US20040048138A1 - Distribution frame for a fuel cell - Google Patents

Distribution frame for a fuel cell Download PDF

Info

Publication number
US20040048138A1
US20040048138A1 US10267310 US26731002A US2004048138A1 US 20040048138 A1 US20040048138 A1 US 20040048138A1 US 10267310 US10267310 US 10267310 US 26731002 A US26731002 A US 26731002A US 2004048138 A1 US2004048138 A1 US 2004048138A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
fuel
cell
air
frame
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10267310
Inventor
George King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas A&M University System
Original Assignee
Reliant Energy Power Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/56Manufacturing of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12042Porous component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12382Defined configuration of both thickness and nonthickness surface or angle therebetween [e.g., rounded corners, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12479Porous [e.g., foamed, spongy, cracked, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24669Aligned or parallel nonplanarities
    • Y10T428/24694Parallel corrugations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic

Abstract

The present invention comprises an improved flow field and reactant supply system, which provides improved and more efficient mass transport of the reactants to a fuel cell and thus the fuel cell stack assembly. The improved reactant supply system comprises an improved distribution frame adapted to house a fuel cell.

Description

    RELATED REFERENCES
  • [0001]
    This application is a divisional of application Ser. No. 09/669,344, filed Sep. 26, 2000.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The present invention relates in general to the field of proton exchange membrane (“PEM”) fuel cell systems, and more particularly, to an improved PEM fuel cell system having improved discrete fuel cell modules with improved mass transport for ternary reaction optimization and a method for manufacturing same.
  • [0003]
    A fuel cell is an electrochemical device that converts fuel and oxidant into electricity and a reaction by-product through an electrolytic reaction that strips hydrogen molecules of their electrons and protons. Ultimately, the stripped electrons are collected into some form of usable electric current, by resistance or by some other suitable means. The protons react with oxygen to form water as a reaction by-product.
  • [0004]
    Natural gas is the primary fuel used as the source of hydrogen for a fuel cell. If natural gas is used, however, it must be reformed prior to entering the fuel cell. Pure hydrogen may also be used if stored correctly. The products of the electrochemical exchange in the fuel cell are DC electricity, liquid water, and heat. The overall PEM fuel cell reaction produces electrical energy equal to the sum of the separate half-cell reactions occurring in the fuel cell, less its internal and parasitic losses. Parasitic losses are those losses of energy that are attributable to any energy required to facilitate the ternary reactions in the fuel cell.
  • [0005]
    Although fuel cells have been used in a few applications, engineering solutions to successfully adapt fuel cell technology for use in electric utility systems have been elusive. The challenge is for the generation of power in the range of 1 to 100 kW that is affordable, reliable, and requires little maintenance. Fuel cells would be desirable in this application because they convert fuel directly to electricity at much higher efficiencies than internal combustion engines, thereby extracting more power from the same amount of fuel. This need has not been satisfied, however, because of the prohibitive expense associated with such fuel cell systems. For example, the initial selling price of the 200 kW PEM fuel cell was about $3500/kW to about $4500/kW. For a fuel cell to be useful in utility applications, the life of the fuel cell stack must be a minimum of five years and operations must be reliable and maintenance-free. Heretofore known fuel cell assemblies have not shown sufficient reliability and have disadvantageous maintenance issues. Despite the expense, reliability, and maintenance problems associated with heretofore known fuel cell systems, because of their environmental friendliness and operating efficiency, there remains a clear and present need for economical and efficient fuel cell technology for use in residential and light-commercial applications.
  • [0006]
    Fuel cells are usually classified according to the type of electrolyte used in the cell. There are four primary classes of fuel cells: (1) proton exchange membrane (“PEM”) fuel cells, (2) phosphoric acid fuel cells, and (3) molten carbonate fuel cells. Another more recently developed type of fuel cell is a solid oxide fuel cell. PEM fuel cells, such as those in the present invention, are low-temperature low-pressure systems, and are, therefore, well-suited for residential and light-commercial applications. PEM fuel cells are also advantageous in these applications because there is no corrosive liquid in the fuel cell and, consequently, there are minimal corrosion problems.
  • [0007]
    Characteristically, a single PEM fuel cell consists of three major components—an anode gas dispersion field (“anode”); a membrane electrode assembly (“MEA”); and a cathode gas and liquid dispersion field (“cathode”). As shown in FIG. 1, the anode typically comprises an anode gas dispersion layer 502 and an anode gas flow field 504; the cathode typically comprises a cathode gas and liquid dispersion layer 506 and a cathode gas and liquid flow field 508. In a single cell, the anode and the cathode are electrically coupled to provide a path for conducting electrons between the electrodes through an external load. MEA 500 facilitates the flow of electrons and protons produced in the anode, and substantially isolates the fuel stream on the anode side of the membrane from the oxidant stream on the cathode side of the membrane. The ultimate purpose of these base components, namely the anode, the cathode, and MEA 500, is to maintain proper ternary phase distribution in the fuel cell. Ternary phase distribution as used herein refers to the three simultaneous reactants in the fuel cell, namely hydrogen gas, water vapor and air. Heretofore known PEM fuel cells, however, for various reasons have not been able to efficiently maintain proper ternary phase distribution. Catalytic active layers 501 and 503 are located between the anode, the cathode and the electrolyte. The catalytic active layers 501 and 503 induce the desired electrochemical reactions in the fuel cell. Specifically, the catalytic active layer 501, the anode catalytic active layer, rejects the electrons produced in the anode in the form of electric current. The oxidant from the air that moves through the cathode is reduced at the catalytic active layer 503, referred to as the cathode catalytic active layer, so that it can oxidate the protons flowing from anode catalytic active layer 501 to form water as the reaction by-product. The protons produced by the anode are transported by the anode catalytic active layer 501 to the cathode through the electrolyte polymeric membrane.
  • [0008]
    In the typical PEM fuel cell assembly, a PEM fuel cell is housed within a frame that supplies the necessary fuel and oxidant to the anode and cathode flow fields of the fuel cell. These conventional frames typically comprise manifolds and channels that facilitate the flow of the reactants. However, usually the channels are not an integral part of the manifolds, which results in a pressure differential along the successive channels. FIG. 2 is an illustration of a conventional frame for the communication of the reactants to a fuel cell. This pressure differential causes the reactants, especially the fuel, to be fed into the flow fields unevenly, which results in distortions in the flow fields causing hot spots and other problems leading to inefficiency. This also results in nonuniform disbursement of the reactants onto the catalytic active layers. Ultimately, this conventional method of supplying the necessary fuel and oxidant to a fuel cell results in a very inefficient process.
  • SUMMARY OF THE INVENTION
  • [0009]
    Accordingly, there is a need for an economical and efficient fuel cell assembly and fuel cell stack assembly that have an optimized supply and mass transport system. Herein provided is a an improved fuel/oxidant supply and distribution means. As a result of the present invention, significant improvement in, inter alia, power density, efficiency, and life of the fuel cell are provided at the cell and stack level.
  • [0010]
    In one embodiment, the distribution frame of the present invention comprises: a substantially planar frame, the substantially planar frame having an anode side, a cathode side, and a central cavity suitable for housing the fuel cell assembly; at least 2 fuel inlet apertures, the fuel inlet apertures extending completely through the distribution frame and each fuel inlet aperture being located 180° from the other, and each fuel inlet aperture having an interior side; an air inlet aperture, the air inlet aperture extending completely through the distribution frame and the air inlet aperture being located 90° from each fuel inlet aperture and 180° from an air and water outlet aperture, the air and water outlet aperture extending completely through the distribution frame, the air inlet aperture and the air and water outlet aperture each further having an interior side; a plurality of fuel supply channels, the fuel supply channels located on the anode side of the distribution frame and extending from the interior side of each fuel inlet aperture to the central cavity and being integral to each fuel inlet aperture; a plurality of air supply channels, the air supply channels located on the cathode side of the distribution frame and the air supply channels extending from the interior side of the air inlet aperture to the central cavity and being integral to the air inlet aperture; and a plurality of air and water outlet channels, the air and water outlet channels located on the cathode side of the distribution frame, the air and water outlet channels extending from the interior side of the air and water outlet aperture to the central cavity, and being integral to the air and water outlet aperture.
  • [0011]
    Other aspects and advantages of the present invention will be apparent to those ordinarily skilled in the art in view of the following specification claims and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0012]
    A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like numbers indicate like features, and wherein:
  • [0013]
    [0013]FIG. 1 is a schematic of a typical PEM fuel cell assembly.
  • [0014]
    [0014]FIG. 2 is an illustration of a conventional frame for housing and supplying reactants to a fuel cell assembly.
  • [0015]
    [0015]FIG. 3 is a depiction of one embodiment of the distribution frame of the present invention housing a fuel cell assembly.
  • [0016]
    [0016]FIG. 4 is an illustration of one embodiment of the fuel side of one embodiment of the distribution frame of the present invention.
  • [0017]
    [0017]FIG. 5 is an illustration of one embodiment of the air side of one embodiment of the distribution frame of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0018]
    [0018]FIG. 3 depicts one embodiment of an individual fuel cell assembly of the present invention. As shown in FIG. 3, fuel cell 11 is housed within distribution frame 10. Distribution frame 10 not only houses fuel cell 1, but also facilitates transportation of the fuel and the oxidant to the fuel cell necessary for the electrochemical exchange in the fuel cell. This individual fuel cell assembly can be combined with other fuel cell assemblies to form a fuel cell node, and ultimately a stack assembly, to provide higher voltages and current for power generation. Of note in FIG. 3 are fuel inlet 22, fuel inlet 24, air inlet 12 and air and water outlet 14. The fuel inlets 22 and 24, air inlet 12, and air and water outlet 14 are apertures in the distribution frame extending completely through the distribution frame, and run substantially perpendicular to, or at 90° angles from, one another in the distribution frame to facilitate the efficient flow of the fuel and oxidant to and through the anode gas and liquid flow field and cathode gas flow field, respectively.
  • [0019]
    Shown in FIG. 4 is one embodiment of the anode side of distribution frame 10. In this embodiment, fuel inlet 12 and fuel inlet 14 provide the fuel to the fuel cell housed within the cavity of distribution frame 10 necessary for the electrochemical reaction. Specifically, the fuel is fed to the anode gas flow field through fuel supply channels 18 and 16 that stretch from the interior sides or surfaces of fuel inlet 12 and fuel inlet 14, respectively. Fuel supply channels 18 and 16 are shaped such that the supply of the fuel to the anode is preferably maintained at a constant velocity, i.e., the channels are of sufficient length, width and depth to provide fuel to the anode at a constant desired velocity. The velocity of the fuel entering the anode gas flow field via fuel supply channels 18 and 16 may be less than the velocity of oxidant entering the cathode gas flow field via air supply channels 25. The number of fuel supply channels in the distribution frame stoichiometrically balances the number of air supply channels so as to achieve a 2.0 to 1.0 to 2.8 to 1.0, preferably 2.0 to 1.0 to 2.4 to 1.0, air to fuel ratio. Fuel supply channels 18 and 16 also provide an edge-on connection between the fuel supply inlets and the anode gas flow field of the fuel cell housed within the cavity of the distribution frame to allow for enhanced dispersion of the fuel through the anode gas flow field.
  • [0020]
    Suitable primary materials of construction for distribution frame 10 include, but are not limited to, nylon-6, 6, derivatives of nylon-6, 6, polyetheretherketone (“PEEK”), styrene, mylar, textar, kevlar or any other nonconductive thermoplastic resins such as polypropylene. Other materials may be suitable as recognized by those skilled in the art with the benefit of this disclosure. Materials that have good compression properties are most suitable; therefore, enhancements to improve their compression properties may be suitable. Distribution frame 10 is preferably substantially circular.
  • [0021]
    Shown in FIG. 5 is the cathode side of distribution frame 10. Air is a necessary reactant for the electrochemical exchange and may be fed to fuel cell 11 via air inlet 24 in combination with air supply channels 26. Air supply channels 26 stretch from the interior surface or side of air inlet 24 to fuel cell 11, and are of such sufficient size and shape that they enable air to be fed to the cathode gas flow field at a constant velocity, i.e., they are of sufficient height, width and depth. The number of fuel supply channels 18 and 16 will most often exceed the number of air supply channels 26 to maintain a stoichiometric balance of the reactants. Free water is formed continuously in the cathode gas and liquid flow field as a by-product of the electrochemical reaction. Air and water outlet 22 and air and water outlet channels 25 facilitate the flow of this free water from fuel cell 11 to allow for optimal water management in the fuel cell and to avoid flooding and the resultant loss in power. In a stack assembly, this free water may be transported for use in other parts of the fuel cell unit, unit here meaning the balance of plant assembly. Air and water outlet 22 and air and water outlet channels 25 also facilitate dissipation of the heat generated by the electrochemical reactions.
  • [0022]
    Although the present disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and the scope of the invention as defined-by the appended claims.

