US20040069106A1 - Linear feed cutting apparatus and method - Google Patents
Linear feed cutting apparatus and method Download PDFInfo
- Publication number
- US20040069106A1 US20040069106A1 US10/270,849 US27084902A US2004069106A1 US 20040069106 A1 US20040069106 A1 US 20040069106A1 US 27084902 A US27084902 A US 27084902A US 2004069106 A1 US2004069106 A1 US 2004069106A1
- Authority
- US
- United States
- Prior art keywords
- workpiece
- cutting
- assembly
- cut
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27B—SAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
- B27B5/00—Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
- B27B5/16—Saw benches
- B27B5/18—Saw benches with feedable circular saw blade, e.g. arranged on a carriage
- B27B5/20—Saw benches with feedable circular saw blade, e.g. arranged on a carriage the saw blade being adjustable according to depth or angle of cut; Radial saws, i.e. sawing machines with a pivoted radial arm for guiding the movable carriage
- B27B5/208—Saw benches with feedable circular saw blade, e.g. arranged on a carriage the saw blade being adjustable according to depth or angle of cut; Radial saws, i.e. sawing machines with a pivoted radial arm for guiding the movable carriage the saw blade being mounted on a hanging arm or at the end of a set of bars, e.g. parallelograms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27B—SAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
- B27B25/00—Feeding devices for timber in saw mills or sawing machines; Feeding devices for trees
- B27B25/02—Feeding devices for timber in saw mills or sawing machines; Feeding devices for trees with feed and pressure rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27B—SAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
- B27B5/00—Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
- B27B5/16—Saw benches
- B27B5/18—Saw benches with feedable circular saw blade, e.g. arranged on a carriage
- B27B5/20—Saw benches with feedable circular saw blade, e.g. arranged on a carriage the saw blade being adjustable according to depth or angle of cut; Radial saws, i.e. sawing machines with a pivoted radial arm for guiding the movable carriage
- B27B5/207—Saw benches with feedable circular saw blade, e.g. arranged on a carriage the saw blade being adjustable according to depth or angle of cut; Radial saws, i.e. sawing machines with a pivoted radial arm for guiding the movable carriage the saw blade being fitted on a movable carriage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/04—Processes
- Y10T83/05—With reorientation of tool between cuts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/162—With control means responsive to replaceable or selectable information program
- Y10T83/173—Arithmetically determined program
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/202—With product handling means
- Y10T83/2074—Including means to divert one portion of product from another
- Y10T83/2087—Diverging product movers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/647—With means to convey work relative to tool station
- Y10T83/6476—Including means to move work from one tool station to another
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/647—With means to convey work relative to tool station
- Y10T83/6582—Tool between tandem arranged work carrying means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/768—Rotatable disc tool pair or tool and carrier
- Y10T83/7684—With means to support work relative to tool[s]
- Y10T83/7693—Tool moved relative to work-support during cutting
- Y10T83/7697—Tool angularly adjustable relative to work-support
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T83/00—Cutting
- Y10T83/869—Means to drive or to guide tool
- Y10T83/8773—Bevel or miter cut
Definitions
- This invention relates, in general, to an apparatus for the cutting of wood components, namely, dimension lumber into finished rafters having predetermined lengths and angles at the ends thereof, for use in building construction.
- this invention relates to an apparatus, including a novel linear feed table and adjustable cutting device, for processing workpieces into finished components for assembly, and to a computer control and program for controlling same.
- dimension lumber Most lumber used in the construction industry is known as dimension lumber, which the present invention is intended to use.
- Dimension lumber has opposite sides parallel, with adjacent sides forming a right angle, and is generally known by the nominal dimensions of the sides, e.g., 2 ⁇ 4, 2 ⁇ 6, 4 ⁇ 8, etc.
- the longer sides hereinafter are called “faces,” and the shorter sides are called “edges.”
- the pieces of dimension lumber to be processed by the present invention are called “workpieces” herein and, after cutting or processing, are called “components,” e.g., rafters of several kinds, and webs and chords for trusses.
- FIG. 2 illustrates each of these kinds of rafters.
- the present invention is also useful in cutting all of the webs and chords for a single truss in one operation.
- an individual component for a number of trusses was made up at the same time, to reduce the amount of hand adjustment, and therefore cost, per component. Otherwise, it became very expensive to produce them for a single truss, since adjustments had to be made between the cutting of each different component.
- workpieces were fed into a cutting apparatus laterally, as opposed to linearly, as in the present invention. Lateral feed assemblies allow for simultaneous cutting of the ends of the workpieces, but are not as efficient where the saw blades must reset between each workpiece.
- FIGS. 1 A-C of the drawings herein disclose three typical arrangements of rafters and their associated support or supported members, and will help to illustrate the concepts of “measuring line” and “ridge line”;
- FIG. 1C discloses a rafter simply laid upon the double top plate and the ridge beam, without cutting the rafter, except perhaps for a small notch at the upper end where it rests on the ridge beam;
- the “ridge line” is at the bottom of the rafter where it meets the adjoining or complementary rafter.
- FIG. 1B discloses a rafter notched at both upper and lower ends to fit over the ridge beam and the double top plate, respectively. In this case:
- the “measuring line” runs parallel to the rafter's lower edge, from the outer upper edge of the double top plates to the center line of the ridge beam above its upper edge;
- the “ridge line” is at the intersection of the two rafter measuring lines.
- FIG. 1A discloses a rafter cut at both upper and lower ends to rest against the face of the ridge beam and the upper face of the double top plate, and the lower edge of the rafter intersects the lower edge of the ridge beam and the inner edge of the double top plate.
- the lower edge of the rafter intersects the lower edge of the ridge beam and the inner edge of the double top plate.
- the “measuring line” runs parallel to the lower edge of the rafter, from the outer upper edge of the double top plates to the point of intersection of the measuring line with the face of the ridge beam;
- the “ridge line” runs down the midpoint of the ridge beam intersecting the projection of the measuring line.
- the first structure of FIG. 1C is an older method of construction little used at the present time.
- FIGS. 1B AND 1A represent methods of construction which are more widely used at present.
- Regular rafters i.e., those on which the ends are cut at right angles to the faces (or the edges), even though the ends may be cut at something other than a right angle to the edges (or the faces, respectively), do not present a great problem to manufacture, since the length of a given rafter as measured on one face (or edge) is the same as the length measured on the other face (or edge).
- hip, valley, and jack rafters present a more difficult problem of manufacture:
- jack rafters have at least one end thereof cut at a compound angle, i.e., an angle both to the edges and to the faces, the lengths of opposite faces (and/or edges) thereof are unequal;
- hip and valley rafters have at least one end which requires two cuts, both of which are at angles to the faces and edges, but which are usually at right angles to each other (although not necessarily). Although the lengths on the faces may be equal, the length on the measuring line will be different than both.
- U.S. Pat. No. 4,545,274 teaches a means of tilting the axis of travel of a saw blade to correspond to the complement of the roof slope, and then angling the saw blade to make the compound cut. Lumber is moved past the cutting station in a sideways manner. A separate cutting station is required for cuts on the other end of the component and, to cut components of differing lengths, one of the cutting stations must be movable in relation to the other, which takes time. Further, the cutting process is not automatic.
