US20040083843A1 - Interlock device with stamped lead frame - Google Patents

Interlock device with stamped lead frame Download PDF

Info

Publication number
US20040083843A1
US20040083843A1 US10/287,396 US28739602A US2004083843A1 US 20040083843 A1 US20040083843 A1 US 20040083843A1 US 28739602 A US28739602 A US 28739602A US 2004083843 A1 US2004083843 A1 US 2004083843A1
Authority
US
United States
Prior art keywords
contacts
housing
lead frame
switch
interlock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/287,396
Other versions
US6817262B2 (en
Inventor
John Lewis
Donald Rempinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grand Haven Stamped Products Co
Original Assignee
Grand Haven Stamped Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grand Haven Stamped Products Co filed Critical Grand Haven Stamped Products Co
Priority to US10/287,396 priority Critical patent/US6817262B2/en
Assigned to GRAND HAVEN STAMPED PRODUCTS, DIVISION OF JSJ CORPORATION reassignment GRAND HAVEN STAMPED PRODUCTS, DIVISION OF JSJ CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEWIS, JOHN T., REMPINSKI, DONALD R.
Priority to EP03256645A priority patent/EP1416200A3/en
Priority to JP2003368808A priority patent/JP2004155415A/en
Publication of US20040083843A1 publication Critical patent/US20040083843A1/en
Application granted granted Critical
Publication of US6817262B2 publication Critical patent/US6817262B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/22Locking of the control input devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H2057/005Mounting preassembled units, i.e. using pre-mounted structures to speed up final mounting process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/08Range selector apparatus
    • F16H59/10Range selector apparatus comprising levers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control
    • Y10T74/2003Electrical actuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20018Transmission control
    • Y10T74/20085Restriction of shift, gear selection, or gear engagement
    • Y10T74/20104Shift element interlock

