US20040024309A1 - System for monitoring the position of a medical instrument with respect to a patient's body - Google Patents

System for monitoring the position of a medical instrument with respect to a patient's body Download PDF

Info

Publication number
US20040024309A1
US20040024309A1 US10427472 US42747203A US2004024309A1 US 20040024309 A1 US20040024309 A1 US 20040024309A1 US 10427472 US10427472 US 10427472 US 42747203 A US42747203 A US 42747203A US 2004024309 A1 US2004024309 A1 US 2004024309A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
apparatus
signal
reference
reference unit
position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10427472
Inventor
Maurice Ferre
Peter Jakab
James Tieman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Medical Systems Global Technology Co LLC
Original Assignee
GE Medical Systems Global Technology Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/14Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic means
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic means for measuring coordinates of points
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/0068Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image for image registration, e.g. elastic snapping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00464Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for use with different instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • A61B2017/00482Coupling with a code
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0818Redundant systems, e.g. using two independent measuring systems and comparing the signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/363Use of fiducial points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Abstract

A system is disclosed for monitoring the position of a medical instrument with respect to a patient's body and for displaying at least one of a plurality of prerecorded images of said body responsive to the position of said medical instrument. In one embodiment the system includes a reference unit secured from movement with respect to the patient's body such that said reference unit is substantially immobile with respect to a target operation site. The system also includes a remote unit for attachment to the medical instrument. A field generator may be associated with one of the units for generating a position characteristic field in an area including the target operation site. One or more field sensors may be associated with either of the units responsive to the presence of the position characteristic field for producing one or more sensor output signals representative of said sensed field. A position detector in communication with the sensor output signal produces position data representative of the position of the remote unit with respect to the reference unit. An output display in communication with the position detector displays at least one of the prerecorded images responsive to the position data.

Description

    BACKGROUND OF THE INVENTION
  • The invention relates to computer assisted medical surgery and in particular relates to systems for displaying prerecorded visual images during surgical operations. [0001]
  • Presently available medical imaging techniques such as CAT (Computerized Axial Tomography), MRI (Magnetic Resonance Imaging), and PET (Position Emission Tomography), are known to be helpful not only for diagnostic purposes, but also for providing assistance during surgery. Prerecorded images may be displayed during surgical operations to provide the surgeon with illustrative reference mappings of pertinent portions of a patient's body. [0002]
  • Tracking systems for monitoring the position of a medical instrument have also been developed for use with image display systems. Generally, as the surgeon moves the medical instrument with respect to the patient's body, associated prerecorded images are displayed responsive to the movement of the instrument. Such tracking systems typically involve either the use of a passive articulated arm attached to the medical instrument, optical detection or ultrasonic detection. [0003]
  • Tracking systems using a passive articulated mechanical arm attached to a medical instrument are disclosed in U.S. Pat. Nos. 5,186,174 and 5,230,623. Generally, as the surgeon moves the surgical instrument with respect to the patient's body, micro recorders at the joints of the articulated arm record the respective amounts of movement of each arm member. The outputs of the micro recorders are processed and the position of the medical instrument with respect to the base of the articulated arm is thereby monitored. One or more prerecorded images are then displayed responsive to the movement of the surgical instrument. Such articulated arm tracking systems, however, require that the instrument be attached to a cumbersome mechanical arm. Also, although free movement of the tip of the arm in three dimensional space may be theoretically possible, the surgeon might experience difficulty positioning the instrument at certain locations and in desired orientations within the body. [0004]
  • Tracking systems using optical detection (video cameras and/or CCDs (Charge Coupled Devices)) have been proposed for monitoring the position of a medical instrument with respect to a reference unit as mentioned in U.S. Pat. No. 5,230,623. Such systems, however, require that the reference unit and the instrument both be within the view of the camera. This not only limits the movement of the surgical staff, but also requires that at least a portion of the medical instrument remain outside the patient's body. [0005]
  • Tracking systems using ultrasonic detection are generally disclosed in U.S. Pat. No. 5,230,623. Such systems, however, are disclosed to be used in a fashion similar to optical detection, i.e., triangulation of transmitted signals. The transmitted signals are sent from one or more senders to associated receiver(s), and the distances travelled by the signals are determined from either timing or amplitude changes. Again, the transmission path must remain unobstructed. [0006]
  • A further shortcoming common to each of the above tracking systems is that the patient must not move during the operation. Although the patient is likely to be generally anesthetized, the patient's body may be inadvertently moved by the surgical staff, or the surgeon may want to move the body for better positioning. If the body is moved after the tracking system has been initialized, then the tracking will be misaligned. [0007]
  • There is a need therefore for a system for monitoring the position of a medical instrument with respect to a patient's body that avoids these and other shortcomings of present devices. [0008]
  • SUMMARY OF THE INVENTION
  • The invention relates to a system for monitoring the position of a medical instrument with respect to a patient's body and for displaying at least one of a plurality of prerecorded images of the body responsive to the position of the medical instrument. The system includes a reference unit, a remote unit, a position characteristic field generator, a field sensor, a position detection unit and an output display. [0009]
  • In one embodiment, the reference unit is secured from movement with respect to at least a portion of the patient's body such that the reference unit is substantially immobile with respect to a target operation site. The remote unit is attached to the medical instrument. The field generator is associated with one of the reference or remote units and generates a position characteristic field, such as a multiplexed magnetic field, in an area including the target operation site. The field sensor is associated with the other of the reference or remote units and is responsive to the presence of the field for producing a sensor output signal representative of the sensed field. [0010]
  • The position detection unit is in communication with the sensor-output signal and produces position data representative of the position of the remote unit with respect to the reference unit. The output display unit is in communication with the position detection unit for displaying at least one of the prerecorded images responsive to the position data. [0011]
  • The system further may include a registration unit in communication with a storage unit and the position data. The storage unit stores the plurality of prerecorded images of the body. Each prerecorded image is representative of a planar region within the body such that the plurality of planar regions represented by the prerecorded images define a first coordinate system. The registration unit correlates the position data of a second coordinate system (as defined by the position detection unit) with the plurality of prerecorded images of the first coordinate system, and identifies a desired prerecorded image associated with the position of the remote unit with respect to the patient's body. [0012]
  • The invention also relates to a reference unit that is attachable to a patient's head, and a medical instrument, such as an aspirating device, that is adapted to removably receive a position detection unit.[0013]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following detailed description of the invention may be further understood with reference to the accompanying drawings in which: FIG. 1 is a diagrammatic view of a system of an embodiment of the invention; [0014]
  • FIG. 2 is a front view of the headset unit shown in FIG. 1; [0015]
  • FIG. 3 is a side view of the headset unit shown in FIG. 1 taken along line [0016] 3-3 of FIG. 2;
  • FIG. 4 is a rear view of a portion of the headset shown in FIG. 1 taken along line [0017] 4-4 of FIG. 3;
  • FIG. 5 is an exploded side view of the surgical instrument and remote sensor shown in FIG. 1; [0018]
  • FIG. 6 is an end view of the assembled surgical instrument and sensor shown in FIG. 1 taken along line [0019] 6-6 of FIG. 5;
  • FIG. 7 is a side view of another embodiment of a surgical instrument and sensor unit of the invention in accordance with an alternative embodiment of the invention; [0020]
  • FIG. 8 is a side view of the surgical instrument shown in FIG. 7; [0021]
  • FIG. 9 is an end view of the surgical instrument shown in FIG. 7; [0022]
  • FIG. 10 is an elevational view of the surgical instrument shown in FIG. 7; [0023]
  • FIG. 11 is a plan view of a remote sensor unit that is adapted to be used with the surgical instrument shown in FIGS. [0024] 7-10;
  • FIG. 12 is a side view of another surgical instrument together with the removable remote sensor unit shown in FIGS. 7 and 11; [0025]
  • FIG. 13 is a diagrammatic illustration of the system employed to prerecord CT images for use with the system of the invention; [0026]
  • FIG. 14 is diagrammatic illustration of a manual registration process of the invention; [0027]
  • FIG. 15 is an elevational view of the components of a fiducial marker system in accordance with an embodiment of the invention; [0028]
  • FIG. 16 is a plan view of the components of the system of FIG. 15 taken along line [0029] 16-16 thereof;
  • FIG. 17 is a flowchart-of the process of using the fiducial marker system of FIG. 15; [0030]
  • FIG. 18 is a side view of a headset unit in accordance with another embodiment of the invention; [0031]
  • FIG. 19 is an end view of the headset unit shown in FIG. 18 taken along line [0032] 19-19 thereof;
  • FIG. 20 is a plan view of a transmitter that is adapted to be used with the headset unit shown in FIG. 18; [0033]
  • FIG. 21 is a partial view of a portion of the headset shown in FIG. 16 taken along line [0034] 21-21 thereof;
  • FIG. 22 is a flow chart of an automatic registration process of the invention; [0035]
  • FIG. 23 is a diagrammatic view of the position detection components in accordance with a system of the invention; [0036]
  • FIGS. 24 and 25 are diagrammatic views of the principles of an error detection calculation process in accordance with an embodiment of the invention; [0037]
  • FIGS. 26 and 27 are diagrammatic views of the errors detected by the process of FIGS. [0038] 24 an 25;
  • FIG. 28 is a diagrammatic view of another embodiment of the invention; and [0039]
  • FIGS. [0040] 29-32 are diagrammatic views of further embodiments of systems of the invention.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • As shown in FIG. 1, a system [0041] 10 of the invention includes a headset 12 mounted on a patient 14, a medical instrument 16, a control system 18 and a display 20. The control system 18 includes a position-detection unit 22, a registration unit 24, and an image storage unit 26.
  • The image storage unit [0042] 26 stores sets of prerecorded images such as CAT, MRI or PET scan images. Each set of images may be taken along, for example, coronal, sagittal or axial directions. As shown in FIG. 1, the display 20 shows three images, a coronal image 21 a, a sagittal image 21 b, and an axial image 21 c. Text information may also be displayed as shown at 21 d in FIG. 1.
  • As further shown in FIGS. [0043] 2-4, the headset 12 includes two ear mounts 28 on side members 30, and a nose bridge mount 32 on a center member 34. The headset 12 should be made of a resilient plastic such that it may be snugly attached to a patient's head, and may be provided in a variety of sizes. A primary objective of the headset is to provide a reference unit that may be easily attached to and removed from a patient's head wherein the headset may be repeatedly reattached in exactly the same place with a high degree of accuracy. In other embodiments, the side members 30 of the headset 12 may be rotationally attached to one another and the ear mounts 28 may be biased toward one another. Further, the center member 34 may be rotatable with respect to the side members 30 and biased toward the ear mounts 28 as well.
  • The headset [0044] 12 shown in FIGS. 1-4 also includes a reference unit 36 connected to the position detection unit 22 via communication lines 38. The reference unit 36 may be releasably attached to the headset 12 by conventional clamp or fastening means. In one embodiment the reference unit 36 may include a position characteristic field generator capable of generating a multidirectional field in three dimensions and may involve the use of either electromagnetic or ultrasonic waves. The position characteristic field differs from the transmit/receive triangulation system, in part, because it does not rely on the comparison of one transmitted signal with another as does triangulation. This permits the path between the field generator and the remote sensor to be obstructed by materials that do not significantly alter the generated field. For example, the position of the medical instrument could be identified even when the instrument is within the patient's body when the generated field is a magnetic field. Additionally, the reference unit may also include a reference sensor 37 to provide verification of proper system operation.
  • In the present embodiment the field generator includes three orthogonally disposed magnetic dipoles (e.g., current loops or electromagnets), and the orthogonally disposed magnetic fields generated by each of the three dipoles are mutually distinguishable from one another (e.g., via either phase, frequency, or time division multiplexing). The near-field characteristics of the multiplexed magnetic fields may be relied upon for position detection, for example as generally described in U.S. Pat. No. 4,054,881. In alternate embodiments the field generator may be located somewhere other than on the headset and the headset may include two field sensors [0045] 36,37. When the distance between the sensors 36,37 is known, the second sensor may be used to act as a backup or reference check for monitoring the proper operation of the system. If the sensed fields are inconsistent then an error signal is displayed and/or sounded.
  • In other embodiments the headset [0046] 12 may be employed in systems based on the triangulation of signals where the reference unit 36 includes one or more signal transmitters and/or one or more signal receivers. In such a triangulation system, position detection is achieved by comparing certain characteristics of one transmitted signal with those of a second transmitted signal to determine the relative distances travelled. The transmitted signals may be electromagnetic (e.g., radio, laser light or light emitting diodes) or may be ultrasonic. The position of the patient's head with respect to the surgical instrument may thereby be monitored.
  • As shown in FIGS. 5 and 6 the medical instrument [0047] 16 may be an aspirating device adapted to removably receive a remote sensor 40 for detecting, for example, the field generated by the position characteristic field generator. The sensor 40 may be held inside the instrument 16 by force fit sizing or through the use of a resilient snap member in the wall opening 42. Since an aspirating device is commonly used in most surgical operations, incorporating the remote sensor into the aspirating device provides the surgeon with a convenient position detection device that does not clutter the operation site with unnecessary items. The instrument 16 may further include a second backup field sensor 41 for system error detection as discussed above with reference to the sensor 37.
  • The remote sensors [0048] 40,41 are removable from the aspirating device and may be interchangeably inserted into any of a variety of specially adapted surgical instruments. In the illustrated embodiment, the remote sensors 40,41 are received through an opening 42 in the proximal end of the instrument 16, and are connected to the position detection unit 22 via communication lines 44. The sensors 40,41 may also each include three orthogonally disposed dipole sensing elements for detecting the presence of the field generated by the field generator. For example, in one embodiment, the field generator and the sensors each include three orthogonally disposed electrical wire loops. The generator produces an alternating current through one generator loop at a time thus generating a time division multiplexed alternating electromagnetic field. The sensor loop signals are each processed in synchronous timing with the generator loops to produce outputs responsive to each respective alternating electromagnetic field.
  • The distal end of the instrument [0049] 16 includes a rigid aspirating tube 46 having a flared tip 48. The position of the tip 48 with respect to the center of the remote sensor 40 is a known constant and may be easily seen by the surgeon during surgery. The aspirating tube 46 is in fluid communication with an aspirating catheter 50 through the proximal end of the instrument 16 via internal channel 52 and a connector element 54. The aspirating catheter 50 (shown in FIG. 1) is connected to a vacuum aspirating unit (not shown).
  • In operation, the position detection unit monitors the position of the medical instrument [0050] 16 with respect to the reference unit 36. The registration unit 24 correlates the changes in position of the instrument 16 with the spacial orientation of the stored images. As the surgeon moves the medical instrument 16, images appear on the display 20 responsive to the position of the medical instrument 16. This permits the surgeon to always have available the coronal, sagittal, and axial views associated with the precise location of the tip 48 of the instrument 16 regardless of whether the tip 48 is inside of the patient 14. Moreover, since the field generator is attached to the patient's head, the patient is free to be moved without loss of the tracking capabilities. The display 20 may further identify the location of the tip 48 on each of the displayed images as shown at 56 in FIG. 1. In other embodiments the orientation of the aspirating tube 46 may also be identified on the displayed images. In further embodiments, a three dimensional composite image may be displayed based on the prerecorded images.
  • As shown in FIGS. [0051] 7-11 another embodiment of a removable remote sensor unit 58 may be used with an aspirating device 60. The sensor unit 58, including two sensors 62,64 may be removably attached to the device 60 by first engaging recesses 66 on the unit 58 with fingers 68 on the device 60. A tounge 70 on the unit 58 is then received between hinge posts 72 on the device 60, and finally secured in place by rotating the lock 74 from an open position as shown in FIG. 8 to a closed position as shown in FIG. 7. The lock 74 includes a recessed area at 76 adapted to frictionally engage the tounge 70 on the sensor unit 58.
  • The sensor unit [0052] 58 further includes the ability to identify which of a plurality of medical instruments is attached to the sensor unit 58 at any time. Specifically, the unit 58 includes a plurality of Hall effect transistors 78, and the medical instrument 60 includes one or more tiny permanent magnets 80. By the number and/or positioning of the magnets 80, the transistors 78 identify which of the medical instruments is attached to the sensor unit 58.
  • For example, if all of the transistors [0053] 78 sense the presence of a magnet 80 then the instrument 60 shown in FIGS. 7-11 is known to be attached to the sensor unit 58 since the instrument 60 includes three magnets. If only two magnets 82 are sensed then the medical instrument attached to the sensor unit 58 is a different instrument 84 as shown in FIG. 12. If no magnets are sensed then it is known that the sensor unit 58 is not attached to any medical instrument. Knowing the identity of the attached medical instrument permits the system to automatically adjust the position detection unit to compensate for the differences in instrument tip position with respect to the position of the sensors 62,64 for a variety of medical instruments. The removably engageable feature of the sensor unit not only provides versatility, but also facilitates the use of sterilized medical instruments.
  • As illustrated in FIGS. 13 and 14 the registration process involves two fundamental steps: 1) recording the scan images of a predetermined orientation and 2) mapping the special orientation of the position detection system onto the recorded images. For example, the orientations of the prerecorded images may be in the sagittal (i-j plane), coronal (k-j plane) and/or axial (k-i plane) as shown in FIG. 13. The images may be digitally stored and the distance between each scanned image is recorded, as are the relative orientations of each set of images. As those skilled in the art will appreciate, in alternative embodiments certain of the images may be created from other images without the need to prerecord each of the sagittal, coronal and axial views. For example, by multiplanar reformatting the sagittal and coronal images may be created from the axial images. [0054]
  • In one embodiment, fiducial markers [0055] 90 are placed on the patient's head 14 prior to scanning with the scanner 92. The markers then appear on certain of the scanned images, and may be located by the position detection system as shown in FIG. 14. Specifically, when each marker 90 is sequentially located, for example with the tip 48 of a medical instrument 16, the user locates the same marker on the prerecorded images by using, for example a computer mouse. The user then controls the entering of the registration data through either a computer keyboard 94, a mouse, or a foot switch. In alternative embodiments the registration unit may scan each prerecorded digital image beginning from one corner until it locates the identified marker.
  • In further embodiments involving the use of fiducial markers that are placed on the patient's body (e.g., face) prior to recording the scan images, fiducial markers [0056] 90′ may be adhered to intermediate adhesive strips 91 which are directly adhered to the patient's skin 93 as shown in FIGS. 15 and 16.
  • The fiducial markers [0057] 90′ include a radiopaque element 95 and the strips 91 include a small puncture hole or other marker 97. With reference to FIG. 17, the process of using the fiducial markers 90′ begins (step 1700) by first placing the strips 91 on the patient's skin (step 1710). The fiducial markers 90′ are then placed on the strips 91 such that the radiopaque elements 95 align with the markers 97 on the strips 91 (step 1704). The scan images are then recorded (step 1706), and the fiducial markers 90′ may then be removed from the patient (step 1708). During manual registration the surgeon or technician may locate the markers 97 with the tip of a pointer (step 1710) and thereby record the positions of the fiducial marker radiopaque elements 95 with respect to the transmitter. The use of the intermediate strips 91 not only provides increased comfort to the patient after the image scanning and prior to surgery, but also facilitates accurate registration. Since the radiopaque elements 95 were centered directly on top of the markers 93, the accuracy of registration is enhanced because the user may now locate the smaller sized markers 93 instead of more indefinitely locating a portion of the larger sized radiopaque elements 95 with the pointer tip.
  • Once each of the markers has been located using the position detection unit, the registration unit generates, a mapping function to translate the position detection data (in x-y-z coordinates) to the stored image orientation data (in i-j-k coordinates). In particular, the mapping equation is determined by using Powell's method as follows. [0058]
  • The images points are each processed as a matrix of the form [0059] [ i r j r k r ] ( 1 )
    Figure US20040024309A1-20040205-M00001
  • and the collected sensor points are each processed as a matrix of the form [0060] [ x s y s z s ] ( 2 )
    Figure US20040024309A1-20040205-M00002
  • A computer processor then iteratively calculates the optimal values for the transformation matrices [0061] [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] and [ t x t y t z ] ( 3 )
    Figure US20040024309A1-20040205-M00003
  • to solve the following equation: [0062] [ i r j r k r ] = [ r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 ] · [ x s y s z s ] + [ t x t y t z ] ( 4 )
    Figure US20040024309A1-20040205-M00004
  • such that (i[0063] c-ii)2+(jc-ji)2+(kc-ki)2 is a minimum for the summation of all of the collected image points. The optimization method employs distance minimization, and at least three image points are required for this method.
  • The optimal values for the transformation matrices comprise the transformation equation and may now be used to translate the position of the medical instrument with respect to the transmitter in the x-y-z coordinate system, to the appropriate orientation of the prerecorded images in the i-j-k coordinate system. [0064]
  • A further embodiment of the headset of the invention may be employed in an automatic registration process. For example, as shown in FIGS. 18 and 19 another embodiment of a headset [0065] 100 of the invention includes two ear mounts 28, side members 30, and a nose bridge mount 32 on center member 34 as discussed above with reference to FIGS. 2-4. The headset 100 further includes a center plate 102 on the center member 34. The center plate 102 is adapted to receive a transmitter 104 as shown in phantom in FIG. 19 and shown from the underside of the plate 102 in FIG. 21. The transmitter 104 includes two posts 106 and a key 108 that is free to rotate about a pin 110.
  • To install the transmitter [0066] 104 on the center plate 102, the key is passed through a longitudinal opening 112 in the plate 102, and the posts 106 are each received by post openings 114. One of the post openings 114 is preferably formed as a slot to provide a snug fit for the transmitter yet still accommodate variations between headsets due to manufacturing tolerances. The key 108 may then be rotated to lock the transmitter onto the outer facing surface of the plate 102. The transmitter 104 may then be removed from and reattached to identical headsets in the same location and orientation with a high degree of accuracy.
  • The headset [0067] 100 further includes very small (e.g., about 2 mm dia.) metal fiducial balls 116 secured within the center plate 102 as shown in FIG. 18. The automatic registration process locates the balls 116 on the prerecorded scan images, and knowing the spacial relationship between the balls 116 and the transmitter 104, automatically generates the mapping function to translate from the transmitter coordinate system to the image coordinate system.
  • Specifically and with reference to FIG. 22, the automatic registration process begins (step [0068] 2200) by loading the prerecorded images (step 2202) and then creating a three dimensional data set (step 2204). Pixels having an intensity within a certain range are then identified (step 2206), and groups of adjacent pixels are located (step 2208) and classified together as a single group. The volume of each group is calculated (step 2210) and groups not within a predefined range of volumes are rejected (step 2212). Groups not having at least one pixel with an intensity level of at least a certain amount are rejected (step 2214). If the number of groups remaining is less than the number of fiducial balls 116 (step 2216), e.g., 7, then the program ends having failed to provide automatic registration (steps 2218 and 2220).
  • The center of each group is then located and the distances between each group's center and the other centers are calculated and recorded in a matrix of at least 7 by 7 (step [0069] 2222). The known distances between the fiducial balls comprise a predefined 7 by 7 matrix. The program then compares each of the known distances with the various predefined distances between the fiducial balls, then generates a best fit approximation of the correlation between the sets of distances (step 2224). If the distance correlation provides an approximation outside of a preset tolerance (step 2226) then the program ends (steps 2218 and 2220) having failed to automatically generate the transformation matrices. If the correlation of distances is within tolerance and there are seven groups (step 2228) then the image data is, recorded in the image matrix (step 2230). If the number of groups is above seven, then a geometry correlation is performed comparing the geometry of the groups to the known geometry of the fiducial balls (step 2232). If the geometry correlation is successful (step 2234) then the transformation matrices are recorded (step 2230), and if not the program reports the error condition (step 2218).
  • Having successfully generated the image point matrix (step [0070] 2230), and since the sensor point matrix is based on the known layout of the fiducial markers with respect to the transmitter, the mapping equation may now be automatically generated as discussed above with reference to Powell's method.
  • In other embodiments wherein the patient is wearing a reference unit when the scan images are prerecorded the registration program may automatically locate portions of the reference unit itself on the scanned images, thereby identifying the orientation of the reference unit with respect to the scanned images. Again, since the relative orientation of the field generator with respect to the reference unit is known, the registration unit may then generate the appropriate mapping function. In further embodiments the surfaces of the patient's skin may be tracked such as by a laser light pointer or a movable tip pointer that is biased in a forward direction. The tracked surfaces may then be located on the stored images. In still further embodiments, the registration unit could be programmed to identify characteristic structures or features of the patient's body and thereby provide fully automatic registration. For example, the system might, knowing the size and shape of a headset, identify where the headset would be placed on the patient's head, even though it does not appear on the prerecorded images. [0071]
  • The position detection system may operate by any desired principle suitable for generating a field in which position detection may be achieved at any location within the field. For example, it has been found that the 3 Spaces Fastrak™ product sold by Polhemus, Incorporated of Colchester, Vermont operates via principles suitable for use in the present invention. This product uses three orthogonally disposed magnetic dipoles for both the transmitter and the sensor, and produces alternating electromagnetic fields of 8-14 kHz that are time division multiplexed. [0072]
  • Specifically and with reference to FIG. 23, both the magnetic field source [0073] 101 and the magnetic field sensor 103 include three orthogonally disposed coils as shown. An alternating electric current from an amplifier 105 is passed through each of the source coils one at a time generating sequential magnetic fields. A processing unit 107 generates the timing signals and controls a digital-to-analog converter 109. The magnetic fields induce voltages in the three coils of the sensor 103. The induced voltages are amplified by an amplifier 111, digitized by an analog-to-digital converter 113, and then processed by the processing unit 107.
  • The time division multiplexed excitation of the three coils of the source creates a unique magnetic field sequence throughout the field of the source. For every location in the field of the source, the six degree of freedom data can be calculated from the data present on the three coils of the sensor. The six degree of freedom information is then sent to a host computer [0074] 115.
  • The position of a sensor S with respect to the field generator defining a reference coordinate frame (X,Y,Z) may be produced by the 3 Space® Fastrak™ product at a given time as a set of six values x[0075] s, ys, zs, ωazs, ωels, and ωros. The values xs, ys, and zs identify the position of the center of the sensor within the X,Y,Z coordinate reference frame, and the angles ωazs, ωels, and ωros identify the orientation of the-sensor S with respect to the X,Y,Z coordinate reference frame.
  • The value ω[0076] azs is the azimuth angle of the sensor. The azimuth angle identifies the amount of rotation of the X and Y reference axes together about the Z axis to a new position in which the X axis is aligned with the center of the sensor in the Z direction. The new positions of the X and Y axes are defined as X′ and Y′ respectively. The value ωels is the elevation angle of the sensor. The elevation angle identifies the amount of rotation of the X′ and Z axes together about the Y′ axis to a new position in which the X′ axis is aligned with the center of the sensor S. The new positions of the X′ and Z axes are defined as X″ and Z′ respectively.
  • The value ω[0077] ros is the roll angle of the sensor. The roll angle identifies the amount of rotation of the Y′ and Z′ axes together about the X″ axis to a new position defining new axes Y″ and Z″ respectively. The sensor is oriented in the X″,Y″,Z″ reference frame, and this orientation is defined by the values ωazs, ωels, and ωros.
  • The combined power of all the sensor data is inversely proportional to the distance of the sensor from the source. The ratio between the sensor data components, created by the individual source coils, will determine the x, y, z position coordinate of the sensor. The ratio between the individual sensor coil data will determine the orientation of the sensor. [0078]
  • Because the medical instrument is free to move with respect to the transmitter at speeds that may be faster than the rate at which the electronics can process the information, the speed of the instrument should be monitored. If the speed of movement of the instrument is above a defined threshold, then inconsistent sensor readings should be ignored until the speed falls below the threshold. The speed may be monitored by calculating a weighted sum of the differences between each of the x, y, and z coordinates at successive time intervals t[0079] 1 and t2.
  • The presence of a signal from another source, or the magnetic field of the eddy current in a conductive object, or the field distorting effect of a ferro-magnetic object will change the magnitude/direction of the original magnetic field of the source. This will result in an error in the sensor position/orientation. [0080]
  • In a preferred embodiment involving field integrity detection and with reference to FIGS. [0081] 1-3, a reference sensor 37 may be securely mounted on the transmitter assembly 12 at a fixed distance from the center of the transmitter 36. The location and orientation of this reference sensor should be determined through a calibration process under controlled conditions, and thereafter continuously calculated and verified. In certain embodiments a weighted sum of all six sensor output parameters xs, ys, Zs, ωazs, ωels, and ωros may be continuously monitored as an indication of compromised field integrity.
  • As also noted above and shown in FIGS. [0082] 7-12, the remote sensor 58 may include a plurality of sensors (62,64) the outputs of which are compared for error detection purposes. Potential error conditions that would be detectable by such a system include sensor failure where one sensor ceases to operate properly, as well as uneven localized field distortions in the area of the medical instrument.
  • It has further been found that simply comparing the sensor outputs may not sufficiently identify all types of error conditions that can occur, even if the distance between the sensors is taken into account. Such a potentially undetectable error condition may exist when a foreign ferromagnetic object enters the electromagnetic field and produces identical distortions at each of the sensors. This may be the case, for example if the foreign object has uniform ferromagnetic properties, if the foreign object approaches the two sensors from the same distance and at the same rate, and if the sensors are equidistant from the generator. [0083]
  • In this situation the outputs of the sensors would produce identical outputs and an error detection signal might therefore not be produced even though a foreign object would be in the electromagnetic field altering the electromagnetic field as well as the sensed position data. Although the use of additional sensors may reduce the risk of this occurring, it does not eliminate the possibility of an error condition being undetected. [0084]
  • It has been discovered that an error detection system sufficient to identify localized uniform distortions in the area of the medical instrument or headset may be designed using two sensors separated by a fixed distance as shown in FIGS. [0085] 7-12 and by monitoring the locations of two or more virtual points. As shown in FIG. 25, the sensors S1 and S2 are separated from each other by a distance 2d and for convenience defined to be positioned along an axis such as the Y axis as shown. Sensor S1 uniquely defines an X-Z plane in which it is located, and S2 uniquely defines an X-Z plane in which it is located as shown. A first virtual location va is chosen to be between the X-Z planes defined by the sensors, while a second virtual location vb is chosen to be outside of the X-Z planes defined by the sensors as shown in FIG. 11. The locations va and vb are virtual locations that are continuously calculated and compared with factory defined positions.
  • In the embodiment diagrammatically shown in FIGS. 24 and 25 the virtual points v[0086] a (-d,-d,-d with respect to S2) and vb (d,d,d with respect to S2) are equidistant from S2. The sensor S2 is the protected sensor in this embodiment, and the sensor S1 is used as a reference to provide the error detection for S2 The magnitude of the resultant vector from S2 to va is the same as that from S2 to Vb but opposite in direction, and this magnitude is approximately one half of the distance between S1 and S2.
  • The locations of v[0087] a and Vb in the reference coordinate system (i.e., with respect to S1) must be calculated and will be referred to as va1 and Vb1 The location (PS) and the orientation of the protected sensor (S1) with respect to the reference sensor must be determined. The attitude matrix (A) is calculated from the orientation values of the protected sensor: [ cos ω ? cos ω ? sin ω ? cos ω ? - sin ω ? cos ω ? - sin ω ? - sin ω ? - sin ω ? cos ω ? cos ω ? - cos ω ? + sin ω ? - sin ω ? - sin ω ? cos ω ? - sin ω ? cos ω ? - sin ω ? - cos ω ? + sin ω ? - sin ω ? sin ω ? - sin ω ? - cos ω ? - cos ω ? - cos ω ? cos ω ? - sin ω ? ] ? indicates text missing or illegible when filed ( 5 )
    Figure US20040024309A1-20040205-M00005
  • Then the locations of the virtual points are calculated as: [0088]
  • v a1 =A·v a2 +PS
  • v b1 =A·v b2 +PS
  • To establish a reference value for the virtual point location in the reference sensor coordinate system, a measurement is taken in a distortion free environment during factory calibration. These stored reference values are called v[0089] ae and Vbe . Throughout the use of the system, the actual measured values of the virtual points (vam, vbm) are compared to the stored reference values for the virtual points (vae, vbe). If the distance between the established and measured location (Δ) for either virtual point is larger than a preset value (ε), then a field integrity violation message is displayed and normal operation of the system is suspended. In particular and with reference to FIG. 26
  • |v alm −v alm|>εor |vblm−vble
  • The operation is based in part on the principle that if the position error is being reduced by the orientation error at one virtual point, then the error will be increased at the other virtual point causing a field integrity violation signal to be generated. If for example, there is an error in the measured position and orientation of the protected sensor, then the measured value will have an error added to the established value. The field integrity checking is performed in this case as follows: [0090]
  • |((A e +A )·v a2 +PS e +PS )−(A e ·v a2 +PS e)|>ε
  • or
  • |((A e +A v b2 +PS e +PS )−(A e ·v b2 +PS e)|>ε
  • which equals [0091]
  • |A ·v a2 +PS |>ε
  • or
  • |A ·v b2 +PS |>ε
  • Substituting [0092]
  • A ·v a2 =OPS amΔand A v b2 =OPS bmΔ
  • this relationship may be diagrammatically illustrated as shown in FIG. 27. The tip location of the medical instrument should be initially defined with respect to the protected sensor (S2), and used in determining the position of the tip with respect to the source. [0093]
  • The integrity of the field generated by the field generator may be monitored as discussed above by positioning a reference sensor a fixed distance from the generator, and continuously monitoring its position for any changes. The calculations involved in the above field integrity detection analysis regarding the two sensors S[0094] 1 and S2 may be performed for a transmitter and single sensor field integrity detection system. Specifically, the calculations may be performed by substituting the field transmitter for the protected sensor (S2), and by substituting the single sensor for the reference sensor (S1). These field integrity analyses may also be used to identify the half field of the operation environment.
  • As shown in FIG. 28 in alternative embodiments of the invention a reference unit [0095] 120, including a field generator 122, may be positioned a small distance away from the portion of the patient's body (such as the head) 14 on an articulated arm 124. A headset 12 including a reference sensor 126 may be attached to the patient's body, and the medical instrument 16 may include a remote sensor 40 as discussed above with reference to FIGS. 1-6. Once the field generator 122 is positioned at a convenient location it may be fixed in place by securing the joints of the articulated arm. The position of the patient with respect to the field generator may accordingly be monitored. The position of the instrument 16 with respect to the patient may also be determined and the system may then operate to display the appropriate prerecorded images as discussed below.
  • In various embodiments, the position of the field generator [0096] 88 may be adjusted during the surgical operation by moving the articulated joints. If neither the remote sensor 40 nor the reference sensor 126 are moved with respect to one another, then moving the field generator 122 should not affect the position detection system. If the accuracy of the system depends at all on the relative positions of the field generators 122 and the sensors 40, 126, then it may be desirable to move the field generator 122 during the surgical operation. This may be the case, for example, if the system relies on the near-field characteristics of a multiplexed magnetic field wherein it might be desirable to keep the sensors 40, 126 generally equidistant from the generator 122. In still further embodiments, the system may periodically prompt the user to reposition the generator 122 such as through visual cues on the display. Those skilled in the art will appreciate that the relative positioning of the field generator and the one or more field sensors is in no way limited to those shown.
  • The monitoring of the position of the patient may be accomplished by means other than using a headset and reference sensor. For example, a camera [0097] 128 connected to an image processor 130 may be positioned to record the location of the field generator with respect to the target operation site of the patient as shown in FIG. 29. If either the patient or the field generator is moved, the image processor 130 will identify the amount of relative change in location and advise the position detection unit 22 accordingly. Additional cameras positioned to view the patient from a variety of directions may be employed in further embodiments.
  • As shown in FIG. 30 in an alternate embodiment, the system may include a flexible band [0098] 132 for secure attachment to a portion of a patient's body 14 (e.g., a head or chest). The band 132 includes field generator 134 and a reference sensor 136 that provides feedback to the signal generator in the position detection unit 22. The position detection unit 22 is connected via communication lines 138 to the flexible band 132, and is connected via communication lines 140 to a flexible medical instrument 142 having a remote sensor at its tip 144. Because the medical instrument 142 is not rigid, the sensor should be positioned sufficiently close to the tip of the instrument 142 to provide accurate position detection and monitoring within the patient's body. The display 20 may indicate the relative orientation of the instrument 142 on one or more images as shown.
  • As shown in FIGS. 31 and 32 a system of the invention may include a flexible medical instrument [0099] 150 having a sensor 152 at its distal tip 154, and a fiber optic endoscope 156 having a sensor 158 at it distal tip. 160. The fiber optic endoscope 156 is connected at its proximal end to a camera 162 which is in communication with an image processor 164. Because the field generator 134 on the reference band 132 may move, for example as the patient breaths, the location of the remote sensor 152 may appear to move when in fact the medical instrument 150 has not moved.
  • To correct for this problem, the fiber optic endoscope [0100] 156 can be used to monitor the position of the tip 154 of the instrument 150 with respect to the inside of the patient's body as shown. Any sensed movement of the sensor 152 with respect to the field generator 134 can be evaluated with reference to whether the tip 154 has moved with respect to the interior of the patient's body. If the camera observes that the tip 154 has not moved, but the sensor 152 indicates that it has moved, then the system can identify that such movement was due to the movement of the field generator and not the sensor 152. The system may then automatically correct for such variation. Further, the fiber optic endoscope 156 itself may include a sensor 158 for detecting whether the tip 160 of the fiber optic has moved. This should further enhance the accuracy of the correction system. Also, the camera 162 may provide continuous registration of the prerecorded images based on the internal structure of the patient's body.
  • It will be understood by those skilled in the art that numerous variations and modifications may be made to the above described embodiments without departing from the spirit and scope of the present invention.[0101]