- U.S. Pat. No. 6,212,983 incorporated herein by reference teaches a linear feed system where compound cuts are achieved by tilting the work surface supporting the workpiece. This requires automating and adjusting the work surface to be movable for compound cuts. Adjusting workpieces of great length may prove cumbersome.
- An example of a lateral feed assembly can be found in Shamblin, U.S. Pat. No. 5,943,239, which is incorporated herein. Such a system employs four or more cutters and requires more work space and added expense.
- FIGS. 1 A-C are profile views of regular rafters as used in three typical installings, disclosing the parameters which establish the measuring and cutting points for the operation of the present invention.
- FIG. 3 is an oblique view of a jack rafter, with the important lines and angles indicated thereon.
- FIG. 5A is an orthogonal view of the cutting assembly in position to make a compound or bevel cut
- FIG. 5B is an orthogonal view of the cutting assembly in a home position
- FIG. 8 is a sample workpiece
- the present invention is an apparatus for making roof structure and other components from dimension lumber workpieces by making the required cuts in a sequential manner. Components such as hip, valley, and jack rafters, and webs and chords for trusses, are easily obtained.
- workpiece refers to the unprocessed, or partially processed pieces of dimension lumber, while “component” refers only to the finished piece, after all processing has been performed.
- jack rafters as disclosed in place in FIG. 2, and especially in FIG. 3, have at least one end thereof which is cut at an angle to both the edges and the faces, this is a “compound” angle or “bevel” cut;
- hip rafters as disclosed in FIG. 2., have at least one end which requires two cuts, both at compound angles to the faces and edges;
- valley rafters (not shown in place) have the same form as hip rafters, but are needed where two sloping roofs create a valley, and present the same problems in cutting as a hip rafter.
- FIG. 4 discloses, in a view from the top, the overall structure of the wood-handling apparatus 100 .
- the wood-handling apparatus 100 preferably includes a live deck 102 for automatically supplying workpieces 104 to the infeed assembly 106 .
- the infeed assembly 106 supplies workpieces 104 , one at a time, in a linear feed, to the cutting assembly 200 .
- the out-feed assembly 110 moves finished components 112 away from the cutting assembly 108 .
- the cutting assembly 200 is shown in more detail in FIGS. 5 A- 5 D.
- the cutting assembly 200 has at least one cutting blade 202 , here shown as a circular saw blade.
- FIG. 4 shows an optimal arrangement of a cutting assembly 200 with multiple cutting blades 201 and 202 .
- element 202 is mounted on saw-frame 204 and is movable in several directions.
- Element 202 is rotatable about its vertical axis V 1 , allowing motion of the element 202 as shown by arrow 1 .
- the cutting element 202 is shown in its upright or home position 204 in FIG. 5B.
- the cutting element 202 also moves vertically, allowing movement as indicated by the arrow Z 1 .
- the cutting element 202 is movable transversely, across the workpiece 104 , as indicated by arrow T 1 .
- the cutting element 202 is finally rotatable about axis 16 , allowing movement as indicated by arrow 11 . Movement of the workpiece along path L is controlled by linear feed assembly 300 , the infeed feeder 302 and outfeed feeder 304 allowing lumber movement as indicated by arrow LM.
- the practitioner will realize that the combination of movements allowed by the feed assembly 300 and cutting assembly 200 will enable simple and compound cuts to be made to a workpiece.
- the cutting assembly 300 is in position for a compound cut in FIG. 5A.
- the specific arrangement of the elements of the cutting assembly 200 is not important as long as each of the relative motions of the cutting element 202 is achieved.
- the saw frame 204 is mounted to a stable object, such as a saw enclosure 206 .
- the frame 204 is slidably mounted to transverse rails 208 .
- the frame 204 is movable in the transverse direction, along arrow T 1 , by movement along a ball-screw shaft (not shown) which interacts with aperture 210 in a manner known in the art.
- Piston-cylinder assembly 212 controls the movement of the cutting element 202 in the vertical plane, Z 1 .
- Rotation of the cutting element 202 is controlled by servomotor and pulleys 214 allowing motion indicated by arrow 11 .
- rotation about the vertical pivot, movement along line 1 is controlled by an actuator 217 .
- movement in the transverse direction moves actuators 212 , 214 and 216 along with all of frame 204 .
- This arrangement can be modified as desired as long as movement is allowed in the desired directions.
- the preferred embodiment utilizes, convenient actuator mechanisms but any means known in the art may be used to effect the various movements of the cutting elements.
- Linear movement of the workpiece is handled by the linear feeder 300 , namely the infeed feeder 302 and the outfeed feeder 304 .
- Each feeder 302 and 304 has an upper component, 306 and 308 , and a lower component 310 and 312 , respectively.
- the upper components, 306 and 308 are the drive components.
- the upper components 306 and 308 are movable in the Z axis allowing the upper components to clamp down on a workpiece to effectuate movement thereof.
- the linear feeder 300 further comprises sensors (not shown) for sensing the presence of a workpiece and locating the end thereof. Use of such sensors is known in the art.
- the upper components 306 and 308 seen in detail FIG. 6, have belts that press against the lumber and grip it against the lower components 310 and 312 .
- the drive mechanism for the belt is a servomotor with a measuring device or encoder, that measures the length of the workpiece as it feeds the lumber.
- Other drive mechanisms 324 and encoders 322 may be used, as are known in the art.
- the two units 302 and 304 are capable of working together, moving a single workpiece at the same rate, or independently.
- any workpiece that extends at least half-way through either feeder will be held steady enough to cut Pressure can be supplied by springs, hydraulics or other known methods.
- the feed rolls shown are believed to provide better length measuring accuracy because they are not subject to errors introduced by warped lumber or surface imperfections.
- Other roller, drive and measuring means may be used, such as that described in U.S. Pat. No. 6,263,773 to McAdoo which is hereby incorporated for all purposes.
- All of the motions of the saw elements and rollers are accurately controlled by computer 400 .
- the computer 400 determines the manner in which to position the saw blade, actuates all motion of the blade elements and rollers, tracks the presence and length of workpieces, and operates to cut workpieces to the required length and shape.
- the cutting assembly and roller feed assemblies are operably connected to the computer 400 through appropriate electronics as are known in the art.
- the computer enables the user to input the desired lengths of wood product needed for a particular job.
- the computer may optimize the cuts made in the wood product through an appropriate program.
- the computer controls the cutting unit and the driving unit.
- the computer receives input signals from at least the position sensors and encoders.
- the computer is operably connected to activate and control the driver assembly and pressure assembly for positioning the workpieces and the cutting unit.
- the computer receives input from the measuring assembly to determine the length of the workpiece and to determine the appropriate positioning of the workpiece in selecting the locations of the cuts to be made.
- the computer may optimize the cuts in the product by a method such as the one disclosed in U.S. Pat. No. 5,44,635 to Blaine, which is incorporated herein by references.
- the second cutting assembly 201 is similar to the first, 200 , but preferably below-mounted such that the cutting blade moves upward to execute a cut.
- the second cutting assembly 201 can be used to execute a cut which the first assembly 200 is positioning itself.