Definitions

  • the present invention relates to a shift interlock device, and more particularly to a brake-transmission-shift-ignition (BTSI) interlock device and circuit integrated into a shifter.
  • BTSI brake-transmission-shift-ignition
  • Brake-transmission-shift-ignition (BTSI) interlock devices and circuits are known in the art, and further it is known to incorporate a toggle mechanism and preassembled switch into such devices.
  • BTSI Brake-transmission-shift-ignition
  • a known existing BTSI shifter similar to U.S. Pat. No. 5,759,132 is described in the discussion below entitled “Prior Art”. (See FIGS. 1 - 2 of the present disclosure.)
  • This known existing BTSI shifter includes a preassembled micro switch that is soldered onto a circuit board. The subassembly is then operably positioned in and secured to the handle of a shift lever assembly of a vehicle shifter.
  • this shift lever assembly is undesirably expensive, partially because of the cost of the circuit board, but also because of secondary process costs (e.g. soldering, manual placement and attachment within the handle, and electrical connections).
  • circuit boards have quality and warranty concerns because they are not well suited for the vibrations and harsh environments commonly associated with vehicle shifters (e.g. temperature and humidity variations in the passenger compartment associated with day and night, and/or temperature extremes associated with winter and summer, and/or vibrations and with shifting the shift lever and/or associated with traveling at high speeds along a bumpy road and/or when an engine idles). Accordingly, further improvement is desired in this assembly, including reducing component costs and increasing the automation and efficiency of assembly, and improving the durability and robustness of the shift lever assembly.
  • the present invention includes a shifter for a vehicle having an electrical control circuit.
  • the shifter includes a base, a shift lever pivoted to the base, and an interlock device on one of the base or the shifter that engages an abutment surface on the other.
  • the abutment surface is configured to be selectively engaged by the interlock device to control movement of the shift lever.
  • the interlock device includes a preassembled switch, an electromechanical device, and a lead frame having at least four conductors.
  • the electromechanical device has an interlock member movable to an extended position for engaging the abutment surface and movable to a retracted position for operating the switch and allowing the shift lever to move.
  • the four conductors operably interconnect the switch and the electromechanical device and define a three-prong terminal adapted for electrical connection to the vehicle control circuit for operating the electromechanical device and for signaling to the vehicle control circuit that the interlock member has been operated.
  • a preassembled interlock device in another aspect of the present invention, includes a housing and a toggle interlock mechanism including an extendable pin operably positioned in the housing. The pin is extendable to a position outside the housing for engaging an abutment surface.
  • a preassembled switch, an electromechanical device, and a lead frame are attached to the housing in an arrangement where the electromechanical device operates the switch when the extendable pin is retracted.
  • the lead frame includes at least four conductors operably interconnected to the switch, the electromechanical device, and to a terminal adapted for electrical connection to a control circuit for operating the electrical mechanical device, and for signaling to the vehicle control circuit that the extendable pin has been moved.
  • a method of assembly for an interlock device comprises steps of providing a housing, and positioning a lead frame in the housing.
  • the method further includes operably positioning a toggle interlock mechanism in the housing, the interlock mechanism including an electromechanical device having a pin extendable to a position outside of the housing.
  • the method also includes positioning a preassembled switch in the housing, including electrically connecting the switch to the lead frame.
  • the method also includes electrically connecting the electromechanical device to the lead frame so that the electromechanical device operates the switch when the extendable pin is retracted.
  • the method further includes separating parts of the lead frame to form at least four separate conductors that operably interconnect the switch and the electromechanical device to a terminal adapted for electrical connection to a control circuit for operating the electromechanical device, and for signaling to the control circuit that the interlock member has been extended.
  • a preassembled interlock device in yet another aspect of the present invention, includes a housing having a plurality of protrusions, and a toggle interlock mechanism including an extendable pin positioned in the housing but extendable to a position outside of the housing.
  • the interlock device also includes an electromechanical device attached to the housing, a preassembled switch in the housing including a plurality of first contacts, and a lead frame having at least four conductors including a plurality of second contacts.
  • the electromechanical device When the electromechanical device is energized, it retracts the pin and operates the switch.
  • the first contacts are positioned and oriented to telescopingly engage the second contacts during assembly.
  • the second contacts each include a mechanical retainer that retains the first contacts in operable engagement with the second contacts and further they are adapted to electrically operably interconnect the electrical mechanical device to a control circuit for operating the electrical mechanical device.
  • the lead frame further includes a plurality of location holes with retaining tines that engage the housing protrusions to non-releasably and accurately locate the lead frame in the housing.
  • a shifter for a vehicle having an electrical control circuit includes a base component, a shift lever component operably positioned on the base component, and an interlock device on one of the base and shift lever components.
  • the interlock device is configured and adapted to selectively engage an abutment surface on the other of the components for interlocking the shift lever in a selected gear position.
  • the interlock device includes a preassembled switch and a lead frame, with the preassembled switch having at least three first contacts and the lead frame having at least three second contacts engaged with the first contacts.
  • the first contacts are positioned and oriented to telescopingly engage the three second contacts during assembly, and at least one of the first and second contacts each include a mechanical retainer for securely retaining the first contacts in operable engagement with the second contacts after assembly.
  • FIG. 1 is a side view of a prior art shifter utilizing an interlocking device
  • FIG. 2 is an exploded perspective view of the prior art interlocking device of FIG. 1.
  • FIG. 3 is an exploded perspective view of the present inventive interlock device according to the present invention.
  • FIG. 4 is a perspective view of the lead frame shown in FIG. 3;
  • FIG. 5 is a fragmentary perspective view showing the micro switch of FIG. 3 and one female connector of the lead frame of FIG. 4 for non-releasably engaging a male connector on the micro switch;
  • FIGS. 6 and 7 are top and perspective views of the female connector of the lead frame as shown in FIG. 5, with the female connector being supported in the housing of the interlock device of FIG. 3;
  • FIG. 8 is a plan view of the present interlock device of FIG. 3, with the top cover removed to better show internal components, the internal toggle mechanism being in an overcenter interlocked position with the extendable pin extended;
  • FIG. 9 is a plan view similar to FIG. 8, but with the toggle mechanism being in a retracted position with the extendable pin retracted;
  • FIG. 10 is a perspective view of a continuous strip of lead frames.
  • FIG. 11 is a flow diagram of a method of assembly for the interlock device of FIG. 3.
  • a prior art shifter 5 (FIG. 1) includes a base 6 , a shift lever 7 pivoted to the base 6 , and an interlock device 8 incorporating a toggle mechanism 9 (FIG. 2), a return spring 10 , an electromechanical device 11 , and a preassembled switch 12 all positioned in or attached to top and bottom housing components 13 and 14 .