Claims (8)

    What is claimed:
  1. 1. A distribution frame for a fuel cell assembly comprising:
    (a) a substantially planar frame, the substantially planar frame having an anode side, a cathode side, and a central cavity suitable for housing a fuel cell;
    (b) at least 2 fuel inlet apertures, the fuel inlet apertures extending completely through the distribution frame and each fuel inlet aperture being located 180° from the other, and each fuel inlet aperture having an interior side;
    (c) an air inlet aperture, the air inlet aperture extending completely through the distribution frame and the air inlet aperture being located 90° from each fuel inlet aperture and 180° from an air and water outlet aperture, the air and water outlet aperture extending completely through the distribution frame, the air inlet aperture and the air and water outlet aperture each further having an interior side;
    (d) a plurality of fuel supply channels, the fuel supply channels located on the anode side of the distribution frame and extending from the interior side of each fuel inlet aperture to the central cavity and being integral to each fuel inlet aperture;
    (e) a plurality of air supply channels, the air supply channels located on the cathode side of the distribution frame and the air supply channels extending from the interior side of the air inlet aperture to the central cavity and being integral to the air inlet aperture; and
    (f) a plurality of air and water outlet channels, the air and water outlet channels located on the cathode side of the distribution frame, the air and water outlet channels extending from the interior side of the air and water outlet aperture to the central cavity, and being integral to the air and water outlet aperture.
  2. 2. The distribution frame for a fuel cell assembly according to claim 1 wherein the distribution frame is substantially circular.
  3. 3. The distribution frame for a fuel cell assembly according to claim 1 wherein the distribution frame is made from a nonconductive thermoplastic resin.
  4. 4. The distribution frame for a fuel cell assembly according to claim 1 wherein the distribution frame is made substantially from polypropylene.
  5. 5. The distribution frame for a fuel cell assembly according to claim 1 wherein the distribution frame is constructed from one or more of the following materials: nylon 6,6, derivatives of nylon 6,6, polyetheretherketone, styrene, mylar, textar, or kevlar.
  6. 6. The distribution frame for a fuel cell assembly according to claim 1 wherein the number of fuel supply channels balances the number of air supply channels so as to achieve an air to fuel stoichometric mixture of between 2.0 to 1.0 to 2.4 to 1.0.
  7. 7. The distribution frame for a fuel cell assembly according to claim 1 wherein the air inlet aperture has a rounded shape.
  8. 8. The distribution frame for a fuel cell assembly according to claim 1 wherein the fuel inlet apertures have a rounded shape.
US10267310 2000-09-26 2002-10-09 Distribution frame for a fuel cell Abandoned US20040048138A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09669344 US6531238B1 (en) 2000-09-26 2000-09-26 Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
US10267310 US20040048138A1 (en) 2000-09-26 2002-10-09 Distribution frame for a fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10267310 US20040048138A1 (en) 2000-09-26 2002-10-09 Distribution frame for a fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09669344 Division US6531238B1 (en) 2000-09-26 2000-09-26 Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly

Publications (1)

Publication Number Publication Date
US20040048138A1 true true US20040048138A1 (en) 2004-03-11