- the invention can also be combined with a marking assembly 500 as in known in the art, which can mark workpieces as to their size, shape, dimensions, or any other preferred indication.
- the out feed system 110 can include a sorter, as seen in FIGS. 4 and 7, as is known in the art, to dump the cut components into carts or other handling mechanisms.
- a sorter as seen in FIGS. 4 and 7, as is known in the art, to dump the cut components into carts or other handling mechanisms.
- sorters 600 and carts 602 with flip-up arms 604 to direct components is well-known in the art and sorters are commercially available from Alpine Engineered Products, Inc.
- the cutting assembly can cut all types of components, including those with compound or bevel cuts.
- a sensor will detect the presence of a board and activate L 1 to start the board into the saw.
- a second sensor will detect the leading edge of the board with sufficient precision to move the board into position for first cut. All subsequent cuts will be under the precise control of the motion control system, so no other adjustments will be needed until a new board is fed into the machine.
- the motion control system will track and adjust for kerf material removed and end configuration resulting from previous cuts.
- FIG. 8 shows a component requiring multiple cuts. With a single-head saw 200 , the blade would set up, execute cut 1 , reposition and execute cut 2 , etc., for all four cuts.
- unit 200 would position and execute cut 1 .
- Unit 201 would be positioning itself for cut 2 while cut 1 is being made.
- Unit 201 would then execute cut 2 while unit 200 positioned for cut 3 , etc.
- the linear feeders Prior to cut 4 , obviously, the linear feeders would forward and position the workpiece for the final cut. An infinite variety of cuts is possible.
- FIG. 9 shows a detail of cutting for scarf cuts.
- the cut length, S required is greater than the maximum cut C of blade 202 .
- cut length S will be less than maximum cut C.
- use of automated movement along axis T 1 is employed to make a cut as needed.
- the workpiece 104 is shown in place, engaged by feed roller assembly 302 .
- the computer 400 positions the cutting blade 202 at the appropriate angle about axis 1 , and along other axes as necessary.
- the cutting blade 202 is lowered, along vertical axis Z 1 , into cutting contact with the workpiece 104 , engaging the workpiece to the maximum cut length C.
- the workpiece 104 via feed roller 302 , is then moved linearly while simultaneously the cutting blade 202 is moved along the T 1 axis, thereby translating the blade to mark scarf cut S. This type of cut is not possible without automated movement in the T 1 axis.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Dovetailed Work, And Nailing Machines And Stapling Machines For Wood (AREA)
- Dicing (AREA)
- Sawing (AREA)
- Shearing Machines (AREA)
Abstract
Description
- This invention relates, in general, to an apparatus for the cutting of wood components, namely, dimension lumber into finished rafters having predetermined lengths and angles at the ends thereof, for use in building construction. In particular, this invention relates to an apparatus, including a novel linear feed table and adjustable cutting device, for processing workpieces into finished components for assembly, and to a computer control and program for controlling same.
- Most lumber used in the construction industry is known as dimension lumber, which the present invention is intended to use. Dimension lumber has opposite sides parallel, with adjacent sides forming a right angle, and is generally known by the nominal dimensions of the sides, e.g., 2×4, 2×6, 4×8, etc. The longer sides hereinafter are called “faces,” and the shorter sides are called “edges.” The pieces of dimension lumber to be processed by the present invention are called “workpieces” herein and, after cutting or processing, are called “components,” e.g., rafters of several kinds, and webs and chords for trusses.
- There are three kinds of rafters with which the present invention is primarily concerned:
- 1. “regular” rafters:
- those which intersect their support or supported members, i.e. plates or ridge beams, respectively, at right angles to the faces, but at an angle to the edges thereof;
- 2. “jack” rafters:
- those which, at one end, intersect at least one of their support or supported members at something other than a right angle to each of the faces and edges of the rafter, requiring a cut at what is called hereinafter a “compound” angle or a “bevel” cut on that end of the rafter; and
- 3. “hip” and “valley” rafters:
- those which intersect their support or supported members where two or more come together at an angle, requiring two cuts on that end of the rafter, one or both of which may be compound angles. The angle at which the support or supported members come together is often, but not always, a right angle.
- FIG. 2 illustrates each of these kinds of rafters.
- The present invention is also useful in cutting all of the webs and chords for a single truss in one operation. Typically, an individual component for a number of trusses was made up at the same time, to reduce the amount of hand adjustment, and therefore cost, per component. Otherwise, it became very expensive to produce them for a single truss, since adjustments had to be made between the cutting of each different component. Alternately, workpieces were fed into a cutting apparatus laterally, as opposed to linearly, as in the present invention. Lateral feed assemblies allow for simultaneous cutting of the ends of the workpieces, but are not as efficient where the saw blades must reset between each workpiece.
- To lay out a roof structure, certain distances must be accurately known:
- 1. the distance between the outside edges of the double top plate;
- 2. the vertical distance from the upper face of the top-plate to the ridge line; and
- 3. the inclined, or slant, distance between the outside edge of the double top plates and the ridge line.
- It will help in understanding the following discussion to refer to FIGS.1A-C of the drawings herein, which disclose three typical arrangements of rafters and their associated support or supported members, and will help to illustrate the concepts of “measuring line” and “ridge line”;
- 1. FIG. 1C discloses a rafter simply laid upon the double top plate and the ridge beam, without cutting the rafter, except perhaps for a small notch at the upper end where it rests on the ridge beam;
- a. the “measuring line” runs along the lower edge of the rafter, and
- b. the “ridge line” is at the bottom of the rafter where it meets the adjoining or complementary rafter.
- 2. FIG. 1B discloses a rafter notched at both upper and lower ends to fit over the ridge beam and the double top plate, respectively. In this case:
- a. the “measuring line” runs parallel to the rafter's lower edge, from the outer upper edge of the double top plates to the center line of the ridge beam above its upper edge; and
- b. the “ridge line” is at the intersection of the two rafter measuring lines.
- 3. FIG. 1A discloses a rafter cut at both upper and lower ends to rest against the face of the ridge beam and the upper face of the double top plate, and the lower edge of the rafter intersects the lower edge of the ridge beam and the inner edge of the double top plate. In this case:
- a. the “measuring line” runs parallel to the lower edge of the rafter, from the outer upper edge of the double top plates to the point of intersection of the measuring line with the face of the ridge beam; and
- b. the “ridge line” runs down the midpoint of the ridge beam intersecting the projection of the measuring line.
- The first structure of FIG. 1C is an older method of construction little used at the present time.
- The second and third structures of FIGS. 1B AND 1A represent methods of construction which are more widely used at present.
- Regular rafters, i.e., those on which the ends are cut at right angles to the faces (or the edges), even though the ends may be cut at something other than a right angle to the edges (or the faces, respectively), do not present a great problem to manufacture, since the length of a given rafter as measured on one face (or edge) is the same as the length measured on the other face (or edge).
- However, hip, valley, and jack rafters present a more difficult problem of manufacture:
- 1. since jack rafters have at least one end thereof cut at a compound angle, i.e., an angle both to the edges and to the faces, the lengths of opposite faces (and/or edges) thereof are unequal; and
- 2. hip and valley rafters have at least one end which requires two cuts, both of which are at angles to the faces and edges, but which are usually at right angles to each other (although not necessarily). Although the lengths on the faces may be equal, the length on the measuring line will be different than both.