  • the electromechanical device 11 includes an electrical coil and an extendable pin 15 .
  • a circuit board 16 includes conductors (not specifically shown) forming a branch circuit adapted for connection to a vehicle control circuit, and leads from the switch 12 and coil of the electromechanical device 11 are soldered to the conductors on the circuit board 16 .
  • An interlock device 20 (FIG. 3) includes a housing 22 formed by opposing housing halves 46 , 48 , a toggle interlock mechanism 24 including an extendable pin 26 , a preassembled micro switch 28 , an electromechanical device 30 , and a lead frame 32 .
  • the lead frame 32 has a plurality of conductors 72 , 74 , 76 , and 78 , all operably attached to the bottom half 46 of the housing 22 between the opposing halves 46 , 48 .
  • the electromechanical device 30 operates the switch 28 .
  • the lead frame conductors 72 , 74 , 76 , 78 form a terminal that operably interconnects the switch 28 and the electromechanical device 30 to a vehicle control circuit (not shown) for operating the electromechanical device and for signaling the vehicle control circuit that the extendable pin has been retracted.
  • the present arrangement including the lead frame, permits an efficient automated assembly, and further does this using mechanical forming and assembly operations that are controllable and relatively low-cost.
  • the present inventive concepts provide the advantages of reducing manufacturing and assembly costs while increasing the overall reliability and robustness of the interlock device.
  • the housing bottom half 46 (FIG. 3) is a molded polymeric component that includes integral molded-in protrusions 50 adapted to matingly engage “rosebud” apertures 106 formed on the lead frame 32 .
  • a plurality of the protrusions 50 and apertures 106 are formed on the housing half 46 and in the conductors 70 , 72 , 74 and 76 of the lead frame 32 , and also various features are formed in the housing to trap and retain the lead frame conductors 70 , 72 , 74 , 76 , so that each conductor is accurately located and retained in the housing 22 .
  • the electromechanical device 30 includes a coil (not specifically shown) and an extendable plunger 56 .
  • Conductors extend from the coil for energizing the coil to extend the plunger 56 , the conductors terminate in two contacts 54 adapted to telescopingly mate with contacts 90 , 92 on the lead frame, as discussed below.
  • the plunger 56 is spring-loaded to be in a normally retracted position, and is operably interconnected to the driver 58 of the toggle interlock mechanism 24 by a magnet.
  • the toggle mechanism 24 includes a T-shaped arrangement of interconnected links. It is operably supported in the cavity of housing halves 46 , 48 for movement between an overcenter interlock position (FIG. 8) and an unlocked retracted position (FIG. 9).
  • the lead frame 32 includes four conductors or branches 70 , 72 , 74 , 76 (FIG. 8).
  • the first conductor 70 includes a male contact 80 and a female contact 82 (also called connectors 82 , 86 ).
  • the second conductor 72 further includes a male contact 84 and a female contact 86 .
  • the third conductor 74 includes a male contact 88 and a female contact 90 .
  • the fourth conductor 76 includes female contact ends 92 and 94 .
  • the first, second, and third input male contact ends 80 , 84 , and 88 are arranged and form a terminal shaped to receive a female plug of a wire harness from the main vehicle power train electrical system.
  • the female contacts 82 , 86 , and 94 are arranged to receive and electrically connect to the male connectors 96 , 98 , 100 extending from the switch 28 . Further, the female contacts 90 and 92 are configured and arranged to engage the contacts 54 that communicate electrical power to the electromechanical device 30 . Up tabs 102 and 104 are formed on the third and fourth conductors 74 and 76 respectively to engage opposite ends of diodes that extend between the third and fourth conductors 74 and 76 . A plurality of apertures 106 with angled retainer tines are formed along the four conductors 70 , 72 , 74 , 76 to retain the branches accurately in place on housing protrusions 50 .
  • the female contacts 82 , 86 , 90 , 92 , 94 are formed to mechanically retain corresponding male connectors. This may be but is not limited to, for example, a spade type of connector or terminal.
  • the female contacts 82 , 86 , 90 , 92 and 94 are similar to each other, such that only the contact 94 need be shown and described.
  • the contact 94 (FIGS. 5 - 7 ) has a C-shaped cross section, and includes opposing sidewalls 120 with inwardly-formed downwardly-angled barbs 122 .
  • the female contact 94 including the barbs 122 , slidably engage and permit a telescoping engagement in a direction 101 by the male contact 96 , such that the switch 28 can be pressed into position and simultaneously electrically connected.
  • the barbs 122 have a relatively sharp pointed tip that digs in and prevents removal of the male contact 96 from the female contact 94 once assembled.
  • the housing bottom half 46 includes a C-shaped wall 124 that receives and supports the C-shaped female contact 94 , providing the support needed to prevent the C-shaped female contact from spreading apart. This maintains a pressure of the barbs 122 on the male contact 96 . This both provides an initial secure assembly, but also reduces warranty problems from connections coming loose and separating when in service.
  • a method of assembly (FIG. 11) for the interlock device 20 may be as follows.
  • a lead frame 32 is stamped into the desired configuration out of a single piece of electrically conductive material. This lead frame may be produced in continuous form as shown in FIG. 10.
  • the lead frame 32 is then accurately positioned above the housing and then pressed mechanically down into housing 22 onto the housing protrusions 50 .
  • Lead frame barbed apertures 106 non-releasably engage and accurately position the lead frame 32 to the housing 22 .
  • the electromechanical device 30 is then positioned in housing 22 , including telescopingly engaging the male contacts 54 into female contacts 90 and 92 .
  • Preassembled switch 28 with its associated switch contacts 96 , 98 , 100 is also pressed downward to telescopingly engage the male contacts 96 , 98 , 100 with the associated lead frame female contacts 82 , 86 , and 94 .
  • the four conductors 70 , 72 , 74 , 76 are electrically separated by cutting the frangible tabs 60 , producing an operable interconnection between the lead frame 32 , electromechanical device 30 , switch 28 , and, when connected in a vehicle, to the vehicle control system (not shown).
  • the toggle interlock mechanism 24 and retainer spring 44 are then positioned in housing 22 .
  • housing cover 48 is installed over the lower housing half 46 and securely affixed thereto, such as by snap-attachment, screws, adhesive, sonic welding, or other means.
  • Interlock device 20 is shown in its natural state (FIG. 8) with the extendable pin 26 engaging a pocket in the shift lever ( 7 ) to prevent the pawl of the shift lever ( 7 ) from being moved, such that the shift lever ( 7 ) cannot be moved out of its park position.
  • the vehicle circuit shows that predetermined vehicle conditions are met, it actuates the coil of device 30 , thereby electromechanically extending the plunger 56 of electromechanical device 30 outward, which causes the toggle mechanism 24 to be driven from an inline position (FIG. 8) to an off-centered position (FIG. 9).
  • the toggle mechanism 24 as it is being driven off-center, acts to retract the extendable pin 26 from any abutment surface or cavity.
  • the extendable pin 26 may be used to prevent relative movement of any parts. In the illustrated arrangement, it is used to lock a vehicle shifter in a park position on its base until the brake is depressed by preventing a pawl on the shifter from being moved out of a park position. Simultaneously when the pin 26 is retracted, the toggle mechanism depresses the switch 28 . Thus, the switch 28 can be used to input data to the vehicle's electrical control circuit.
  • the present interlock device 20 could be used in other automotive or non-automotive applications.
  • device 20 could be used on hotel door locks, and other locking arrangements using an extendable pin.
  • the pin ( 26 ) of the interlock device ( 20 can engage an irregular surface having multiple locking locations, such that the lever or component being controlled could be held in any one of several different operative positions until predetermined conditions of the control circuit are met and the pin ( 26 ) is retracted.