Family

ID=24685995

Family Applications (6)

Application Number Title Priority Date Filing Date
US09669344 Expired - Fee Related US6531238B1 (en) 2000-09-26 2000-09-26 Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
US09711197 Expired - Fee Related US6582842B1 (en) 2000-09-26 2000-11-09 Enhancement of proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US09740423 Expired - Fee Related US6656624B1 (en) 2000-09-26 2000-12-19 Polarized gas separator and liquid coalescer for fuel cell stack assemblies
US10267310 Abandoned US20040048138A1 (en) 2000-09-26 2002-10-09 Distribution frame for a fuel cell
US10267321 Expired - Fee Related US6951698B2 (en) 2000-09-26 2002-10-09 Fuel cell stack assembly
US10267559 Expired - Fee Related US7005210B2 (en) 2000-09-26 2002-10-09 Flow fields for fuel cells

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US09669344 Expired - Fee Related US6531238B1 (en) 2000-09-26 2000-09-26 Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
US09711197 Expired - Fee Related US6582842B1 (en) 2000-09-26 2000-11-09 Enhancement of proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US09740423 Expired - Fee Related US6656624B1 (en) 2000-09-26 2000-12-19 Polarized gas separator and liquid coalescer for fuel cell stack assemblies

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10267321 Expired - Fee Related US6951698B2 (en) 2000-09-26 2002-10-09 Fuel cell stack assembly
US10267559 Expired - Fee Related US7005210B2 (en) 2000-09-26 2002-10-09 Flow fields for fuel cells

Country Status (3)

Country Link
US (6) US6531238B1 (en)
EP (1) EP1481435A2 (en)
WO (1) WO2002027838A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048140A1 (en) * 2000-09-26 2004-03-11 Reliant Energy Power Systems, Inc. Flow fields for fuel cells
US20040096724A1 (en) * 2002-11-14 2004-05-20 3M Innovative Properties Company Fuel cell stack