- Present machinery for making cuts to produce composite or compound angles on roof structure components still requires substantial hand labor in the set-up and/or operation of cutting equipment.
- U.S. Pat. No. 4,545,274 teaches a means of tilting the axis of travel of a saw blade to correspond to the complement of the roof slope, and then angling the saw blade to make the compound cut. Lumber is moved past the cutting station in a sideways manner. A separate cutting station is required for cuts on the other end of the component and, to cut components of differing lengths, one of the cutting stations must be movable in relation to the other, which takes time. Further, the cutting process is not automatic.
- U.S. Pat. No. 6,212,983 incorporated herein by reference, teaches a linear feed system where compound cuts are achieved by tilting the work surface supporting the workpiece. This requires automating and adjusting the work surface to be movable for compound cuts. Adjusting workpieces of great length may prove cumbersome. An example of a lateral feed assembly can be found in Shamblin, U.S. Pat. No. 5,943,239, which is incorporated herein. Such a system employs four or more cutters and requires more work space and added expense.
- There is no known linear feed machinery presently available to sequentially and automatically make the cuts necessary to achieve compound angles.
- FIGS.1A-C are profile views of regular rafters as used in three typical installings, disclosing the parameters which establish the measuring and cutting points for the operation of the present invention.
- FIG. 2 is an oblique view of a hip roof and its components, including rafters, showing the important structural relationships thereof.
- FIG. 3 is an oblique view of a jack rafter, with the important lines and angles indicated thereon.
- FIG. 4 is a top view of the present invention, disclosing the arrangement of the various major elements thereof.
- FIG. 5A is an orthogonal view of the cutting assembly in position to make a compound or bevel cut;
- FIG. 5B is an orthogonal view of the cutting assembly in a home position;
- FIG. 5C is a front view of the cutting assembly;
- FIG. 5D is a right elevational view of the cutting assembly;
- FIG. 6 is a detail schematic elevational view of the feeder assembly;
- FIG. 7 is a detail elevational view of a component sorter;
- FIG. 8 is a sample workpiece; and
- FIG. 9 is a schematic showing operation of the cutting assembly to create a scarf cut.
- The present invention is an apparatus for making roof structure and other components from dimension lumber workpieces by making the required cuts in a sequential manner. Components such as hip, valley, and jack rafters, and webs and chords for trusses, are easily obtained.
- As stated earlier, hereinafter “workpiece” refers to the unprocessed, or partially processed pieces of dimension lumber, while “component” refers only to the finished piece, after all processing has been performed.
- It will be helpful to refer to FIGS.1-3, in understanding the following preliminary description.
- Regular rafters, as disclosed in FIGS.1A-C, and especially as disclosed in place in FIG. 2, although having the ends thereof cut at angles other than a right angle to the rafter edges, have a right angle between the end of the rafter and its faces, requiring only that the cutting tool be at the proper angle to the edges to make the cut.
- Hip, valley, and jack rafters require that the cutting tool cut at compound angles, sometimes on the same workpiece and on the same end thereof:
- 1. jack rafters, as disclosed in place in FIG. 2, and especially in FIG. 3, have at least one end thereof which is cut at an angle to both the edges and the faces, this is a “compound” angle or “bevel” cut;
- 2. hip rafters, as disclosed in FIG. 2., have at least one end which requires two cuts, both at compound angles to the faces and edges; and
- valley rafters (not shown in place) have the same form as hip rafters, but are needed where two sloping roofs create a valley, and present the same problems in cutting as a hip rafter.
- FIG. 4 discloses, in a view from the top, the overall structure of the wood-
handling apparatus 100. The wood-handling apparatus 100 preferably includes alive deck 102 for automatically supplyingworkpieces 104 to theinfeed assembly 106. Theinfeed assembly 106supplies workpieces 104, one at a time, in a linear feed, to the cuttingassembly 200. The out-feed assembly 110 moves finishedcomponents 112 away from the cutting assembly 108. - The cutting
assembly 200 is shown in more detail in FIGS. 5A-5D. The cuttingassembly 200 has at least onecutting blade 202, here shown as a circular saw blade. FIG. 4 shows an optimal arrangement of a cuttingassembly 200 withmultiple cutting blades -
element 202 is mounted on saw-frame 204 and is movable in several directions.Element 202 is rotatable about its vertical axis V1, allowing motion of theelement 202 as shown by arrow 1. The cuttingelement 202 is shown in its upright orhome position 204 in FIG. 5B. The cuttingelement 202 also moves vertically, allowing movement as indicated by the arrow Z1. The cuttingelement 202 is movable transversely, across theworkpiece 104, as indicated by arrow T1. The cuttingelement 202 is finally rotatable aboutaxis 16, allowing movement as indicated byarrow 11. Movement of the workpiece along path L is controlled bylinear feed assembly 300, theinfeed feeder 302 andoutfeed feeder 304 allowing lumber movement as indicated by arrow LM. - The practitioner will realize that the combination of movements allowed by the
feed assembly 300 and cuttingassembly 200 will enable simple and compound cuts to be made to a workpiece. The cuttingassembly 300 is in position for a compound cut in FIG. 5A. - The specific arrangement of the elements of the cutting
assembly 200 is not important as long as each of the relative motions of the cuttingelement 202 is achieved. In a preferred embodiment, thesaw frame 204 is mounted to a stable object, such as asaw enclosure 206. In this case, theframe 204 is slidably mounted totransverse rails 208. Theframe 204 is movable in the transverse direction, along arrow T1, by movement along a ball-screw shaft (not shown) which interacts with aperture 210 in a manner known in the art. Piston-cylinder assembly 212 controls the movement of the cuttingelement 202 in the vertical plane, Z1. Rotation of the cuttingelement 202 is controlled by servomotor and pulleys 214 allowing motion indicated byarrow 11. Similarly, rotation about the vertical pivot, movement along line 1, is controlled by an actuator 217. Note that in the preferred embodiment, movement in the transverse direction movesactuators frame 204. This arrangement can be modified as desired as long as movement is allowed in the desired directions. Further, the preferred embodiment utilizes, convenient actuator mechanisms but any means known in the art may be used to effect the various movements of the cutting elements. - Linear movement of the workpiece is handled by the
linear feeder 300, namely theinfeed feeder 302 and theoutfeed feeder 304. Eachfeeder lower component upper components - The
linear feeder 300 further comprises sensors (not shown) for sensing the presence of a workpiece and locating the end thereof. Use of such sensors is known in the art. Theupper components lower components Other drive mechanisms 324 andencoders 322 may be used, as are known in the art. The twounits upstream piece 326 need to be moved back out of the way to allow movement ofdownstream piece 328 for further cutting. Thefinished segment 328 can then be moved downstream to the out feed table 112. Thefeeder units - Preferably any workpiece that extends at least half-way through either feeder will be held steady enough to cut Pressure can be supplied by springs, hydraulics or other known methods. The feed rolls shown are believed to provide better length measuring accuracy because they are not subject to errors introduced by warped lumber or surface imperfections. Other roller, drive and measuring means may be used, such as that described in U.S. Pat. No. 6,263,773 to McAdoo which is hereby incorporated for all purposes.