Claims (29)

    We claim:
  1. 1. Apparatus for securing a reference unit to a patient's head, said apparatus comprising reference unit mounting means for mounting said reference unit to said apparatus, said reference unit for use in monitoring the position of a medical instrument with respect to said patient's head, and a nose bridge mounting element and two ear-mounting elements for attaching said reference unit to said patient's head.
  2. 2. Apparatus as claimed in claim 1, wherein said reference unit mounting means includes means for releasably attaching said reference unit to said apparatus.
  3. 3. Apparatus as claimed in claim 1, wherein each of said nose and ear mounting elements are disposed on a distal end of an elongated mounting arm.
  4. 4. Apparatus as claimed in claim 1, wherein said apparatus further includes an elongated center member and two side members, each of said members being centrally attached to one another at first ends thereof, and said nose bridge mounting element being attached to said center member at a second end thereof and each of said ear mounting elements being attached to a respective side member at second ends thereof.
  5. 5. Apparatus as claimed in claim 3, wherein each of said center and side members is made of a structurally resilient material and is capable of accommodating a plurality of sizes of patient heads.
  6. 6. Apparatus as claimed in claim 5, wherein said structurally resilient material is plastic.
  7. 7. Apparatus as claimed in claim 1, wherein said reference unit includes a field generator for generating a three dimensional position characteristic field.
  8. 8. Apparatus as claimed in claim 7, wherein said reference unit further includes a reference sensor for generating a feedback reference signal.
  9. 9. Apparatus as claimed in claim 1, wherein said reference unit includes an electromagnetic field generator for generating an electromagnetic field.
  10. 10. Apparatus as claimed in claim 1, wherein said reference unit includes a field sensor for sensing a three dimensional position characteristic field and for producing a sensor output responsive to the presence of said sensed field.
  11. 11. Apparatus as claimed in claim 10, wherein said reference unit further includes a reference sensor for generating an error detection signal.
  12. 12. Apparatus as claimed in claim 1, wherein said reference unit includes an electromagnetic field sensor responsive to the presence of an electromagnetic field for producing a sensor output signal representative of said sensed electromagnetic field.
  13. 13. Apparatus as claimed in claim 1, wherein said reference unit includes a signal transmitter for transmitting a reference signal to a signal receiver, said reference signal for use in detecting the position of said reference unit with respect to said signal receiver by comparing said signal to a second transmitted signal.
  14. 14. Apparatus as claimed in claim 11, wherein said reference unit further includes a second signal transmitter for transmitting said second transmitted signal.
  15. 15. Apparatus as claimed in claim 1, wherein said reference unit includes a signal receiver for receiving a reference signal from a signal transmitter, said reference signal for use in detecting the position of said reference unit with respect to said signal transmitter by comparing said signal to a second transmitted signal.
  16. 16. Apparatus as claimed in claim 15, wherein said reference unit further includes a second signal receiver for receiving said second transmitted signal.
  17. 17. Apparatus for monitoring the position of a medical instrument with respect to a patient's body, said apparatus including a reference unit removably attached to said medical instrument.
  18. 18. Apparatus as claimed in claim 17, wherein said reference unit is removably insertable into said medical instrument.
  19. 19. Apparatus as claimed in claim 17, wherein said medical instrument is an aspirating device.
  20. 20. Apparatus as claimed in claim 17, wherein said reference unit includes a field generator for generating a three dimensional position characteristic field.
  21. 21. Apparatus as claimed in claim 17, wherein said reference unit further includes a reference sensor for generating a feedback reference signal.
  22. 22. Apparatus as claimed in claim 17, wherein said reference unit includes an electromagnetic field generator for generating an electromagnetic field.
  23. 23. Apparatus as claimed in claim 17, wherein said reference unit includes a field sensor for sensing a three dimensional position characteristic field and for producing a sensor output responsive to the presence of said sensed field.
  24. 24. Apparatus as claimed in claim 17, wherein said reference unit further includes a reference sensor for generating an error detection signal.
  25. 25. Apparatus as claimed in claim 17, wherein said reference unit includes an electromagnetic field sensor responsive to the presence of an electromagnetic field for producing a sensor output signal representative of said sensed electromagnetic field.
  26. 26. Apparatus as claimed in claim 17, wherein said reference unit includes a signal transmitter for transmitting a reference signal to a signal receiver, said reference signal for use in detecting the position of said reference unit with respect to said signal receiver by comparing said signal to a second transmitted signal.
  27. 27. Apparatus as claimed in claim 26, wherein said reference unit further includes a second signal transmitter for transmitting said second transmitted signal.
  28. 28. Apparatus as claimed in claim 17, wherein said reference unit includes a signal receiver for receiving a reference signal from a signal transmitter, said reference signal for use in detecting the position of said reference unit with respect to said signal transmitter by comparing said signal to a second transmitted signal.
  29. 29. Apparatus as claimed in claim 28, wherein said reference unit further includes a second signal receiver for receiving said second transmitted signal.
US10427472 1994-09-15 2003-04-30 System for monitoring the position of a medical instrument with respect to a patient's body Abandoned US20040024309A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08306818 US5829444A (en) 1994-09-15 1994-09-15 Position tracking and imaging system for use in medical applications
US08527517 US5803089A (en) 1994-09-15 1995-09-13 Position tracking and imaging system for use in medical applications
US08637289 US5873822A (en) 1994-09-15 1996-04-24 Automatic registration system for use with position tracking and imaging system for use in medical applications
US09212024 US6175756B1 (en) 1994-09-15 1998-12-15 Position tracking and imaging system for use in medical applications
US09643608 US6694167B1 (en) 1994-09-15 2000-08-22 System for monitoring a position of a medical instrument with respect to a patient's head
US10427472 US20040024309A1 (en) 1994-09-15 2003-04-30 System for monitoring the position of a medical instrument with respect to a patient's body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10427472 US20040024309A1 (en) 1994-09-15 2003-04-30 System for monitoring the position of a medical instrument with respect to a patient's body
US11207306 US20060036151A1 (en) 1994-09-15 2005-08-19 System for monitoring a position of a medical instrument
US11602640 US8473026B2 (en) 1994-09-15 2006-11-21 System for monitoring a position of a medical instrument with respect to a patient's body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09643608 Continuation US6694167B1 (en) 1994-09-15 2000-08-22 System for monitoring a position of a medical instrument with respect to a patient's head

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11207306 Continuation US20060036151A1 (en) 1994-09-15 2005-08-19 System for monitoring a position of a medical instrument

Publications (1)

Publication Number Publication Date
US20040024309A1 true true US20040024309A1 (en) 2004-02-05

Family

ID=56289653

Family Applications (12)