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020022170A1 (en) * 2000-08-18 2002-02-21 Franklin Jerrold E. Integrated and modular BSP/MEA/manifold plates for fuel cells
US20050167873A1 (en) * 2001-02-15 2005-08-04 Integral Technologies, Inc. Low cost fuel cell bipolar plates manufactured from conductive loaded resin-based materials
JP4058666B2 (en) * 2001-08-16 2008-03-12 ソニー株式会社 Fuel cell
US6716549B2 (en) 2001-12-27 2004-04-06 Avista Laboratories, Inc. Fuel cell having metalized gas diffusion layer
DE60300904T2 (en) * 2002-03-27 2005-12-22 Haldor Topsoe A/S A solid oxide fuel cell in thin-film technology (SOFC) and processes for their preparation
US6866958B2 (en) * 2002-06-05 2005-03-15 General Motors Corporation Ultra-low loadings of Au for stainless steel bipolar plates
US20040001993A1 (en) * 2002-06-28 2004-01-01 Kinkelaar Mark R. Gas diffusion layer for fuel cells
US20040001991A1 (en) * 2002-07-01 2004-01-01 Kinkelaar Mark R. Capillarity structures for water and/or fuel management in fuel cells
US6953633B2 (en) * 2002-08-06 2005-10-11 General Electric Company Fiber cooling of fuel cells
JP4003942B2 (en) * 2002-08-06 2007-11-07 本田技研工業株式会社 The fuel cell separator and fuel cell
US20040046526A1 (en) * 2002-09-06 2004-03-11 Richards William R. Modular fuel cell
US7001687B1 (en) * 2002-10-04 2006-02-21 The Texas A&M University System Unitized MEA assemblies and methods for making same
US7005209B1 (en) * 2002-10-04 2006-02-28 The Texas A&M University System Fuel cell stack assembly
US6960838B2 (en) * 2002-11-15 2005-11-01 Sprint Communications Company L.P. Power system for a telecommunication facility
WO2004047206A3 (en) * 2002-11-15 2004-07-08 Sprint Communications Co Proton exchange membrane based power system for a telecommunication facility
US20040191605A1 (en) * 2002-12-27 2004-09-30 Foamex L.P. Gas diffusion layer containing inherently conductive polymer for fuel cells
US7056608B2 (en) 2003-02-14 2006-06-06 Relion, Inc. Current collector for use in a fuel cell
US6939636B2 (en) * 2003-04-28 2005-09-06 Relion, Inc. Air cooled fuel cell module
US7308510B2 (en) * 2003-05-07 2007-12-11 Intel Corporation Method and apparatus for avoiding live-lock in a multinode system
EP1627444A2 (en) * 2003-05-09 2006-02-22 Foamex L.P. Gas diffusion layer having carbon particle mixture
US7670707B2 (en) 2003-07-30 2010-03-02 Altergy Systems, Inc. Electrical contacts for fuel cells
US20050100774A1 (en) * 2003-11-07 2005-05-12 Abd Elhamid Mahmoud H. Novel electrical contact element for a fuel cell
RU2256981C1 (en) * 2004-03-30 2005-07-20 Общество с ограниченной ответственностью "ИНТЕНСИС" (ООО "ИНТЕНСИС") Alkali fuel cell electrode and its manufacturing process
US8090630B2 (en) * 2004-03-31 2012-01-03 Jda Software Group, Inc. Planning a supply of items to a first location associated with a supply chain from one or more second locations associated with the supply chain
US8566181B2 (en) * 2004-03-31 2013-10-22 Jda Software Group, Inc. Incorporating a repair vendor into repair planning for supply chain
US8249952B2 (en) * 2004-03-31 2012-08-21 Jda Software Group, Inc. Incorporating a repair vendor into repair planning for a supply chain
WO2005101559A1 (en) * 2004-04-19 2005-10-27 Lg Electronics Inc. Fuel cell
JP5043291B2 (en) * 2004-06-30 2012-10-10 キヤノン株式会社 Flammable substance shutoff device and a fuel cell
US7081687B2 (en) * 2004-07-22 2006-07-25 Sprint Communications Company L.P. Power system for a telecommunications facility
US7240492B2 (en) * 2004-07-22 2007-07-10 Sprint Communications Company L.P. Fuel system used for cooling purposes
US7323270B2 (en) * 2004-08-11 2008-01-29 Fuelcell Energy, Inc. Modular fuel-cell stack assembly
FR2875340B1 (en) * 2004-09-14 2006-11-17 Renault Sas Device and power supply method for managing a fuel cell
JP2006095007A (en) * 2004-09-29 2006-04-13 Funai Electric Co Ltd Charging type moving system
JP4692001B2 (en) * 2005-02-08 2011-06-01 トヨタ自動車株式会社 Fuel cell separator
US8048576B2 (en) * 2005-07-12 2011-11-01 Honeywell International Inc. Power generator shut-off valve
US20070072050A1 (en) * 2005-08-26 2007-03-29 Canon Kabushiki Kaisha Fuel cell
WO2007038132A1 (en) * 2005-09-21 2007-04-05 Jones Eric T Fuel cell device
US7811690B2 (en) * 2005-10-25 2010-10-12 Honeywell International Inc. Proton exchange membrane fuel cell
US7727655B2 (en) * 2005-10-25 2010-06-01 Honeywell International Inc. Fuel cell stack having catalyst coated proton exchange member
US7833645B2 (en) * 2005-11-21 2010-11-16 Relion, Inc. Proton exchange membrane fuel cell and method of forming a fuel cell
US20080032174A1 (en) * 2005-11-21 2008-02-07 Relion, Inc. Proton exchange membrane fuel cells and electrodes
US20070122667A1 (en) * 2005-11-28 2007-05-31 Kelley Richard H Fuel cell system with integrated fuel processor
US7557531B2 (en) * 2005-12-19 2009-07-07 Sprint Communications Company L.P. Power system utilizing flow batteries
US7728458B2 (en) 2006-01-05 2010-06-01 Sprint Communications Company L.P. Telecommunications megasite with backup power system
US8043736B2 (en) * 2006-01-10 2011-10-25 Honeywell International Inc. Power generator having multiple layers of fuel cells
WO2007087305A3 (en) * 2006-01-23 2008-04-24 Bloom Energy Corp Integrated solid oxide fuel cell and fuel processor
WO2007087240A3 (en) 2006-01-23 2008-04-10 Bloom Energy Corp Modular fuel cell system
US20070178340A1 (en) * 2006-01-31 2007-08-02 Honeywell International Inc. Fuel cell power generator with micro turbine
US8241801B2 (en) * 2006-08-14 2012-08-14 Modine Manufacturing Company Integrated solid oxide fuel cell and fuel processor
US7659022B2 (en) * 2006-08-14 2010-02-09 Modine Manufacturing Company Integrated solid oxide fuel cell and fuel processor
US20080113254A1 (en) * 2006-09-07 2008-05-15 Andrew Leigh Christie Apparatus and method for managing fluids in a fuel cell stack
US8283079B2 (en) * 2006-11-03 2012-10-09 Honeywell International Inc. Fuel cell power generator with water reservoir
US8822097B2 (en) 2006-11-30 2014-09-02 Honeywell International Inc. Slide valve for fuel cell power generator
JP5125435B2 (en) * 2006-12-13 2013-01-23 三菱マテリアル株式会社 Small porous titanium contact resistance
US20080248358A1 (en) * 2007-01-23 2008-10-09 Canon Kabushiki Kaisha Polymer electrolyte fuel cell and production method thereof
US8497049B2 (en) * 2007-04-02 2013-07-30 GM Global Technology Operations LLC Hydrophilic and corrosion resistant fuel cell components
DE102007016905A1 (en) * 2007-04-02 2008-10-09 Staxera Gmbh Interconnector arrangement and method for fabricating a contact assembly for a fuel cell stack
US8409758B2 (en) 2007-04-17 2013-04-02 Modine Manufacturing Company Fuel cell system with partial external reforming and direct internal reforming
WO2008131078A1 (en) * 2007-04-17 2008-10-30 Modine Manufacaturing Company Solid oxide fuel cell unit for use in distributed power generation
US8026020B2 (en) * 2007-05-08 2011-09-27 Relion, Inc. Proton exchange membrane fuel cell stack and fuel cell stack module
US8137741B2 (en) * 2007-05-10 2012-03-20 Fuelcell Energy, Inc. System for fabricating a fuel cell component for use with or as part of a fuel cell in a fuel cell stack
US9293778B2 (en) 2007-06-11 2016-03-22 Emergent Power Inc. Proton exchange membrane fuel cell
US8920997B2 (en) 2007-07-26 2014-12-30 Bloom Energy Corporation Hybrid fuel heat exchanger—pre-reformer in SOFC systems
US20090035625A1 (en) * 2007-08-01 2009-02-05 Tihiro Ohkawa Hydrogen fuel cell with integrated reformer
US8852820B2 (en) 2007-08-15 2014-10-07 Bloom Energy Corporation Fuel cell stack module shell with integrated heat exchanger
EP2045861B1 (en) * 2007-10-05 2012-03-14 Topsøe Fuel Cell A/S Seal for porous metal support in a fuel cell
FR2923086B1 (en) * 2007-10-24 2010-12-10 Commissariat Energie Atomique stack architecture fuel integrated seamless.
US8003274B2 (en) * 2007-10-25 2011-08-23 Relion, Inc. Direct liquid fuel cell
US8288041B2 (en) 2008-02-19 2012-10-16 Bloom Energy Corporation Fuel cell system containing anode tail gas oxidizer and hybrid heat exchanger/reformer
US8968958B2 (en) * 2008-07-08 2015-03-03 Bloom Energy Corporation Voltage lead jumper connected fuel cell columns
US8932738B2 (en) * 2008-10-16 2015-01-13 Institute Of Nuclear Energy Research Fuel cell assembly structure
US20100180427A1 (en) * 2009-01-16 2010-07-22 Ford Motor Company Texturing of thin metal sheets/foils for enhanced formability and manufacturability
KR20110121709A (en) * 2009-02-25 2011-11-08 바스프 에스이 Method for producing flexible metal contacts
US20100248043A1 (en) * 2009-03-31 2010-09-30 Ise Corporation Hydrogen Fuel Cell Water Knock Out Device and Method of Use
WO2010129957A3 (en) * 2009-05-08 2011-03-24 Treadstone Technologies, Inc. High power fuel stacks using metal separator plates
US20100297535A1 (en) * 2009-05-20 2010-11-25 Das Susanta K Novel design of fuel cell bipolar for optimal uniform delivery of reactant gases and efficient water removal
US8623565B2 (en) * 2009-05-20 2014-01-07 Susanta K. Das Assembly of bifurcation and trifurcation bipolar plate to design fuel cell stack
US20100330389A1 (en) * 2009-06-25 2010-12-30 Ford Motor Company Skin pass for cladding thin metal sheets
DE102010003643A1 (en) * 2010-04-01 2011-10-06 Forschungszentrum Jülich GmbH fuel cell module
US8440362B2 (en) 2010-09-24 2013-05-14 Bloom Energy Corporation Fuel cell mechanical components
JP6258037B2 (en) 2011-01-06 2018-01-10 ブルーム エナジー コーポレーション Components of Sofc hot box
FR2977727B1 (en) * 2011-07-08 2014-02-28 Helion Fuel cell has fluid supply circuit improves, and method of manufacturing such a fuel cell
GB201216030D0 (en) 2012-09-07 2012-10-24 Univ Dublin City A proton exchange membrane fuel cell with open pore cellular foam
WO2014076653A1 (en) 2012-11-19 2014-05-22 Sandvik Intellectual Property Ab Drill and tap and method for preoperative assessment of bone quality
FR3000108B1 (en) * 2012-12-21 2015-02-27 Commissariat Energie Atomique Part of electrical insulation and sealing of reactor for water electrolysis (SOEC) or fuel cell (SOFC).
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
EP3061146B1 (en) 2013-10-23 2018-03-07 Bloom Energy Corporation Pre-reformer for selective reformation of higher hydrocarbons
KR20160121531A (en) 2014-02-12 2016-10-19 블룸 에너지 코퍼레이션 Structure and method for fuel cell system where multiple fuel cells and power electronics feed loads in parallel allowing for integrated electrochemical impedance spectroscopy(eis)