- All of the motions of the saw elements and rollers are accurately controlled by
computer 400. Thecomputer 400 determines the manner in which to position the saw blade, actuates all motion of the blade elements and rollers, tracks the presence and length of workpieces, and operates to cut workpieces to the required length and shape. - The cutting assembly and roller feed assemblies are operably connected to the
computer 400 through appropriate electronics as are known in the art. The computer enables the user to input the desired lengths of wood product needed for a particular job. The computer may optimize the cuts made in the wood product through an appropriate program. Further, the computer controls the cutting unit and the driving unit. The computer receives input signals from at least the position sensors and encoders. The computer is operably connected to activate and control the driver assembly and pressure assembly for positioning the workpieces and the cutting unit. The computer receives input from the measuring assembly to determine the length of the workpiece and to determine the appropriate positioning of the workpiece in selecting the locations of the cuts to be made. The computer may optimize the cuts in the product by a method such as the one disclosed in U.S. Pat. No. 5,44,635 to Blaine, which is incorporated herein by references. - It is possible to add a
second cutting assembly 201 to increase productivity. Thesecond cutting assembly 201 is similar to the first, 200, but preferably below-mounted such that the cutting blade moves upward to execute a cut. Thesecond cutting assembly 201 can be used to execute a cut which thefirst assembly 200 is positioning itself. - The invention can also be combined with a marking
assembly 500 as in known in the art, which can mark workpieces as to their size, shape, dimensions, or any other preferred indication. - The out
feed system 110 can include a sorter, as seen in FIGS. 4 and 7, as is known in the art, to dump the cut components into carts or other handling mechanisms. The use ofsorters 600 andcarts 602, with flip-uparms 604 to direct components is well-known in the art and sorters are commercially available from Alpine Engineered Products, Inc. - In use, the cutting assembly can cut all types of components, including those with compound or bevel cuts. For all cut sequences, a sensor will detect the presence of a board and activate L1 to start the board into the saw. A second sensor will detect the leading edge of the board with sufficient precision to move the board into position for first cut. All subsequent cuts will be under the precise control of the motion control system, so no other adjustments will be needed until a new board is fed into the machine. The motion control system will track and adjust for kerf material removed and end configuration resulting from previous cuts. As an example, FIG. 8 shows a component requiring multiple cuts. With a single-head saw 200, the blade would set up, execute cut 1, reposition and execute
cut 2, etc., for all four cuts. If a first 200 and a second 201 cutting unit are employed,unit 200 would position and execute cut 1.Unit 201 would be positioning itself forcut 2 while cut 1 is being made.Unit 201 would then executecut 2 whileunit 200 positioned forcut 3, etc. Prior to cut 4, obviously, the linear feeders would forward and position the workpiece for the final cut. An infinite variety of cuts is possible. - One type of cut which the prior art machines cannot handle is long scarf cuts. FIG. 9 shows a detail of cutting for scarf cuts. In a scarf cut, the cut length, S, required is greater than the maximum cut C of
blade 202. For most cuts, cut length S will be less than maximum cut C. In a scarf cut, however, use of automated movement along axis T1 is employed to make a cut as needed. Theworkpiece 104 is shown in place, engaged byfeed roller assembly 302. Thecomputer 400 positions thecutting blade 202 at the appropriate angle about axis 1, and along other axes as necessary. Thecutting blade 202 is lowered, along vertical axis Z1, into cutting contact with theworkpiece 104, engaging the workpiece to the maximum cut length C. Theworkpiece 104, viafeed roller 302, is then moved linearly while simultaneously thecutting blade 202 is moved along the T1 axis, thereby translating the blade to mark scarf cut S. This type of cut is not possible without automated movement in the T1 axis. - Practitioners will also note that automated movement along the T1 axis allows the assembly to be used with varying widths of workpieces, e.g., 2, 4, 8 inches, without manual set up of the assembly or any accompanying downtime. This is another improvement offered by the present invention.
- While the preferred embodiment of the invention has been disclosed with reference to particular cutting enhancements, and methods of operation thereof, it is to be understood that many changes in detail may be made as a matter of engineering choice without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (24)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/270,849 US20040069106A1 (en) | 2002-10-14 | 2002-10-14 | Linear feed cutting apparatus and method |
EP20030754497 EP1560685B1 (en) | 2002-10-14 | 2003-09-10 | Linear feed cutting method |
DE60330039T DE60330039D1 (en) | 2002-10-14 | 2003-09-10 | CUTTING PROCEDURE WITH LINEAR FEEDING |
AU2003272321A AU2003272321B2 (en) | 2002-10-14 | 2003-09-10 | Linear feed cutting apparatus and method |
PCT/US2003/028492 WO2004035271A2 (en) | 2002-10-14 | 2003-09-10 | Linear feed cutting apparatus and method |
CA 2501455 CA2501455C (en) | 2002-10-14 | 2003-09-10 | Linear feed cutting apparatus and method |
US12/871,790 US8281696B2 (en) | 2002-10-14 | 2010-08-30 | Linear feed cutting apparatus and method |
US13/448,731 US8387499B2 (en) | 2002-10-14 | 2012-04-17 | Linear saw with stab-cut bevel capability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/270,849 US20040069106A1 (en) | 2002-10-14 | 2002-10-14 | Linear feed cutting apparatus and method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/681,884 Continuation-In-Part US20050076759A1 (en) | 2002-10-14 | 2003-10-08 | Linear saw with stab-cut bevel capability |
US12/871,790 Division US8281696B2 (en) | 2002-10-14 | 2010-08-30 | Linear feed cutting apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20040069106A1 true US20040069106A1 (en) | 2004-04-15 |
Family
ID=32069020