Abstract

An interlock device includes a housing and a toggle interlock mechanism with an extendable interlock pin. The interlock device also includes a preassembled switch, an electromechanical device, and a lead frame interconnecting the switch and electromechanical device. The lead frame conductors are formed as one piece, but are separated after assembly into the housing. The conductors and mating components include mating non-releasable contacts that telescope together in a manner that forms a robust assembly and that facilitates automation of the assembly process. A method related to the above is also disclosed.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a shift interlock device, and more particularly to a brake-transmission-shift-ignition (BTSI) interlock device and circuit integrated into a shifter. [0001]
  • Brake-transmission-shift-ignition (BTSI) interlock devices and circuits are known in the art, and further it is known to incorporate a toggle mechanism and preassembled switch into such devices. For example, see U.S. Pat. No. 5,759,132 to Osborn, issued Jun. 2, 1998. A known existing BTSI shifter similar to U.S. Pat. No. 5,759,132 is described in the discussion below entitled “Prior Art”. (See FIGS. [0002] 1-2 of the present disclosure.) This known existing BTSI shifter includes a preassembled micro switch that is soldered onto a circuit board. The subassembly is then operably positioned in and secured to the handle of a shift lever assembly of a vehicle shifter. However, this shift lever assembly is undesirably expensive, partially because of the cost of the circuit board, but also because of secondary process costs (e.g. soldering, manual placement and attachment within the handle, and electrical connections). Also, circuit boards have quality and warranty concerns because they are not well suited for the vibrations and harsh environments commonly associated with vehicle shifters (e.g. temperature and humidity variations in the passenger compartment associated with day and night, and/or temperature extremes associated with winter and summer, and/or vibrations and with shifting the shift lever and/or associated with traveling at high speeds along a bumpy road and/or when an engine idles). Accordingly, further improvement is desired in this assembly, including reducing component costs and increasing the automation and efficiency of assembly, and improving the durability and robustness of the shift lever assembly.
  • It is also known to use a lead frame in a brake shifter interlock having a toggle mechanism. For example, see Withey U.S. Pat. No. 5,938,562, which discloses a lead frame incorporated into a toggle interlock device. In the Withey arrangement, the lead frame incorporates conductive components forming a switch. But this switch arrangement can have quality problems, since the conductive components are subject to distortions and dimensional variations, wear, and other problems that occur during installation and use and during the wide temperature variations commonly experienced by shifters. This can lead to poor and unreliable operation of the integral switch. It is desirable to incorporate a preassembled switch into a circuit using a lead frame. However, problems still remain in terms of assembly and warranty problems associated with soldering and/or other electrical connections. Also, the problems associated with dimensional inconsistencies and part-handling common in lead frames need to be addressed, as well as the overall ability to automatically assemble the components. [0003]
  • Accordingly, a shifter is desired solving the aforementioned problems and having the aforementioned advantages. [0004]
  • SUMMARY OF THE INVENTION
  • The present invention includes a shifter for a vehicle having an electrical control circuit. The shifter includes a base, a shift lever pivoted to the base, and an interlock device on one of the base or the shifter that engages an abutment surface on the other. The abutment surface is configured to be selectively engaged by the interlock device to control movement of the shift lever. The interlock device includes a preassembled switch, an electromechanical device, and a lead frame having at least four conductors. The electromechanical device has an interlock member movable to an extended position for engaging the abutment surface and movable to a retracted position for operating the switch and allowing the shift lever to move. The four conductors operably interconnect the switch and the electromechanical device and define a three-prong terminal adapted for electrical connection to the vehicle control circuit for operating the electromechanical device and for signaling to the vehicle control circuit that the interlock member has been operated. [0005]
  • In another aspect of the present invention, a preassembled interlock device includes a housing and a toggle interlock mechanism including an extendable pin operably positioned in the housing. The pin is extendable to a position outside the housing for engaging an abutment surface. A preassembled switch, an electromechanical device, and a lead frame are attached to the housing in an arrangement where the electromechanical device operates the switch when the extendable pin is retracted. The lead frame includes at least four conductors operably interconnected to the switch, the electromechanical device, and to a terminal adapted for electrical connection to a control circuit for operating the electrical mechanical device, and for signaling to the vehicle control circuit that the extendable pin has been moved. [0006]
  • In still another aspect of the present invention, a method of assembly for an interlock device comprises steps of providing a housing, and positioning a lead frame in the housing. The method further includes operably positioning a toggle interlock mechanism in the housing, the interlock mechanism including an electromechanical device having a pin extendable to a position outside of the housing. The method also includes positioning a preassembled switch in the housing, including electrically connecting the switch to the lead frame. The method also includes electrically connecting the electromechanical device to the lead frame so that the electromechanical device operates the switch when the extendable pin is retracted. The method further includes separating parts of the lead frame to form at least four separate conductors that operably interconnect the switch and the electromechanical device to a terminal adapted for electrical connection to a control circuit for operating the electromechanical device, and for signaling to the control circuit that the interlock member has been extended. [0007]
  • In yet another aspect of the present invention, a preassembled interlock device includes a housing having a plurality of protrusions, and a toggle interlock mechanism including an extendable pin positioned in the housing but extendable to a position outside of the housing. The interlock device also includes an electromechanical device attached to the housing, a preassembled switch in the housing including a plurality of first contacts, and a lead frame having at least four conductors including a plurality of second contacts. When the electromechanical device is energized, it retracts the pin and operates the switch. The first contacts are positioned and oriented to telescopingly engage the second contacts during assembly. The second contacts each include a mechanical retainer that retains the first contacts in operable engagement with the second contacts and further they are adapted to electrically operably interconnect the electrical mechanical device to a control circuit for operating the electrical mechanical device. The lead frame further includes a plurality of location holes with retaining tines that engage the housing protrusions to non-releasably and accurately locate the lead frame in the housing. [0008]
  • In still another aspect of the present invention, a shifter for a vehicle having an electrical control circuit includes a base component, a shift lever component operably positioned on the base component, and an interlock device on one of the base and shift lever components. The interlock device is configured and adapted to selectively engage an abutment surface on the other of the components for interlocking the shift lever in a selected gear position. The interlock device includes a preassembled switch and a lead frame, with the preassembled switch having at least three first contacts and the lead frame having at least three second contacts engaged with the first contacts. The first contacts are positioned and oriented to telescopingly engage the three second contacts during assembly, and at least one of the first and second contacts each include a mechanical retainer for securely retaining the first contacts in operable engagement with the second contacts after assembly. [0009]
  • These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.[0010]
  • BRIEF DESCRIPTION OF DRAWINGS SHOWING PRIOR ART
  • FIG. 1 is a side view of a prior art shifter utilizing an interlocking device; and [0011]
  • FIG. 2 is an exploded perspective view of the prior art interlocking device of FIG. 1. [0012]
  • BRIEF DESCRIPTION OF DRAWINGS SHOWING PRESENT INVENTION
  • FIG. 3 is an exploded perspective view of the present inventive interlock device according to the present invention; [0013]
  • FIG. 4 is a perspective view of the lead frame shown in FIG. 3; [0014]
  • FIG. 5 is a fragmentary perspective view showing the micro switch of FIG. 3 and one female connector of the lead frame of FIG. 4 for non-releasably engaging a male connector on the micro switch; [0015]
  • FIGS. 6 and 7 are top and perspective views of the female connector of the lead frame as shown in FIG. 5, with the female connector being supported in the housing of the interlock device of FIG. 3; [0016]
  • FIG. 8 is a plan view of the present interlock device of FIG. 3, with the top cover removed to better show internal components, the internal toggle mechanism being in an overcenter interlocked position with the extendable pin extended; [0017]