Application Number Title Priority Date Filing Date
US08527517 Expired - Lifetime US5803089A (en) 1994-09-15 1995-09-13 Position tracking and imaging system for use in medical applications
US08637131 Expired - Lifetime US5800352A (en) 1994-09-15 1996-04-24 Registration system for use with position tracking and imaging system for use in medical applications
US08637289 Expired - Lifetime US5873822A (en) 1994-09-15 1996-04-24 Automatic registration system for use with position tracking and imaging system for use in medical applications
US08638945 Expired - Lifetime US5676673A (en) 1994-09-15 1996-04-24 Position tracking and imaging system with error detection for use in medical applications
US09212024 Expired - Lifetime US6175756B1 (en) 1994-09-15 1998-12-15 Position tracking and imaging system for use in medical applications
US09643271 Expired - Lifetime US6687531B1 (en) 1994-09-15 2000-08-22 Position tracking and imaging system for use in medical applications
US09643608 Expired - Lifetime US6694167B1 (en) 1994-09-15 2000-08-22 System for monitoring a position of a medical instrument with respect to a patient's head
US09643815 Expired - Fee Related US6738656B1 (en) 1994-09-15 2000-08-22 Automatic registration system for use with position tracking an imaging system for use in medical applications
US09686188 Expired - Fee Related US6341231B1 (en) 1994-09-15 2000-10-11 Position tracking and imaging system for use in medical applications
US10427472 Abandoned US20040024309A1 (en) 1994-09-15 2003-04-30 System for monitoring the position of a medical instrument with respect to a patient's body
US11207306 Abandoned US20060036151A1 (en) 1994-09-15 2005-08-19 System for monitoring a position of a medical instrument
US11602640 Active 2019-03-10 US8473026B2 (en) 1994-09-15 2006-11-21 System for monitoring a position of a medical instrument with respect to a patient's body

Family Applications Before (9)

Application Number Title Priority Date Filing Date
US08527517 Expired - Lifetime US5803089A (en) 1994-09-15 1995-09-13 Position tracking and imaging system for use in medical applications
US08637131 Expired - Lifetime US5800352A (en) 1994-09-15 1996-04-24 Registration system for use with position tracking and imaging system for use in medical applications
US08637289 Expired - Lifetime US5873822A (en) 1994-09-15 1996-04-24 Automatic registration system for use with position tracking and imaging system for use in medical applications
US08638945 Expired - Lifetime US5676673A (en) 1994-09-15 1996-04-24 Position tracking and imaging system with error detection for use in medical applications
US09212024 Expired - Lifetime US6175756B1 (en) 1994-09-15 1998-12-15 Position tracking and imaging system for use in medical applications
US09643271 Expired - Lifetime US6687531B1 (en) 1994-09-15 2000-08-22 Position tracking and imaging system for use in medical applications
US09643608 Expired - Lifetime US6694167B1 (en) 1994-09-15 2000-08-22 System for monitoring a position of a medical instrument with respect to a patient's head
US09643815 Expired - Fee Related US6738656B1 (en) 1994-09-15 2000-08-22 Automatic registration system for use with position tracking an imaging system for use in medical applications
US09686188 Expired - Fee Related US6341231B1 (en) 1994-09-15 2000-10-11 Position tracking and imaging system for use in medical applications

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11207306 Abandoned US20060036151A1 (en) 1994-09-15 2005-08-19 System for monitoring a position of a medical instrument
US11602640 Active 2019-03-10 US8473026B2 (en) 1994-09-15 2006-11-21 System for monitoring a position of a medical instrument with respect to a patient's body

Country Status (4)

Country Link
US (12) US5803089A (en)
EP (1) EP0951874A3 (en)
JP (1) JP3325533B2 (en)
DE (1) DE69531994T2 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020156363A1 (en) * 1999-10-28 2002-10-24 Hunter Mark W. Registration of human anatomy integrated for electromagnetic localization
US20020188172A1 (en) * 1997-04-16 2002-12-12 Klaus Irion Endoscopic system
US20030073901A1 (en) * 1999-03-23 2003-04-17 Simon David A. Navigational guidance via computer-assisted fluoroscopic imaging
US20030114752A1 (en) * 1999-04-20 2003-06-19 Jaimie Henderson Instrument guidance method and system for image guided surgery
US20030117135A1 (en) * 1999-10-28 2003-06-26 Martinelli Michael A. Method and system for navigating a catheter probe in the presence of field-influencing objects
US20040087852A1 (en) * 2001-02-06 2004-05-06 Edward Chen Computer-assisted surgical positioning method and system
US20040097805A1 (en) * 2002-11-19 2004-05-20 Laurent Verard Navigation system for cardiac therapies
US20040097806A1 (en) * 2002-11-19 2004-05-20 Mark Hunter Navigation system for cardiac therapies
US20040152972A1 (en) * 2003-01-30 2004-08-05 Mark Hunter Method and apparatus for post-operative tuning of a spinal implant
US20040171924A1 (en) * 2003-01-30 2004-09-02 Mire David A. Method and apparatus for preplanning a surgical procedure
US20040181149A1 (en) * 2001-02-07 2004-09-16 Ulrich Langlotz Device and method for intraoperative navigation
US20040215071A1 (en) * 2003-04-25 2004-10-28 Frank Kevin J. Method and apparatus for performing 2D to 3D registration
US20050059885A1 (en) * 1997-12-12 2005-03-17 Tony Melkent Image guided spinal surgery guide, system and method for use thereof
US20050085714A1 (en) * 2003-10-16 2005-04-21 Foley Kevin T. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US20050085720A1 (en) * 2003-10-17 2005-04-21 Jascob Bradley A. Method and apparatus for surgical navigation
US20050113809A1 (en) * 2000-03-01 2005-05-26 Melkent Anthony J. Multiple cannula image guided tool for image guided procedures
US20050165292A1 (en) * 2002-04-04 2005-07-28 Simon David A. Method and apparatus for virtual digital subtraction angiography
US20050245817A1 (en) * 2004-05-03 2005-11-03 Clayton John B Method and apparatus for implantation between two vertebral bodies
US20050273004A1 (en) * 2002-02-28 2005-12-08 Simon David A Method and apparatus for perspective inversion
US20060025677A1 (en) * 2003-10-17 2006-02-02 Verard Laurent G Method and apparatus for surgical navigation
US20060058645A1 (en) * 2004-09-01 2006-03-16 Komistek Richard D Method and apparatus for imaging tracking
US20060084867A1 (en) * 2003-10-17 2006-04-20 Tremblay Brian M Method and apparatus for surgical navigation
US20060094958A1 (en) * 2004-10-28 2006-05-04 Marquart Joel G Method and apparatus for calibrating non-linear instruments
US20060122497A1 (en) * 2004-11-12 2006-06-08 Glossop Neil D Device and method for ensuring the accuracy of a tracking device in a volume
US20060173291A1 (en) * 2005-01-18 2006-08-03 Glossop Neil D Electromagnetically tracked K-wire device
US20060173269A1 (en) * 2004-11-12 2006-08-03 Glossop Neil D Integrated skin-mounted multifunction device for use in image-guided surgery
US20060170417A1 (en) * 2005-02-02 2006-08-03 Rodgers Allan G Distributed array magnetic tracking
US20060199159A1 (en) * 2005-03-01 2006-09-07 Neuronetics, Inc. Head phantom for simulating the patient response to magnetic stimulation
US20060262961A1 (en) * 2000-06-14 2006-11-23 Troy Holsing Et Al. System and method for image based sensor calibration
US20060278247A1 (en) * 1999-10-28 2006-12-14 Mark W. Hunter Et Al. Surgical communication and power system
US20070032723A1 (en) * 2005-06-21 2007-02-08 Glossop Neil D System, method and apparatus for navigated therapy and diagnosis
US20070055128A1 (en) * 2005-08-24 2007-03-08 Glossop Neil D System, method and devices for navigated flexible endoscopy
US20070066887A1 (en) * 2005-09-21 2007-03-22 Mire David A Method and apparatus for positioning a reference frame
US20070166188A1 (en) * 2006-01-18 2007-07-19 Eric Ryterski Method and apparatus for providing a container to a sterile environment
US20070167787A1 (en) * 2005-06-21 2007-07-19 Glossop Neil D Device and method for a trackable ultrasound
US20070167722A1 (en) * 1992-08-14 2007-07-19 British Telecommunications Public Limited Company Surgical navigation
US20070249911A1 (en) * 2006-04-21 2007-10-25 Simon David A Method and apparatus for optimizing a therapy
US20080058630A1 (en) * 2006-09-01 2008-03-06 Robertson Timothy L Simultaneous blood flow and hematocrit sensor
US20080071215A1 (en) * 2004-11-05 2008-03-20 Traxtal Technologies Inc. Access System
US20080081982A1 (en) * 2006-09-29 2008-04-03 Medtronic, Inc. Method And Apparatus For Optimizing A Computer Assisted Surgical Procedure
US20080097195A1 (en) * 2003-08-28 2008-04-24 Surgical Navigation Technologies, Inc. Method and apparatus for performing stereotactic surgery
US20080119712A1 (en) * 2006-11-20 2008-05-22 General Electric Company Systems and Methods for Automated Image Registration
US20080262297A1 (en) * 2004-04-26 2008-10-23 Super Dimension Ltd. System and Method for Image-Based Alignment of an Endoscope
US20080312529A1 (en) * 2007-06-15 2008-12-18 Louis-Philippe Amiot Computer-assisted surgery system and method
WO2009008894A2 (en) * 2006-08-22 2009-01-15 Dimensions Imaging System and method for determining absolute position using a multiple wavelength signal
US20090287443A1 (en) * 2001-06-04 2009-11-19 Surgical Navigation Technologies, Inc. Method for Calibrating a Navigation System
US20100204955A1 (en) * 2005-11-28 2010-08-12 Martin Roche Method and system for positional measurement using ultrasonic sensing
US20100204575A1 (en) * 2005-11-29 2010-08-12 Martin Roche Method and system for enhancing accuracy in ultrasonic alignment
US20100210939A1 (en) * 1999-10-28 2010-08-19 Medtronic Navigation, Inc. Method and Apparatus for Surgical Navigation
US7853305B2 (en) 2000-04-07 2010-12-14 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US20110032184A1 (en) * 2005-12-01 2011-02-10 Martin Roche Orthopedic method and system for mapping an anatomical pivot point
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US20110060220A1 (en) * 2005-12-01 2011-03-10 Martin Roche Virtual mapping of an anatomical pivot point and alignment therewith
US20110160572A1 (en) * 2009-12-31 2011-06-30 Orthosensor Disposable wand and sensor for orthopedic alignment
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US20110207997A1 (en) * 2009-04-08 2011-08-25 Superdimension, Ltd. Locatable Catheter
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US20120070046A1 (en) * 2010-09-20 2012-03-22 Siemens Corporation Method and System for Detection and Tracking of Coronary Sinus Catheter Electrodes in Fluoroscopic Images
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US20120136626A1 (en) * 2009-05-18 2012-05-31 Dirk Mucha Method for generating position data of an instrument
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US20130072788A1 (en) * 2011-09-19 2013-03-21 Siemens Aktiengesellschaft Method and System for Tracking Catheters in 2D X-Ray Fluoroscopy Using a Graphics Processing Unit
US8421642B1 (en) 2006-08-24 2013-04-16 Navisense System and method for sensorized user interface
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US8494805B2 (en) 2005-11-28 2013-07-23 Orthosensor Method and system for assessing orthopedic alignment using tracking sensors
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8603014B2 (en) 2010-10-05 2013-12-10 Cerevast Therapeutics, Inc. Hands-free operator-independent transcranial ultrasound apparatus and methods
US8611983B2 (en) 2005-01-18 2013-12-17 Philips Electronics Ltd Method and apparatus for guiding an instrument to a target in the lung
US8613714B2 (en) 2010-10-05 2013-12-24 Cerevast Therapeutics, Inc. Non-invasive transcranial ultrasound apparatus
US8638296B1 (en) 2006-09-05 2014-01-28 Jason McIntosh Method and machine for navigation system calibration
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US9008757B2 (en) 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
US9189083B2 (en) 2008-03-18 2015-11-17 Orthosensor Inc. Method and system for media presentation during operative workflow
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US10096126B2 (en) 2017-05-23 2018-10-09 Covidien Lp Feature-based registration method

Families Citing this family (616)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635390B1 (en) 2000-01-14 2009-12-22 Marctec, Llc Joint replacement component having a modular articulating surface
US6347240B1 (en) 1990-10-19 2002-02-12 St. Louis University System and method for use in displaying images of a body part
US6978166B2 (en) 1994-10-07 2005-12-20 Saint Louis University System for use in displaying images of a body part
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US7077822B1 (en) * 1994-02-09 2006-07-18 The University Of Iowa Research Foundation Stereotactic hypothalamic obesity probe
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
EP0951874A3 (en) 1994-09-15 2000-06-14 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patients head
US6463361B1 (en) 1994-09-22 2002-10-08 Computer Motion, Inc. Speech interface for an automated endoscopic system
US5695501A (en) 1994-09-30 1997-12-09 Ohio Medical Instrument Company, Inc. Apparatus for neurosurgical stereotactic procedures
EP0950379B1 (en) * 1994-10-07 2004-03-31 St. Louis University Device for use with a surgical navigation system
US6091058A (en) * 1995-04-26 2000-07-18 O.R. Solutions, Inc. Thermal treatment system and method for maintaining integrity and ensuring sterility of surgical drapes used with surgical equipment
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US6702736B2 (en) * 1995-07-24 2004-03-09 David T. Chen Anatomical visualization system
US20060098010A1 (en) * 2004-03-09 2006-05-11 Jeff Dwyer Anatomical visualization and measurement system
US7197170B2 (en) 2003-11-10 2007-03-27 M2S, Inc. Anatomical visualization and measurement system
US5776050A (en) * 1995-07-24 1998-07-07 Medical Media Systems Anatomical visualization system
US6684098B2 (en) 1996-08-16 2004-01-27 Brigham And Women's Hospital, Inc. Versatile stereotactic device and methods of use
US6714841B1 (en) 1995-09-15 2004-03-30 Computer Motion, Inc. Head cursor control interface for an automated endoscope system for optimal positioning
US7445594B1 (en) 1995-09-20 2008-11-04 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US6314310B1 (en) * 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US6132441A (en) 1996-11-22 2000-10-17 Computer Motion, Inc. Rigidly-linked articulating wrist with decoupled motion transmission
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5971976A (en) * 1996-02-20 1999-10-26 Computer Motion, Inc. Motion minimization and compensation system for use in surgical procedures
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6646541B1 (en) 1996-06-24 2003-11-11 Computer Motion, Inc. General purpose distributed operating room control system
US6167296A (en) 1996-06-28 2000-12-26 The Board Of Trustees Of The Leland Stanford Junior University Method for volumetric image navigation
US6611630B1 (en) 1996-07-10 2003-08-26 Washington University Method and apparatus for automatic shape characterization
US6408107B1 (en) 1996-07-10 2002-06-18 Michael I. Miller Rapid convolution based large deformation image matching via landmark and volume imagery
US6009212A (en) 1996-07-10 1999-12-28 Washington University Method and apparatus for image registration
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
US6605041B2 (en) * 1996-08-22 2003-08-12 Synthes (U.S.A.) 3-D ultrasound recording device
US8529582B2 (en) 1996-12-12 2013-09-10 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US7666191B2 (en) 1996-12-12 2010-02-23 Intuitive Surgical, Inc. Robotic surgical system with sterile surgical adaptor
US7727244B2 (en) 1997-11-21 2010-06-01 Intuitive Surgical Operation, Inc. Sterile surgical drape
US8206406B2 (en) 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US8182469B2 (en) 1997-11-21 2012-05-22 Intuitive Surgical Operations, Inc. Surgical accessory clamp and method
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
DE69830719D1 (en) * 1997-02-28 2005-08-04 Koninkl Philips Electronics Nv The surgical system with image-guidance
US6702789B1 (en) 1997-03-11 2004-03-09 Alcove Medical, Inc. Catheter having insertion control mechanism and anti-bunching mechanism
US5970499A (en) 1997-04-11 1999-10-19 Smith; Kurt R. Method and apparatus for producing and accessing composite data
US6708184B2 (en) 1997-04-11 2004-03-16 Medtronic/Surgical Navigation Technologies Method and apparatus for producing and accessing composite data using a device having a distributed communication controller interface
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
EP0999785A4 (en) * 1997-06-27 2007-04-25 Univ Leland Stanford Junior Method and apparatus for volumetric image navigation
US6226418B1 (en) 1997-11-07 2001-05-01 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
US6212419B1 (en) * 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
WO1999027837A3 (en) * 1997-11-27 1999-07-22 Michael Hareven System and method for guiding the movements of a device to a target particularly for medical applications
US7297142B2 (en) * 1998-02-24 2007-11-20 Hansen Medical, Inc. Interchangeable surgical instrument
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US20080177285A1 (en) * 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US7758569B2 (en) 1998-02-24 2010-07-20 Hansen Medical, Inc. Interchangeable surgical instrument
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US7713190B2 (en) * 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US20020128662A1 (en) * 1998-02-24 2002-09-12 Brock David L. Surgical instrument
US7901399B2 (en) * 1998-02-24 2011-03-08 Hansen Medical, Inc. Interchangeable surgical instrument
US8303576B2 (en) * 1998-02-24 2012-11-06 Hansen Medical, Inc. Interchangeable surgical instrument
US6860878B2 (en) 1998-02-24 2005-03-01 Endovia Medical Inc. Interchangeable instrument
US7169141B2 (en) 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US7789875B2 (en) * 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US6511417B1 (en) * 1998-09-03 2003-01-28 Olympus Optical Co., Ltd. System for detecting the shape of an endoscope using source coils and sense coils
US6230042B1 (en) 1998-03-25 2001-05-08 Siemens Elema Ab Method and arrangement for determining the location of a catheter within an animal body
US6298262B1 (en) 1998-04-21 2001-10-02 Neutar, Llc Instrument guidance for stereotactic surgery
US6546277B1 (en) 1998-04-21 2003-04-08 Neutar L.L.C. Instrument guidance system for spinal and other surgery
US6529765B1 (en) 1998-04-21 2003-03-04 Neutar L.L.C. Instrumented and actuated guidance fixture for sterotactic surgery
US6445182B1 (en) * 1998-04-24 2002-09-03 Case Western Reserve University Geometric distortion correction in magnetic resonance imaging
DK1089669T3 (en) 1998-06-22 2008-06-30 Ao Technology Ag Fiduciel matching by means of the screw fiduciel
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6145509A (en) * 1998-07-24 2000-11-14 Eva Corporation Depth sensor device for use in a surgical procedure
US6351662B1 (en) 1998-08-12 2002-02-26 Neutar L.L.C. Movable arm locator for stereotactic surgery
US6282437B1 (en) 1998-08-12 2001-08-28 Neutar, Llc Body-mounted sensing system for stereotactic surgery
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
EP1115328A4 (en) * 1998-09-24 2004-11-10 Super Dimension Ltd System and method for determining the location of a catheter during an intra-body medical procedure
US6256546B1 (en) * 1998-09-28 2001-07-03 General Electric Company System and method for numerical control processing of an in-processing part
WO2000021442B1 (en) 1998-10-09 2000-06-08 Surgical Navigation Tech Image guided vertebral distractor
US6468265B1 (en) * 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6398726B1 (en) * 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US8527094B2 (en) 1998-11-20 2013-09-03 Intuitive Surgical Operations, Inc. Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures
WO2000033723A3 (en) * 1998-11-20 2001-08-23 Philip C Evans Performing cardiac surgery without cardioplegia
US7250028B2 (en) * 1999-11-09 2007-07-31 Intuitive Surgical Inc Endoscopic beating-heart stabilizer and vessel occlusion fastener
US6331181B1 (en) * 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US6534982B1 (en) * 1998-12-23 2003-03-18 Peter D. Jakab Magnetic resonance scanner with electromagnetic position and orientation tracking device
JP4342016B2 (en) * 1999-01-06 2009-10-14 株式会社日立メディコ Image display device
US6332891B1 (en) * 1999-02-16 2001-12-25 Stryker Corporation System and method for performing image guided surgery
US7749089B1 (en) 1999-02-26 2010-07-06 Creative Kingdoms, Llc Multi-media interactive play system
US6173715B1 (en) * 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use
JP4612196B2 (en) 1999-03-17 2011-01-12 アーオー テクノロジー アクチエンゲゼルシャフト And contrast for ligament graft placement, Planning device
WO2000059575A1 (en) * 1999-04-07 2000-10-12 Loma Linda University Medical Center Patient motion monitoring system for proton therapy
EP1171780A1 (en) 1999-04-20 2002-01-16 Synthes Ag Device for the percutaneous attainment of 3d-coordinates on the surface of a human or animal organ
EP1504726A1 (en) * 1999-04-22 2005-02-09 Medtronic Surgical Navigation Technologies Apparatus for image guided surgery
US6585746B2 (en) 2000-04-20 2003-07-01 Philip L. Gildenberg Hair transplantation method and apparatus
WO2000066971A1 (en) * 1999-05-03 2000-11-09 Synthes Ag Chur Position detector with auxiliary means for detecting the direction of the gravity vector
US6317619B1 (en) 1999-07-29 2001-11-13 U.S. Philips Corporation Apparatus, methods, and devices for magnetic resonance imaging controlled by the position of a moveable RF coil
US6773393B1 (en) * 1999-08-05 2004-08-10 Olympus Optical Co., Ltd. Apparatus and method for detecting and displaying form of insertion part of endoscope
US6996430B1 (en) 1999-08-16 2006-02-07 Super Dimension Ltd Method and system for displaying cross-sectional images of a body
US6368285B1 (en) * 1999-09-21 2002-04-09 Biosense, Inc. Method and apparatus for mapping a chamber of a heart
US6747539B1 (en) 1999-10-28 2004-06-08 Michael A. Martinelli Patient-shielding and coil system
US6701179B1 (en) 1999-10-28 2004-03-02 Michael A. Martinelli Coil structures and methods for generating magnetic fields
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US6235038B1 (en) 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US6400139B1 (en) * 1999-11-01 2002-06-04 Polhemus Inc. Methods and apparatus for electromagnetic position and orientation tracking with distortion compensation
US6702805B1 (en) * 1999-11-12 2004-03-09 Microdexterity Systems, Inc. Manipulator
DE19956814B4 (en) * 1999-11-25 2004-07-15 Brainlab Ag Shape detection of treatment devices
DE60028824D1 (en) * 1999-12-15 2006-07-27 Super Dimension Ltd An apparatus for applying energy to a target object
US7747312B2 (en) * 2000-01-04 2010-06-29 George Mason Intellectual Properties, Inc. System and method for automatic shape registration and instrument tracking
WO2001054579A9 (en) 2000-01-10 2002-07-18 Super Dimension Ltd Methods and systems for performing medical procedures with reference to projective images and with respect to pre-stored images
US7708741B1 (en) 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
DE20002604U1 (en) * 2000-02-15 2001-06-21 Ao Entwicklungsinstitut Davos laser pointer
US7878905B2 (en) 2000-02-22 2011-02-01 Creative Kingdoms, Llc Multi-layered interactive play experience
US9446319B2 (en) 2003-03-25 2016-09-20 Mq Gaming, Llc Interactive gaming toy
US6761637B2 (en) 2000-02-22 2004-07-13 Creative Kingdoms, Llc Method of game play using RFID tracking device
US7445550B2 (en) 2000-02-22 2008-11-04 Creative Kingdoms, Llc Magical wand and interactive play experience
US7660621B2 (en) * 2000-04-07 2010-02-09 Medtronic, Inc. Medical device introducer
US7366561B2 (en) * 2000-04-07 2008-04-29 Medtronic, Inc. Robotic trajectory guide
US6676706B1 (en) * 2000-04-26 2004-01-13 Zimmer Technology, Inc. Method and apparatus for performing a minimally invasive total hip arthroplasty
US20050043810A1 (en) * 2000-04-26 2005-02-24 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US6991656B2 (en) * 2000-04-26 2006-01-31 Dana Mears Method and apparatus for performing a minimally invasive total hip arthroplasty
US6856827B2 (en) * 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6856826B2 (en) * 2000-04-28 2005-02-15 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6490475B1 (en) 2000-04-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
DE50000359D1 (en) * 2000-05-09 2002-09-12 Brainlab Ag A method for registering a patient data set from an imaging process in navigation-assisted surgical procedures by means of X-ray mapping
US6371121B1 (en) 2000-05-17 2002-04-16 O.R. Solutions, Inc. Remote controlled thermal treatment system and method for controlling the system remotely to thermally treat sterile surgical liquid
US6860271B2 (en) * 2000-05-17 2005-03-01 O.R. Solutions, Inc. Thermal treatment system and method for controlling the system to thermally treat sterile surgical liquid
DE10027782A1 (en) * 2000-06-07 2001-12-13 Biotronik Mess & Therapieg System for determining the intracorporal position of a working catheter
US6726699B1 (en) 2000-08-15 2004-04-27 Computer Motion, Inc. Instrument guide
US6902569B2 (en) * 2000-08-17 2005-06-07 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
US6823207B1 (en) * 2000-08-26 2004-11-23 Ge Medical Systems Global Technology Company, Llc Integrated fluoroscopic surgical navigation and imaging workstation with command protocol
EP1324713A1 (en) * 2000-09-24 2003-07-09 Medtronic, Inc. Surgical reference frame fixation device with cannulated post and method of use
DE60109949D1 (en) 2000-09-24 2005-05-12 Medtronic Inc Surgical head frame with soft contact pads for stereotactic system
US6860877B1 (en) 2000-09-29 2005-03-01 Computer Motion, Inc. Heart stabilizer support arm
FR2814668B1 (en) 2000-09-29 2003-03-14 Bertrand Lombard Transmitter device and method door assembly and surgical navigation device associated
FR2814667B1 (en) 2000-09-29 2002-12-20 Bertrand Lombard stereotactic frame, transmitter and method block holder device and surgical navigation device associated
FR2814669B1 (en) 2000-09-29 2004-01-02 Bertrand Lombard A surgical naviguation
US7127081B1 (en) * 2000-10-12 2006-10-24 Momentum Bilgisayar, Yazilim, Danismanlik, Ticaret, A.S. Method for tracking motion of a face
US7066781B2 (en) 2000-10-20 2006-06-27 Denise Chapman Weston Children's toy with wireless tag/transponder
US6801913B2 (en) * 2000-10-20 2004-10-05 Canon Kabushiki Kaisha Medical instrument control system
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US6820614B2 (en) 2000-12-02 2004-11-23 The Bonutti 2003 Trust -A Tracheal intubination
EP1352399A4 (en) 2000-12-08 2007-12-12 Univ Loma Linda Med Proton beam therapy control system
US6666579B2 (en) 2000-12-28 2003-12-23 Ge Medical Systems Global Technology Company, Llc Method and apparatus for obtaining and displaying computed tomography images using a fluoroscopy imaging system
US7892243B2 (en) * 2001-01-16 2011-02-22 Microdexterity Systems, Inc. Surgical manipulator
US6676669B2 (en) * 2001-01-16 2004-01-13 Microdexterity Systems, Inc. Surgical manipulator
US20020103430A1 (en) * 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
US7594917B2 (en) * 2001-03-13 2009-09-29 Ethicon, Inc. Method and apparatus for fixing a graft in a bone tunnel
US6517546B2 (en) * 2001-03-13 2003-02-11 Gregory R. Whittaker Method and apparatus for fixing a graft in a bone tunnel
US7195642B2 (en) 2001-03-13 2007-03-27 Mckernan Daniel J Method and apparatus for fixing a graft in a bone tunnel
US6950691B2 (en) * 2001-04-10 2005-09-27 Olympus Corporation Surgery support system and surgery support method
US20020165524A1 (en) 2001-05-01 2002-11-07 Dan Sanchez Pivot point arm for a robotic system used to perform a surgical procedure
CA2348135A1 (en) 2001-05-17 2002-11-17 Cedara Software Corp. 3-d navigation for x-ray imaging system
JP2002359761A (en) * 2001-05-31 2002-12-13 Asahi Optical Co Ltd Cradle for digital camera
US7063705B2 (en) 2001-06-29 2006-06-20 Sdgi Holdings, Inc. Fluoroscopic locator and registration device
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
JP4832679B2 (en) * 2001-09-11 2011-12-07 オリンパス株式会社 Microscope system
FR2831795B1 (en) 2001-09-28 2005-02-04 Bertrand Lombard Piece for oral surgical navigation device
FR2831793A1 (en) 2001-09-28 2003-05-09 Bertrand Lombard Piece for oral surgical navigation device
DE50113703D1 (en) * 2001-10-10 2008-04-17 Brainlab Ag Medical instrument with touch-sensitive tip
DE10151398B4 (en) * 2001-10-18 2005-03-17 Schaerer Mayfield USA, Inc., Cincinnati Device for adaptation of surgical instruments as a pointing device
US7854230B2 (en) * 2001-10-22 2010-12-21 O.R. Solutions, Inc. Heated medical instrument stand with surgical drape and method of detecting fluid and leaks in the stand tray
US7959860B2 (en) * 2001-10-22 2011-06-14 Faries Jr Durward I System and method of detecting fluid and leaks in thermal treatment system basins
US7418966B2 (en) * 2001-10-22 2008-09-02 O. R. Solutions, Inc. Surgical drape and method of detecting fluid and leaks in thermal treatment system basins
US7347210B2 (en) * 2001-10-22 2008-03-25 O.R. Solutions, Inc. Surgical drape with conductor and method of detecting fluid and leaks in thermal treatment system Basins
US6810881B2 (en) 2001-10-22 2004-11-02 O.R. Solutions, Inc. Medical solution thermal treatment system and method of controlling system operation in accordance with detection of solution and leaks in surgical drape containers
ES2283624T3 (en) 2001-10-30 2007-11-01 Loma Linda University Medical Center Device for aligning a patient for radiation therapy.
US7587234B2 (en) * 2001-11-02 2009-09-08 Abbott Cardiovascular Systems Inc. Method and apparatus for computer modified magnetic resonance imaging
GB0127659D0 (en) * 2001-11-19 2002-01-09 Acrobot Company The Ltd Apparatus and method for registering the position of a surgical robot
GB0127658D0 (en) * 2001-11-19 2002-01-09 Acrobot Company The Ltd Apparatus for surgical instrument location
US6793653B2 (en) 2001-12-08 2004-09-21 Computer Motion, Inc. Multifunctional handle for a medical robotic system
US20030131852A1 (en) * 2001-12-11 2003-07-17 Izi Corporation Registration and surgical face mask
US7020512B2 (en) * 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
US6852107B2 (en) 2002-01-16 2005-02-08 Computer Motion, Inc. Minimally invasive surgical training using robotics and tele-collaboration
US6951535B2 (en) 2002-01-16 2005-10-04 Intuitive Surgical, Inc. Tele-medicine system that transmits an entire state of a subsystem
DE10202091B4 (en) * 2002-01-21 2005-09-08 Siemens Ag Device for determining a coordinate transformation
US20030210812A1 (en) * 2002-02-26 2003-11-13 Ali Khamene Apparatus and method for surgical navigation
US6741883B2 (en) 2002-02-28 2004-05-25 Houston Stereotactic Concepts, Inc. Audible feedback from positional guidance systems
US20030220557A1 (en) * 2002-03-01 2003-11-27 Kevin Cleary Image guided liver interventions based on magnetic tracking of internal organ motion
US7747311B2 (en) 2002-03-06 2010-06-29 Mako Surgical Corp. System and method for interactive haptic positioning of a medical device
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
JP2003296757A (en) * 2002-03-29 2003-10-17 Canon Inc Information processing method and device
US20070066396A1 (en) 2002-04-05 2007-03-22 Denise Chapman Weston Retail methods for providing an interactive product to a consumer
US6967566B2 (en) 2002-04-05 2005-11-22 Creative Kingdoms, Llc Live-action interactive adventure game
EP1376870A1 (en) * 2002-06-19 2004-01-02 Senstronic, S.A. Proximity switch with indicating means and its method of use
FI117886B (en) * 2002-07-29 2007-04-13 Nexstim Oy The frame locator and a method for supporting frame locator
US7641609B2 (en) * 2002-07-31 2010-01-05 Olympus Corporation Endoscope device and navigation method for endoscope device
US7674184B2 (en) 2002-08-01 2010-03-09 Creative Kingdoms, Llc Interactive water attraction and quest game
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US6892090B2 (en) * 2002-08-19 2005-05-10 Surgical Navigation Technologies, Inc. Method and apparatus for virtual endoscopy
US7704260B2 (en) * 2002-09-17 2010-04-27 Medtronic, Inc. Low profile instrument immobilizer
US7166114B2 (en) * 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US8052695B2 (en) * 2002-10-11 2011-11-08 Ge Medical Systems Global Technology Company Llc Adjustable instruments for use with an electromagnetic localizer
US7869861B2 (en) * 2002-10-25 2011-01-11 Howmedica Leibinger Inc. Flexible tracking article and method of using the same
DE60330335D1 (en) * 2002-10-29 2010-01-14 Olympus Corp Endoscope information processor and processing method
US7636596B2 (en) * 2002-12-20 2009-12-22 Medtronic, Inc. Organ access device and method
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
RU2005123989A (en) 2003-01-02 2006-03-20 Лома Линда Юниверсити Медикал Сентер (Us) Configuration management and data retrieval system for remote system proton-proton radiation therapy
US8355773B2 (en) * 2003-01-21 2013-01-15 Aesculap Ag Recording localization device tool positional parameters
US20060281991A1 (en) * 2003-05-09 2006-12-14 Fitzpatrick J M Fiducial marker holder system for surgery
EP1605810A2 (en) * 2003-02-04 2005-12-21 Z-Kat, Inc. Computer-assisted knee replacement apparatus and method
US7492930B2 (en) * 2003-02-04 2009-02-17 Aesculap Ag Method and apparatus for capturing information associated with a surgical procedure performed using a localization device
WO2004069040A3 (en) * 2003-02-04 2005-03-24 Z Kat Inc Method and apparatus for computer assistance with intramedullary nail procedure
US7559935B2 (en) * 2003-02-20 2009-07-14 Medtronic, Inc. Target depth locators for trajectory guide for introducing an instrument
US7896889B2 (en) * 2003-02-20 2011-03-01 Medtronic, Inc. Trajectory guide with angled or patterned lumens or height adjustment
US20070055142A1 (en) * 2003-03-14 2007-03-08 Webler William E Method and apparatus for image guided position tracking during percutaneous procedures
US7028387B1 (en) 2003-03-26 2006-04-18 Advanced Neuromodulation Systems, Inc. Method of making a miniaturized positional assembly
US7611462B2 (en) 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US20040243207A1 (en) * 2003-05-30 2004-12-02 Olson Donald R. Medical implant systems
US20050033117A1 (en) * 2003-06-02 2005-02-10 Olympus Corporation Object observation system and method of controlling object observation system
US7831295B2 (en) * 2003-06-05 2010-11-09 Aesculap Ag & Co. Kg Localization device cross check
US20050020909A1 (en) * 2003-07-10 2005-01-27 Moctezuma De La Barrera Jose Luis Display device for surgery and method for using the same
CA2473963A1 (en) * 2003-07-14 2005-01-14 Sunnybrook And Women's College Health Sciences Centre Optical image-based position tracking for magnetic resonance imaging
US7398116B2 (en) 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US8150495B2 (en) 2003-08-11 2012-04-03 Veran Medical Technologies, Inc. Bodily sealants and methods and apparatus for image-guided delivery of same
CA2535121A1 (en) 2003-08-12 2005-03-03 Loma Linda University Medical Center Patient positioning system for radiation therapy system
CN1894577B (en) 2003-08-12 2012-12-12 洛马林达大学医学中心 Patient positioning system for radiation therapy system
US8064985B2 (en) * 2003-09-12 2011-11-22 Ge Medical Systems Global Technology Company System and method for determining the position of a flexible instrument used in a tracking system
US20050062469A1 (en) * 2003-09-23 2005-03-24 Anderson Peter Traneus System and method for hemisphere disambiguation in electromagnetic tracking systems
US8354837B2 (en) * 2003-09-24 2013-01-15 Ge Medical Systems Global Technology Company Llc System and method for electromagnetic tracking operable with multiple coil architectures
US7651506B2 (en) * 2003-10-02 2010-01-26 University Of Florida Research Foundation, Inc. Frameless stereotactic guidance of medical procedures
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US20050085723A1 (en) * 2003-10-04 2005-04-21 Joel Huebner Radiolucent medical devices with radiopaque markers
US20050124988A1 (en) * 2003-10-06 2005-06-09 Lauralan Terrill-Grisoni Modular navigated portal
DE10346678A1 (en) * 2003-10-08 2005-05-12 Siemens Ag Endoscopy device comprising an endoscopic capsule endoscopy or a head with an image pickup device and image forming method for such a device endoscopy
WO2005032390A1 (en) * 2003-10-09 2005-04-14 Ap Technologies Sa Robot-assisted medical treatment device
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
WO2005119578A3 (en) * 2004-06-02 2006-05-04 Medical Metrx Solutions Inc Anatomical visualization and measurement system
US7702137B2 (en) 2004-11-10 2010-04-20 M2S, Inc. Anatomical visualization and measurement system
WO2005048851A1 (en) 2003-11-14 2005-06-02 Smith & Nephew, Inc. Adjustable surgical cutting systems
US7015859B2 (en) * 2003-11-14 2006-03-21 General Electric Company Electromagnetic tracking system and method using a three-coil wireless transmitter
US20050247169A1 (en) * 2003-11-26 2005-11-10 Faries Durward I Jr Fastening system and method of fastening objects with enhanced security
FR2862861B1 (en) 2003-11-28 2006-12-22 Ge Med Sys Global Tech Co Llc Positioning objects for image acquisition
US7873400B2 (en) * 2003-12-10 2011-01-18 Stryker Leibinger Gmbh & Co. Kg. Adapter for surgical navigation trackers
US7771436B2 (en) * 2003-12-10 2010-08-10 Stryker Leibinger Gmbh & Co. Kg. Surgical navigation tracker, system and method
US7083611B2 (en) * 2003-12-19 2006-08-01 Marc S. Lemchen Method and apparatus for providing facial rejuvenation treatments
US7350373B1 (en) 2003-12-23 2008-04-01 O.R. Solutions, Inc. Surgical disk drape and method of dislodging surgical slush within thermal treatment system basins
US20050154279A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US7966058B2 (en) * 2003-12-31 2011-06-21 General Electric Company System and method for registering an image with a representation of a probe
US20050154282A1 (en) * 2003-12-31 2005-07-14 Wenguang Li System and method for registering an image with a representation of a probe
US20050154285A1 (en) * 2004-01-02 2005-07-14 Neason Curtis G. System and method for receiving and displaying information pertaining to a patient
US20050154286A1 (en) * 2004-01-02 2005-07-14 Neason Curtis G. System and method for receiving and displaying information pertaining to a patient
WO2005072629A1 (en) * 2004-01-16 2005-08-11 Smith & Nephew, Inc. Computer-assisted ligament balancing in total knee arthroplasty
US20050197569A1 (en) * 2004-01-22 2005-09-08 Mccombs Daniel Methods, systems, and apparatuses for providing patient-mounted surgical navigational sensors
US20060036162A1 (en) * 2004-02-02 2006-02-16 Ramin Shahidi Method and apparatus for guiding a medical instrument to a subsurface target site in a patient
US20050267353A1 (en) * 2004-02-04 2005-12-01 Joel Marquart Computer-assisted knee replacement apparatus and method
EP1720597A2 (en) * 2004-02-13 2006-11-15 Medtronic, Inc. Methods and apparatus for securing a therapy delivery device within a burr hole
US7668285B2 (en) * 2004-02-16 2010-02-23 Kabushiki Kaisha Toshiba X-ray computed tomographic apparatus and image processing apparatus
EP1718203B1 (en) * 2004-02-18 2012-08-15 Philips Intellectual Property & Standards GmbH Correction of measured values for a magnetic localization device
US7403811B2 (en) * 2004-03-01 2008-07-22 Scimed Life Systems, Inc. Method of catheter tracking using image information
US8046050B2 (en) * 2004-03-05 2011-10-25 Biosense Webster, Inc. Position sensing system for orthopedic applications
US7811294B2 (en) * 2004-03-08 2010-10-12 Mediguide Ltd. Automatic guidewire maneuvering system and method
US20070073306A1 (en) * 2004-03-08 2007-03-29 Ryan Lakin Cutting block for surgical navigation
US20050209524A1 (en) * 2004-03-10 2005-09-22 General Electric Company System and method for receiving and storing information pertaining to a patient
US7671302B1 (en) 2004-03-23 2010-03-02 O. R. Solutions, Inc. Thermal treatment system instrument rack and method of selectively thermally treating medical instrument portions
US7728262B1 (en) 2004-03-23 2010-06-01 O.R. Solutions, Inc. Thermal treatment system instrument rack and method of selectively thermally treating medical instrument portions
US20050228251A1 (en) * 2004-03-30 2005-10-13 General Electric Company System and method for displaying a three-dimensional image of an organ or structure inside the body
US20050222509A1 (en) * 2004-04-02 2005-10-06 General Electric Company Electrophysiology system and method
US20050228252A1 (en) * 2004-04-02 2005-10-13 General Electric Company Electrophysiology system and method
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US20070208252A1 (en) * 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7720521B2 (en) * 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
EP1737375A1 (en) 2004-04-21 2007-01-03 Smith and Nephew, Inc. Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US7410480B2 (en) 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
RU2506056C2 (en) 2008-09-18 2014-02-10 Аккларент, Инк. Methods and apparatus for treating ear, nose and throat diseases
US7711405B2 (en) * 2004-04-28 2010-05-04 Siemens Corporation Method of registering pre-operative high field closed magnetic resonance images with intra-operative low field open interventional magnetic resonance images
US20050288574A1 (en) * 2004-06-23 2005-12-29 Thornton Thomas M Wireless (disposable) fiducial based registration and EM distoration based surface registration
US7073508B2 (en) 2004-06-25 2006-07-11 Loma Linda University Medical Center Method and device for registration and immobilization
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US20060063998A1 (en) * 2004-09-21 2006-03-23 Von Jako Ron Navigation and visualization of an access needle system
US20060064005A1 (en) * 2004-09-23 2006-03-23 Innovative Spinal Technologies System and method for externally controlled surgical navigation
US9216015B2 (en) 2004-10-28 2015-12-22 Vycor Medical, Inc. Apparatus and methods for performing brain surgery
CN100539951C (en) * 2004-11-17 2009-09-16 株式会社日立医药 Supersonic diagnosis device
DE102004058122A1 (en) * 2004-12-02 2006-07-13 Siemens Ag Medical image registration aid for landmarks by computerized and photon emission tomographies, comprises permeable radioactive substance is filled with the emission tomography as radiation permeable containers, a belt and patient body bowl
US20060200025A1 (en) * 2004-12-02 2006-09-07 Scott Elliott Systems, methods, and apparatus for automatic software flow using instrument detection during computer-aided surgery
US7497863B2 (en) * 2004-12-04 2009-03-03 Medtronic, Inc. Instrument guiding stage apparatus and method for using same
US7744606B2 (en) * 2004-12-04 2010-06-29 Medtronic, Inc. Multi-lumen instrument guide
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
WO2006074510A1 (en) * 2005-01-14 2006-07-20 Micronix Pty Ltd Guiding insert assembly for a catheter used with a catheter position guidance system
US20060161051A1 (en) * 2005-01-18 2006-07-20 Lauralan Terrill-Grisoni Method of computer-assisted ligament balancing and component placement in total knee arthroplasty
JP2008528197A (en) * 2005-01-28 2008-07-31 マサチユセツツ・ジエネラル・ホスピタル Guide and insertion system
US7623250B2 (en) * 2005-02-04 2009-11-24 Stryker Leibinger Gmbh & Co. Kg. Enhanced shape characterization device and method
JP2006218129A (en) * 2005-02-10 2006-08-24 Olympus Corp Surgery supporting system
FR2882245B1 (en) * 2005-02-21 2007-05-18 Gen Electric Method for determining the 3D displacement of a patient positioned on a table of an imaging device
WO2006091704A1 (en) 2005-02-22 2006-08-31 Smith & Nephew, Inc. In-line milling system
GB0504172D0 (en) * 2005-03-01 2005-04-06 King S College London Surgical planning
DE102005013851B4 (en) * 2005-03-24 2014-11-27 Siemens Aktiengesellschaft A method for supporting an examination by an imaging diagnostic apparatus
WO2006106419A3 (en) * 2005-04-07 2006-12-07 Stephane Lavallee Robotic guide assembly for use in computer-aided surgery
US7318001B2 (en) 2005-05-03 2008-01-08 Cnv Technologies, Llc Method and apparatus for collecting data for detecting and locating disturbances
US9568572B2 (en) * 2005-05-06 2017-02-14 Regents Of The University Of Minnesota Bandage or garment combined with a wirelessly coupled magnetic resonance coil
US8208988B2 (en) * 2005-05-13 2012-06-26 General Electric Company System and method for controlling a medical imaging device
US8097003B2 (en) * 2005-05-13 2012-01-17 Boston Scientific Scimed, Inc. Endoscopic apparatus with integrated variceal ligation device
JP5020945B2 (en) * 2005-06-06 2012-09-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム oct using spectrally decomposed bandwidth
US8125648B2 (en) 2006-06-05 2012-02-28 Board Of Regents, The University Of Texas System Polarization-sensitive spectral interferometry
KR101270912B1 (en) * 2005-06-09 2013-06-03 이에프에 인더스트릴레 포르슝 운트 엔트빅룽 게엠베하 Device and method for the contactless determination and measurement of a spatial position and/or a spatial orientation of bodies, method for calibrating and checking, in particular, medical tools, and patterns or structures on, in particular, medical tools
US20060287583A1 (en) 2005-06-17 2006-12-21 Pool Cover Corporation Surgical access instruments for use with delicate tissues
EP1895903A2 (en) * 2005-06-23 2008-03-12 Philips Intellectual Property & Standards GmbH Method and apparatus for inductively measuring the bio-impedance of a user's body
US20070016008A1 (en) * 2005-06-23 2007-01-18 Ryan Schoenefeld Selective gesturing input to a surgical navigation system
US7840256B2 (en) 2005-06-27 2010-11-23 Biomet Manufacturing Corporation Image guided tracking array and method
US7877128B2 (en) * 2005-08-02 2011-01-25 Biosense Webster, Inc. Simulation of invasive procedures
US8583220B2 (en) * 2005-08-02 2013-11-12 Biosense Webster, Inc. Standardization of catheter-based treatment for atrial fibrillation
US8313379B2 (en) 2005-08-22 2012-11-20 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
JP4805633B2 (en) 2005-08-22 2011-11-02 任天堂株式会社 Game operating device
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
JP4262726B2 (en) 2005-08-24 2009-05-13 任天堂株式会社 Game controller and a game system
US8870655B2 (en) 2005-08-24 2014-10-28 Nintendo Co., Ltd. Wireless game controllers
US8308563B2 (en) 2005-08-30 2012-11-13 Nintendo Co., Ltd. Game system and storage medium having game program stored thereon
US8148666B2 (en) * 2005-09-01 2012-04-03 Patented Medical Solutions, Llc Method and apparatus for protecting sterile drapes in surgical thermal treatment systems
US8157651B2 (en) 2005-09-12 2012-04-17 Nintendo Co., Ltd. Information processing program
US20070066881A1 (en) 2005-09-13 2007-03-22 Edwards Jerome R Apparatus and method for image guided accuracy verification
US7643862B2 (en) * 2005-09-15 2010-01-05 Biomet Manufacturing Corporation Virtual mouse for use in surgical navigation
US7927216B2 (en) 2005-09-15 2011-04-19 Nintendo Co., Ltd. Video game system with wireless modular handheld controller
US8038625B2 (en) * 2005-09-15 2011-10-18 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for three-dimensional mapping of electrophysiology information
US8229545B2 (en) 2005-09-15 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping complex fractionated electrogram information
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US20070078678A1 (en) * 2005-09-30 2007-04-05 Disilvestro Mark R System and method for performing a computer assisted orthopaedic surgical procedure
US7962192B2 (en) * 2005-09-30 2011-06-14 Restoration Robotics, Inc. Systems and methods for aligning a tool with a desired location or object
US20070078466A1 (en) * 2005-09-30 2007-04-05 Restoration Robotics, Inc. Methods for harvesting follicular units using an automated system
WO2007049323A1 (en) * 2005-10-28 2007-05-03 Sintesi S.C.P.A. Apparatus for moving surgical instruments
US7918793B2 (en) * 2005-10-28 2011-04-05 Biosense Webster, Inc. Synchronization of ultrasound imaging data with electrical mapping
DE102005053759B4 (en) * 2005-11-10 2010-04-29 Siemens Ag Method and apparatus for wireless transfer of energy from a magnetic coil system to a working capsule
US20070167744A1 (en) * 2005-11-23 2007-07-19 General Electric Company System and method for surgical navigation cross-reference to related applications
US7711406B2 (en) * 2005-11-23 2010-05-04 General Electric Company System and method for detection of electromagnetic radiation by amorphous silicon x-ray detector for metal detection in x-ray imaging
US20070129629A1 (en) * 2005-11-23 2007-06-07 Beauregard Gerald L System and method for surgical navigation
JP5087007B2 (en) 2005-11-23 2012-11-28 インサイテック・リミテッド Hierarchical switching type ultrahigh density ultrasonic array
EP2062530A3 (en) * 2005-11-29 2009-08-12 Surgi-Vision, Inc. MRI-guided localization and/or lead placement systems, related methods, devices and computer program
US7640121B2 (en) * 2005-11-30 2009-12-29 General Electric Company System and method for disambiguating the phase of a field received from a transmitter in an electromagnetic tracking system
US8303505B2 (en) * 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
JP5313689B2 (en) * 2005-12-29 2013-10-09 ギブン イメージング リミテッドGiven Imaging Ltd. System and how the system operates to determine the position of the in-vivo sensing device
US7525309B2 (en) * 2005-12-30 2009-04-28 Depuy Products, Inc. Magnetic sensor array
US20070167741A1 (en) * 2005-12-30 2007-07-19 Sherman Jason T Apparatus and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US8862200B2 (en) * 2005-12-30 2014-10-14 DePuy Synthes Products, LLC Method for determining a position of a magnetic source
US20070161888A1 (en) * 2005-12-30 2007-07-12 Sherman Jason T System and method for registering a bone of a patient with a computer assisted orthopaedic surgery system
US9084556B2 (en) * 2006-01-19 2015-07-21 Toshiba Medical Systems Corporation Apparatus for indicating locus of an ultrasonic probe, ultrasonic diagnostic apparatus
EP1818651A1 (en) * 2006-02-10 2007-08-15 Rijksuniversiteit Groningen System and a method for determining one or more parameters of a source of a potential-energy field
CA2642481C (en) * 2006-02-16 2016-04-05 David W. Smith System utilizing radio frequency signals for tracking and improving navigation of slender instruments during insertion into the body
US8219177B2 (en) * 2006-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US8219178B2 (en) * 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
JP4151982B2 (en) 2006-03-10 2008-09-17 任天堂株式会社 Motion determining apparatus and a motion determining program
US7557710B2 (en) * 2006-03-17 2009-07-07 Med Wave, Llc System for tracking surgical items in an operating room environment
EP1996063A1 (en) * 2006-03-22 2008-12-03 Hansen Medical, Inc. Fiber optic instrument sensing system
US8165659B2 (en) 2006-03-22 2012-04-24 Garrett Sheffer Modeling method and apparatus for use in surgical navigation
GB0605807D0 (en) * 2006-03-23 2006-05-03 Depuy Int Ltd A template for use in a surgical procedure
EP1998702A2 (en) * 2006-03-29 2008-12-10 Stryker Corporation Shielded surgical navigation system that determines the position and orientation of the tracked object with real and virtual dipoles
US7471202B2 (en) 2006-03-29 2008-12-30 General Electric Co. Conformal coil array for a medical tracking system
CN101410724B (en) * 2006-03-31 2013-04-24 皇家飞利浦电子股份有限公司 System for local error compensation in electromagnetic tracking systems
US7532997B2 (en) 2006-04-17 2009-05-12 General Electric Company Electromagnetic tracking using a discretized numerical field model
US7794387B2 (en) 2006-04-26 2010-09-14 Medtronic, Inc. Methods and devices for stabilizing tissue
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US7988639B2 (en) * 2006-05-17 2011-08-02 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for complex geometry modeling of anatomy using multiple surface models
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
EP2023812B1 (en) * 2006-05-19 2016-01-27 The Queen's Medical Center Motion tracking system for real time adaptive imaging and spectroscopy
US9724165B2 (en) * 2006-05-19 2017-08-08 Mako Surgical Corp. System and method for verifying calibration of a surgical device
US8280483B2 (en) * 2006-06-14 2012-10-02 Koninklijke Philips Electronics N.V. Multi-modality medical image viewing
EP1873666B1 (en) 2006-06-27 2009-03-25 BrainLAB AG Medical marker tracking system with determination of the marker characteristics
US20080033278A1 (en) * 2006-08-01 2008-02-07 Insightec Ltd. System and method for tracking medical device using magnetic resonance detection
US8040127B2 (en) * 2006-08-15 2011-10-18 General Electric Company Multi-sensor distortion mapping method and system
US8442619B2 (en) * 2006-08-30 2013-05-14 General Electric Company System and method for detecting errors in position tracking systems used for medical applications
US8197494B2 (en) 2006-09-08 2012-06-12 Corpak Medsystems, Inc. Medical device position guidance system with wireless connectivity between a noninvasive device and an invasive device
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US7945310B2 (en) * 2006-09-18 2011-05-17 Stryker Corporation Surgical instrument path computation and display for endoluminal surgery
US7824328B2 (en) * 2006-09-18 2010-11-02 Stryker Corporation Method and apparatus for tracking a surgical instrument during surgery
US8248414B2 (en) * 2006-09-18 2012-08-21 Stryker Corporation Multi-dimensional navigation of endoscopic video
US8248413B2 (en) 2006-09-18 2012-08-21 Stryker Corporation Visual navigation system for endoscopic surgery
US20080123910A1 (en) * 2006-09-19 2008-05-29 Bracco Imaging Spa Method and system for providing accuracy evaluation of image guided surgery
US10016148B2 (en) * 2006-09-27 2018-07-10 General Electric Company Method and apparatus for correction of multiple EM sensor positions
US8543188B2 (en) * 2006-10-17 2013-09-24 General Electric Company Method and apparatus for calibrating medical devices
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US20080108991A1 (en) * 2006-11-08 2008-05-08 General Electric Company Method and apparatus for performing pedicle screw fusion surgery
US9320569B2 (en) * 2006-11-14 2016-04-26 General Electric Company Systems and methods for implant distance measurement
US7671887B2 (en) * 2006-11-20 2010-03-02 General Electric Company System and method of navigating a medical instrument
US20080118116A1 (en) * 2006-11-20 2008-05-22 General Electric Company Systems and methods for tracking a surgical instrument and for conveying tracking information via a network
CN101641748B (en) 2006-11-21 2013-06-05 洛马林达大学医学中心 Device and method for immobilizing patients for breast radiation therapy
US20080132757A1 (en) * 2006-12-01 2008-06-05 General Electric Company System and Method for Performing Minimally Invasive Surgery Using a Multi-Channel Catheter
US20080139929A1 (en) * 2006-12-06 2008-06-12 General Electric Company System and method for tracking an invasive surgical instrument while imaging a patient
US8068648B2 (en) * 2006-12-21 2011-11-29 Depuy Products, Inc. Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system
US20080154120A1 (en) * 2006-12-22 2008-06-26 General Electric Company Systems and methods for intraoperative measurements on navigated placements of implants
US20080177203A1 (en) * 2006-12-22 2008-07-24 General Electric Company Surgical navigation planning system and method for placement of percutaneous instrumentation and implants
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US7573258B2 (en) * 2007-01-18 2009-08-11 General Electric Company Coil arrangement for electromagnetic tracker method and system
US7508195B2 (en) * 2007-01-18 2009-03-24 General Electric Company Anti-distortion electromagnetic sensor method and system
JP5127242B2 (en) 2007-01-19 2013-01-23 任天堂株式会社 Acceleration data processing program and a game program
US20080183064A1 (en) * 2007-01-30 2008-07-31 General Electric Company Multi-sensor distortion detection method and system
EP1952779B1 (en) * 2007-02-01 2012-04-04 BrainLAB AG Method and system for Identification of medical instruments
US7782046B2 (en) 2007-02-05 2010-08-24 General Electric Company Electromagnetic tracking method and system
WO2008103383A1 (en) * 2007-02-20 2008-08-28 Gildenberg Philip L Videotactic and audiotactic assisted surgical methods and procedures
US7950306B2 (en) 2007-02-23 2011-05-31 Microdexterity Systems, Inc. Manipulator
US8249689B2 (en) * 2007-02-23 2012-08-21 General Electric Company Coil arrangement for electromagnetic tracking method and system
EP2117436A4 (en) * 2007-03-12 2011-03-02 David Tolkowsky Devices and methods for performing medical procedures in tree-like luminal structures
US20080228065A1 (en) * 2007-03-13 2008-09-18 Viswanathan Raju R System and Method for Registration of Localization and Imaging Systems for Navigational Control of Medical Devices
US8821511B2 (en) * 2007-03-15 2014-09-02 General Electric Company Instrument guide for use with a surgical navigation system
US7902817B2 (en) * 2007-03-26 2011-03-08 General Electric Company Electromagnetic tracking method and system
DE102007014828A1 (en) * 2007-03-28 2008-10-09 Siemens Ag Detecting means for detecting an object in at least two dimensions by means of X-rays in response to a signal and method of body
US8311611B2 (en) * 2007-04-24 2012-11-13 Medtronic, Inc. Method for performing multiple registrations in a navigated procedure
US8301226B2 (en) * 2007-04-24 2012-10-30 Medtronic, Inc. Method and apparatus for performing a navigated procedure
US9289270B2 (en) * 2007-04-24 2016-03-22 Medtronic, Inc. Method and apparatus for performing a navigated procedure
US8108025B2 (en) * 2007-04-24 2012-01-31 Medtronic, Inc. Flexible array for use in navigated surgery
US20090012509A1 (en) * 2007-04-24 2009-01-08 Medtronic, Inc. Navigated Soft Tissue Penetrating Laser System
US8734466B2 (en) 2007-04-25 2014-05-27 Medtronic, Inc. Method and apparatus for controlled insertion and withdrawal of electrodes
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US8428690B2 (en) 2007-05-16 2013-04-23 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
US8527032B2 (en) 2007-05-16 2013-09-03 General Electric Company Imaging system and method of delivery of an instrument to an imaged subject
US8989842B2 (en) 2007-05-16 2015-03-24 General Electric Company System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system
US8364242B2 (en) * 2007-05-17 2013-01-29 General Electric Company System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
US8315689B2 (en) 2007-09-24 2012-11-20 MRI Interventions, Inc. MRI surgical systems for real-time visualizations using MRI image data and predefined data of surgical tools
CA2700523A1 (en) 2007-09-24 2009-04-02 Surgivision, Inc. Mri-guided medical interventional systems and methods
US8175677B2 (en) * 2007-06-07 2012-05-08 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
US20090003528A1 (en) 2007-06-19 2009-01-01 Sankaralingam Ramraj Target location by tracking of imaging device
US9883818B2 (en) * 2007-06-19 2018-02-06 Accuray Incorporated Fiducial localization
US20080319491A1 (en) 2007-06-19 2008-12-25 Ryan Schoenefeld Patient-matched surgical component and methods of use
DE102007043366A1 (en) * 2007-09-12 2009-03-19 Degudent Gmbh A method for determining the position of an intra-oral measuring instrument
US7912662B2 (en) * 2007-09-24 2011-03-22 General Electric Company System and method for improving the distortion tolerance of an electromagnetic tracking system
US7834621B2 (en) * 2007-09-25 2010-11-16 General Electric Company Electromagnetic tracking employing scalar-magnetometer
US8265949B2 (en) 2007-09-27 2012-09-11 Depuy Products, Inc. Customized patient surgical plan
US20090088763A1 (en) 2007-09-30 2009-04-02 Aram Luke J Customized Patient-Specific Bone Cutting Block with External Reference
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US20090085559A1 (en) * 2007-10-02 2009-04-02 General Electric Company System and method for minimizing electromagnetic field distortion in an electromagnetic tracking system
US8391952B2 (en) * 2007-10-11 2013-03-05 General Electric Company Coil arrangement for an electromagnetic tracking system
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
EP3202318A1 (en) 2007-11-26 2017-08-09 C.R. Bard Inc. Integrated system for intravascular placement of a catheter
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
EP2654559A4 (en) * 2010-12-23 2017-07-19 Bard Access Systems, Inc. System, device, and method to guide a rigid instrument
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10070903B2 (en) * 2008-01-09 2018-09-11 Stryker European Holdings I, Llc Stereotactic computer assisted surgery method and system
US8571637B2 (en) * 2008-01-21 2013-10-29 Biomet Manufacturing, Llc Patella tracking method and apparatus for use in surgical navigation
JP5669340B2 (en) * 2008-01-23 2015-02-12 シスメックス株式会社 Sample analyzer and sample analyzing device program
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US20090209888A1 (en) * 2008-02-18 2009-08-20 Seyed Hessam Khatami Spine Wheel
CN101951853B (en) 2008-02-22 2013-01-23 洛马林达大学医学中心 Systems and methods for characterizing spatial distortion in 3D imaging systems
JP5701615B2 (en) * 2008-03-03 2015-04-15 コーニンクレッカ フィリップス エヌ ヴェ Biopsy induction by the electromagnetic tracking and optical needle
US20090224047A1 (en) * 2008-03-05 2009-09-10 Konica Minolta Systems Laboratory, Inc. Contactless Scan Position Orientation Sensing
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US9168173B2 (en) * 2008-04-04 2015-10-27 Truevision Systems, Inc. Apparatus and methods for performing enhanced visually directed procedures under low ambient light conditions
US8789534B2 (en) * 2008-04-09 2014-07-29 Patented Medical Solutions, Llc Method and apparatus for warming medical solutions in a thermal treatment system employing a removable basin
EP2108328B1 (en) * 2008-04-09 2012-02-29 BrainLAB AG Image-based control method for medicinal devices
US8260578B2 (en) * 2008-05-19 2012-09-04 The Procter & Gamble Company Method of determining the dynamic location of a protection
US8185354B2 (en) * 2008-05-19 2012-05-22 The Procter & Gamble Company Method of determining the dynamic location of a protection device
EP2123220A1 (en) * 2008-05-20 2009-11-25 Oticon A/S A probe and coil fixed thereto for establishing the spatial location of a probe body and a method of fixedly position a magnetic generating means to a probe body and a system for obtaining geometrical data related to a cavity
CA2732769A1 (en) 2008-07-30 2010-02-04 Acclarent, Inc. Paranasal ostium finder devices and methods
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US8086298B2 (en) * 2008-09-29 2011-12-27 Civco Medical Instruments Co., Inc. EM tracking systems for use with ultrasound and other imaging modalities
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9226798B2 (en) * 2008-10-10 2016-01-05 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for surgical applications
US20110160578A1 (en) * 2008-10-10 2011-06-30 Ashok Burton Tripathi Real-time surgical reference guides and methods for surgical applications
CA2742260A1 (en) * 2008-10-30 2010-05-27 Troy D. Payner Systems and methods for guiding a medical instrument
US9033958B2 (en) * 2008-11-11 2015-05-19 Perception Raisonnement Action En Medecine Surgical robotic system
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
DE102009007986A1 (en) * 2009-02-07 2010-08-12 Radl, Bernd, Dr. Device intended to illuminate a surgical field of a sterile operating room
US9173717B2 (en) * 2009-02-20 2015-11-03 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for intraocular lens implantation
US8504139B2 (en) 2009-03-10 2013-08-06 Medtronic Xomed, Inc. Navigating a surgical instrument
US9226688B2 (en) 2009-03-10 2016-01-05 Medtronic Xomed, Inc. Flexible circuit assemblies
US9226689B2 (en) 2009-03-10 2016-01-05 Medtronic Xomed, Inc. Flexible circuit sheet
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
US20100275718A1 (en) * 2009-04-29 2010-11-04 Microdexterity Systems, Inc. Manipulator
US8308043B2 (en) * 2009-05-19 2012-11-13 Covidien Lp Recognition of interchangeable component of a device
WO2010144405A3 (en) 2009-06-08 2011-03-03 Surgivision, Inc. Mri-guided surgical systems with proximity alerts
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
WO2011097312A1 (en) 2010-02-02 2011-08-11 C.R. Bard, Inc. Apparatus and method for catheter navigation and tip location
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
JP5795576B2 (en) 2009-06-12 2015-10-14 バード・アクセス・システムズ,インコーポレーテッド Electrocardiogram (ecg) intracardiac or method of operation computer-based medical device for positioning an intravascular device near a using signal
EP2442718B1 (en) 2009-06-16 2018-04-25 MRI Interventions, Inc. Mri-guided devices and mri-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
US9289154B2 (en) 2009-08-19 2016-03-22 Insightec Ltd. Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
WO2011023232A1 (en) 2009-08-27 2011-03-03 Brainlab Ag Disposable and radiolucent reference array for optical tracking
EP2298223A1 (en) 2009-09-21 2011-03-23 Stryker Leibinger GmbH & Co. KG Technique for registering image data of an object
EP2482719A4 (en) 2009-09-29 2016-03-09 Bard Inc C R Stylets for use with apparatus for intravascular placement of a catheter
WO2011041750A1 (en) 2009-10-01 2011-04-07 Loma Linda University Medical Centre Ion induced impact ionization detector and uses thereof
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
WO2011044421A1 (en) * 2009-10-08 2011-04-14 C. R. Bard, Inc. Spacers for use with an ultrasound probe
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
EP2489034B1 (en) 2009-10-14 2016-11-30 Insightec Ltd. Mapping ultrasound transducers
US8784443B2 (en) * 2009-10-20 2014-07-22 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for astigmatism correction
US9314189B2 (en) * 2009-11-06 2016-04-19 Biotronik Crm Patent Ag Extracorporeal physiological measurement device
US8368401B2 (en) 2009-11-10 2013-02-05 Insightec Ltd. Techniques for correcting measurement artifacts in magnetic resonance thermometry
US8376938B2 (en) * 2009-11-20 2013-02-19 Ethicon Endo-Surgery, Inc. Discrete flexion head for single port device
US9826942B2 (en) * 2009-11-25 2017-11-28 Dental Imaging Technologies Corporation Correcting and reconstructing x-ray images using patient motion vectors extracted from marker positions in x-ray images
US8180130B2 (en) * 2009-11-25 2012-05-15 Imaging Sciences International Llc Method for X-ray marker localization in 3D space in the presence of motion
US9082182B2 (en) * 2009-11-25 2015-07-14 Dental Imaging Technologies Corporation Extracting patient motion vectors from marker positions in x-ray images
US9082177B2 (en) * 2009-11-25 2015-07-14 Dental Imaging Technologies Corporation Method for tracking X-ray markers in serial CT projection images
US8363919B2 (en) 2009-11-25 2013-01-29 Imaging Sciences International Llc Marker identification and processing in x-ray images
US9082036B2 (en) * 2009-11-25 2015-07-14 Dental Imaging Technologies Corporation Method for accurate sub-pixel localization of markers on X-ray images
US8435174B2 (en) * 2009-12-11 2013-05-07 Ethicon Endo-Surgery, Inc. Methods and devices for accessing a body cavity
US8444557B2 (en) * 2009-12-11 2013-05-21 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8282546B2 (en) * 2009-12-11 2012-10-09 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor with coil spring
US8500633B2 (en) * 2009-12-11 2013-08-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing surgical access through tissue to a surgical site
US8353873B2 (en) * 2009-12-11 2013-01-15 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8517932B2 (en) * 2009-12-11 2013-08-27 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8231570B2 (en) * 2009-12-11 2012-07-31 Ethicon Endo-Surgery, Inc. Inverted conical expandable retractor
US8460186B2 (en) * 2009-12-11 2013-06-11 Ethicon Endo-Surgery, Inc. Methods and devices for providing access through tissue to a surgical site
US8414483B2 (en) * 2009-12-11 2013-04-09 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8357088B2 (en) * 2009-12-11 2013-01-22 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8348831B2 (en) * 2009-12-15 2013-01-08 Zhejiang University Device and method for computer simulated marking targeting biopsy
US8600480B2 (en) * 2009-12-31 2013-12-03 Mediguide Ltd. System and method for assessing interference to a signal caused by a magnetic field
CA2788406C (en) 2010-02-01 2018-05-22 Superdimension, Ltd. Region-growing algorithm
US20110213342A1 (en) * 2010-02-26 2011-09-01 Ashok Burton Tripathi Real-time Virtual Indicium Apparatus and Methods for Guiding an Implant into an Eye
US20120194553A1 (en) * 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with sensor and user action based control of external devices with feedback
US20110213379A1 (en) * 2010-03-01 2011-09-01 Stryker Trauma Gmbh Computer assisted surgery system
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
US9216257B2 (en) * 2010-03-25 2015-12-22 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8483802B2 (en) 2010-03-25 2013-07-09 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8475407B2 (en) * 2010-03-25 2013-07-02 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US9339601B2 (en) * 2010-03-25 2016-05-17 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
KR101478264B1 (en) 2010-04-30 2014-12-31 메드트로닉 좀드 인코퍼레이티드 Navigated malleable surgical instrument
CN103118596B (en) 2010-05-04 2015-11-25 开创治疗股份有限公司 Using pseudo abdominal surface features matching system
CA2800813A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5411358B2 (en) * 2010-06-08 2014-02-12 パナソニック株式会社 Bed, and coalescence method and separation method of bed
WO2012001548A1 (en) * 2010-06-28 2012-01-05 Koninklijke Philips Electronics N.V. Real-time quality control of em calibration
JP5564149B2 (en) 2010-07-16 2014-07-30 ストライカー トラウマ ゲーエムベーハー Surgical targeting system and method
CN103442632A (en) 2010-08-20 2013-12-11 C·R·巴德股份有限公司 Reconfirmation of ECG-assisted catheter tip placement
US8696549B2 (en) 2010-08-20 2014-04-15 Veran Medical Technologies, Inc. Apparatus and method for four dimensional soft tissue navigation in endoscopic applications
EP2611380A4 (en) 2010-09-02 2014-02-26 Ecolab Usa Inc Selective thermal treatment of medical instrument portions with thermal treatment system instrument holder
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
US8702592B2 (en) 2010-09-30 2014-04-22 David Allan Langlois System and method for inhibiting injury to a patient during laparoscopic surgery
US9785246B2 (en) 2010-10-06 2017-10-10 Nuvasive, Inc. Imaging system and method for use in surgical and interventional medical procedures
US8526700B2 (en) 2010-10-06 2013-09-03 Robert E. Isaacs Imaging system and method for surgical and interventional medical procedures
US8603078B2 (en) 2010-10-13 2013-12-10 Ethicon Endo-Surgery, Inc. Methods and devices for guiding and supporting surgical instruments
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
EP2632360A4 (en) 2010-10-29 2014-05-21 Bard Inc C R Bioimpedance-assisted placement of a medical device
US9921712B2 (en) 2010-12-29 2018-03-20 Mako Surgical Corp. System and method for providing substantially stable control of a surgical tool
US9974501B2 (en) 2011-01-28 2018-05-22 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
CA2837239C (en) 2011-02-18 2017-12-05 The Cleveland Clinic Foundation Registration of head impact detection assembly
WO2012149548A3 (en) * 2011-04-29 2013-02-21 The Johns Hopkins University System and method for tracking and navigation
US20120289830A1 (en) * 2011-05-10 2012-11-15 General Electric Company Method and ultrasound imaging system for image-guided procedures
US9220510B2 (en) 2011-06-15 2015-12-29 Perception Raisonnement Action En Medecine System and method for bone preparation for an implant
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
WO2013006817A1 (en) 2011-07-06 2013-01-10 C.R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
US8617176B2 (en) 2011-08-24 2013-12-31 Depuy Mitek, Llc Cross pinning guide devices and methods
EP3213697A1 (en) 2011-09-02 2017-09-06 Stryker Corporation Surgical instrument including a housing, a cutting accessory that extends from the housing and actuators that establish the position of the cutting accessory relative to the housing
US9028441B2 (en) 2011-09-08 2015-05-12 Corpak Medsystems, Inc. Apparatus and method used with guidance system for feeding and suctioning
US20130249907A1 (en) * 2011-09-12 2013-09-26 Medical Modeling Inc., a Colorado Corporaiton Fiducial system to facilitate co-registration and image pixel calibration of multimodal data
RU2624107C2 (en) * 2011-09-13 2017-06-30 Конинклейке Филипс Н.В. Automatic online combination of robot and images
EP2760360B1 (en) * 2011-09-28 2017-09-06 Brainlab AG Self-localizing medical device
US9750486B2 (en) 2011-10-25 2017-09-05 Medtronic Navigation, Inc. Trackable biopsy needle
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
US8996169B2 (en) 2011-12-29 2015-03-31 Mako Surgical Corp. Neural monitor-based dynamic haptics
WO2013126659A1 (en) 2012-02-22 2013-08-29 Veran Medical Technologies, Inc. Systems, methods, and devices for four dimensional soft tissue navigation
US20150080711A1 (en) * 2012-03-23 2015-03-19 Koninklijke Philips N.V. Photonic needle system with measurement integration times depending on needle displacement speed
WO2013173810A3 (en) * 2012-05-17 2014-01-03 Schwartz Alan N Localization of the parathyroid
US9439623B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
US9439622B2 (en) 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US9439627B2 (en) 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US8750568B2 (en) 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9498182B2 (en) 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
WO2013182224A1 (en) * 2012-06-05 2013-12-12 Brainlab Ag Improving the accuracy of navigating a medical device
US20130338493A1 (en) * 2012-06-19 2013-12-19 Covidien Lp Surgical devices, systems and methods for highlighting and measuring regions of interest
EP2863827A4 (en) * 2012-06-21 2016-04-20 Globus Medical Inc Surgical robot platform
US9033903B2 (en) 2012-07-12 2015-05-19 The Trustees Of The Stevens Institute Of Technology Tri-axial electro-goniometer for spinal motion, associated system and methods
US9820818B2 (en) 2012-08-03 2017-11-21 Stryker Corporation System and method for controlling a surgical manipulator based on implant parameters
CN104736092B (en) 2012-08-03 2017-07-21 史赛克公司 A system and method for robotic surgical
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
WO2014020495A1 (en) 2012-08-03 2014-02-06 Koninklijke Philips N.V. Device position dependant overlay for roadmapping
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
US20140051983A1 (en) * 2012-08-15 2014-02-20 Tobias Schroeder Electromagnetic instrument tracking system with metal distortion detection and unlimited hemisphere operation
EP2891137A4 (en) 2012-08-30 2017-08-16 TrueVision Systems, Inc. Imaging system and methods displaying a fused multidimensional reconstructed image
US10039606B2 (en) 2012-09-27 2018-08-07 Stryker European Holdings I, Llc Rotational position determination
US9993273B2 (en) 2013-01-16 2018-06-12 Mako Surgical Corp. Bone plate and tracking device using a bone plate for attaching to a patient's anatomy
CN105073054B (en) * 2013-01-16 2018-07-10 史赛克公司 It indicates the line of sight error navigation system and method
CN105025835B (en) 2013-03-13 2018-03-02 史赛克公司 A system for objects arranged in an operating room in preparation for the surgical procedure
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9603665B2 (en) 2013-03-13 2017-03-28 Stryker Corporation Systems and methods for establishing virtual constraint boundaries
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9854991B2 (en) 2013-03-15 2018-01-02 Medtronic Navigation, Inc. Integrated navigation array
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
EP3003118A4 (en) * 2013-06-05 2017-01-25 Check-Cap Ltd. Position estimation of imaging capsule in gastrointestinal tract
US9877795B2 (en) 2013-09-18 2018-01-30 Imirge Medical Inc Optical targeting and visualization of trajectories
WO2015058819A1 (en) * 2013-10-25 2015-04-30 Brainlab Ag Method and device for co-registering a medical 3d image and a spatial reference
US20150202073A1 (en) * 2014-01-21 2015-07-23 Aktina Corp. Head and cervical spine position articulating device
US20150216541A1 (en) * 2014-02-03 2015-08-06 Arthrex, Inc. Pointing device and drilling tool
WO2015120256A3 (en) 2014-02-06 2015-11-12 C.R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
WO2015142933A1 (en) * 2014-03-17 2015-09-24 Intuitive Surgical Operations, Inc. Guided setup for teleoperated medical device
JP2017515593A (en) 2014-05-13 2017-06-15 ビコール メディカル,インコーポレイティド Guidance system mounting member for a surgical introducer
CN106232010A (en) 2014-07-02 2016-12-14 柯惠有限合伙公司 System and method for detecting trachea
US9770216B2 (en) 2014-07-02 2017-09-26 Covidien Lp System and method for navigating within the lung
WO2016004030A1 (en) 2014-07-02 2016-01-07 Covidien Lp System and method for segmentation of lung
US9754367B2 (en) 2014-07-02 2017-09-05 Covidien Lp Trachea marking
US9603668B2 (en) 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
CN105476634A (en) * 2014-09-15 2016-04-13 西门子(深圳)磁共振有限公司 Imaging device and positioning device
US9861446B2 (en) 2016-03-12 2018-01-09 Philipp K. Lang Devices and methods for surgery
US20170347915A1 (en) * 2016-06-06 2017-12-07 Temple University Of The Commonwealth System Of Higher Education Magnetometer Surgical Device
US20180101950A1 (en) * 2016-10-11 2018-04-12 Biosense Webster (Israel) Ltd. Registration of a Magnetic Tracking System with an Imaging Device
US20180110567A1 (en) * 2016-10-25 2018-04-26 Biosense Webster (Israel) Ltd. Head Registration Using a Personalized Gripper
US20180280049A1 (en) 2017-03-28 2018-10-04 Biosense Webster (Israel) Ltd. Medical Device Having a Reusable Position Sensor

Citations (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644825A (en) * 1969-12-31 1972-02-22 Texas Instruments Inc Magnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
US3821469A (en) * 1972-05-15 1974-06-28 Amperex Electronic Corp Graphical data device
US3868565A (en) * 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US4017858A (en) * 1973-07-30 1977-04-12 Polhemus Navigation Sciences, Inc. Apparatus for generating a nutating electromagnetic field
US4182312A (en) * 1977-05-20 1980-01-08 Mushabac David R Dental probe
US4256112A (en) * 1979-02-12 1981-03-17 David Kopf Instruments Head positioner
US4262306A (en) * 1977-04-27 1981-04-14 Karlheinz Renner Method and apparatus for monitoring of positions of patients and/or radiation units
US4314251A (en) * 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4319136A (en) * 1979-11-09 1982-03-09 Jinkins J Randolph Computerized tomography radiograph data transfer cap
US4328548A (en) * 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US4341220A (en) * 1979-04-13 1982-07-27 Pfizer Inc. Stereotactic surgery apparatus and method
US4506676A (en) * 1982-09-10 1985-03-26 Duska Alois A Radiographic localization technique
US4583538A (en) * 1984-05-04 1986-04-22 Onik Gary M Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization
US4638798A (en) * 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
US4642786A (en) * 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US4651732A (en) * 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
US4659971A (en) * 1984-08-16 1987-04-21 Seiko Instruments & Electronics Ltd. Robot controlling system
US4660970A (en) * 1983-11-25 1987-04-28 Carl-Zeiss-Stiftung Method and apparatus for the contact-less measuring of objects
US4722056A (en) * 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4723544A (en) * 1986-07-09 1988-02-09 Moore Robert R Hemispherical vectoring needle guide for discolysis
US4733969A (en) * 1986-09-08 1988-03-29 Cyberoptics Corporation Laser probe for determining distance
US4737032A (en) * 1985-08-26 1988-04-12 Cyberware Laboratory, Inc. Surface mensuration sensor
US4737794A (en) * 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4742356A (en) * 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4743771A (en) * 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
US4743770A (en) * 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US4742815A (en) * 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
US4745290A (en) * 1987-03-19 1988-05-17 David Frankel Method and apparatus for use in making custom shoes
US4750487A (en) * 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4753528A (en) * 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
US4804261A (en) * 1987-03-27 1989-02-14 Kirschen David G Anti-claustrophobic glasses
US4805615A (en) * 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4809694A (en) * 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
US4821200A (en) * 1986-04-14 1989-04-11 Jonkopings Lans Landsting Method and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object
US4821731A (en) * 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US4822163A (en) * 1986-06-26 1989-04-18 Robotic Vision Systems, Inc. Tracking vision sensor
US4825091A (en) * 1987-02-05 1989-04-25 Carl-Zeiss-Stiftung Optoelectronic distance sensor with visible pilot beam
US4829373A (en) * 1987-08-03 1989-05-09 Vexcel Corporation Stereo mensuration apparatus
US4836778A (en) * 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
US4838265A (en) * 1985-05-24 1989-06-13 Cosman Eric R Localization device for probe placement under CT scanner imaging
US4841967A (en) * 1984-01-30 1989-06-27 Chang Ming Z Positioning device for percutaneous needle insertion
US4845305A (en) * 1988-07-07 1989-07-04 National Starch And Chemical Corporation Process for the preparation of isophthaladehyde
US4923459A (en) * 1987-09-14 1990-05-08 Kabushiki Kaisha Toshiba Stereotactics apparatus
US4931056A (en) * 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4945305A (en) * 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4991579A (en) * 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5017139A (en) * 1990-07-05 1991-05-21 Mushabac David R Mechanical support for hand-held dental/medical instrument
US5027818A (en) * 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5099846A (en) * 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5107839A (en) * 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5186174A (en) * 1987-05-21 1993-02-16 G. M. Piaff Process and device for the reproducible optical representation of a surgical operation
US5193106A (en) * 1990-08-28 1993-03-09 Desena Danforth X-ray identification marker
US5197476A (en) * 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US5207688A (en) * 1991-10-31 1993-05-04 Medco, Inc. Noninvasive head fixation method and apparatus
US5211165A (en) * 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5224049A (en) * 1990-04-10 1993-06-29 Mushabac David R Method, system and mold assembly for use in preparing a dental prosthesis
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5230338A (en) * 1987-11-10 1993-07-27 Allen George S Interactive image-guided surgical system for displaying images corresponding to the placement of a surgical tool or the like
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5285787A (en) * 1989-09-12 1994-02-15 Kabushiki Kaisha Toshiba Apparatus for calculating coordinate data of desired point in subject to be examined
US5288253A (en) * 1992-08-07 1994-02-22 Nortrans Shipping And Trading Far East Pte Ltd. Single point mooring system employing a submerged buoy and a vessel mounted fluid swivel
US5299253A (en) * 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
US5300080A (en) * 1991-11-01 1994-04-05 David Clayman Stereotactic instrument guided placement
US5306271A (en) * 1992-03-09 1994-04-26 Izi Corporation Radiation therapy skin markers
US5307072A (en) * 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
US5309913A (en) * 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5330485A (en) * 1991-11-01 1994-07-19 Clayman David A Cerebral instrument guide frame and procedures utilizing it
US5383454A (en) * 1990-10-19 1995-01-24 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5389101A (en) * 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5394875A (en) * 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US5480439A (en) * 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US5483961A (en) * 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
US5517990A (en) * 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5600330A (en) * 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5615132A (en) * 1994-01-21 1997-03-25 Crossbow Technology, Inc. Method and apparatus for determining position and orientation of a moveable object using accelerometers
US5617857A (en) * 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5622170A (en) * 1990-10-19 1997-04-22 Image Guided Technologies, Inc. Apparatus for determining the position and orientation of an invasive portion of a probe inside a three-dimensional body
US5640170A (en) * 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5718241A (en) * 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5729129A (en) * 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5730130A (en) * 1993-02-12 1998-03-24 Johnson & Johnson Professional, Inc. Localization cap for fiducial markers
US5738096A (en) * 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5752513A (en) * 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5755725A (en) * 1993-09-07 1998-05-26 Deemed International, S.A. Computer-assisted microsurgery methods and equipment
US5769861A (en) * 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument
US5868675A (en) * 1989-10-05 1999-02-09 Elekta Igs S.A. Interactive system for local intervention inside a nonhumogeneous structure
US5871445A (en) * 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US6071288A (en) * 1994-09-30 2000-06-06 Ohio Medical Instrument Company, Inc. Apparatus and method for surgical stereotactic procedures

Family Cites Families (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US425112A (en) * 1890-04-08 John straiton
US581008A (en) * 1897-04-20 Bicycle-tire
DE482439C (en) 1927-12-09 1929-09-14 Fr Des Pompes Et Machines Wort Feedwater for steam boilers of locomotives
US2650588A (en) 1950-12-29 1953-09-01 Drew Harry Guy Radcliffe Artificial femoral head having an x-ray marker
US3109588A (en) * 1962-01-26 1963-11-05 William L Polhemus Celestial computers
GB1257034A (en) * 1968-03-25 1971-12-15
US3991770A (en) * 1974-01-24 1976-11-16 Leveen Harry H Method for treating benign and malignant tumors utilizing radio frequency, electromagnetic radiation
US3983474A (en) * 1975-02-21 1976-09-28 Polhemus Navigation Sciences, Inc. Tracking and determining orientation of object using coordinate transformation means, system and process
US4054881A (en) * 1976-04-26 1977-10-18 The Austin Company Remote object position locater
US4298874A (en) * 1977-01-17 1981-11-03 The Austin Company Method and apparatus for tracking objects
DE2715106C2 (en) * 1977-04-04 1982-05-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4228799A (en) 1977-09-28 1980-10-21 Anichkov Andrei D Method of guiding a stereotaxic instrument at an intracerebral space target point
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
USRE32619E (en) * 1978-11-20 1988-03-08 Apparatus and method for nuclear magnetic resonance scanning and mapping
US4608977A (en) * 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
US4419012A (en) 1979-09-11 1983-12-06 Elliott Brothers (London) Limited Position measuring system
US4317078A (en) * 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4428748A (en) * 1980-04-09 1984-01-31 Peyman Gholam A Combined ultrasonic emulsifier and mechanical cutter for surgery
US4346384A (en) * 1980-06-30 1982-08-24 The Austin Company Remote object position and orientation locator
US4688037A (en) * 1980-08-18 1987-08-18 Mcdonnell Douglas Corporation Electromagnetic communications and switching system
US4339953A (en) 1980-08-29 1982-07-20 Aisin Seiki Company, Ltd. Position sensor
GB2094590A (en) * 1981-02-12 1982-09-15 Univ New York Apparatus for stereotactic surgery
NL8101722A (en) * 1981-04-08 1982-11-01 Philips Nv Kontourmeter.
US4710708A (en) 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4431005A (en) * 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4422041A (en) 1981-07-30 1983-12-20 The United States Of America As Represented By The Secretary Of The Army Magnet position sensing system
US4396945A (en) 1981-08-19 1983-08-02 Solid Photography Inc. Method of sensing the position and orientation of elements in space
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
NL8300965A (en) 1983-03-17 1984-10-16 Nicolaas Roelof Snijder A system for study of skeletal parts of the body of a living being, in particular the vertebral column of the human body.
US4613866A (en) * 1983-05-13 1986-09-23 Mcdonnell Douglas Corporation Three dimensional digitizer with electromagnetic coupling
NL8302228A (en) * 1983-06-22 1985-01-16 Optische Ind De Oude Delft Nv A metering system for using a triangulation principle, which are non-contact measurement of a distance given by a surface contour of an object plane to a reference level.
US4618978A (en) * 1983-10-21 1986-10-21 Cosman Eric R Means for localizing target coordinates in a body relative to a guidance system reference frame in any arbitrary plane as viewed by a tomographic image through the body
US4549555A (en) 1984-02-17 1985-10-29 Orthothronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4571834A (en) * 1984-02-17 1986-02-25 Orthotronics Limited Partnership Knee laxity evaluator and motion module/digitizer arrangement
US4649504A (en) * 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
US4636798A (en) * 1984-05-29 1987-01-13 Seavey Engineering Associates, Inc. Microwave lens for beam broadening with antenna feeds
US4617925A (en) * 1984-10-01 1986-10-21 Laitinen Lauri V Adapter for definition of the position of brain structures
US4705395A (en) * 1984-10-03 1987-11-10 Diffracto Ltd. Triangulation data integrity
US4706665A (en) * 1984-12-17 1987-11-17 Gouda Kasim I Frame for stereotactic surgery
DE3500605A1 (en) 1985-01-10 1986-07-10 Hansen Markus Device for measurement of the positions and movements of the mandible relative to the maxillary
DE3508730A1 (en) 1985-03-12 1986-09-18 Siemens Ag Measuring device for medical purposes
US4782239A (en) * 1985-04-05 1988-11-01 Nippon Kogaku K. K. Optical position measuring apparatus
JPS63500119A (en) * 1985-06-14 1988-01-14
JPH0567286B2 (en) * 1985-06-26 1993-09-24 Shinya Manaka
US4705401A (en) * 1985-08-12 1987-11-10 Cyberware Laboratory Inc. Rapid three-dimensional surface digitizer
US4779212A (en) * 1985-09-27 1988-10-18 Levy Nessim I Distance measuring device
US4709156A (en) * 1985-11-27 1987-11-24 Ex-Cell-O Corporation Method and apparatus for inspecting a surface
US4794262A (en) * 1985-12-03 1988-12-27 Yukio Sato Method and apparatus for measuring profile of three-dimensional object
JP2685071B2 (en) 1986-03-10 1997-12-03 三菱電機株式会社 Numerical control device
US4821220A (en) * 1986-07-25 1989-04-11 Tektronix, Inc. System for animating program operation and displaying time-based relationships
US4791934A (en) * 1986-08-07 1988-12-20 Picker International, Inc. Computer tomography assisted stereotactic surgery system and method
US4761072A (en) * 1986-09-30 1988-08-02 Diffracto Ltd. Electro-optical sensors for manual control
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4875478A (en) * 1987-04-10 1989-10-24 Chen Harry H Portable compression grid & needle holder
US4793355A (en) 1987-04-17 1988-12-27 Biomagnetic Technologies, Inc. Apparatus for process for making biomagnetic measurements
KR970001431B1 (en) * 1987-05-27 1997-02-06 쉬뢴도르프 게오르그 Process and device for optical representation of surgical operation
FR2618211B1 (en) 1987-07-15 1991-11-15 Chardon Bernard Front lighting device for observing narrow and deep cavities.
US4875165A (en) * 1987-11-27 1989-10-17 University Of Chicago Method for determination of 3-D structure in biplane angiography
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
EP0326768A3 (en) 1988-02-01 1991-01-23 Faro Medical Technologies Inc. Computer-aided surgery apparatus
DE69112538D1 (en) 1990-07-31 1995-10-05 Faro Medical Technologies Inc Computer-assisted surgical device.
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4869247A (en) * 1988-03-11 1989-09-26 The University Of Virginia Alumni Patents Foundation Video tumor fighting system
US4884566A (en) * 1988-04-15 1989-12-05 The University Of Michigan System and method for determining orientation of planes of imaging
US5050608A (en) 1988-07-12 1991-09-24 Medirand, Inc. System for indicating a position to be operated in a patient's body
US4896673A (en) * 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
US4860331A (en) * 1988-09-12 1989-08-22 Williams John F Image marker device
US4905698B1 (en) * 1988-09-13 1991-10-01 Pharmacia Deltec Inc
US5265611A (en) 1988-09-23 1993-11-30 Siemens Aktiengellschaft Apparatus for measuring weak, location-dependent and time-dependent magnetic field
DE3886044D1 (en) 1988-09-23 1994-01-13 Siemens Ag Apparatus and method for measurement of weak spatially and time-dependent magnetic fields.
US5143076A (en) 1988-12-23 1992-09-01 Tyrone L. Hardy Three-dimensional beam localization microscope apparatus for stereotactic diagnoses or surgery
CN1049287A (en) * 1989-05-24 1991-02-20 住友电气工业株式会社 Therapeutic catheter
US5257998A (en) * 1989-09-20 1993-11-02 Mitaka Kohki Co., Ltd. Medical three-dimensional locating apparatus
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
US5222499A (en) 1989-11-15 1993-06-29 Allen George S Method and apparatus for imaging the anatomy
US5308352A (en) 1989-11-17 1994-05-03 Koutrouvelis Panos G Stereotactic device
US5047036A (en) 1989-11-17 1991-09-10 Koutrouvelis Panos G Stereotactic device
CA2260688A1 (en) 1989-11-21 1991-05-21 I.S.G. Technologies, Inc. Probe-correlated viewing of anatomical image data
WO1991007913A1 (en) * 1989-11-24 1991-06-13 Technomed International A method and apparatus for determining the position of a target relative to known co-ordinates
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
US5253647A (en) 1990-04-13 1993-10-19 Olympus Optical Co., Ltd. Insertion position and orientation state pickup for endoscope
US5295483A (en) * 1990-05-11 1994-03-22 Christopher Nowacki Locating target in human body
US5457641A (en) 1990-06-29 1995-10-10 Sextant Avionique Method and apparatus for determining an orientation associated with a mobile system, especially a line of sight inside a helmet visor
GB9018660D0 (en) 1990-08-24 1990-10-10 Imperial College Probe system
US5160337A (en) 1990-09-24 1992-11-03 Cosman Eric R Curved-shaped floor stand for use with a linear accelerator in radiosurgery
US5198877A (en) 1990-10-15 1993-03-30 Pixsys, Inc. Method and apparatus for three-dimensional non-contact shape sensing
US5059789A (en) 1990-10-22 1991-10-22 International Business Machines Corp. Optical position and orientation sensor
US5823958A (en) 1990-11-26 1998-10-20 Truppe; Michael System and method for displaying a structural data image in real-time correlation with moveable body
US5662111A (en) 1991-01-28 1997-09-02 Cosman; Eric R. Process of stereotactic optical navigation
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5291889A (en) * 1991-05-23 1994-03-08 Vanguard Imaging Ltd. Apparatus and method for spatially positioning images
FI93607C (en) 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5187475A (en) * 1991-06-10 1993-02-16 Honeywell Inc. Apparatus for determining the position of an object
US5261404A (en) * 1991-07-08 1993-11-16 Mick Peter R Three-dimensional mammal anatomy imaging system and method
US5249581A (en) 1991-07-15 1993-10-05 Horbal Mark T Precision bone alignment
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
EP0531081A1 (en) * 1991-09-03 1993-03-10 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency fields
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
DE4134481C2 (en) 1991-10-18 1998-04-09 Zeiss Carl Fa Surgical microscope for computer-assisted stereotactic microsurgery
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5371778A (en) 1991-11-29 1994-12-06 Picker International, Inc. Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
DE4207632C2 (en) 1992-03-11 1995-07-20 Bodenseewerk Geraetetech Apparatus and method for positioning a body part for treatment purposes
DE4207901C3 (en) 1992-03-12 1999-10-07 Aesculap Ag & Co Kg A method and device for representing a work area in a three-dimensional structure
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
EP0576187B1 (en) 1992-06-16 1997-11-05 Elbit Ltd. Tracker employing a rotating electromagnetic field
US5325873A (en) 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
DE4225112C1 (en) 1992-07-30 1993-12-09 Bodenseewerk Geraetetech Instrument position relative to processing object measuring apparatus - has measuring device for measuring position of instrument including inertia sensor unit
FR2694881B1 (en) 1992-07-31 1996-09-06 Univ Joseph Fourier A method of determining the position of an organ.
EP0655138B1 (en) 1992-08-14 1998-04-29 BRITISH TELECOMMUNICATIONS public limited company Position location system
WO1994004938A1 (en) 1992-08-14 1994-03-03 British Telecommunications Public Limited Company Position location system
US5368030A (en) * 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5469847A (en) 1992-09-09 1995-11-28 Izi Corporation Radiographic multi-modality skin markers
US5647361A (en) 1992-09-28 1997-07-15 Fonar Corporation Magnetic resonance imaging method and apparatus for guiding invasive therapy
DE4233978C1 (en) 1992-10-08 1994-04-21 Leibinger Gmbh Apparatus for marking parts of the body for medical examinations
US5568384A (en) 1992-10-13 1996-10-22 Mayo Foundation For Medical Education And Research Biomedical imaging and analysis
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5732703A (en) 1992-11-30 1998-03-31 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5353807A (en) 1992-12-07 1994-10-11 Demarco Thomas J Magnetically guidable intubation device
US5353795A (en) 1992-12-10 1994-10-11 General Electric Company Tracking system to monitor the position of a device using multiplexed magnetic resonance detection
US5799099A (en) * 1993-02-12 1998-08-25 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5575794A (en) * 1993-02-12 1996-11-19 Walus; Richard L. Tool for implanting a fiducial marker
US5787886A (en) 1993-03-19 1998-08-04 Compass International Incorporated Magnetic field digitizer for stereotatic surgery
US5453686A (en) 1993-04-08 1995-09-26 Polhemus Incorporated Pulsed-DC position and orientation measurement system
DE69424733D1 (en) 1993-04-20 2000-07-06 Gen Electric Graphic digital processing system and real-time video system for improving the representation of body structures during a surgical procedure.
US5387220A (en) * 1993-06-15 1995-02-07 Pisharodi; Maohaven Stereotactic frame and localization method
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
DE9314075U1 (en) * 1993-09-17 1994-01-20 Dwl Elektron Systeme Gmbh Means for receiving at least one sonography probe
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5607436A (en) 1993-10-08 1997-03-04 United States Surgical Corporation Apparatus for applying surgical clips
US5446548A (en) 1993-10-08 1995-08-29 Siemens Medical Systems, Inc. Patient positioning and monitoring system
EP0649117A3 (en) 1993-10-15 1996-01-31 George S Allen Method for providing medical images.
US5531227A (en) 1994-01-28 1996-07-02 Schneider Medical Technologies, Inc. Imaging device and method
US6096048A (en) * 1994-04-20 2000-08-01 Howard, Iii; Matthew A. Noninvasive, reattachable skull fiducial marker system
DE4417944A1 (en) 1994-05-21 1995-11-23 Zeiss Carl Fa A method of correlating different coordinate systems in computer-assisted stereotactic surgery
JP3267054B2 (en) 1994-06-13 2002-03-18 トヨタ自動車株式会社 Solar cell power generation power of the power storage device
US5419325A (en) 1994-06-23 1995-05-30 General Electric Company Magnetic resonance (MR) angiography using a faraday catheter
JP3708121B2 (en) 1994-08-19 2005-10-19 バイオセンス・インコーポレイテッドBiosense, Inc. Diagnosis and handling, as well as the video system of medical equipment
US5999840A (en) * 1994-09-01 1999-12-07 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets
US5531520A (en) 1994-09-01 1996-07-02 Massachusetts Institute Of Technology System and method of registration of three-dimensional data sets including anatomical body data
EP0951874A3 (en) * 1994-09-15 2000-06-14 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications using a reference unit secured to a patients head
US5829444A (en) * 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5611025A (en) * 1994-11-23 1997-03-11 General Electric Company Virtual internal cavity inspection system
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US5682890A (en) 1995-01-26 1997-11-04 Picker International, Inc. Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
US5947981A (en) 1995-01-31 1999-09-07 Cosman; Eric R. Head and neck localizer
US5971997A (en) 1995-02-03 1999-10-26 Radionics, Inc. Intraoperative recalibration apparatus for stereotactic navigators
US5588430A (en) 1995-02-14 1996-12-31 University Of Florida Research Foundation, Inc. Repeat fixation for frameless stereotactic procedure
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5730129A (en) * 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
US5566681A (en) 1995-05-02 1996-10-22 Manwaring; Kim H. Apparatus and method for stabilizing a body part
US6122541A (en) 1995-05-04 2000-09-19 Radionics, Inc. Head band for frameless stereotactic registration
US5592939A (en) * 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US6351659B1 (en) 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US5715822A (en) * 1995-09-28 1998-02-10 General Electric Company Magnetic resonance devices suitable for both tracking and imaging
US5772594A (en) 1995-10-17 1998-06-30 Barrick; Earl F. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
DE19547977A1 (en) * 1995-12-21 1997-06-26 Zeiss Carl Fa Probe system for coordinate
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5727552A (en) * 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5711299A (en) * 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
US5928248A (en) 1997-02-14 1999-07-27 Biosense, Inc. Guided deployment of stents
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
DE69733341D1 (en) 1996-02-27 2005-06-30 Biosense Webster Inc Locating process with field-confirmation sequences
US5727553A (en) * 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
US5782765A (en) 1996-04-25 1998-07-21 Medtronic, Inc. Medical positioning system
US5799055A (en) 1996-05-15 1998-08-25 Northwestern University Apparatus and method for planning a stereotactic surgical procedure using coordinated fluoroscopy
US6013087A (en) * 1996-05-29 2000-01-11 U.S. Philips Corporation Image-guided surgery system
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US5820553A (en) 1996-08-16 1998-10-13 Siemens Medical Systems, Inc. Identification system and method for radiation therapy
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
US6096050A (en) 1997-09-19 2000-08-01 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5951571A (en) 1996-09-19 1999-09-14 Surgical Navigation Specialist Inc. Method and apparatus for correlating a body with an image of the body
US5980535A (en) 1996-09-30 1999-11-09 Picker International, Inc. Apparatus for anatomical tracking
US6016439A (en) * 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US5810008A (en) * 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
JP4011631B2 (en) * 1997-01-03 2007-11-21 バイオセンス・インコーポレイテッド Pressure sensitive stent
DE69830719D1 (en) 1997-02-28 2005-08-04 Koninkl Philips Electronics Nv The surgical system with image-guidance
US6019725A (en) * 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
DE19715202B4 (en) 1997-04-11 2006-02-02 Brainlab Ag Referencing with a mouthpiece
DE19751761B4 (en) 1997-04-11 2006-06-22 Brainlab Ag System and method for accurate current sensing of treatment target points
US5921992A (en) 1997-04-11 1999-07-13 Radionics, Inc. Method and system for frameless tool calibration
US5834759A (en) 1997-05-22 1998-11-10 Glossop; Neil David Tracking device having emitter groups with different emitting directions
US5907395A (en) 1997-06-06 1999-05-25 Image Guided Technologies, Inc. Optical fiber probe for position measurement
CA2240776C (en) 1997-07-18 2006-01-10 Image Guided Technologies, Inc. Improved optical tracking system
US5999837A (en) 1997-09-26 1999-12-07 Picker International, Inc. Localizing and orienting probe for view devices
US5987960A (en) 1997-09-26 1999-11-23 Picker International, Inc. Tool calibrator
EP0904733B1 (en) 1997-09-27 2007-09-19 BrainLAB AG A method and apparatus for recording a three-dimensional image of a body part
US5978696A (en) 1997-10-06 1999-11-02 General Electric Company Real-time image-guided placement of anchor devices
US6201387B1 (en) * 1997-10-07 2001-03-13 Biosense, Inc. Miniaturized position sensor having photolithographic coils for tracking a medical probe
US6147480A (en) 1997-10-23 2000-11-14 Biosense, Inc. Detection of metal disturbance
US5882304A (en) * 1997-10-27 1999-03-16 Picker Nordstar Corporation Method and apparatus for determining probe location
DE19747427C2 (en) 1997-10-28 1999-12-09 Zeiss Carl Fa A device for bone segment navigation
US6014580A (en) * 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
US6149592A (en) 1997-11-26 2000-11-21 Picker International, Inc. Integrated fluoroscopic projection image data, volumetric image data, and surgical device position data
US5938603A (en) 1997-12-01 1999-08-17 Cordis Webster, Inc. Steerable catheter with electromagnetic sensor
US5967982A (en) 1997-12-09 1999-10-19 The Cleveland Clinic Foundation Non-invasive spine and bone registration for frameless stereotaxy
WO1999049783A1 (en) 1998-03-30 1999-10-07 Biosense Inc. Three-axis coil sensor
DE19829224B4 (en) 1998-06-30 2005-12-15 Brainlab Ag A method for localization of treatment objectives in the area of ​​soft body parts
US6148229A (en) * 1998-12-07 2000-11-14 Medrad, Inc. System and method for compensating for motion artifacts in a strong magnetic field
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
DE19917867B4 (en) * 1999-04-20 2005-04-21 Brainlab Ag Method and apparatus for image support in the treatment of treatment locations with integration of X-ray detection and navigation system
US6381485B1 (en) * 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
DE19953177A1 (en) * 1999-11-04 2001-06-21 Brainlab Ag Method to position patient exactly for radiation therapy or surgery; involves comparing positions in landmarks in X-ray image and reconstructed image date, to determine positioning errors
DE19956814B4 (en) 1999-11-25 2004-07-15 Brainlab Ag Shape detection of treatment devices
US7747312B2 (en) * 2000-01-04 2010-06-29 George Mason Intellectual Properties, Inc. System and method for automatic shape registration and instrument tracking
DE10000937B4 (en) 2000-01-12 2006-02-23 Brainlab Ag Intraoperative navigation update
US6490475B1 (en) 2000-04-28 2002-12-03 Ge Medical Systems Global Technology Company, Llc Fluoroscopic tracking and visualization system
US6478802B2 (en) 2000-06-09 2002-11-12 Ge Medical Systems Global Technology Company, Llc Method and apparatus for display of an image guided drill bit
EP1190676B1 (en) 2000-09-26 2003-08-13 BrainLAB AG Device for determining the position of a cutting guide
JP6194639B2 (en) 2013-05-30 2017-09-13 株式会社リコー Electronic information usage device, electronic information utilization system, a program and a control method

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3644825A (en) * 1969-12-31 1972-02-22 Texas Instruments Inc Magnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
US3821469A (en) * 1972-05-15 1974-06-28 Amperex Electronic Corp Graphical data device
US3868565A (en) * 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US4017858A (en) * 1973-07-30 1977-04-12 Polhemus Navigation Sciences, Inc. Apparatus for generating a nutating electromagnetic field
US4262306A (en) * 1977-04-27 1981-04-14 Karlheinz Renner Method and apparatus for monitoring of positions of patients and/or radiation units
US4182312A (en) * 1977-05-20 1980-01-08 Mushabac David R Dental probe
US4256112A (en) * 1979-02-12 1981-03-17 David Kopf Instruments Head positioner
US4341220A (en) * 1979-04-13 1982-07-27 Pfizer Inc. Stereotactic surgery apparatus and method
US4314251A (en) * 1979-07-30 1982-02-02 The Austin Company Remote object position and orientation locater
US4319136A (en) * 1979-11-09 1982-03-09 Jinkins J Randolph Computerized tomography radiograph data transfer cap
US4328548A (en) * 1980-04-04 1982-05-04 The Austin Company Locator for source of electromagnetic radiation having unknown structure or orientation
US4638798A (en) * 1980-09-10 1987-01-27 Shelden C Hunter Stereotactic method and apparatus for locating and treating or removing lesions
US4506676A (en) * 1982-09-10 1985-03-26 Duska Alois A Radiographic localization technique
US4651732A (en) * 1983-03-17 1987-03-24 Frederick Philip R Three-dimensional light guidance system for invasive procedures
US4660970A (en) * 1983-11-25 1987-04-28 Carl-Zeiss-Stiftung Method and apparatus for the contact-less measuring of objects
US4753528A (en) * 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
US4841967A (en) * 1984-01-30 1989-06-27 Chang Ming Z Positioning device for percutaneous needle insertion
US4583538A (en) * 1984-05-04 1986-04-22 Onik Gary M Method and apparatus for stereotaxic placement of probes in the body utilizing CT scanner localization
US4642786A (en) * 1984-05-25 1987-02-10 Position Orientation Systems, Ltd. Method and apparatus for position and orientation measurement using a magnetic field and retransmission
US4659971A (en) * 1984-08-16 1987-04-21 Seiko Instruments & Electronics Ltd. Robot controlling system
US4838265A (en) * 1985-05-24 1989-06-13 Cosman Eric R Localization device for probe placement under CT scanner imaging
US4743771A (en) * 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
US4805615A (en) * 1985-07-02 1989-02-21 Carol Mark P Method and apparatus for performing stereotactic surgery
US4737032A (en) * 1985-08-26 1988-04-12 Cyberware Laboratory, Inc. Surface mensuration sensor
US4737794A (en) * 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4742356A (en) * 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4742815A (en) * 1986-01-02 1988-05-10 Ninan Champil A Computer monitoring of endoscope
US4722056A (en) * 1986-02-18 1988-01-26 Trustees Of Dartmouth College Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope
US4821200A (en) * 1986-04-14 1989-04-11 Jonkopings Lans Landsting Method and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object
US4821731A (en) * 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US5078140A (en) * 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4822163A (en) * 1986-06-26 1989-04-18 Robotic Vision Systems, Inc. Tracking vision sensor
US4723544A (en) * 1986-07-09 1988-02-09 Moore Robert R Hemispherical vectoring needle guide for discolysis
US4733969A (en) * 1986-09-08 1988-03-29 Cyberoptics Corporation Laser probe for determining distance
US4743770A (en) * 1986-09-22 1988-05-10 Mitutoyo Mfg. Co., Ltd. Profile-measuring light probe using a change in reflection factor in the proximity of a critical angle of light
US4945305A (en) * 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4750487A (en) * 1986-11-24 1988-06-14 Zanetti Paul H Stereotactic frame
US4825091A (en) * 1987-02-05 1989-04-25 Carl-Zeiss-Stiftung Optoelectronic distance sensor with visible pilot beam
US4745290A (en) * 1987-03-19 1988-05-17 David Frankel Method and apparatus for use in making custom shoes
US4804261A (en) * 1987-03-27 1989-02-14 Kirschen David G Anti-claustrophobic glasses
US4809694A (en) * 1987-05-19 1989-03-07 Ferrara Vincent L Biopsy guide
US5186174A (en) * 1987-05-21 1993-02-16 G. M. Piaff Process and device for the reproducible optical representation of a surgical operation
US4836778A (en) * 1987-05-26 1989-06-06 Vexcel Corporation Mandibular motion monitoring system
US4829373A (en) * 1987-08-03 1989-05-09 Vexcel Corporation Stereo mensuration apparatus
US4931056A (en) * 1987-09-04 1990-06-05 Neurodynamics, Inc. Catheter guide apparatus for perpendicular insertion into a cranium orifice
US4923459A (en) * 1987-09-14 1990-05-08 Kabushiki Kaisha Toshiba Stereotactics apparatus
US5119817A (en) * 1987-11-10 1992-06-09 Allen George S Apparatus for imaging the anatomy
US5016639A (en) * 1987-11-10 1991-05-21 Allen George S Method and apparatus for imaging the anatomy
US5230338A (en) * 1987-11-10 1993-07-27 Allen George S Interactive image-guided surgical system for displaying images corresponding to the placement of a surgical tool or the like
US4991579A (en) * 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5211164A (en) * 1987-11-10 1993-05-18 Allen George S Method of locating a target on a portion of anatomy
US5094241A (en) * 1987-11-10 1992-03-10 Allen George S Apparatus for imaging the anatomy
US5178164A (en) * 1987-11-10 1993-01-12 Allen George S Method for implanting a fiducial implant into a patient
US5097839A (en) * 1987-11-10 1992-03-24 Allen George S Apparatus for imaging the anatomy
US5027818A (en) * 1987-12-03 1991-07-02 University Of Florida Dosimetric technique for stereotactic radiosurgery same
US4845305A (en) * 1988-07-07 1989-07-04 National Starch And Chemical Corporation Process for the preparation of isophthaladehyde
US5099846A (en) * 1988-12-23 1992-03-31 Hardy Tyrone L Method and apparatus for video presentation from a variety of scanner imaging sources
US5098426A (en) * 1989-02-06 1992-03-24 Phoenix Laser Systems, Inc. Method and apparatus for precision laser surgery
US5197476A (en) * 1989-03-16 1993-03-30 Christopher Nowacki Locating target in human body
US5285787A (en) * 1989-09-12 1994-02-15 Kabushiki Kaisha Toshiba Apparatus for calculating coordinate data of desired point in subject to be examined
US5868675A (en) * 1989-10-05 1999-02-09 Elekta Igs S.A. Interactive system for local intervention inside a nonhumogeneous structure
US5224049A (en) * 1990-04-10 1993-06-29 Mushabac David R Method, system and mold assembly for use in preparing a dental prosthesis
US5107839A (en) * 1990-05-04 1992-04-28 Pavel V. Houdek Computer controlled stereotaxic radiotherapy system and method
US5086401A (en) * 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5017139A (en) * 1990-07-05 1991-05-21 Mushabac David R Mechanical support for hand-held dental/medical instrument
US5193106A (en) * 1990-08-28 1993-03-09 Desena Danforth X-ray identification marker
US5383454A (en) * 1990-10-19 1995-01-24 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5891034A (en) * 1990-10-19 1999-04-06 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5383454B1 (en) * 1990-10-19 1996-12-31 Univ St Louis System for indicating the position of a surgical probe within a head on an image of the head
US5622170A (en) * 1990-10-19 1997-04-22 Image Guided Technologies, Inc. Apparatus for determining the position and orientation of an invasive portion of a probe inside a three-dimensional body
US5480439A (en) * 1991-02-13 1996-01-02 Lunar Corporation Method for periprosthetic bone mineral density measurement
US5279309A (en) * 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
US5211165A (en) * 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5207688A (en) * 1991-10-31 1993-05-04 Medco, Inc. Noninvasive head fixation method and apparatus
US5300080A (en) * 1991-11-01 1994-04-05 David Clayman Stereotactic instrument guided placement
US5330485A (en) * 1991-11-01 1994-07-19 Clayman David A Cerebral instrument guide frame and procedures utilizing it
US5230623A (en) * 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US5306271A (en) * 1992-03-09 1994-04-26 Izi Corporation Radiation therapy skin markers
US5299253A (en) * 1992-04-10 1994-03-29 Akzo N.V. Alignment system to overlay abdominal computer aided tomography and magnetic resonance anatomy with single photon emission tomography
US5389101A (en) * 1992-04-21 1995-02-14 University Of Utah Apparatus and method for photogrammetric surgical localization
US5307072A (en) * 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
US5288253A (en) * 1992-08-07 1994-02-22 Nortrans Shipping And Trading Far East Pte Ltd. Single point mooring system employing a submerged buoy and a vessel mounted fluid swivel
US5309913A (en) * 1992-11-30 1994-05-10 The Cleveland Clinic Foundation Frameless stereotaxy system
US5517990A (en) * 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
US5730130A (en) * 1993-02-12 1998-03-24 Johnson & Johnson Professional, Inc. Localization cap for fiducial markers
US5483961A (en) * 1993-03-19 1996-01-16 Kelly; Patrick J. Magnetic field digitizer for stereotactic surgery
US5871445A (en) * 1993-04-26 1999-02-16 St. Louis University System for indicating the position of a surgical probe within a head on an image of the head
US5738096A (en) * 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5755725A (en) * 1993-09-07 1998-05-26 Deemed International, S.A. Computer-assisted microsurgery methods and equipment
US5394875A (en) * 1993-10-21 1995-03-07 Lewis; Judith T. Automatic ultrasonic localization of targets implanted in a portion of the anatomy
US5615132A (en) * 1994-01-21 1997-03-25 Crossbow Technology, Inc. Method and apparatus for determining position and orientation of a moveable object using accelerometers
US5600330A (en) * 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US6071288A (en) * 1994-09-30 2000-06-06 Ohio Medical Instrument Company, Inc. Apparatus and method for surgical stereotactic procedures
US5640170A (en) * 1995-06-05 1997-06-17 Polhemus Incorporated Position and orientation measuring system having anti-distortion source configuration
US5617857A (en) * 1995-06-06 1997-04-08 Image Guided Technologies, Inc. Imaging system having interactive medical instruments and methods
US5752513A (en) * 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5729129A (en) * 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US5718241A (en) * 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5769861A (en) * 1995-09-28 1998-06-23 Brainlab Med. Computersysteme Gmbh Method and devices for localizing an instrument

Cited By (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US8200314B2 (en) 1992-08-14 2012-06-12 British Telecommunications Public Limited Company Surgical navigation
US20070167722A1 (en) * 1992-08-14 2007-07-19 British Telecommunications Public Limited Company Surgical navigation
US20020188172A1 (en) * 1997-04-16 2002-12-12 Klaus Irion Endoscopic system
US6832985B2 (en) * 1997-04-16 2004-12-21 Karl Storz Gmbh & Co. Kg Endoscopic system with instrument position and orientation display
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42226E1 (en) 1997-09-24 2011-03-15 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
USRE46422E1 (en) 1997-11-20 2017-06-06 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
US8105339B2 (en) 1997-12-12 2012-01-31 Sofamor Danek Holdings, Inc. Image guided spinal surgery guide system and method for use thereof
US20100286713A1 (en) * 1997-12-12 2010-11-11 Medtronic Navigation, Inc. Image Guided Spinal Surgery Guide System And Method For Use Thereof
US20050059885A1 (en) * 1997-12-12 2005-03-17 Tony Melkent Image guided spinal surgery guide, system and method for use thereof
US7763035B2 (en) 1997-12-12 2010-07-27 Medtronic Navigation, Inc. Image guided spinal surgery guide, system and method for use thereof
US8768437B2 (en) 1998-08-20 2014-07-01 Sofamor Danek Holdings, Inc. Fluoroscopic image guided surgery system with intraoperative registration
US20100041985A1 (en) * 1999-03-23 2010-02-18 Surgical Navigation Technologies, Inc. Navigational Guidance Via Computer-Assisted Fluoroscopic Imaging
US7996064B2 (en) 1999-03-23 2011-08-09 Medtronic Navigation, Inc. System and method for placing and determining an appropriately sized surgical implant
US20030073901A1 (en) * 1999-03-23 2003-04-17 Simon David A. Navigational guidance via computer-assisted fluoroscopic imaging
US8845655B2 (en) 1999-04-20 2014-09-30 Medtronic Navigation, Inc. Instrument guide system
US20030114752A1 (en) * 1999-04-20 2003-06-19 Jaimie Henderson Instrument guidance method and system for image guided surgery
US20100305580A1 (en) * 1999-04-20 2010-12-02 Medtronic Navigation, Inc Instrument Guide System
US8057407B2 (en) 1999-10-28 2011-11-15 Medtronic Navigation, Inc. Surgical sensor
US20020156363A1 (en) * 1999-10-28 2002-10-24 Hunter Mark W. Registration of human anatomy integrated for electromagnetic localization
US8290572B2 (en) 1999-10-28 2012-10-16 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US20100137707A1 (en) * 1999-10-28 2010-06-03 Medtronic Navigation, Inc Registration of Human Anatomy Integrated for Electromagnetic Localization
US20100331671A1 (en) * 1999-10-28 2010-12-30 Medtronic Navigation, Inc Method and System for Navigating a Catheter Probe in the Presence of Field-Influencing Objects
US7657300B2 (en) 1999-10-28 2010-02-02 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US20060278247A1 (en) * 1999-10-28 2006-12-14 Mark W. Hunter Et Al. Surgical communication and power system
US20100210939A1 (en) * 1999-10-28 2010-08-19 Medtronic Navigation, Inc. Method and Apparatus for Surgical Navigation
US8074662B2 (en) 1999-10-28 2011-12-13 Medtronic Navigation, Inc. Surgical communication and power system
US20030117135A1 (en) * 1999-10-28 2003-06-26 Martinelli Michael A. Method and system for navigating a catheter probe in the presence of field-influencing objects
US7797032B2 (en) 1999-10-28 2010-09-14 Medtronic Navigation, Inc. Method and system for navigating a catheter probe in the presence of field-influencing objects
US8548565B2 (en) 1999-10-28 2013-10-01 Medtronic Navigation, Inc. Registration of human anatomy integrated for electromagnetic localization
US20110118593A1 (en) * 2000-03-01 2011-05-19 Medtronic Navigation, Inc. Multiple Cannula Image Guided Tool for Image Guided Procedures
US7881770B2 (en) 2000-03-01 2011-02-01 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US20050113809A1 (en) * 2000-03-01 2005-05-26 Melkent Anthony J. Multiple cannula image guided tool for image guided procedures
US8634897B2 (en) 2000-04-07 2014-01-21 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US7853305B2 (en) 2000-04-07 2010-12-14 Medtronic Navigation, Inc. Trajectory storage apparatus and method for surgical navigation systems
US20110077508A1 (en) * 2000-04-07 2011-03-31 Medtronic Navigation, Inc Trajectory Storage Apparatus And Method For Surgical Navigation Systems
US20060262961A1 (en) * 2000-06-14 2006-11-23 Troy Holsing Et Al. System and method for image based sensor calibration
US20110052008A1 (en) * 2000-06-14 2011-03-03 Medtronic Navigation, Inc. System and Method for Image Based Sensor Calibration
US7831082B2 (en) 2000-06-14 2010-11-09 Medtronic Navigation, Inc. System and method for image based sensor calibration
US8320653B2 (en) 2000-06-14 2012-11-27 Medtronic Navigation, Inc. System and method for image based sensor calibration
US20040087852A1 (en) * 2001-02-06 2004-05-06 Edward Chen Computer-assisted surgical positioning method and system
US20040181149A1 (en) * 2001-02-07 2004-09-16 Ulrich Langlotz Device and method for intraoperative navigation
US20090287443A1 (en) * 2001-06-04 2009-11-19 Surgical Navigation Technologies, Inc. Method for Calibrating a Navigation System
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US20050273004A1 (en) * 2002-02-28 2005-12-08 Simon David A Method and apparatus for perspective inversion
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US20090262111A1 (en) * 2002-02-28 2009-10-22 Surgical Navigation Technologies, Inc. Method and Apparatus for Perspective Inversion
US20050165292A1 (en) * 2002-04-04 2005-07-28 Simon David A. Method and apparatus for virtual digital subtraction angiography
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US8696685B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US8696548B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US9642514B2 (en) 2002-04-17 2017-05-09 Covidien Lp Endoscope structures and techniques for navigating to a target in a branched structure
US8046052B2 (en) 2002-11-19 2011-10-25 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8060185B2 (en) 2002-11-19 2011-11-15 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20100022873A1 (en) * 2002-11-19 2010-01-28 Surgical Navigation Technologies, Inc. Navigation System for Cardiac Therapies
US8467853B2 (en) 2002-11-19 2013-06-18 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20040097806A1 (en) * 2002-11-19 2004-05-20 Mark Hunter Navigation system for cardiac therapies
US20040097805A1 (en) * 2002-11-19 2004-05-20 Laurent Verard Navigation system for cardiac therapies
US20100210938A1 (en) * 2002-11-19 2010-08-19 Medtronic Navigation, Inc Navigation System for Cardiac Therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US8401616B2 (en) 2002-11-19 2013-03-19 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20040171924A1 (en) * 2003-01-30 2004-09-02 Mire David A. Method and apparatus for preplanning a surgical procedure
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US20040152972A1 (en) * 2003-01-30 2004-08-05 Mark Hunter Method and apparatus for post-operative tuning of a spinal implant
US20090234217A1 (en) * 2003-01-30 2009-09-17 Surgical Navigation Technologies, Inc. Method And Apparatus For Preplanning A Surgical Procedure
US7974677B2 (en) 2003-01-30 2011-07-05 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US20040215071A1 (en) * 2003-04-25 2004-10-28 Frank Kevin J. Method and apparatus for performing 2D to 3D registration
US7925328B2 (en) 2003-08-28 2011-04-12 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US20080097195A1 (en) * 2003-08-28 2008-04-24 Surgical Navigation Technologies, Inc. Method and apparatus for performing stereotactic surgery
US9089261B2 (en) 2003-09-15 2015-07-28 Covidien Lp System of accessories for use with bronchoscopes
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US20050085714A1 (en) * 2003-10-16 2005-04-21 Foley Kevin T. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US8706185B2 (en) 2003-10-16 2014-04-22 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US8271069B2 (en) * 2003-10-17 2012-09-18 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US20060084867A1 (en) * 2003-10-17 2006-04-20 Tremblay Brian M Method and apparatus for surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US20050085720A1 (en) * 2003-10-17 2005-04-21 Jascob Bradley A. Method and apparatus for surgical navigation
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US20100274124A1 (en) * 2003-10-17 2010-10-28 Medtronic Navigation, Inc. Method and Apparatus for Surgical Navigation
US7818044B2 (en) 2003-10-17 2010-10-19 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8549732B2 (en) 2003-10-17 2013-10-08 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US20060025677A1 (en) * 2003-10-17 2006-02-02 Verard Laurent G Method and apparatus for surgical navigation
US8359730B2 (en) 2003-10-17 2013-01-29 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument
US7751865B2 (en) 2003-10-17 2010-07-06 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7971341B2 (en) 2003-10-17 2011-07-05 Medtronic Navigation, Inc. Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system
US20080172069A1 (en) * 2003-10-17 2008-07-17 Surgical Navigation Technologies, Inc Method And Apparatus For Surgical Navigation
US20080171937A1 (en) * 2003-10-17 2008-07-17 Surgical Navigation Technologies, Inc Method And Apparatus For Surgical Navigation
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US20080262297A1 (en) * 2004-04-26 2008-10-23 Super Dimension Ltd. System and Method for Image-Based Alignment of an Endoscope
US7953471B2 (en) 2004-05-03 2011-05-31 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US20050245817A1 (en) * 2004-05-03 2005-11-03 Clayton John B Method and apparatus for implantation between two vertebral bodies
US20060058645A1 (en) * 2004-09-01 2006-03-16 Komistek Richard D Method and apparatus for imaging tracking
US8406845B2 (en) * 2004-09-01 2013-03-26 University Of Tennessee Research Foundation Method and apparatus for imaging tracking
US20060094958A1 (en) * 2004-10-28 2006-05-04 Marquart Joel G Method and apparatus for calibrating non-linear instruments
US20080071215A1 (en) * 2004-11-05 2008-03-20 Traxtal Technologies Inc. Access System
US7722565B2 (en) 2004-11-05 2010-05-25 Traxtal, Inc. Access system
US7805269B2 (en) 2004-11-12 2010-09-28 Philips Electronics Ltd Device and method for ensuring the accuracy of a tracking device in a volume
US7751868B2 (en) 2004-11-12 2010-07-06 Philips Electronics Ltd Integrated skin-mounted multifunction device for use in image-guided surgery
US20060122497A1 (en) * 2004-11-12 2006-06-08 Glossop Neil D Device and method for ensuring the accuracy of a tracking device in a volume
US20060173269A1 (en) * 2004-11-12 2006-08-03 Glossop Neil D Integrated skin-mounted multifunction device for use in image-guided surgery
US8611983B2 (en) 2005-01-18 2013-12-17 Philips Electronics Ltd Method and apparatus for guiding an instrument to a target in the lung
US20060173291A1 (en) * 2005-01-18 2006-08-03 Glossop Neil D Electromagnetically tracked K-wire device
US7840254B2 (en) 2005-01-18 2010-11-23 Philips Electronics Ltd Electromagnetically tracked K-wire device
US20060170417A1 (en) * 2005-02-02 2006-08-03 Rodgers Allan G Distributed array magnetic tracking
US20060199159A1 (en) * 2005-03-01 2006-09-07 Neuronetics, Inc. Head phantom for simulating the patient response to magnetic stimulation
US8632461B2 (en) 2005-06-21 2014-01-21 Koninklijke Philips N.V. System, method and apparatus for navigated therapy and diagnosis
US20070032723A1 (en) * 2005-06-21 2007-02-08 Glossop Neil D System, method and apparatus for navigated therapy and diagnosis
US9398892B2 (en) 2005-06-21 2016-07-26 Koninklijke Philips N.V. Device and method for a trackable ultrasound
US20070167787A1 (en) * 2005-06-21 2007-07-19 Glossop Neil D Device and method for a trackable ultrasound
US9661991B2 (en) 2005-08-24 2017-05-30 Koninklijke Philips N.V. System, method and devices for navigated flexible endoscopy
US20070055128A1 (en) * 2005-08-24 2007-03-08 Glossop Neil D System, method and devices for navigated flexible endoscopy
WO2007025081A3 (en) * 2005-08-24 2007-12-06 Traxtal Inc System, method and devices for navigated flexible endoscopy
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
US8467851B2 (en) 2005-09-21 2013-06-18 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US20070066887A1 (en) * 2005-09-21 2007-03-22 Mire David A Method and apparatus for positioning a reference frame
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US20100204955A1 (en) * 2005-11-28 2010-08-12 Martin Roche Method and system for positional measurement using ultrasonic sensing
US8000926B2 (en) 2005-11-28 2011-08-16 Orthosensor Method and system for positional measurement using ultrasonic sensing
US8494805B2 (en) 2005-11-28 2013-07-23 Orthosensor Method and system for assessing orthopedic alignment using tracking sensors
US20100204575A1 (en) * 2005-11-29 2010-08-12 Martin Roche Method and system for enhancing accuracy in ultrasonic alignment
US8098544B2 (en) 2005-11-29 2012-01-17 Orthosensor, Inc. Method and system for enhancing accuracy in ultrasonic alignment
US8270253B1 (en) 2005-11-29 2012-09-18 Orthosensor, Inc. Method and system for ultrasonic measurement and alignment
US20110060220A1 (en) * 2005-12-01 2011-03-10 Martin Roche Virtual mapping of an anatomical pivot point and alignment therewith
US8864686B2 (en) 2005-12-01 2014-10-21 Orthosensor Inc. Virtual mapping of an anatomical pivot point and alignment therewith
US20110032184A1 (en) * 2005-12-01 2011-02-10 Martin Roche Orthopedic method and system for mapping an anatomical pivot point
US8814810B2 (en) 2005-12-01 2014-08-26 Orthosensor Inc. Orthopedic method and system for mapping an anatomical pivot point
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US20070166188A1 (en) * 2006-01-18 2007-07-19 Eric Ryterski Method and apparatus for providing a container to a sterile environment
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US20070249911A1 (en) * 2006-04-21 2007-10-25 Simon David A Method and apparatus for optimizing a therapy
WO2009008894A2 (en) * 2006-08-22 2009-01-15 Dimensions Imaging System and method for determining absolute position using a multiple wavelength signal
US8421642B1 (en) 2006-08-24 2013-04-16 Navisense System and method for sensorized user interface
US9642571B2 (en) 2006-08-24 2017-05-09 Orthosensor Inc System and method for sensorized user interface
US20080058630A1 (en) * 2006-09-01 2008-03-06 Robertson Timothy L Simultaneous blood flow and hematocrit sensor
US8172762B2 (en) 2006-09-01 2012-05-08 Proteus Biomedical, Inc. Simultaneous blood flow and hematocrit sensor
US8638296B1 (en) 2006-09-05 2014-01-28 Jason McIntosh Method and machine for navigation system calibration
US8660635B2 (en) 2006-09-29 2014-02-25 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US20080081982A1 (en) * 2006-09-29 2008-04-03 Medtronic, Inc. Method And Apparatus For Optimizing A Computer Assisted Surgical Procedure
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US20080119712A1 (en) * 2006-11-20 2008-05-22 General Electric Company Systems and Methods for Automated Image Registration
US20080312529A1 (en) * 2007-06-15 2008-12-18 Louis-Philippe Amiot Computer-assisted surgery system and method
US9532848B2 (en) * 2007-06-15 2017-01-03 Othosoft, Inc. Computer-assisted surgery system and method
US9668639B2 (en) 2007-09-27 2017-06-06 Covidien Lp Bronchoscope adapter and method
US9986895B2 (en) 2007-09-27 2018-06-05 Covidien Lp Bronchoscope adapter and method
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US9189083B2 (en) 2008-03-18 2015-11-17 Orthosensor Inc. Method and system for media presentation during operative workflow
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US9659374B2 (en) 2008-06-03 2017-05-23 Covidien Lp Feature-based registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8467589B2 (en) 2008-06-06 2013-06-18 Covidien Lp Hybrid registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US10070801B2 (en) 2008-07-10 2018-09-11 Covidien Lp Integrated multi-functional endoscopic tool
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
US8731641B2 (en) 2008-12-16 2014-05-20 Medtronic Navigation, Inc. Combination of electromagnetic and electropotential localization
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US9113813B2 (en) 2009-04-08 2015-08-25 Covidien Lp Locatable catheter
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US20110207997A1 (en) * 2009-04-08 2011-08-25 Superdimension, Ltd. Locatable Catheter
US20120136626A1 (en) * 2009-05-18 2012-05-31 Dirk Mucha Method for generating position data of an instrument
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
US9452022B2 (en) 2009-12-31 2016-09-27 Orthosensor Inc Disposable wand and sensor for orthopedic alignment
US20110160738A1 (en) * 2009-12-31 2011-06-30 Orthosensor Operating room surgical field device and method therefore
US20110160583A1 (en) * 2009-12-31 2011-06-30 Orthosensor Orthopedic Navigation System with Sensorized Devices
US20110160572A1 (en) * 2009-12-31 2011-06-30 Orthosensor Disposable wand and sensor for orthopedic alignment
US9452023B2 (en) 2009-12-31 2016-09-27 Orthosensor Inc. Operating room surgical field device and method therefore
US9011448B2 (en) 2009-12-31 2015-04-21 Orthosensor Inc. Orthopedic navigation system with sensorized devices
US8892186B2 (en) * 2010-09-20 2014-11-18 Siemens Aktiengesellschaft Method and system for detection and tracking of coronary sinus catheter electrodes in fluoroscopic images