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/270,849 Abandoned US20040069106A1 (en) | 2002-10-14 | 2002-10-14 | Linear feed cutting apparatus and method |
US12/871,790 Expired - Lifetime US8281696B2 (en) | 2002-10-14 | 2010-08-30 | Linear feed cutting apparatus and method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/871,790 Expired - Lifetime US8281696B2 (en) | 2002-10-14 | 2010-08-30 | Linear feed cutting apparatus and method |
Country Status (6)
Country | Link |
---|---|
US (2) | US20040069106A1 (en) |
EP (1) | EP1560685B1 (en) |
AU (1) | AU2003272321B2 (en) |
CA (1) | CA2501455C (en) |
DE (1) | DE60330039D1 (en) |
WO (1) | WO2004035271A2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060016305A1 (en) * | 2004-07-22 | 2006-01-26 | Urmson James F | Apparatus for trimming a work piece |
WO2008075937A1 (en) * | 2006-12-20 | 2008-06-26 | Patents Exploitation Company B.V. | Machine tool |
US7647133B2 (en) | 2005-10-12 | 2010-01-12 | Alpine Engineered Products, Inc. | Method and apparatus for optimization of cutting lumber |
CN102039611A (en) * | 2009-10-14 | 2011-05-04 | 江苏南方涂装环保股份有限公司 | Material waiting device for cutting sections |
US20120198976A1 (en) * | 2002-10-14 | 2012-08-09 | Alpine Engineering Products, Inc. | Linear saw with stab-cut bevel capability |
EP2527068A1 (en) * | 2011-05-26 | 2012-11-28 | Ateliers Debelle (ESTOM) | Automatic saw for realising jacks |
US20120297949A1 (en) * | 2010-02-10 | 2012-11-29 | Nishijima Kabushiki Kaisha | Circular saw cutting machine |
US20130305891A1 (en) * | 2012-05-21 | 2013-11-21 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US20130305892A1 (en) * | 2012-05-21 | 2013-11-21 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US20130305894A1 (en) * | 2012-05-21 | 2013-11-21 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
DE102015204719A1 (en) * | 2015-03-16 | 2016-09-22 | Homag Holzbearbeitungssysteme Gmbh | processing device |
US20170225246A1 (en) * | 2016-02-05 | 2017-08-10 | Cessna Aircraft Company | System and method for cutting composite materials |
US20170341259A1 (en) * | 2016-05-27 | 2017-11-30 | Daniel S. Underwood | Material processing system |
US20200339360A1 (en) * | 2019-04-26 | 2020-10-29 | Illinois Tool Works Inc. | Lumber handling and cutting apparatus |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2451697A (en) * | 2007-08-10 | 2009-02-11 | Sigmala Ltd | Adjustable slitting knife holder |
WO2016001866A1 (en) * | 2014-07-02 | 2016-01-07 | Panotec S.R.L. | Cutting device for cutting relatively rigid web materials such as paper, cardboard, plastic materials or composites |
US10405516B2 (en) | 2016-08-30 | 2019-09-10 | The Kingstar Company | Transport trailer with deployable corral |
CN109158693B (en) * | 2018-08-24 | 2020-06-02 | 浙江闽立电动工具有限公司 | Automatic corner cutting machine |
US11414317B2 (en) | 2020-02-14 | 2022-08-16 | The Kingstar Company | Movable storage system |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3289662A (en) * | 1964-02-04 | 1966-12-06 | Swenson Granite Co Inc John | Dual head sawing machine |
US3302669A (en) * | 1964-06-29 | 1967-02-07 | Edler Adolph | Motor powered radial arm tool support |
US3577829A (en) * | 1967-09-13 | 1971-05-04 | James Hurn | Method and apparatus for cutting components to length |
US3848646A (en) * | 1971-12-30 | 1974-11-19 | Hines E Lumber Co | Method and apparatus for cutting lumber to random or specified clear lengths |
US3910142A (en) * | 1971-02-05 | 1975-10-07 | Automated Building Components | Automated saw |
US4141557A (en) * | 1975-01-27 | 1979-02-27 | Ingwersen Samuel E | Simulated golf green |
US4545274A (en) * | 1984-08-01 | 1985-10-08 | Speed Cut, Inc. | Hip, valley and jack rafter cutting apparatus |
US4574670A (en) * | 1983-11-17 | 1986-03-11 | Lockheed Corporation | Multiple angle cutting apparatus |
US4676129A (en) * | 1984-10-02 | 1987-06-30 | Gang-Nail Systems, Inc. | Automated truss component saw apparatus |
US5176060A (en) * | 1991-11-18 | 1993-01-05 | Thornton Jack L | Truss miter angle saws |
US5440977A (en) * | 1991-04-09 | 1995-08-15 | Poutanen; Tuomo T. | Method for production of trussed rafters with nail plate joints |
US5444635A (en) * | 1993-09-08 | 1995-08-22 | Alpine Engineered Products, Inc. | Optimizing technique for sawing lumber |
US5662019A (en) * | 1995-05-03 | 1997-09-02 | Denman; Paul M. | Safety device for woodworking tools |
US5813806A (en) * | 1995-05-12 | 1998-09-29 | Hermann-Pfauter Gmbh & Co. | Hobbing machine |
US5931073A (en) * | 1995-08-28 | 1999-08-03 | Hoyer-Ellefsen; Sigurd | Bevel angle control on translatory saw apparatus |
US5943239A (en) * | 1995-03-22 | 1999-08-24 | Alpine Engineered Products, Inc. | Methods and apparatus for orienting power saws in a sawing system |
US6000305A (en) * | 1996-05-15 | 1999-12-14 | Index-Werke Gmbh & Co. Kg Hahn & Tessky | Multiple-spindle turning machine |
US6116126A (en) * | 1996-07-10 | 2000-09-12 | Van Den Bulcke; Marc | Method and machine for making profile pieces |
US6182548B1 (en) * | 1995-10-10 | 2001-02-06 | Black & Decker Inc. | Guard and control apparatuses for sliding compound miter saw |
US6196283B1 (en) * | 1998-09-25 | 2001-03-06 | Hans Hundegger | Woodworking machine |
US6212983B1 (en) * | 1992-03-04 | 2001-04-10 | Stoddard H. Pyle | Tiltable infeed and outfeed saw table |
US6260263B1 (en) * | 1997-10-06 | 2001-07-17 | Mitek Holdings, Inc. | Truss table with flipper |
US6263773B1 (en) * | 1999-09-16 | 2001-07-24 | Mcadoo David L. | Engineered wood products cutting method and apparatus |
US6272961B1 (en) * | 2000-02-07 | 2001-08-14 | Wy Peron Lee | Cutting machine with built-in miter cutting feature |
US20020194967A1 (en) * | 2001-05-17 | 2002-12-26 | Dirk Prust | Machine tool and method for machining a rod-shaped workpiece |
US6539830B1 (en) * | 1999-10-13 | 2003-04-01 | The Koskovich Company | Automated board processing apparatus |
US6615100B1 (en) * | 1999-07-27 | 2003-09-02 | James Francis Urmson | Automated roof truss component saw |
US6640855B2 (en) * | 2001-09-05 | 2003-11-04 | Hearthstone, Inc. | Log home fabrication process and associate log cutting machine |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6263A (en) | 1849-04-03 | Improvement in lubricating -compounds | ||
US773A (en) | 1838-06-07 | Hay-rake | ||
US2590093A (en) | 1946-01-18 | 1952-03-25 | Ralph R Roemer | Hand-operated motor-driven radial machine tool |
US2550191A (en) | 1947-03-12 | 1951-04-24 | Us Rubber Co | Automatic cutting device |
US3302659A (en) | 1964-03-23 | 1967-02-07 | Ford Motor Co | Multiple governor valve assembly |