  • FIG. 9 is a plan view similar to FIG. 8, but with the toggle mechanism being in a retracted position with the extendable pin retracted; [0018]
  • FIG. 10 is a perspective view of a continuous strip of lead frames; and [0019]
  • FIG. 11 is a flow diagram of a method of assembly for the interlock device of FIG. 3. [0020]
  • DESCRIPTION OF A PRIOR ART SHIFTER
  • A prior art shifter [0021] 5 (FIG. 1) includes a base 6, a shift lever 7 pivoted to the base 6, and an interlock device 8 incorporating a toggle mechanism 9 (FIG. 2), a return spring 10, an electromechanical device 11, and a preassembled switch 12 all positioned in or attached to top and bottom housing components 13 and 14. The electromechanical device 11 includes an electrical coil and an extendable pin 15. A circuit board 16 includes conductors (not specifically shown) forming a branch circuit adapted for connection to a vehicle control circuit, and leads from the switch 12 and coil of the electromechanical device 11 are soldered to the conductors on the circuit board 16.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • An interlock device [0022] 20 (FIG. 3) includes a housing 22 formed by opposing housing halves 46, 48, a toggle interlock mechanism 24 including an extendable pin 26, a preassembled micro switch 28, an electromechanical device 30, and a lead frame 32. The lead frame 32 has a plurality of conductors 72, 74, 76, and 78, all operably attached to the bottom half 46 of the housing 22 between the opposing halves 46, 48. When the extendable pin 26 is retracted (FIG. 9), the electromechanical device 30 operates the switch 28. The lead frame conductors 72, 74, 76, 78 form a terminal that operably interconnects the switch 28 and the electromechanical device 30 to a vehicle control circuit (not shown) for operating the electromechanical device and for signaling the vehicle control circuit that the extendable pin has been retracted. The present arrangement, including the lead frame, permits an efficient automated assembly, and further does this using mechanical forming and assembly operations that are controllable and relatively low-cost. Thus, the present inventive concepts provide the advantages of reducing manufacturing and assembly costs while increasing the overall reliability and robustness of the interlock device.
  • The housing bottom half [0023] 46 (FIG. 3) is a molded polymeric component that includes integral molded-in protrusions 50 adapted to matingly engage “rosebud” apertures 106 formed on the lead frame 32. A plurality of the protrusions 50 and apertures 106 are formed on the housing half 46 and in the conductors 70, 72, 74 and 76 of the lead frame 32, and also various features are formed in the housing to trap and retain the lead frame conductors 70, 72, 74, 76, so that each conductor is accurately located and retained in the housing 22. This allows the lead frame 32 to be assembled as a unit by pressing the conductors 70, 72, 74, 76 downwardly, such that tines on the “rosebud” apertures flex and bite into the protrusions 50. This results in a simple assembly that can be easily automated, such as by using a strip advance mechanism and downward pressing plunger. (See FIGS. 10-11.)
  • The [0024] electromechanical device 30 includes a coil (not specifically shown) and an extendable plunger 56. Conductors extend from the coil for energizing the coil to extend the plunger 56, the conductors terminate in two contacts 54 adapted to telescopingly mate with contacts 90, 92 on the lead frame, as discussed below. The plunger 56 is spring-loaded to be in a normally retracted position, and is operably interconnected to the driver 58 of the toggle interlock mechanism 24 by a magnet.
  • The [0025] toggle mechanism 24 includes a T-shaped arrangement of interconnected links. It is operably supported in the cavity of housing halves 46, 48 for movement between an overcenter interlock position (FIG. 8) and an unlocked retracted position (FIG. 9).
  • As noted above, the [0026] lead frame 32 includes four conductors or branches 70, 72, 74, 76 (FIG. 8). The first conductor 70 includes a male contact 80 and a female contact 82 (also called connectors 82, 86). The second conductor 72 further includes a male contact 84 and a female contact 86. The third conductor 74 includes a male contact 88 and a female contact 90. Finally, the fourth conductor 76 includes female contact ends 92 and 94. The first, second, and third input male contact ends 80, 84, and 88 are arranged and form a terminal shaped to receive a female plug of a wire harness from the main vehicle power train electrical system. The female contacts 82, 86, and 94 are arranged to receive and electrically connect to the male connectors 96, 98, 100 extending from the switch 28. Further, the female contacts 90 and 92 are configured and arranged to engage the contacts 54 that communicate electrical power to the electromechanical device 30. Up tabs 102 and 104 are formed on the third and fourth conductors 74 and 76 respectively to engage opposite ends of diodes that extend between the third and fourth conductors 74 and 76. A plurality of apertures 106 with angled retainer tines are formed along the four conductors 70, 72, 74, 76 to retain the branches accurately in place on housing protrusions 50.
  • The [0027] female contacts 82, 86, 90, 92, 94 are formed to mechanically retain corresponding male connectors. This may be but is not limited to, for example, a spade type of connector or terminal.
  • The [0028] female contacts 82, 86, 90, 92 and 94 are similar to each other, such that only the contact 94 need be shown and described. The contact 94 (FIGS. 5-7) has a C-shaped cross section, and includes opposing sidewalls 120 with inwardly-formed downwardly-angled barbs 122. The female contact 94, including the barbs 122, slidably engage and permit a telescoping engagement in a direction 101 by the male contact 96, such that the switch 28 can be pressed into position and simultaneously electrically connected. However, the barbs 122 have a relatively sharp pointed tip that digs in and prevents removal of the male contact 96 from the female contact 94 once assembled. The housing bottom half 46 includes a C-shaped wall 124 that receives and supports the C-shaped female contact 94, providing the support needed to prevent the C-shaped female contact from spreading apart. This maintains a pressure of the barbs 122 on the male contact 96. This both provides an initial secure assembly, but also reduces warranty problems from connections coming loose and separating when in service.
  • A method of assembly (FIG. 11) for the [0029] interlock device 20 may be as follows. A lead frame 32 is stamped into the desired configuration out of a single piece of electrically conductive material. This lead frame may be produced in continuous form as shown in FIG. 10. The lead frame 32 is then accurately positioned above the housing and then pressed mechanically down into housing 22 onto the housing protrusions 50. Lead frame barbed apertures 106 non-releasably engage and accurately position the lead frame 32 to the housing 22. The electromechanical device 30 is then positioned in housing 22, including telescopingly engaging the male contacts 54 into female contacts 90 and 92. Preassembled switch 28 with its associated switch contacts 96, 98, 100 is also pressed downward to telescopingly engage the male contacts 96, 98, 100 with the associated lead frame female contacts 82, 86, and 94. The four conductors 70, 72, 74, 76 are electrically separated by cutting the frangible tabs 60, producing an operable interconnection between the lead frame 32, electromechanical device 30, switch 28, and, when connected in a vehicle, to the vehicle control system (not shown). The toggle interlock mechanism 24 and retainer spring 44 are then positioned in housing 22. Finally, housing cover 48 is installed over the lower housing half 46 and securely affixed thereto, such as by snap-attachment, screws, adhesive, sonic welding, or other means.
  • [0030] Interlock device 20 is shown in its natural state (FIG. 8) with the extendable pin 26 engaging a pocket in the shift lever (7) to prevent the pawl of the shift lever (7) from being moved, such that the shift lever (7) cannot be moved out of its park position. In operation (FIG. 9), if the vehicle circuit shows that predetermined vehicle conditions are met, it actuates the coil of device 30, thereby electromechanically extending the plunger 56 of electromechanical device 30 outward, which causes the toggle mechanism 24 to be driven from an inline position (FIG. 8) to an off-centered position (FIG. 9). The toggle mechanism 24 as it is being driven off-center, acts to retract the extendable pin 26 from any abutment surface or cavity. The extendable pin 26 may be used to prevent relative movement of any parts. In the illustrated arrangement, it is used to lock a vehicle shifter in a park position on its base until the brake is depressed by preventing a pawl on the shifter from being moved out of a park position. Simultaneously when the pin 26 is retracted, the toggle mechanism depresses the switch 28. Thus, the switch 28 can be used to input data to the vehicle's electrical control circuit.
  • It is contemplated that the [0031] present interlock device 20 could be used in other automotive or non-automotive applications. For example, it is contemplated that device 20 could be used on hotel door locks, and other locking arrangements using an extendable pin. Also, it is contemplated that the pin (26) of the interlock device (20 can engage an irregular surface having multiple locking locations, such that the lever or component being controlled could be held in any one of several different operative positions until predetermined conditions of the control circuit are met and the pin (26) is retracted.
  • It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concept of the present invention, and further it is understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise. [0032]

