technology Solutions Intellectual Property Gmbh Flow-guiding hood for guiding a flow of air

Also Published As

Publication number Publication date
US6731502B1 (en) 2004-05-04
TW592344U (en) 2004-06-11

Similar Documents

Publication Publication Date Title
US6731502B1 (en) Heat dissipation device for server
KR100322468B1 (en) a latching device of a fan in a computer and a portable computer provided with the latching device
KR0168462B1 (en) Heat sink for cooling a heat producing element and application
US7474527B2 (en) Desktop personal computer and thermal module thereof
US7289323B2 (en) Wind-guiding cover
US7352574B2 (en) Assembly and heat-dissipating device having the same assembly
US20070047200A1 (en) Fan cartridge assembly
US6322042B1 (en) Extracted and positioning device of a fan
JPH09326458A (en) Electronic device having sink structure
US20070242428A1 (en) Structure for fixing fan with computer casing
US20090201639A1 (en) Chassis of portable electronic apparatus
US6166906A (en) Heat-dissipating module for an electronic device
CN112198942A (en) Heat radiation module, electronic device, and heat radiation plate for heat radiation module
TWM463487U (en) Heat pipe type heat dissipation module
JPH06318124A (en) Electronic device
WO2003060677A1 (en) Heat sink in a personal computer
KR100216482B1 (en) Personal computer with heat sink device
US20060049728A1 (en) Computer bezel with inlet airflow guiding device
US20060237453A1 (en) Fan module and fan duct thereof
CN101196772A (en) Radiator rear panel module and circuit board and electronic device using the same
CN101742883A (en) Fan fixed structure and fan fixed method
KR200268632Y1 (en) Heatsink in Notebook computer
JPH08286783A (en) Heat radiating structure for electronic parts in information unit
CN219613308U (en) Efficient heat dissipation table
JP3093993U (en) Drum fan computer case

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12