US3491805A (en) | 1965-04-20 | 1970-01-27 | Joseph A Riedener | Miter cutting device |
US3482610A (en) | 1966-11-14 | 1969-12-09 | Murphy Ind Inc G W | Radial arm saw |
US3665982A (en) | 1970-02-13 | 1972-05-30 | Kvalheim Machinery Co | Adjustable trim saw apparatus for miter cuts and saw kerfs |
GB1377060A (en) | 1970-11-13 | 1974-12-11 | Glaverbel | Apparatus for cutting or marking sheet material |
US3719113A (en) | 1970-12-03 | 1973-03-06 | Gerber Garment Technology Inc | Penetrable bed used for cutting sheet material and method for treating same |
US4017976A (en) | 1974-07-03 | 1977-04-19 | Barr Anthony J | Apparatus and method for maximum utilization of elongated stock |
US4195346A (en) | 1976-03-25 | 1980-03-25 | Schroder Staffan H | Method and apparatus for sorting and classifying timber |
US4277998A (en) | 1980-01-16 | 1981-07-14 | Stoddard H. Pyle | Wood member cutting apparatus |
US4316400A (en) | 1980-01-16 | 1982-02-23 | Stoddard H. Pyle | Wood member cutting apparatus |
US4452117A (en) | 1982-04-12 | 1984-06-05 | Rockwell International Corporation | Self-adjusting fence for motorized saw unit |
US4410022A (en) | 1982-05-03 | 1983-10-18 | Peterson Laurence A | Router harness |
US4461196A (en) | 1982-09-29 | 1984-07-24 | Schramm Ii William M | Mitre box system for cutting compound angles |
US4524894A (en) | 1982-12-29 | 1985-06-25 | Gerber Garment Technology, Inc. | Method and apparatus for forming pattern pieces |
US4576076A (en) | 1984-10-16 | 1986-03-18 | Speed Cut, Inc. | Multiple intersecting planes cutting device |
CA1292172C (en) | 1986-04-14 | 1991-11-19 | Kouichi Miyamoto | Radial arm saw |
US4794963A (en) | 1987-10-05 | 1989-01-03 | Nemschoff Chairs, Inc. | Method and apparatus for optimizing the cutting of raw boards into product boards |
US4920495A (en) | 1988-07-15 | 1990-04-24 | Gfm Holdings Ag | Sheet cutting machine |
CA2003437C (en) | 1988-11-22 | 1999-08-10 | Minoru Aoyagi | Workpiece conveying method and device for a cutting machine |
US6899005B1 (en) | 1991-10-09 | 2005-05-31 | Black & Decker Inc. | Adjustable fence for compound miter saw |
US5297463A (en) | 1991-10-09 | 1994-03-29 | Black & Decker Inc. | Adjustable fence for compound miter saw |
US5568756A (en) | 1993-08-31 | 1996-10-29 | Peterson; Carl J. | Support means for a saw machine |
US6097168A (en) | 1997-08-25 | 2000-08-01 | Toshiba Kikai Kabushiki Kaisha | Position control apparatus and method of the same, numerical control program preparation apparatus and method of the same, and methods of controlling numerical control machine tool |
US6056682A (en) | 1997-12-22 | 2000-05-02 | Heidelberger Druckmaschinen Ag | Method and apparatus for severing a running material web in a folding apparatus of a web-fed rotary printing press |
CN1198700C (en) | 1998-11-12 | 2005-04-27 | 布莱克和戴克公司 | Mitre saw operation bench |
ATE352411T1 (en) | 2001-10-25 | 2007-02-15 | Pirelli | METHOD AND DEVICE FOR CUTTING TIRE PLAYERS |
US20050076759A1 (en) | 2003-10-08 | 2005-04-14 | Brian Westfall | Linear saw with stab-cut bevel capability |
US7000658B1 (en) | 2004-01-29 | 2006-02-21 | Harry Soukiassian | Precision adjustable woodworking platform |
US7331267B2 (en) * | 2005-03-31 | 2008-02-19 | Urmson James F | Apparatus and method of cutting a work piece |
ITVI20060333A1 (en) | 2006-11-13 | 2008-05-14 | Simec Spa | "MACHINE FOR COMBINATION OF HARD MATERIAL SLABS" |
US20080223188A1 (en) | 2007-03-16 | 2008-09-18 | Snartland Phillip A | Mitering saw system |
US8297892B2 (en) | 2008-06-17 | 2012-10-30 | Sony Corportion | Cutting apparatus |
-
2002
- 2002-10-14 US US10/270,849 patent/US20040069106A1/en not_active Abandoned
-
2003
- 2003-09-10 CA CA 2501455 patent/CA2501455C/en not_active Expired - Lifetime
- 2003-09-10 DE DE60330039T patent/DE60330039D1/en not_active Expired - Lifetime
- 2003-09-10 EP EP20030754497 patent/EP1560685B1/en not_active Expired - Lifetime
- 2003-09-10 AU AU2003272321A patent/AU2003272321B2/en not_active Expired
- 2003-09-10 WO PCT/US2003/028492 patent/WO2004035271A2/en active Search and Examination
-
2010
- 2010-08-30 US US12/871,790 patent/US8281696B2/en not_active Expired - Lifetime
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3289662A (en) * | 1964-02-04 | 1966-12-06 | Swenson Granite Co Inc John | Dual head sawing machine |
US3302669A (en) * | 1964-06-29 | 1967-02-07 | Edler Adolph | Motor powered radial arm tool support |
US3577829A (en) * | 1967-09-13 | 1971-05-04 | James Hurn | Method and apparatus for cutting components to length |
US3910142A (en) * | 1971-02-05 | 1975-10-07 | Automated Building Components | Automated saw |
US3848646A (en) * | 1971-12-30 | 1974-11-19 | Hines E Lumber Co | Method and apparatus for cutting lumber to random or specified clear lengths |
US4141557A (en) * | 1975-01-27 | 1979-02-27 | Ingwersen Samuel E | Simulated golf green |
US4574670A (en) * | 1983-11-17 | 1986-03-11 | Lockheed Corporation | Multiple angle cutting apparatus |
US4545274A (en) * | 1984-08-01 | 1985-10-08 | Speed Cut, Inc. | Hip, valley and jack rafter cutting apparatus |
US4676129A (en) * | 1984-10-02 | 1987-06-30 | Gang-Nail Systems, Inc. | Automated truss component saw apparatus |
US5440977A (en) * | 1991-04-09 | 1995-08-15 | Poutanen; Tuomo T. | Method for production of trussed rafters with nail plate joints |
US5176060A (en) * | 1991-11-18 | 1993-01-05 | Thornton Jack L | Truss miter angle saws |
US6212983B1 (en) * | 1992-03-04 | 2001-04-10 | Stoddard H. Pyle | Tiltable infeed and outfeed saw table |
US5444635A (en) * | 1993-09-08 | 1995-08-22 | Alpine Engineered Products, Inc. | Optimizing technique for sawing lumber |
US5943239A (en) * | 1995-03-22 | 1999-08-24 | Alpine Engineered Products, Inc. | Methods and apparatus for orienting power saws in a sawing system |
US5662019A (en) * | 1995-05-03 | 1997-09-02 | Denman; Paul M. | Safety device for woodworking tools |
US5813806A (en) * | 1995-05-12 | 1998-09-29 | Hermann-Pfauter Gmbh & Co. | Hobbing machine |
US5931073A (en) * | 1995-08-28 | 1999-08-03 | Hoyer-Ellefsen; Sigurd | Bevel angle control on translatory saw apparatus |
US6182548B1 (en) * | 1995-10-10 | 2001-02-06 | Black & Decker Inc. | Guard and control apparatuses for sliding compound miter saw |
US6000305A (en) * | 1996-05-15 | 1999-12-14 | Index-Werke Gmbh & Co. Kg Hahn & Tessky | Multiple-spindle turning machine |
US6116126A (en) * | 1996-07-10 | 2000-09-12 | Van Den Bulcke; Marc | Method and machine for making profile pieces |