Claims (18)

The invention claimed is:
1. A shifter for a vehicle having an electrical control circuit, the shifter comprising:
a base;
a shift lever pivoted to the base;
an interlock device on one of the base and the shift lever, and an abutment surface on the other of the base and the shift lever, the abutment surface being configured for selective engagement by the interlock device to control movement of the shift lever;
the interlock device including a preassembled switch, an electromechanical device, and a lead frame, the lead frame having at least four conductors, the electromechanical device having an interlock member movable to an extended position engaging the abutment surface, and a retractable position where the interlock device operates the switch;
the at least four conductors operably interconnecting the switch and the electromechanical device to each other and being adapted for electrical connection to the vehicle control circuit for operating the electromechanical device and for signaling to the vehicle control circuit via the switch that the interlock member has been extended.
2. The shifter defined in claim 1, wherein the lead frame includes a plurality of contacts that telescopingly receive and operably interconnect the switch and the electromechanical device, and that are adapted to connect to the vehicle control circuit; the contacts providing secure non-releasable mechanical retention.
3. The shifter defined in claim 1, wherein the preassembled switch includes a plurality of first contacts, and the lead frame includes a plurality of second contacts, the first contacts being positioned and oriented to telescopingly engage the second contacts during assembly, and one of the first and second contacts including a mechanical retainer for retaining the first contacts in operable non-releasable engagement with the second contacts after assembly.
4. The shifter defined in claim 1, wherein the interlock device includes a housing having a plurality of protrusions and the lead frame including a plurality of location holes formed therein for location on the protrusions.
5. The shifter defined in claim 4, wherein the plurality of location holes further include inwardly extending retaining tines adapted for non-releasable mechanical fastening to the protrusions.
6. The shifter defined in claim 1, wherein the at least four conductors are stamped from a sheet of electrically conductive material during a stamping process, the four conductors being initially interconnected with frangible tabs but the tabs being broken and the conductors being electrically separated within the housing after assembly.
7. An interlock device comprising:
a housing;
a toggle interlock mechanism including an extendable pin positioned in the housing, the pin being extendable to a use position outside of the housing;
a preassembled switch operably positioned in the housing;
an electromechanical device attached to the housing; and
a lead frame having a plurality of conductors, the electromechanical device being configured to operate the switch when the extendable pin is retracted;
the conductors operably interconnecting the switch and the electromechanical device and being adapted for electrical connection to a control circuit for operating the electromechanical device and for signaling to the control circuit that the extendable pin has been moved.
8. The interlock device defined in claim 7, wherein the lead frame includes a plurality of contacts shaped to operably interconnect the switch and the electromechanical device to the control circuit; the connectors being configured to non-releasably mechanically engage and retain mating contacts on the switch and electromechanical device.
9. The interlock device defined in claim 7, wherein the preassembled switch includes a plurality of first contacts, and the lead frame includes a plurality of second contacts, the first contacts being positioned and oriented to telescopingly engage the second contacts during assembly, and second contacts each including a mechanical retainer for non-releasably engaging and retaining the first contacts in operable engagement with the second contacts after assembly.
10. The interlock device defined in claim 7, wherein the interlock device includes a housing having a plurality of protrusions and the lead frame includes a plurality of location holes formed therein for location on the protrusions.
11. The interlock device defined in claim 10, wherein the plurality of location holes further include resilient retaining tines adapted for mechanical fastening to the protrusions.
12. The interlock device defined in claim 7, wherein the at least four conductors are formed from one piece of electrically conductive material during a stamping process, the four conductors being initially part of a single stamping but after assembly being severed apart and electrically separated.
13. A method of assembly for an interlock device comprising steps of:
providing a housing;
positioning a one-piece lead frame in the housing;
operably positioning a toggle interlock mechanism in the housing, the toggle interlock mechanism including an extendable pin that is extendable to a position outside of the housing;
positioning a preassembled switch in the housing, including electrically connecting the switch to the lead frame;
positioning an electromechanical device in the housing, including electrically connecting the electromechanical device to the lead frame, the electromechanical device, when the extendable pin is retracted, being arranged to operate the switch; and
separating parts of the lead frame to form at least four conductors, the four conductors operably interconnecting the switch and the electromechanical device and forming a terminal adapted for electrical connection to a control circuit for operating the electromechanical device and for signaling to the control circuit that the interlock member has been extended.
14. The method defined in claim 13, including a step of manufacturing in a continuous strip of lead frames from electrically conductive material.
15. The method defined in claim 14, wherein the step of manufacturing includes stamping a sheet of material.
16. A preassembled interlock device comprising:
a housing including a plurality of protrusions;
a toggle interlock mechanism positioned in the housing, the toggle interlock mechanism including an extendable pin that is extendable to a position outside of the housing;
an electromechanical device operably attached to the housing for moving the pin;
a preassembled switch positioned in the housing and including a plurality of first contacts;
a lead frame having at least four conductors and a plurality of second contacts, the electromechanical device operating the switch when the extendable pin is retracted;
the first contacts being positioned and oriented to telescopingly engage the second contacts during assembly;
one of the first and second contacts including a mechanical retainer for retaining the first contacts in operable engagement with the second contacts; and
the lead frame including a plurality of location holes formed therein for location on the protrusions, the location holes further including a plurality of retaining tines adapted for mechanical accurate fastening to the protrusions.
17. A shifter for a vehicle having an electrical control circuit, the shifter comprising:
a base component and a shift lever component operably positioned on the base component;
an interlock device on one of the components, the interlock device being configured and adapted to selectively engage an abutment surface on the other of the components for interlocking the shift lever in a selected gear position;
the interlock device including a preassembled switch and a lead frame, the preassembled switch having at least three first contacts, and the lead frame having at least three conductors with three second contacts;
the three first contacts being positioned and oriented to telescopingly engage the three second contacts during assembly, the three second contacts each including a mechanical retainer for retaining the first contacts in operable engagement with the second contacts after assembly.
18. The shifter defined in claim 17, wherein the mechanical retainer includes at least one barb.
US10/287,396 2002-11-04 2002-11-04 Interlock device with stamped lead frame Expired - Fee Related US6817262B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/287,396 US6817262B2 (en) 2002-11-04 2002-11-04 Interlock device with stamped lead frame
EP03256645A EP1416200A3 (en) 2002-11-04 2003-10-22 Interlock device with stamped lead frame
JP2003368808A JP2004155415A (en) 2002-11-04 2003-10-29 Interlocking device equipped with punched lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/287,396 US6817262B2 (en) 2002-11-04 2002-11-04 Interlock device with stamped lead frame

Publications (2)

Publication Number Publication Date
US20040083843A1 true US20040083843A1 (en) 2004-05-06
US6817262B2 US6817262B2 (en) 2004-11-16

Family

ID=32093604

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/287,396 Expired - Fee Related US6817262B2 (en) 2002-11-04 2002-11-04 Interlock device with stamped lead frame

Country Status (3)

Country Link
US (1) US6817262B2 (en)
EP (1) EP1416200A3 (en)
JP (1) JP2004155415A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060032723A1 (en) * 2004-08-12 2006-02-16 Wilber Darrin F BTSI with lead frame switch
US7779715B2 (en) * 2006-07-05 2010-08-24 Grand Haven Stamped Products, A Division Of Jsj Corporation Shifter with actuator incorporating magnetic unlock mechanism

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945808A (en) * 1974-04-15 1976-03-23 Amp Incorporated Lead frame adapted for electrical switch package
US4880092A (en) * 1988-01-14 1989-11-14 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Transmission operating apparatus for automatic transmission
US4947968A (en) * 1989-05-01 1990-08-14 Lectron Products, Inc. Transmission mounted solenoid interlock device
US5076114A (en) * 1990-05-14 1991-12-31 Pontiac Coil Inc. Electromagnetic interlock
US5176231A (en) * 1991-09-16 1993-01-05 Pontiac Coil, Inc. Interlock device having reduced preload binding
US5186069A (en) * 1990-05-31 1993-02-16 Fujikiko Kabushiki Kaisha Control device for automatic transmission
US5402870A (en) * 1993-05-18 1995-04-04 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle park/lock mechanism
US5489246A (en) * 1994-08-29 1996-02-06 Pontiac Coil, Inc. Electronic park lock
US5494141A (en) * 1993-05-18 1996-02-27 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle park/lock mechanism
US5593011A (en) * 1994-05-31 1997-01-14 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lock unit
US5647818A (en) * 1995-03-27 1997-07-15 Pontiac Coil, Inc. Shifter interlock for an automatic transmission
US5673013A (en) * 1995-10-06 1997-09-30 Pontiac Coil, Inc. Bobbin concentrically supporting multiple electrical coils
US5677658A (en) * 1993-05-18 1997-10-14 Grand Haven Stamped Products, Div. Of Jsj Corp. Electrically operated control module for a locking mechanism
US5718312A (en) * 1993-05-18 1998-02-17 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle park/lock mechanism with control module having a locking mechanism and a control switch actuated by the locking mechanism
US5729187A (en) * 1995-12-01 1998-03-17 Pontiac Coil, Inc. Transmission shift interlock
US5757132A (en) * 1995-10-02 1998-05-26 Ushiodenki Kabushiki Kaisha Dielectric barrier discharge lamp
US5938562A (en) * 1998-02-17 1999-08-17 Pontiac Coil, Inc. Brake shifter interlock with improved park lock switch
US5993353A (en) * 1997-12-15 1999-11-30 Hyundai Motor Company, Ltd. Shift lever device for an automatic transmission of a vehicle
US6082213A (en) * 1995-06-27 2000-07-04 Scandmec Ab Control device for the transmission of a vehicle
US6142282A (en) * 1999-01-11 2000-11-07 Pontiac Coil, Inc. Brake-transmission shift interlock device for an automatic transmission system
US6148686A (en) * 1997-08-29 2000-11-21 Fuji Kiko Co., Ltd. Shift lever apparatus for automatic transmission
US20020029951A1 (en) * 1999-07-29 2002-03-14 Beattie Dale A. Transmission shifter with lever-position locking device
US6393932B1 (en) * 1999-08-17 2002-05-28 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lever device
US6530293B1 (en) * 1999-05-29 2003-03-11 Deere & Company Shift mechanism for motor vehicle transmissions
US6622629B2 (en) * 2001-10-17 2003-09-23 Northrop Grumman Corporation Submunition fuzing and self-destruct using MEMS arm fire and safe and arm devices
US20030213327A1 (en) * 2002-05-15 2003-11-20 Noriyasu Syamoto Shift device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759132A (en) * 1994-10-27 1998-06-02 Grand Haven Stamped Products, Div. Of Jsj Corp. Vehicle park/lock mechanism with control module having a locking mechanism and a control switch actuated by the locking mechanism
JP3938822B2 (en) * 1999-07-07 2007-06-27 株式会社東海理化電機製作所 Shift lever device

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3945808A (en) * 1974-04-15 1976-03-23 Amp Incorporated Lead frame adapted for electrical switch package
US4880092A (en) * 1988-01-14 1989-11-14 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Transmission operating apparatus for automatic transmission
US4947968A (en) * 1989-05-01 1990-08-14 Lectron Products, Inc. Transmission mounted solenoid interlock device
US5076114A (en) * 1990-05-14 1991-12-31 Pontiac Coil Inc. Electromagnetic interlock
US5186069A (en) * 1990-05-31 1993-02-16 Fujikiko Kabushiki Kaisha Control device for automatic transmission
US5176231A (en) * 1991-09-16 1993-01-05 Pontiac Coil, Inc. Interlock device having reduced preload binding
US5677658A (en) * 1993-05-18 1997-10-14 Grand Haven Stamped Products, Div. Of Jsj Corp. Electrically operated control module for a locking mechanism
US5402870A (en) * 1993-05-18 1995-04-04 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle park/lock mechanism
US5494141A (en) * 1993-05-18 1996-02-27 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle park/lock mechanism
US5718312A (en) * 1993-05-18 1998-02-17 Grand Haven Stamped Products, Div. Of Jsj Corporation Vehicle park/lock mechanism with control module having a locking mechanism and a control switch actuated by the locking mechanism
US5593011A (en) * 1994-05-31 1997-01-14 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lock unit
US5489246A (en) * 1994-08-29 1996-02-06 Pontiac Coil, Inc. Electronic park lock
US5647818A (en) * 1995-03-27 1997-07-15 Pontiac Coil, Inc. Shifter interlock for an automatic transmission
US5902209A (en) * 1995-03-27 1999-05-11 Pontiac Coil, Inc. Shifter interlock for an automatic transmission
US6082213A (en) * 1995-06-27 2000-07-04 Scandmec Ab Control device for the transmission of a vehicle
US5757132A (en) * 1995-10-02 1998-05-26 Ushiodenki Kabushiki Kaisha Dielectric barrier discharge lamp
US5673013A (en) * 1995-10-06 1997-09-30 Pontiac Coil, Inc. Bobbin concentrically supporting multiple electrical coils
US5729187A (en) * 1995-12-01 1998-03-17 Pontiac Coil, Inc. Transmission shift interlock
US6148686A (en) * 1997-08-29 2000-11-21 Fuji Kiko Co., Ltd. Shift lever apparatus for automatic transmission
US5993353A (en) * 1997-12-15 1999-11-30 Hyundai Motor Company, Ltd. Shift lever device for an automatic transmission of a vehicle
US5938562A (en) * 1998-02-17 1999-08-17 Pontiac Coil, Inc. Brake shifter interlock with improved park lock switch
US6142282A (en) * 1999-01-11 2000-11-07 Pontiac Coil, Inc. Brake-transmission shift interlock device for an automatic transmission system
US6530293B1 (en) * 1999-05-29 2003-03-11 Deere & Company Shift mechanism for motor vehicle transmissions
US20020029951A1 (en) * 1999-07-29 2002-03-14 Beattie Dale A. Transmission shifter with lever-position locking device
US6393932B1 (en) * 1999-08-17 2002-05-28 Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho Shift lever device
US6622629B2 (en) * 2001-10-17 2003-09-23 Northrop Grumman Corporation Submunition fuzing and self-destruct using MEMS arm fire and safe and arm devices
US20030213327A1 (en) * 2002-05-15 2003-11-20 Noriyasu Syamoto Shift device

Also Published As

Publication number Publication date
EP1416200A3 (en) 2007-12-26
US6817262B2 (en) 2004-11-16
JP2004155415A (en) 2004-06-03
EP1416200A2 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
US6361356B1 (en) Electrical connector position assurance device
EP1180818B1 (en) Electronic control unit mounting structure
EP1253680A1 (en) Electrical connector assembly comprising locking part
US6652293B2 (en) Cable-end connector with active circuit elements
US20090053943A1 (en) Bringing a cable into contact with a flexible strip conductor
JPH0231738Y2 (en)
JPH02281582A (en) Connector
DE3903818A1 (en) WIRING DEVICE FOR MOTOR VEHICLES
JP2006508513A (en) Flex cable and IDC wiring harness assembly
US5188536A (en) Space-saving insulation displacement type interconnect device for electrically coupling a ribbon connector to a printed circuit board
JP3410248B2 (en) Harness connection structure of shift lever device
US6179671B1 (en) Electric connector with terminal locking member
US6817262B2 (en) Interlock device with stamped lead frame
JPH0644034U (en) Ground connector
JP3585103B2 (en) Wiring board
US6846183B2 (en) Junction box having a plurality of main casings and connectors designed for use with different types of automobiles
US5545055A (en) Method and apparatus for mechanically and electrically coupling metal terminals in a housing
US20040140115A1 (en) Contacting component
US20030129882A1 (en) Device for retaining a contact in an electrical contact-carrying module
JP4627368B2 (en) Switch and manufacturing method thereof
EP1410953B1 (en) Operating unit for installation on the roof lining of a vehicle
WO2012146457A2 (en) Controller, control system and method for connecting a controller for a transmission of a vehicle to further transmission control elements
JP3081769B2 (en) Electrical junction box
JP2001291567A (en) Electronic control module
JPS6210935Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRAND HAVEN STAMPED PRODUCTS, DIVISION OF JSJ CORP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEWIS, JOHN T.;REMPINSKI, DONALD R.;REEL/FRAME:013476/0105

Effective date: 20021101

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20121116