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617385A (en) * 1969-03-13 1971-11-02 Texas Instruments Inc Fuel cell
US3616841A (en) * 1967-10-30 1971-11-02 Energy Research And Generation Method of making an inorganic reticulated foam structure
US3814631A (en) * 1971-02-15 1974-06-04 Alsthom Cgee Framed electrodes containing means for supplying or draining liquid along the edge of an electrode
US4058482A (en) * 1976-12-20 1977-11-15 United Technologies Corporation Fuel cell electrode
US4124478A (en) * 1977-02-07 1978-11-07 Tsien Hsue C Thin sheet apparatus and a fluid flow device
US4125676A (en) * 1977-08-15 1978-11-14 United Technologies Corp. Carbon foam fuel cell components
US4175165A (en) * 1977-07-20 1979-11-20 Engelhard Minerals & Chemicals Corporation Fuel cell system utilizing ion exchange membranes and bipolar plates
US4214969A (en) * 1979-01-02 1980-07-29 General Electric Company Low cost bipolar current collector-separator for electrochemical cells
US4274939A (en) * 1979-04-20 1981-06-23 Svenska Utvecklingsaktiebolaget (Su) Swedish National Development Co. Electrode package and use thereof
US4496437A (en) * 1983-06-22 1985-01-29 The Dow Chemical Company Method for producing a dual porosity body
USH16H (en) * 1984-03-02 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Fuel cell electrode and method of preparation
US4758481A (en) * 1985-03-15 1988-07-19 Occidental Chemical Corporation Fuel cell with improved separation
US4818741A (en) * 1986-11-20 1989-04-04 Electric Power Research Institute, Inc. Porous and porous-nonporous composites for battery electrodes
US4876115A (en) * 1987-01-30 1989-10-24 United States Department Of Energy Electrode assembly for use in a solid polymer electrolyte fuel cell
US4910099A (en) * 1988-12-05 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Preventing CO poisoning in fuel cells
US5079105A (en) * 1989-05-18 1992-01-07 Asea Brown Boveri Ltd. Device for conversion of chemical energy from hydrocarbons into electric energy by an electrochemical high-temperature process
US5364712A (en) * 1992-02-21 1994-11-15 Hughes Aircraft Company Dual porosity gas evolving electrode
US5366819A (en) * 1993-10-06 1994-11-22 Ceramatec, Inc. Thermally integrated reformer for solid oxide fuel cells
US5418079A (en) * 1993-07-20 1995-05-23 Sulzer Innotec Ag Axially symmetric fuel cell battery
US5482792A (en) * 1993-04-30 1996-01-09 De Nora Permelec S.P.A. Electrochemical cell provided with ion exchange membranes and bipolar metal plates
US5589285A (en) * 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
US5763114A (en) * 1994-09-01 1998-06-09 Gas Research Institute Integrated reformer/CPN SOFC stack module design
US5853910A (en) * 1996-03-29 1998-12-29 Kabushikikaisha Equos Research Fuel cell power generating apparatus and operation method therefor
US5879826A (en) * 1995-07-05 1999-03-09 Humboldt State University Foundation Proton exchange membrane fuel cell
US5942350A (en) * 1997-03-10 1999-08-24 United Technologies Corporation Graded metal hardware component for an electrochemical cell
US6007932A (en) * 1996-10-16 1999-12-28 Gore Enterprise Holdings, Inc. Tubular fuel cell assembly and method of manufacture
US6022634A (en) * 1996-06-26 2000-02-08 De Nora S.P.A. Membrane electrochemical cell provided with gas diffusion electrodes in contact with porour, flat, metal current conductors having highly distributed contact area
US6051117A (en) * 1996-12-12 2000-04-18 Eltech Systems, Corp. Reticulated metal article combining small pores with large apertures
US6140266A (en) * 1999-02-18 2000-10-31 International Fuel Cells, Co., Llc Compact and light weight catalyst bed for use in a fuel cell power plant and method for forming the same
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
US6232010B1 (en) * 1999-05-08 2001-05-15 Lynn Tech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
US6238819B1 (en) * 1998-01-23 2001-05-29 Stork, N.V. Metal foam support, electrode and method of making same
US6280870B1 (en) * 1999-08-26 2001-08-28 Plug Power Inc. Combined fuel cell flow plate and gas diffusion layer
US6284399B1 (en) * 1999-09-17 2001-09-04 Plug Power Llc Fuel cell system having humidification membranes
US6344290B1 (en) * 1997-02-11 2002-02-05 Fucellco, Incorporated Fuel cell stack with solid electrolytes and their arrangement
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US6387556B1 (en) * 1997-11-20 2002-05-14 Avista Laboratories, Inc. Fuel cell power systems and methods of controlling a fuel cell power system
US6387557B1 (en) * 1998-10-21 2002-05-14 Utc Fuel Cells, Llc Bonded fuel cell stack assemblies
US6399234B2 (en) * 1998-12-23 2002-06-04 Utc Fuel Cells, Llc Fuel cell stack assembly with edge seal
US20020068208A1 (en) * 2000-09-28 2002-06-06 Dristy Mark E. Cell frame/flow field integration method and apparatus
US6403249B1 (en) * 2000-01-12 2002-06-11 Humboldt State University Foundation Humidification of a PEM fuel cell by air-air moisture exchange
US6410180B1 (en) * 1996-06-06 2002-06-25 Lynntech, Inc. Fuel cell system for low pressure operation
US6413664B1 (en) * 1999-12-23 2002-07-02 Ballard Power Systems Inc. Fuel cell separator plate with discrete fluid distribution features
US6531238B1 (en) * 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2008800A (en) * 1933-08-23 1935-07-23 Herbert J Somers Filter
US3432357A (en) * 1964-09-28 1969-03-11 Gen Electric Fluent material distribution system and fuel cell therewith
US3615862A (en) 1967-02-20 1971-10-26 United Aircraft Corp Fuel cell electrodes
FR1593242A (en) * 1968-03-19 1970-05-25
USRE33149E (en) 1971-06-16 1990-01-16 Prototech Company Finely particulated colloidal platinum compound and sol for producing the same and method of preparation of fuel cell electrodes and the like employing the same
US4044193A (en) 1971-06-16 1977-08-23 Prototech Company Finely particulated colloidal platinum compound and sol for producing the same, and method of preparation of fuel cell electrodes and the like employing the same
US3772086A (en) 1972-07-17 1973-11-13 Gen Electric Method of making anodes for hydrazine fuel cells
US4108756A (en) 1973-10-30 1978-08-22 Oronzio De Nora Impianti Electtrochimici S.P.A. Bipolar electrode construction
US3960601A (en) 1974-09-27 1976-06-01 Union Carbide Corporation Fuel cell electrode
US4131721A (en) 1977-06-17 1978-12-26 Electric Power Research Institute, Inc. Electrolytic cell having a novel electrode including platinum on a carbon support activated with a phosphorus-oxygen-containing compound
US4168351A (en) 1978-02-10 1979-09-18 P. R. Mallory & Co., Inc. Stabilized glass-to-metal seals in lithium cell environments
US4192907A (en) 1978-07-03 1980-03-11 United Technologies Corporation Electrochemical cell electrodes incorporating noble metal-base metal alloy catalysts
US4556613A (en) 1979-07-03 1985-12-03 Duracell Inc. Resistant glass in glass-metal seal and cell terminal structure for lithium electrochemical cells
US4356240A (en) 1980-10-27 1982-10-26 Duracell Inc. Extremely high rate flat cell
US4458411A (en) 1980-10-27 1984-07-10 Duracell Inc. Method of fabricating an extremely high rate flat cell
US4390446A (en) 1981-05-13 1983-06-28 Duracell Inc. Solid state cell with anolyte
US4525440A (en) 1981-05-13 1985-06-25 Duracell Inc. Solid state cell with anolyte
US4365007A (en) * 1981-06-12 1982-12-21 Energy Research Corporation Fuel cell with internal reforming
US4372759A (en) 1981-08-28 1983-02-08 United Technologies Corporation Electrolyte vapor condenser
US4529677A (en) 1982-02-02 1985-07-16 Texon Incorporated Battery separator material
US4463065A (en) 1982-02-02 1984-07-31 W. R. Grace & Co. Fuel cell and method for conducting gas-phase oxidation
US4413041A (en) 1982-02-02 1983-11-01 W. R. Grace & Co. Cross-flow monolith reactor
US4396480A (en) 1982-02-02 1983-08-02 W. R. Grace & Co. Solid electrolyte sheet
FR2558485B1 (en) 1984-01-25 1990-07-13 Rech Applic Electrochimique porous metal structure, its production process and applications
US4588661A (en) * 1984-08-27 1986-05-13 Engelhard Corporation Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell
GB2315277B (en) 1985-10-22 1998-05-13 Union Carbide Corp Carbon-carbon composites containing poorly graphitizing pitch as a binder and/or impregnant having a reduced coefficient of thermal expansion
US4735872A (en) 1986-11-18 1988-04-05 The United States Of America As Represented By The United States Department Of Energy Electrochemical system including lamella settler crystallizer
JPS63232275A (en) 1987-03-20 1988-09-28 Mitsubishi Electric Corp Fuel cell of lamination type
US4800138A (en) 1987-04-16 1989-01-24 International Fuel Cells Corporation Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment
US4769297A (en) 1987-11-16 1988-09-06 International Fuel Cells Corporation Solid polymer electrolyte fuel cell stack water management system
GB8730136D0 (en) 1987-12-24 1988-02-03 Lilliwyte Sa Electrochemical cell
US4910106A (en) 1988-08-05 1990-03-20 Hoechst Celanese Corporation Formation of halogenated polymeric microporous membranes having improved strength properties
US5071717A (en) 1988-09-08 1991-12-10 International Fuel Cells Corporation Coated cathode substrate
US4973532A (en) 1989-04-05 1990-11-27 Hoechst Celanese Corporation Battery separator with integral thermal fuse
US5139896A (en) 1989-05-26 1992-08-18 The United States Of America As Represented By The United States Department Of Energy All ceramic structure for molten carbonate fuel cell
US5008163A (en) 1989-05-26 1991-04-16 The United States Of America As Represented By The United States Department Of Energy Conductive ceramic composition and method of preparation
US5108849A (en) 1989-08-30 1992-04-28 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel cell fluid flow field plate
US4988583A (en) 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
US5013618A (en) 1989-09-05 1991-05-07 International Fuel Cells Corporation Ternary alloy fuel cell catalysts and phosphoric acid fuel cell containing the catalysts
US4973358A (en) 1989-09-06 1990-11-27 Alcan International Limited Method of producing lightweight foamed metal
US5068161A (en) 1990-03-30 1991-11-26 Johnson Matthey Public Limited Company Catalyst material
US5110692A (en) * 1990-08-20 1992-05-05 Energy Research Corporation Gasket for molten carbonate fuel cell
JPH04141233A (en) 1990-09-29 1992-05-14 Stonehard Assoc Inc Electrode catalyst
US5260143A (en) 1991-01-15 1993-11-09 Ballard Power Systems Inc. Method and apparatus for removing water from electrochemical fuel cells
US5547776A (en) 1991-01-15 1996-08-20 Ballard Power Systems Inc. Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams
JPH04237962A (en) * 1991-01-18 1992-08-26 Matsushita Electric Ind Co Ltd Flat type solid electrolyte fuel cell
JPH0541239A (en) 1991-06-18 1993-02-19 Nkk Corp High temperature type fuel cell module
US5318863A (en) 1991-12-17 1994-06-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
US5242764A (en) 1991-12-17 1993-09-07 Bcs Technology, Inc. Near ambient, unhumidified solid polymer fuel cell
US5264299A (en) 1991-12-26 1993-11-23 International Fuel Cells Corporation Proton exchange membrane fuel cell support plate and an assembly including the same
US5366821A (en) 1992-03-13 1994-11-22 Ballard Power Systems Inc. Constant voltage fuel cell with improved reactant supply and control system
JPH05262902A (en) 1992-03-23 1993-10-12 Stonehard Assoc Inc Preparation of ion-exchange membrane
US5189005A (en) 1992-04-03 1993-02-23 Tanaka Kikinzoku Kogyo K.K. Electrocatalyst and process of preparing same
JP3191394B2 (en) 1992-04-10 2001-07-23 松下電器産業株式会社 Nonaqueous secondary battery and manufacturing method of the negative electrode plate
US5432021A (en) 1992-10-09 1995-07-11 Ballard Power Systems Inc. Method and apparatus for oxidizing carbon monoxide in the reactant stream of an electrochemical fuel cell
US5316747A (en) 1992-10-09 1994-05-31 Ballard Power Systems Inc. Method and apparatus for the selective oxidation of carbon monoxide in a hydrogen-containing gas mixture
US5482680A (en) 1992-10-09 1996-01-09 Ballard Power Systems, Inc. Electrochemical fuel cell assembly with integral selective oxidizer
US5300370A (en) 1992-11-13 1994-04-05 Ballard Power Systems Inc. Laminated fluid flow field assembly for electrochemical fuel cells
US5360679A (en) 1993-08-20 1994-11-01 Ballard Power Systems Inc. Hydrocarbon fueled solid polymer fuel cell electric power generation system
US5773162A (en) 1993-10-12 1998-06-30 California Institute Of Technology Direct methanol feed fuel cell and system
US5599638A (en) 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US5434020A (en) 1993-11-15 1995-07-18 The Regents Of The University Of California Continuous-feed electrochemical cell with nonpacking particulate electrode
US5527363A (en) 1993-12-10 1996-06-18 Ballard Power Systems Inc. Method of fabricating an embossed fluid flow field plate
NL9401159A (en) * 1994-07-13 1996-02-01 Stork Screens Bv Foam product.
RU2174728C2 (en) 1994-10-12 2001-10-10 Х Пауэр Корпорейшн Fuel cell using integrated plate technology for liquid-distribution
US5863671A (en) 1994-10-12 1999-01-26 H Power Corporation Plastic platelet fuel cells employing integrated fluid management
JP3717085B2 (en) 1994-10-21 2005-11-16 キヤノン株式会社 The negative electrode for a secondary battery, a method for manufacturing a secondary battery and an electrode having a negative electrode
US5441821A (en) 1994-12-23 1995-08-15 Ballard Power Systems Inc. Electrochemical fuel cell system with a regulated vacuum ejector for recirculation of the fluid fuel stream
US5514487A (en) 1994-12-27 1996-05-07 Ballard Power Systems Inc. Edge manifold assembly for an electrochemical fuel cell stack
WO1996020509A1 (en) 1994-12-27 1996-07-04 Ballard Power Systems Inc. Integrated external manifold assembly for an electrochemical fuel cell stack array
DE69619179T2 (en) * 1995-04-03 2002-08-22 Mitsubishi Materials Corp Porous metallic body with higher specific surface, method of manufacturing the porous metallic material and electrode for alkaline secondary battery
US5503944A (en) 1995-06-30 1996-04-02 International Fuel Cells Corp. Water management system for solid polymer electrolyte fuel cell power plants
US5518831A (en) 1995-07-07 1996-05-21 The Dow Chemical Company Electrocatalytic structure
US5939025A (en) 1995-08-23 1999-08-17 The University Of Chicago Methanol partial oxidation reformer
JPH0997620A (en) 1995-10-03 1997-04-08 Toshiba Corp Molten carbonate fuel cell and manufacture of holding material for molten carbonate fuel cell electrolyte plate
DE19542475C2 (en) 1995-11-15 1999-10-28 Ballard Power Systems Polymer electrolyte membrane fuel cell and method of manufacturing a distributor plate for such a cell
US5604057A (en) 1995-11-27 1997-02-18 General Motors Corporation Secondary cell having a lithium intercolating manganese oxide
US5863673A (en) 1995-12-18 1999-01-26 Ballard Power Systems Inc. Porous electrode substrate for an electrochemical fuel cell
US5672439A (en) 1995-12-18 1997-09-30 Ballard Power Systems, Inc. Method and apparatus for reducing reactant crossover in an electrochemical fuel cell
US5624769A (en) 1995-12-22 1997-04-29 General Motors Corporation Corrosion resistant PEM fuel cell
FR2743090B1 (en) 1995-12-29 1998-02-06 Rhone Poulenc Chimie cathodic element free of asbestos used for sodium chloride electrolysis
JPH09315801A (en) 1996-03-26 1997-12-09 Toyota Motor Corp Fuel reforming method, fuel reformer and fuel-cell system provided with the reformer
US5858314A (en) 1996-04-12 1999-01-12 Ztek Corporation Thermally enhanced compact reformer
US5660941A (en) 1996-06-19 1997-08-26 Energy Research Corporation Catalyst assembly for internal reforming fuel cell
US6033793A (en) 1996-11-01 2000-03-07 Hydrogen Burner Technology, Inc. Integrated power module
DE69728053D1 (en) 1996-11-01 2004-04-15 Du Pont High Conductive polymer ion exchange and process
US5789091C1 (en) 1996-11-19 2001-02-27 Ballard Power Systems Electrochemical fuel cell stack with compression bands
US5707755A (en) 1996-12-09 1998-01-13 General Motors Corporation PEM/SPE fuel cell
US5804326A (en) 1996-12-20 1998-09-08 Ballard Power Systems Inc. Integrated reactant and coolant fluid flow field layer for an electrochemical fuel cell
US5776624A (en) 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
DE19705874C2 (en) 1997-02-15 2000-01-20 Forschungszentrum Juelich Gmbh Current collector for SOFC fuel cell stack
JPH10242084A (en) 1997-02-24 1998-09-11 Lintec Corp Wafer pasting adhesive sheet and manufacturing method of electronic components
CA2234213C (en) 1997-04-18 2008-02-12 De Nora S.P.A. Gas diffusion electrodes for polymeric membrane fuel cell
US5976726A (en) 1997-05-01 1999-11-02 Ballard Power Systems Inc. Electrochemical cell with fluid distribution layer having integral sealing capability
US6110333A (en) 1997-05-02 2000-08-29 E. I. Du Pont De Nemours And Company Composite membrane with highly crystalline porous support
US6150056A (en) * 1997-05-30 2000-11-21 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and method for producing an electrode used therefor
FR2764443B1 (en) 1997-06-10 1999-09-03 Peugeot Fuel cell of type a reagent dispensers in the form of plates
US5776625A (en) 1997-06-18 1998-07-07 H Power Corporation Hydrogen-air fuel cell
CA2242176C (en) 1997-06-30 2009-01-27 Ballard Power Systems Inc. Solid polymer fuel cell system and method for humidifying and adjusting the temperature of a reactant stream
US6232008B1 (en) 1997-07-16 2001-05-15 Ballard Power Systems Inc. Electrochemical fuel cell stack with improved reactant manifolding and sealing
US6096449A (en) 1997-11-20 2000-08-01 Avista Labs Fuel cell and method for controlling same
US6030718A (en) 1997-11-20 2000-02-29 Avista Corporation Proton exchange membrane fuel cell power system
US6057053A (en) 1997-11-25 2000-05-02 Ballard Power Systems Inc. Compression assembly for an electrochemical fuel cell stack
US5935726A (en) 1997-12-01 1999-08-10 Ballard Power Systems Inc. Method and apparatus for distributing water to an ion-exchange membrane in a fuel cell
US6053266A (en) 1997-12-01 2000-04-25 Dbb Fuel Cell Engines Gmbh Fuel cell engine having a propulsion motor operatively connected to drive a fluid supply device
US6099984A (en) 1997-12-15 2000-08-08 General Motors Corporation Mirrored serpentine flow channels for fuel cell
US6063515A (en) 1997-12-22 2000-05-16 Ballard Power Systems Inc. Integrated fuel cell electric power generation system for submarine applications
US6096448A (en) 1997-12-23 2000-08-01 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
US6103077A (en) 1998-01-02 2000-08-15 De Nora S.P.A. Structures and methods of manufacture for gas diffusion electrodes and electrode components
US6096450A (en) 1998-02-11 2000-08-01 Plug Power Inc. Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
US6210827B1 (en) 1998-03-06 2001-04-03 Rayovac Corporation Elongate air depolarized electrochemical cells
DE19812155C2 (en) 1998-03-20 2002-11-14 Forschungszentrum Juelich Gmbh Arrangement for energy conversion comprising at least two fuel cell stacks and at least one reformer unit, and a use of the arrangement
US6074692A (en) 1998-04-10 2000-06-13 General Motors Corporation Method of making MEA for PEM/SPE fuel cell
US6210820B1 (en) 1998-07-02 2001-04-03 Ballard Power Systems Inc. Method for operating fuel cells on impure fuels
US6124053A (en) 1998-07-09 2000-09-26 Fuel Cell Technologies, Inc. Fuel cell with internal combustion chamber
US6277508B1 (en) 1998-07-17 2001-08-21 International Fuel Cells Corporation Fuel cell power supply with exhaust recycling for improved water management
US6127056A (en) 1998-10-09 2000-10-03 International Fuel Cells, Llc Start up of proton exchange membrane fuel cell
US6020083A (en) 1998-10-30 2000-02-01 International Fuel Cells Llc Membrane electrode assembly for PEM fuel cell
US6238817B1 (en) 1999-02-03 2001-05-29 International Fuel Cells, Llc Gas injection system for treating a fuel cell stack assembly
US6207308B1 (en) 1999-04-20 2001-03-27 International Fuel Cells, Llc Water treatment system for a fuel cell assembly
EP1181730B1 (en) * 1999-05-18 2008-08-20 Nuvera Fuel Cells Europe S.R.L. Humidification device for polymeric membrane fuel cells
JP2003500857A (en) 1999-05-25 2003-01-07 フォッシュカルパテント・イー・ウプサラ・アクチボラゲット Method for manufacturing nanostructured thin film electrodes
US6248462B1 (en) 1999-05-28 2001-06-19 International Fuel Cells, Llc Method and apparatus for thermal management of a fuel cell assembly
US6331366B1 (en) 1999-06-23 2001-12-18 International Fuel Cells Llc Operating system for a fuel cell power plant
US6207309B1 (en) 1999-07-16 2001-03-27 International Fuel Cells Llc Environmental compensation method and apparatus for a fuel cell assembly
US6316134B1 (en) 1999-09-13 2001-11-13 Ballard Generation Systems, Inc. Fuel cell electric power generation system
EP1144301A1 (en) 1999-10-05 2001-10-17 Ballard Power Systems Inc. Fuel cell power generation system with autothermal reformer
US6242118B1 (en) 1999-10-14 2001-06-05 International Fuel Cells Llc Method and apparatus for removing contaminants from the coolant supply of a fuel cell power plant
US6649299B2 (en) 2000-02-11 2003-11-18 The Texas A&M University System Gas diffusion electrode with nanosized pores and method for making same

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3616841A (en) * 1967-10-30 1971-11-02 Energy Research And Generation Method of making an inorganic reticulated foam structure
US3617385A (en) * 1969-03-13 1971-11-02 Texas Instruments Inc Fuel cell
US3814631A (en) * 1971-02-15 1974-06-04 Alsthom Cgee Framed electrodes containing means for supplying or draining liquid along the edge of an electrode
US4058482A (en) * 1976-12-20 1977-11-15 United Technologies Corporation Fuel cell electrode
US4124478A (en) * 1977-02-07 1978-11-07 Tsien Hsue C Thin sheet apparatus and a fluid flow device
US4175165A (en) * 1977-07-20 1979-11-20 Engelhard Minerals & Chemicals Corporation Fuel cell system utilizing ion exchange membranes and bipolar plates
US4125676A (en) * 1977-08-15 1978-11-14 United Technologies Corp. Carbon foam fuel cell components
US4214969A (en) * 1979-01-02 1980-07-29 General Electric Company Low cost bipolar current collector-separator for electrochemical cells
US4274939A (en) * 1979-04-20 1981-06-23 Svenska Utvecklingsaktiebolaget (Su) Swedish National Development Co. Electrode package and use thereof
US4496437A (en) * 1983-06-22 1985-01-29 The Dow Chemical Company Method for producing a dual porosity body
USH16H (en) * 1984-03-02 1986-01-07 The United States Of America As Represented By The United States Department Of Energy Fuel cell electrode and method of preparation
US4758481A (en) * 1985-03-15 1988-07-19 Occidental Chemical Corporation Fuel cell with improved separation
US4818741A (en) * 1986-11-20 1989-04-04 Electric Power Research Institute, Inc. Porous and porous-nonporous composites for battery electrodes
US4876115A (en) * 1987-01-30 1989-10-24 United States Department Of Energy Electrode assembly for use in a solid polymer electrolyte fuel cell
US4910099A (en) * 1988-12-05 1990-03-20 The United States Of America As Represented By The United States Department Of Energy Preventing CO poisoning in fuel cells
US5079105A (en) * 1989-05-18 1992-01-07 Asea Brown Boveri Ltd. Device for conversion of chemical energy from hydrocarbons into electric energy by an electrochemical high-temperature process
US5364712A (en) * 1992-02-21 1994-11-15 Hughes Aircraft Company Dual porosity gas evolving electrode
US5482792A (en) * 1993-04-30 1996-01-09 De Nora Permelec S.P.A. Electrochemical cell provided with ion exchange membranes and bipolar metal plates
US5565072A (en) * 1993-04-30 1996-10-15 De Nora Permelec S.P.A. Electrochemical cell provided with ion exchange membranes and bipolar metal plates
US5578388A (en) * 1993-04-30 1996-11-26 De Nora Permelec S.P.A. Electrochemical cell provided with ion exchange membranes and bipolar metal plates
US5418079A (en) * 1993-07-20 1995-05-23 Sulzer Innotec Ag Axially symmetric fuel cell battery
US5589285A (en) * 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
US5366819A (en) * 1993-10-06 1994-11-22 Ceramatec, Inc. Thermally integrated reformer for solid oxide fuel cells
US5763114A (en) * 1994-09-01 1998-06-09 Gas Research Institute Integrated reformer/CPN SOFC stack module design
US5879826A (en) * 1995-07-05 1999-03-09 Humboldt State University Foundation Proton exchange membrane fuel cell
US5853910A (en) * 1996-03-29 1998-12-29 Kabushikikaisha Equos Research Fuel cell power generating apparatus and operation method therefor
US6410180B1 (en) * 1996-06-06 2002-06-25 Lynntech, Inc. Fuel cell system for low pressure operation
US6022634A (en) * 1996-06-26 2000-02-08 De Nora S.P.A. Membrane electrochemical cell provided with gas diffusion electrodes in contact with porour, flat, metal current conductors having highly distributed contact area
US6007932A (en) * 1996-10-16 1999-12-28 Gore Enterprise Holdings, Inc. Tubular fuel cell assembly and method of manufacture
US6051117A (en) * 1996-12-12 2000-04-18 Eltech Systems, Corp. Reticulated metal article combining small pores with large apertures
US6146780A (en) * 1997-01-24 2000-11-14 Lynntech, Inc. Bipolar separator plates for electrochemical cell stacks
US6344290B1 (en) * 1997-02-11 2002-02-05 Fucellco, Incorporated Fuel cell stack with solid electrolytes and their arrangement
US5942350A (en) * 1997-03-10 1999-08-24 United Technologies Corporation Graded metal hardware component for an electrochemical cell
US6387556B1 (en) * 1997-11-20 2002-05-14 Avista Laboratories, Inc. Fuel cell power systems and methods of controlling a fuel cell power system
US6238819B1 (en) * 1998-01-23 2001-05-29 Stork, N.V. Metal foam support, electrode and method of making same
US6387557B1 (en) * 1998-10-21 2002-05-14 Utc Fuel Cells, Llc Bonded fuel cell stack assemblies
US6399234B2 (en) * 1998-12-23 2002-06-04 Utc Fuel Cells, Llc Fuel cell stack assembly with edge seal
US6140266A (en) * 1999-02-18 2000-10-31 International Fuel Cells, Co., Llc Compact and light weight catalyst bed for use in a fuel cell power plant and method for forming the same
US6232010B1 (en) * 1999-05-08 2001-05-15 Lynn Tech Power Systems, Ltd. Unitized barrier and flow control device for electrochemical reactors
US6280870B1 (en) * 1999-08-26 2001-08-28 Plug Power Inc. Combined fuel cell flow plate and gas diffusion layer
US6284399B1 (en) * 1999-09-17 2001-09-04 Plug Power Llc Fuel cell system having humidification membranes
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US6413664B1 (en) * 1999-12-23 2002-07-02 Ballard Power Systems Inc. Fuel cell separator plate with discrete fluid distribution features
US6403249B1 (en) * 2000-01-12 2002-06-11 Humboldt State University Foundation Humidification of a PEM fuel cell by air-air moisture exchange
US20040048139A1 (en) * 2000-09-26 2004-03-11 Reliant Energy Power Systems, Inc. Fuel cell stack assembly
US6531238B1 (en) * 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
US6656624B1 (en) * 2000-09-26 2003-12-02 Reliant Energy Power Systems, Inc. Polarized gas separator and liquid coalescer for fuel cell stack assemblies
US20040048140A1 (en) * 2000-09-26 2004-03-11 Reliant Energy Power Systems, Inc. Flow fields for fuel cells
US20020068208A1 (en) * 2000-09-28 2002-06-06 Dristy Mark E. Cell frame/flow field integration method and apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040048140A1 (en) * 2000-09-26 2004-03-11 Reliant Energy Power Systems, Inc. Flow fields for fuel cells
US20040048139A1 (en) * 2000-09-26 2004-03-11 Reliant Energy Power Systems, Inc. Fuel cell stack assembly
US6951698B2 (en) 2000-09-26 2005-10-04 The Texas A&M University System Fuel cell stack assembly
US7005210B2 (en) 2000-09-26 2006-02-28 The Texas A&M University System Flow fields for fuel cells
US20040096724A1 (en) * 2002-11-14 2004-05-20 3M Innovative Properties Company Fuel cell stack
US7163761B2 (en) * 2002-11-14 2007-01-16 3M Innovative Properties Company Fuel cell stack

Also Published As

Publication number Publication date Type
US6531238B1 (en) 2003-03-11 grant
US6951698B2 (en) 2005-10-04 grant
US20040048140A1 (en) 2004-03-11 application
US7005210B2 (en) 2006-02-28 grant
WO2002027838A3 (en) 2004-09-23 application
WO2002027838A2 (en) 2002-04-04 application
US6582842B1 (en) 2003-06-24 grant
US20040048139A1 (en) 2004-03-11 application
EP1481435A2 (en) 2004-12-01 application
US6656624B1 (en) 2003-12-02 grant

Similar Documents

Publication Publication Date Title
US5958616A (en) Membrane and electrode structure for methanol fuel cell
US5514487A (en) Edge manifold assembly for an electrochemical fuel cell stack
US6410179B1 (en) Fluid flow plate having a bridge piece
US5252410A (en) Lightweight fuel cell membrane electrode assembly with integral reactant flow passages
US20020076598A1 (en) Direct methanol fuel cell including integrated flow field and method of fabrication
US5863672A (en) Polymer electrolyte membrane fuel cell
US5486430A (en) Internal fluid manifold assembly for an electrochemical fuel cell stack array
US6500580B1 (en) Fuel cell fluid flow plate for promoting fluid service
US6200698B1 (en) End plate assembly having a two-phase fluid-filled bladder and method for compressing a fuel cell stack
US20050048342A1 (en) Membrane electrode assembly and fuel cell
US6348280B1 (en) Fuel cell
US6403247B1 (en) Fuel cell power plant having an integrated manifold system
US20050233181A1 (en) Solid high polymer type cell assembly
US6110612A (en) Structure for common access and support of fuel cell stacks
US6582842B1 (en) Enhancement of proton exchange membrane fuel cell system by use of radial placement and integrated structural support system
US20030186106A1 (en) Fuel cell flow field plate
US20050106446A1 (en) Fuel cell system
US5945232A (en) PEM-type fuel cell assembly having multiple parallel fuel cell sub-stacks employing shared fluid plate assemblies and shared membrane electrode assemblies
US5709961A (en) Low pressure fuel cell system
US20020071981A1 (en) Fuel cell
US20040106028A1 (en) Fuel cell
US20030082425A1 (en) PEM fuel cell
US20030219641A1 (en) Fuel cell components
US20020192532A1 (en) Fuel cell
US7052796B2 (en) Externally manifolded membrane based electrochemical cell stacks

Legal Events

Date Code Title Description
AS Assignment

Owner name: RELIANT ENERGY POWER SYSTEMS, INC., TEXAS

Free format text: ;ASSIGNOR:KING, GEORGE R.;REEL/FRAME:013373/0212

Effective date: 20000926

AS Assignment

Owner name: RELIANT ENERGY POWER SYSTEMS, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KING, GEORGE R.;REEL/FRAME:014794/0723

Effective date: 20000926

AS Assignment

Owner name: CENTERPOINT ENERGY POWER SYSTEMS, INC., TEXAS

Free format text: CHANGE OF NAME;ASSIGNOR:RELIANT ENERGY POWER SYSTEMS, INC.;REEL/FRAME:015302/0216

Effective date: 20020930

Owner name: TEXAS A&M UNIVERSITY SYSTEM, THE, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CENTERPOINT ENERGY POWER SYSTEMS, INC;REEL/FRAME:015302/0261

Effective date: 20040422