US6260263B1 (en) * | 1997-10-06 | 2001-07-17 | Mitek Holdings, Inc. | Truss table with flipper |
US6196283B1 (en) * | 1998-09-25 | 2001-03-06 | Hans Hundegger | Woodworking machine |
US6615100B1 (en) * | 1999-07-27 | 2003-09-02 | James Francis Urmson | Automated roof truss component saw |
US6263773B1 (en) * | 1999-09-16 | 2001-07-24 | Mcadoo David L. | Engineered wood products cutting method and apparatus |
US6539830B1 (en) * | 1999-10-13 | 2003-04-01 | The Koskovich Company | Automated board processing apparatus |
US6272961B1 (en) * | 2000-02-07 | 2001-08-14 | Wy Peron Lee | Cutting machine with built-in miter cutting feature |
US20020194967A1 (en) * | 2001-05-17 | 2002-12-26 | Dirk Prust | Machine tool and method for machining a rod-shaped workpiece |
US6640855B2 (en) * | 2001-09-05 | 2003-11-04 | Hearthstone, Inc. | Log home fabrication process and associate log cutting machine |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120198976A1 (en) * | 2002-10-14 | 2012-08-09 | Alpine Engineering Products, Inc. | Linear saw with stab-cut bevel capability |
US8387499B2 (en) * | 2002-10-14 | 2013-03-05 | Illinois Tool Works Inc. | Linear saw with stab-cut bevel capability |
US20060016305A1 (en) * | 2004-07-22 | 2006-01-26 | Urmson James F | Apparatus for trimming a work piece |
US7647133B2 (en) | 2005-10-12 | 2010-01-12 | Alpine Engineered Products, Inc. | Method and apparatus for optimization of cutting lumber |
WO2008075937A1 (en) * | 2006-12-20 | 2008-06-26 | Patents Exploitation Company B.V. | Machine tool |
CN102039611A (en) * | 2009-10-14 | 2011-05-04 | 江苏南方涂装环保股份有限公司 | Material waiting device for cutting sections |
US20120297949A1 (en) * | 2010-02-10 | 2012-11-29 | Nishijima Kabushiki Kaisha | Circular saw cutting machine |
US9737940B2 (en) * | 2010-02-10 | 2017-08-22 | Nishijima Kabushiki Kaisha | Circular saw cutting machine with automated work-piece remainder cutting |
EP2527068A1 (en) * | 2011-05-26 | 2012-11-28 | Ateliers Debelle (ESTOM) | Automatic saw for realising jacks |
US20130305894A1 (en) * | 2012-05-21 | 2013-11-21 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US20130305892A1 (en) * | 2012-05-21 | 2013-11-21 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US9003937B2 (en) * | 2012-05-21 | 2015-04-14 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US9016176B2 (en) * | 2012-05-21 | 2015-04-28 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US9050731B2 (en) * | 2012-05-21 | 2015-06-09 | Uni-Charm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
US20130305891A1 (en) * | 2012-05-21 | 2013-11-21 | Unicharm Corporation | Web member cutting apparatus for cutting web member that has a plurality of fibers including tows and web member cutting method |
DE102015204719A1 (en) * | 2015-03-16 | 2016-09-22 | Homag Holzbearbeitungssysteme Gmbh | processing device |
US20170225246A1 (en) * | 2016-02-05 | 2017-08-10 | Cessna Aircraft Company | System and method for cutting composite materials |
US10493544B2 (en) * | 2016-02-05 | 2019-12-03 | Textron Innovations, Inc. | System and method for cutting composite materials |
US20170341259A1 (en) * | 2016-05-27 | 2017-11-30 | Daniel S. Underwood | Material processing system |
US10518916B2 (en) * | 2016-05-27 | 2019-12-31 | Daniel S. Underwood | Material processing system |
US20200339360A1 (en) * | 2019-04-26 | 2020-10-29 | Illinois Tool Works Inc. | Lumber handling and cutting apparatus |
US11708222B2 (en) * | 2019-04-26 | 2023-07-25 | Illinois Tool Works Inc. | Lumber handling and cutting apparatus |
Also Published As
Publication number | Publication date |
---|---|
DE60330039D1 (en) | 2009-12-24 |
EP1560685A4 (en) | 2007-10-31 |
WO2004035271A3 (en) | 2005-06-16 |
US20100319511A1 (en) | 2010-12-23 |
WO2004035271A2 (en) | 2004-04-29 |
CA2501455C (en) | 2011-11-01 |
AU2003272321B2 (en) | 2009-08-20 |
AU2003272321A1 (en) | 2004-05-04 |
EP1560685B1 (en) | 2009-11-11 |
EP1560685A2 (en) | 2005-08-10 |
US8281696B2 (en) | 2012-10-09 |
CA2501455A1 (en) | 2004-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8281696B2 (en) | Linear feed cutting apparatus and method | |
US8387499B2 (en) | Linear saw with stab-cut bevel capability | |
US6212983B1 (en) | Tiltable infeed and outfeed saw table | |
US5400842A (en) | Curved sawing and cutting of two-faced cants | |
US6640855B2 (en) | Log home fabrication process and associate log cutting machine | |
CA1329908C (en) | Automated multiple rip saw feeding apparatus | |
US20040250917A1 (en) | Position-based integrated motion controlled curve sawing | |
US5320153A (en) | Method and apparatus for around the curve sawing | |
CA2218171C (en) | Automated infeed system | |
FI103487B (en) | Log splitting method and arrangement for applying the method | |
US5148847A (en) | Method and apparatus for around the curve sawing | |
US6422111B1 (en) | Combined grading and trimming method for sawmill | |
CA2521121C (en) | Optimized planermill system and method | |
US20070039664A1 (en) | Saw infeed system | |
US5228490A (en) | Process and apparatus for producing squares from tree boles or the like | |
CN1102089C (en) | Method of and apparatus for manufacturing complex shapes | |
US20070028729A1 (en) | Infeed system with automated workpiece orientation | |
CA1166126A (en) | Positioning and feed system for cants and boards | |
JP3739301B2 (en) | Laminar wood cutting method and system for laminated timber | |
JP4181366B2 (en) | Bending material sawing method and sawing equipment | |
JP2986985B2 (en) | Panel defect detection system in wooden panel sizer line | |
JP3309249B2 (en) | Square material processing method and square material processing device | |
RU29489U1 (en) | A device for cutting lumber to workpieces | |
CA2091955A1 (en) | Method and apparatus for around the curve sawing | |
WO2002098620A2 (en) | A sawing machine, particularly a band sawing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALPINE ENGINEERED PRODUCTS, INC., FLORIDA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCADOO, DAVID L.;REEL/FRAME:013679/0043 Effective date: 20030110 |
|
AS | Assignment |
Owner name: ANTARES CAPITAL CORPORATION, AS AGENT, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:ALPINE ENGINEERED PRODUCTS, INC.;REEL/FRAME:016274/0297 Effective date: 20050714 |
|
AS | Assignment |
Owner name: ILLINOIS TOOL WORKS INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ALPINE ENGINEERED PRODUCTS, INC.;REEL/FRAME:018904/0431 Effective date: 20061121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |