Connect public, paid and private patent data with Google Patents Public Datasets

Device and method for modifying the shape of a body organ

Download PDF

Info

Publication number
US20030236569A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
anchor
support
wire
distal
proximal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10429204
Other versions
US7311729B2 (en )
Inventor
Mark Mathis
Leonard Kowalsky
David Reuter
Cruz Beeson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CARDIAC DIMENSIONS PTY Ltd
Original Assignee
Cardiac Dimensions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2451Inserts in the coronary sinus for correcting the valve shape

Abstract

An intravascular support device includes a support or reshaper wire, a proximal anchor and a distal anchor. The support wire engages a vessel wall to change the shape of tissue adjacent the vessel in which the intravascular support is placed. The anchors and support wire are designed such that the vessel in which the support is placed remains open and can be accessed by other devices if necessary. The device provides a minimal metal surface area to blood flowing within the vessel to limit the creation of thrombosis. The anchors can be locked in place to secure the support within the vessel.

Description

    CROSS-REFERENCE(S) TO RELATED APPLICATION(S)
  • [0001]
    The present application is a continuation-in-part of U.S. application Ser. No. 10/331,343 filed Dec. 26, 2002, and U.S. application Ser. No. 10/142,637 filed May 8, 2002, the benefit of the filing dates being claimed under 35 U.S.C. § 120 and the disclosures of which are incorporated by reference.
  • FIELD OF THE INVENTION
  • [0002]
    The present invention relates to medical devices in general, and in particular to devices for supporting internal body organs.
  • BACKGROUND OF THE INVENTION
  • [0003]
    The mitral valve is a portion of the heart that is located between the chambers of the left atrium and the left ventricle. When the left ventricle contracts to pump blood throughout the body, the mitral valve closes to prevent the blood being pumped back into the left atrium. In some patients, whether due to genetic malformation, disease or injury, the mitral valve fails to close properly causing a condition known as regurgitation, whereby blood is pumped into the atrium upon each contraction of the heart muscle. Regurgitation is a serious, often rapidly deteriorating, condition that reduces circulatory efficiency and must be corrected.
  • [0004]
    Two of the more common techniques for restoring the function of a damaged mitral valve are to surgically replace the valve with a mechanical valve or to suture a flexible ring around the valve to support it. Each of these procedures is highly invasive because access to the heart is obtained through an opening in the patient's chest. Patients with mitral valve regurgitation are often relatively frail thereby increasing the risks associated with such an operation.
  • [0005]
    One less invasive approach for aiding the closure of the mitral valve involves the placement of a support structure in the cardiac sinus and vessel that passes adjacent the mitral valve. The support structure is designed to push the vessel and surrounding tissue against the valve to aid its closure. This technique has the advantage over other methods of mitral valve repair because it can be performed percutaneously without opening the chest wall. While this technique appears promising, some proposed supports appear to limit the amount of blood that can flow through the coronary sinus and may contribute to the formation of thrombosis in the vessel. Therefore, there is a need for a tissue support structure that does not inhibit the flow of blood in the vessel in which it is placed and reduces the likelihood of thrombosis formation. Furthermore, the device should be flexible and securely anchored such that it moves with the body and can adapt to changes in the shape of the vessel over time.
  • SUMMARY OF THE INVENTION
  • [0006]
    The present invention is an intravascular support that is designed to change the shape of a body organ that is adjacent to a vessel in which the support is placed. In one embodiment of the invention, the support is designed to aid the closure of a mitral valve. The support is placed in a coronary sinus and vessel that are located adjacent the mitral valve and urges the vessel wall against the valve to aid its closure.
  • [0007]
    The intravascular support of the present invention includes a proximal and distal anchor and a support wire or reshaper disposed therebetween. The proximal and distal anchors circumferentially engage a vessel in which the support is placed. A support wire is urged against the vessel by the proximal and distal anchors to support the tissue adjacent the vessel.
  • [0008]
    In one embodiment of the invention, the proximal and distal supports are made from a wire hoop that presents a low metal coverage area to blood flowing within the vessel. The wire hoops may allow tissue to grow over the anchors to reduce the chance of thrombosis formation. The wire hoops have a figure eight configuration and can expand to maintain contact with the vessel walls if no vessel expands or changes shape.
  • [0009]
    In another embodiment of the invention, the proximal and distal anchors of the intravascular support are rotationally offset from each other. Locks on the support wire allow a physician to ensure that the anchors have been successfully deployed and prevent the support wire from collapsing within a vessel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
  • [0011]
    [0011]FIG. 1 illustrates an intravascular support for changing the shape of an internal body organ in accordance with one embodiment of the present invention;
  • [0012]
    [0012]FIG. 2 illustrates one method of deploying an intravascular support in accordance with the present invention;
  • [0013]
    [0013]FIG. 3 illustrates one embodiment of the intravascular support in accordance with the present invention;
  • [0014]
    [0014]FIG. 4 illustrates a distal anchor of the embodiment shown in FIG. 3;
  • [0015]
    [0015]FIG. 5 illustrates a proximal anchor of the embodiment shown in FIG. 3;
  • [0016]
    FIGS. 6A-6C are cross-sectional views of crimp tubes for use with one embodiment of the present invention;
  • [0017]
    [0017]FIG. 7 illustrates a proximal lock at the proximal end of the intravascular support as shown in FIG. 3;
  • [0018]
    [0018]FIG. 8 illustrates how the embodiment of the intravascular support shown in FIG. 3 is deployed from a catheter;
  • [0019]
    [0019]FIG. 9 illustrates an intravascular support in accordance with another embodiment of the present invention;
  • [0020]
    [0020]FIG. 10 illustrates a distal anchor of the intravascular support shown in FIG. 9;
  • [0021]
    [0021]FIG. 11 illustrates a proximal anchor of the intravascular support shown in FIG. 9;
  • [0022]
    [0022]FIG. 12 illustrates yet another embodiment of an intravascular support in accordance with the present invention;
  • [0023]
    [0023]FIG. 13 illustrates a distal anchor of the intravascular support shown in FIG. 12;
  • [0024]
    [0024]FIG. 14 illustrates a proximal anchor of the intravascular support shown in FIG. 12;
  • [0025]
    [0025]FIG. 15 illustrates an anchor and strut according to another embodiment of the invention;
  • [0026]
    [0026]FIG. 16 illustrates a double loop anchor according to another embodiment of the invention;
  • [0027]
    [0027]FIG. 17 illustrates a double loop anchor with a cross strut according to another embodiment of the invention; and
  • [0028]
    [0028]FIG. 18 illustrates an anchor with torsional springs according to another embodiment of the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • [0029]
    As indicated above, the present invention is a medical device that supports or changes the shape of tissue that is adjacent a vessel in which the device is placed. The present invention can be used in any location in the body where the tissue needing support is located near a vessel in which the device can be deployed. The present invention is particularly useful in supporting a mitral valve in an area adjacent a coronary sinus and vessel. Therefore, although the embodiments of the invention described are designed to support a mitral valve, those skilled in the art will appreciate that the invention is not limited to use in supporting a mitral valve.
  • [0030]
    [0030]FIG. 1 illustrates a mitral valve 20 having a number of flaps 22, 24 and 26 that should overlap and close when the ventricle of the heart contracts. As indicated above, some hearts may have a mitral valve that fails to close properly thereby creating one or more gaps 28 that allow blood to be pumped back into the left atrium each time the heart contracts. To add support to the mitral valve such that the valve completely closes, an intravascular support 50 is placed in a coronary sinus and vessel 60 that passes adjacent one side of the mitral valve 20. The intravascular support 50 has a proximal anchor 52, a distal anchor 54, and a support wire 56 or reshaper extending between the proximal and distal anchors. With the anchors 52 and 54 in place, the support wire 56 exerts a force through the coronary sinus wall on the postero-lateral mitral valve 20 thereby closing the one or more gaps 28 formed between the valve flaps. With the intravascular support 50 in place, the function of the mitral valve is improved.
  • [0031]
    As will be explained in further detail below, each of the proximal and distal anchors 52, 54 preferably circumferentially engages the wall of the vessel 60 in which it is placed. The support wire 56 is secured to a peripheral edge of the proximal and distal anchors such that the support wire is urged by the anchors against the vessel wall. Therefore, the support wire 56 and anchors 52, 54 present a minimal obstruction to blood flowing within the vessel.
  • [0032]
    [0032]FIG. 2 shows one possible method of delivering the intravascular support of the present invention to a desired location in a patient's body. An incision 80 is made in the patient's skin to access a blood vessel. A guide catheter 82 is advanced through the patient's vasculature until its distal end is positioned adjacent the desired location of the intravascular support. After positioning the guide catheter 82, a delivery catheter and advancing mechanism 84 are inserted through the guide catheter 82 to deploy the intravascular support at the desired location in the patient's body. Further detail regarding one suitable advancing mechanism 84 is described in commonly assigned U.S. patent application Ser. No. 10/313,914, filed Dec. 5, 2002, the disclosure of which is hereby incorporated by reference.
  • [0033]
    [0033]FIG. 3 illustrates one embodiment of an intravascular support in accordance with the present invention. The intravascular support 100 includes a support wire 102 having a proximal end 104 and a distal end 106. The support wire 102 is made of a biocompatible material such as stainless steel or a shape memory material such as nitinol wire.
  • [0034]
    In one embodiment of the invention, the support wire 102 comprises a double length of nitinol wire that has both ends positioned within a distal crimp tube 108. To form the support wire 102, the wire extends distally from the crimp tube 108 where it is bent to form a distal stop loop (see 121 in FIG. 4) having a diameter that is larger than the lumens within the distal crimp tube 108. After forming the distal stop loop, the wire returns proximally through the crimp tube 108 towards the proximal end of the support 100. Proximal to the proximal end of the crimp tube 108, is a distal lock 110 that is formed by the support wire bending away from the longitudinal axis of the support 102 and then being bent parallel to the longitudinal axis of the support before being bent again towards the longitudinal axis of the support. Therefore, the bends in the support wire form a half 110 a of the distal lock that is used to secure the distal anchor in the manner described below. From the distal lock 110, the wire continues proximally through a proximal crimp tube 112. On exiting the proximal end of the proximal crimp tube 112, the wire is bent to form an arrowhead-shaped proximal lock 114. The wire of the support 102 then returns distally through the proximal crimp tube 112 to a position just proximal to the proximal end of the distal crimp tube 108 wherein the wire is bent to form a second half 110 b of the distal lock 110.
  • [0035]
    Support wire 102 has a length that is selected based on its intended destination within a patient's vessel. For use in supporting a mitral valve, the support wire is preferably between one and six inches long and has a curved bend between its proximal end 104 and distal end 106 with a radius of curvature between 1 and 3 inches and most preferably with a radius of curvature of 1.8 inches. In addition, the wire used to form the support wire 102 is flexible enough to move with each heartbeat (thereby changing the force applied to the mitral valve annulus during the heartbeat) and stiff enough to support the mitral valve. In one embodiment, the wire used to form the support wire 102 is made of nitinol having a modulus of elasticity of 5-20×106 psi and a diameter of between 0.0110″ and 0.0150″ and most preferably 0.0140″. Other shape memory materials may be used for support wire as well.
  • [0036]
    At the distal end of the support wire 102 is a distal anchor 120 that is formed of a flexible wire such as nitinol or some other shape memory material. As is best shown in FIGS. 3 and 4, the wire forming the distal anchor has one end positioned within the distal crimp tube 108. After exiting the distal end of the crimp tube 108, the wire forms a figure eight configuration whereby it bends upward and radially outward from the longitudinal axis of the crimp tube 108. The wire then bends back proximally and crosses the longitudinal axis of the crimp tube 108 to form one leg of the figure eight. The wire is then bent to form a double loop eyelet or loop 122 around the longitudinal axis of the support wire 102 before extending radially outwards and distally back over the longitudinal axis of the crimp tube 108 to form the other leg of the figure eight. Finally, the wire is bent proximally into the distal end of the crimp tube 108 to complete the distal anchor 120.
  • [0037]
    The distal anchor is expanded by sliding the double eyelet 122 of the distal anchor from a position that is proximal to the distal lock 110 on the support wire to a position that is distal to the distal lock 110. The bent-out portions 110 a and 110 b of support wire 110 are spaced wider than the width of double eyelet 122 and provide camming surfaces for the locking action. Distal movement of eyelet 122 pushes these camming surfaces inward to permit eyelet 122 to pass distally of the lock 110, then return to their original spacing to keep eyelet 122 in the locked position.
  • [0038]
    The dimensions of the distal anchor are selected so that the diameter of the distal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment. When treating mitral valve regurgitation by placement of the device in the coronary sinus, the diameter of the coronary sinus may expand over time after deployment. Oversizing the anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.
  • [0039]
    Upon expansion, the distal anchor circumferentially engages the vessel wall with a radially outwardly directed force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. The unequal distribution of force helps the anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen. In its expanded configuration the distal anchor's diameter is at least 50%-500% and most preferably 100%-300% of the anchor's diameter in the unexpanded configuration. The open cross-sectional area of the lumen through the anchor is at least 50% and most preferably 80%-100% of the lumen cross sectional area prior to redeployment of the anchor.
  • [0040]
    In addition, the metal coverage of the anchor, as defined by the percentage of the lumen surface area through which the anchor extends that is exposed to a metal surface, is between 5% and 30% and most preferably 10%. The wire used to form the distal anchor 120 is preferably nitinol having a diameter of between 0.0110″ and 0.0150″ and most preferably 0.0140 inches. Other shape memory materials may be used as well.
  • [0041]
    During insertion, a physician can tactilely feel when the eyelet 122 has been slid over the distal lock 110 in order to determine when the distal anchor has been set within a vessel lumen. In addition, if the anchor is misplaced, it can be collapsed by pulling the eyelet 122 proximally over the distal lock 110 and repositioning the anchor in the unexpanded configuration. The force required to capture the distal anchor is preferably less than 20 lbs. and more preferably less than 10 lbs.
  • [0042]
    [0042]FIG. 4 also illustrates how the crimp tube 108 is held in place between the distal lock 110 on the proximal side and the stop loop 121 at the distal end of the support wire 102. The wires of the distal anchor 120 exit the distal end of the crimp tube 108 at an angle of approximately 45 degrees before looping back over the length of the distal crimp tube 108. Therefore, the distal end of the anchor is relatively atraumatic to avoid damage to a vessel during placement.
  • [0043]
    At the proximal end of the intravascular support is a proximal anchor 140 that is preferably formed of a biocompatible, elastic wire such as stainless steel or a shape memory material such as nitinol. As is best shown in FIGS. 3 and 5, the proximal anchor 140 in one embodiment is made of a single length of wire having a first end positioned within a proximal crimp tube 112. The wire extends distally from the crimp tube 112 and bends radially outward and away from the longitudinal axis of the crimp tube 112 before being bent proximally and crossing the longitudinal axis of the crimp tube 112 in order to form a first leg of a figure eight configuration. The wire then is bent to form a double eyelet or loop 142 around the longitudinal axis of the support wire 102 wherein the eyelet 142 has a diameter that allows it to be forced over the proximal lock 114. After forming the eyelet 142, the wire extends outwardly and away from the longitudinal axis of the crimp tube 112 before being bent distally over and across the longitudinal axis of the crimp tube 112 to form the second leg of a figure eight. Finally, the wire is bent proximally and extends into the distal end of the crimp tube 112.
  • [0044]
    Like the distal anchor, the proximal anchor is expanded and locked by sliding the double eyelet 142 of the proximal anchor from a position that is proximal to the proximal lock 114 on the support wire to a position that is distal to the proximal lock 114. As can be seen in FIG. 7, the proximal lock 114 has an “arrowhead” shape whereby the proximal end of the lock is bent away from the longitudinal axis of the support wire at an angle that is less steep than the distal end of the proximal lock. The less steep section makes it easier to advance the eyelet 142 over the lock in the distal direction than to retrieve the eyelet 142 over the proximal lock 114 in the proximal direction. Distal movement of eyelet 142 cams the less steep proximal surfaces inward to permit eyelet 142 to pass distally of the lock 114, then return to their original spacing to keep eyelet 142 in the locked position.
  • [0045]
    As can be seen by comparing the proximal anchor 140 with the distal anchor 120 in FIG. 3, the proximal anchor has a larger radius of curvature because it is designed to fit within a larger diameter portion of the coronary sinus. The dimensions of the proximal anchor are selected so that the diameter of the proximal anchor in a plane perpendicular to the axis of the lumen in which the anchor is deployed is preferably between 100% and 300%, most preferably between 130% and 200%, of the diameter of the lumen prior to deployment. As with the distal anchor, oversizing the proximal anchor combined with the inherent deformability and recoverability properties of the anchor material (particularly nitinol or some other shape memory material) enables the anchor to continue to expand from its initial deployment size as the lumen distends and expands over time.
  • [0046]
    Upon expansion, the proximal anchor circumferentially engages the vessel wall with a radially outwardly directed an force that is distributed unequally around the circumference of the anchor by distending the vessel wall in variable amounts along the axial length of the anchor. As with the distal anchor, the unequal distribution of force helps the proximal anchor contact the lumen wall securely by creating bumps and ridges that are not parallel to the central axis of the lumen. In its expanded configuration the proximal anchor's diameter is at least 50%-500% and most preferably 100%-300% of the anchor's diameter in the unexpanded configuration. The open cross-sectional area of the lumen through the anchor is at least 50% and most preferably 80%-100% of the lumen cross sectional area prior to redeployment of the anchor.
  • [0047]
    In one embodiment of the invention, the proximal and distal anchors are oriented such that the planes of the anchors are offset with respect to each other by an angle of approximately 30 degrees. The offset helps the intravascular support 100 seat itself in the coronary sinus and vessel surrounding the mitral valve in certain mammals. However, it will be appreciated that if the support is designed for other uses, the proximal and distal anchors may be offset by more or less depending upon the anatomy of the intended destination.
  • [0048]
    FIGS. 6A-6C illustrate cross-sectional views of the crimp tubes in which the wires that form the support wire 102 and proximal and distal anchors 120, 140 are threaded. In one embodiment, the crimp tubes comprise a biocompatible material such as titanium having a number of holes extending longitudinally through the tube through which the wires are threaded. In FIG. 6A, a tube 150 has four holes 152, 154, 156, 158 positioned in approximately a square configuration within the circumference of the tube 150. As shown in FIG. 6B, a tube 160 includes four holes 162, 164, 166, 168 therein that are positioned in a diamond configuration. FIG. 6C shows another tube 170 having four holes 172, 174, 176, 178. Here the holes 172, 174 lie in a first plane and the second pair of holes 176, 178 lie in a second plane that is offset from the plane of the holes 172, 174. By changing the orientation of the holes 176, 178 with respect to the holes 172, 174, the relative plane of wires passing through the holes can be adjusted. Thus in the example shown in FIG. 3, the proximal anchor may be formed with a crimp tube such as that shown in FIG. 6A or FIG. 6B while the proximal anchor may be formed in a crimp tube such as that shown in FIG. 6C in order to adjust the angular orientation between the proximal anchor and the distal anchor. In an alternative embodiment, the crimp tubes at the proximal and distal ends of the support wire 102 are the same and the angular offset between the proximal and distal anchor is achieved by bending the wires at the desired angle. Although the crimp tubes shown use one hole for each wire passing through the crimp tube, it will be appreciated that other configurations may be provided such as slots or other passages for the wires to pass through.
  • [0049]
    In another embodiment, the distal and proximal anchors are attached to the support wire by a wire, such as nitinol wire or other shape memory material. The attaching wire may be spiral wrapped around the base of each anchor and around the support wire. In another embodiment, each anchor may be attached to the support wire by wrapping the anchor wire around the support wire. In yet another embodiment, the two anchors and the support wire may be made from a single wire, such as nitinol wire or other shape memory material.
  • [0050]
    [0050]FIG. 8 illustrates one method for delivering an intravascular support 100 in accordance with the present invention to a desired location in the body. As indicated above, intravascular support 100 is preferably loaded into and routed to a desired location within a catheter 200 with the proximal and distal anchors in a collapsed or deformed condition. That is, the eyelet 122 of the distal anchor 120 is positioned proximally of the distal lock 110 and the eyelet 142 of the proximal anchor 140 is positioned proximal to the proximal lock 114. The physician ejects the distal end of the intravascular support from the catheter 200 into the lumen by advancing the intravascular support or retracting the catheter or a combination thereof. A pusher (not shown) provides distal movement of the intravascular support with respect to catheter 200, and a tether 201 provides proximal movement of the intravascular support with respect to catheter 200. Because of the inherent recoverability of the material from which it is formed, the distal anchor begins to expand as soon as it is outside the catheter. Once the intravascular support is properly positioned, the eyelet 122 of the distal anchor is pushed distally over the distal lock 110 so that the distal anchor 120 further expands and locks in place to securely engage the lumen wall and remains in the expanded condition. Next, the proximal end of the support wire 102 is tensioned by applying a proximally-directed force on the support wire and distal anchor to apply sufficient pressure on the tissue adjacent the support wire to modify the shape of that tissue. In the case of the mitral valve, fluoroscopy, ultrasound or other imaging technology may be used to see when the support wire supplies sufficient pressure on the mitral valve to aid in its complete closure with each ventricular contraction without otherwise adversely affecting the patient. A preferred method of assessing efficacy and safety during a mitral valve procedure is disclosed in copending U.S. patent application Ser. No. 10/366,585, filed Feb. 12, 2003, and titled “Method of Implanting a Mitral Valve Therapy Device,” the disclosure of which is incorporated herein by reference. Once the proper pressure of the support wire has been determined, the proximal anchor is deployed from the catheter and allowed to begin its expansion. The eyelet 142 of the proximal anchor 140 is advanced distally over the proximal lock 114 to expand and lock the proximal anchor, thereby securely engaging the lumen wall and maintaining the pressure of the support wire against the lumen wall. Finally, the mechanism for securing the proximal end of the intravascular support can be released. In one embodiment, the securement is made with a braided loop 202 at the end of tether 201 and a hitch pin 204. The hitch pin 204 is withdrawn thereby releasing the loop 202 so it can be pulled through the proximal lock 114 at the proximal end of the intravascular support 100.
  • [0051]
    In many contexts, it is important for the device to occupy as little of the lumen as possible. For example, when using the device and method of this invention to treat mitral valve regurgitation, the device should be as open as possible to blood flow in the coronary sinus (and to the introduction of other medical devices, such as pacing leads) while still providing the support necessary to reshape the mitral valve annulus through the coronary sinus wall. The combination of the device's open design and the use of nitinol or some other shape memory material enables the invention to meet these goals. When deployed in the coronary sinus or other lumen, the device preferably occupies between about 1.5% and about 5.5% of the overall volume of the section of lumen in which it is deployed.
  • [0052]
    In many embodiments of the invention, the use of a shape memory material such as nitinol is particularly important. The percentage of shape memory material by volume in the device is preferably between about 30% and 100%, most preferably between about 40% and 60%.
  • [0053]
    In some instances it may be necessary to move or remove an intravascular support after deployment by recapturing the device into a catheter. Prior to deployment of the proximal anchor, the distal anchor may be recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally over distal anchor 120 so that the entire device is once again inside catheter 200. The distally directed force of the catheter collapses distal anchor 120 into a size small enough to fit into catheter 200 again. Likewise, after deployment of both anchors but prior to releasing the securement mechanism as described above, the intravascular support may be recaptured into the delivery catheter by simultaneously holding the device in place with tether 201 while advancing catheter distally first over proximal anchor 140, over support wire 102, and finally over distal anchor 120. The distally directed forced of catheter 200 collapses anchors 120 and 140 into a size small enough to fit into catheter 200 again. If the securement mechanism has been detached from the device prior to recapture, the device still may be recaptured into the delivery catheter or another catheter by grasping the proximal end of the device with a grasper or tether and by advancing the catheter distally over the device.
  • [0054]
    In one embodiment of the invention, proximal anchor 140 includes a recapture guidance and compression element. In the embodiment shown in FIG. 5, the slope of the two proximal arms 143 and 144 of proximal anchor 140 is small in proximal portions 145 and 146 of the arms, then increases in more distal portions 147 and 148 of the arms. This shape guides the catheter to move distally over the anchor more easily and to help compress the anchor to a collapsed shape as the catheter advances during recapture.
  • [0055]
    Likewise, the two proximal arms 123 and 124 of distal anchor 120 have a shallower slope in their proximal portions 145 and 146 and an increased slope in more distal portions 147 and 148. While recapture of the distal anchor is somewhat easier due to its smaller size compared to the proximal anchor, this recapture guidance and compression feature enhances the ease with which recapture is performed.
  • [0056]
    [0056]FIG. 9 illustrates an alternative embodiment of the intravascular support of the present invention. In this embodiment, an intravascular support 250 has a support wire 252 and a distal anchor 254 and a proximal anchor 256. In the embodiment shown in FIG. 9, the distal anchor 254 is made from the same wire used to form the support wire 252. As best shown in FIG. 10, the wire used to form the support wire 252 extends distally through a distal crimp tube 260 before looping radially outward and returning proximally and across the longitudinal axis of the crimp tube 260 to form one leg of a figure eight. The wire then winds around the axis of the suspension wire 252 to form an eyelet 262. The wire then continues radially outward and distally across the longitudinal axis of the crimp tube 260 to form the second leg of a figure eight. After forming the figure eight, the wire enters the distal end of the crimp tube 260 in the proximal direction to form the other half of the support wire 252. A distal lock 264 is formed proximal to the distal crimp tube 260 by outwardly extending bends in the wires that form the support wire 252. The distal lock 264 prevents the double eyelet 262 from sliding proximally and collapsing the distal anchor 254 when positioned in a vessel.
  • [0057]
    As shown in FIG. 11, a distal anchor 256 is constructed in a fashion similar to the proximal anchor 140 shown in FIG. 3. That is, the proximal anchor 256 is formed of a separate wire than the wire used to form the support wire 252 and distal anchor 254. The wire of the proximal anchor has one end within a proximal crimp tube 270. The wire extends distally out of the end of the crimp tube and bends radially outward before returning back and across the longitudinal axis of the crimp tube 270. At the proximal end of the crimp tube 270, the wire of the proximal anchor forms a double eyelet 272 around the longitudinal axis of the support wire 252. The wire then continues radially outward and distally over the longitudinal axis of the crimp tube 270 to form the second leg of the figure eight whereupon it is bent proximally into the distal end of the crimp tube 270.
  • [0058]
    [0058]FIG. 12 shows yet another embodiment of an intravascular support in accordance with the present invention. Here, an intravascular support 300 comprises a support wire 302, a distal anchor 304 and a proximal anchor 306. As in the embodiment shown in FIG. 9, the distal anchor 304 and the support wire 302 are formed of the same wire. To form the distal anchor, the wire extends distally through a distal crimp tube 310 and exits out the distal end before extending radially outward and bending back and across the longitudinal axis of the crimp tube 310 to form one leg of a figure eight. The loop then forms an eyelet 312 around the longitudinal axis of the support wire 302 before bending radially outward and distally across the longitudinal axis of the crimp tube 310 to form a second leg of the figure eight. The wire then enters the distal end of the crimp tube 310 in the proximal direction. The support wire 302 may have one or two outwardly extending sections that form a distal stop 314 to maintain the position of the eyelet 312 once the distal anchor is set in the expanded configuration.
  • [0059]
    The proximal anchor 306 is formed from a separate wire as shown in FIG. 14. The wire has one end positioned within the proximal crimp tube 320 that extends distally outward and radially away from the longitudinal axis of the crimp tube 320 before being bent proximally and across the longitudinal axis of the crimp tube 320 to form one leg of the figure eight. The wire then winds around the longitudinal axis of the support wire to form an eyelet 322 before being bent distally and across the longitudinal axis of the crimp tube 320 to enter the distal end of the crimp tube 320 in the proximal direction. As will be appreciated, the proximal crimp tube 320 of the embodiment shown in FIG. 12 holds four wires wherein the distal crimp tube 310 need only hold two wires.
  • [0060]
    FIGS. 15-18 show other embodiments of the invention. In the embodiment shown in FIG. 15, the intravascular support has an anchor 400 formed as a loop 404 emerging from a window 406 in a crimp tube 408. Extending from one end 411 of crimp tube 408 is a support strut 410 which connects with loop 404. Also extending from the crimp tube 408 is a support wire 412. Loop 404 and support 410 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • [0061]
    [0061]FIG. 16 shows another embodiment of an anchor 450 for an intravascular support. Anchor 450 is formed from two loops 452 and 454 emerging from a window 456 and an end 457 of a crimp tube 458. A support wire 462 also extends from the crimp tube. Loops 452 and 454 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • [0062]
    [0062]FIG. 17 shows yet another embodiment of an anchor 500 for an intravascular support according to this invention. Anchor 500 is formed from two loops 502 and 504 emerging from a window 506 and an end 507 of a crimp tube 508. A cross strut 505 connects the loops. A support wire 512 also extends from the crimp tube. Loops 502 and 504 and strut 505 may be formed from nitinol, stainless steel, or any other appropriate material. The intravascular support includes another anchor. The intravascular support of this embodiment may be delivered and deployed in the manner discussed above with respect to the embodiment described above.
  • [0063]
    [0063]FIG. 18 is a modification of the embodiment shown in FIGS. 3-7. In this embodiment, torsional springs 558 of proximal anchor 550 have been formed as single loops or eyelets in the anchor's wire 552. These springs make the anchor 550 more compliant by absorbing some of the force applied to the anchor during locking. While FIG. 18 shows a proximal anchor with two springs 558, any number of springs could be used on either the proximal or the distal anchor.
  • [0064]
    While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention. Therefore, the scope of the invention is to be determined from the following claims and equivalents thereto.

Claims (34)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A device for modifying the shape of tissue adjacent to a lumen, the device comprising:
an anchor adapted to securely contact a lumen wall when the device is deployed in a lumen, the anchor having an unexpanded delivery configuration and an expanded deployed configuration;
a lock locking the anchor in its expanded deployed configuration; and
a reshaper extending from the anchor and adapted to contact the lumen wall when the device is deployed in the lumen.
2. The device of claim 1 wherein the anchor is a first anchor, the device further comprising a second anchor, the second anchor having an unexpanded delivery configuration and an expanded deployed configuration, the reshaper extending from the first anchor to the second anchor.
3. The device of claim 2 wherein the lock is a first lock, the device further comprising a second lock locking the second anchor in its expanded deployed configuration.
4. The device of claim 1 wherein the lumen is a coronary sinus, the anchor being adapted to securely contact a wall of the coronary sinus with radially outwardly directed force when the device is deployed in the coronary sinus, the reshaper being adapted to contact the coronary sinus wall and to apply force to the posterior of a mitral valve annulus through the coronary sinus wall.
5. The device of claim 1 wherein the lock comprises a locking element connected to the anchor.
6. The device of claim 1 wherein the lock comprises a locking element connected to the reshaper.
7. The device of claim 1 wherein the anchor comprises a flexible member extending from the reshaper in a curved path not parallel to the central axis of the lumen.
8. The device of claim 7 wherein the lock comprises a locking element connected to the flexible member.
9. The device of claim 7 wherein the flexible member is adapted to extend from the axis of the reshaper in at least a first place and a second place.
10. The device of claim 9 wherein the flexible member comprises two arms extending from the first place and two arms extending from the second place.
11. The device of claim 10 wherein the flexible member is adapted to have the two arms extending from the first place and the two arms extending from the second place meet at a third place.
12. The device of claim 11 wherein the flexible member is adapted to have the third place outside of the axis of the reshaper.
13. The device of claim 12 wherein the flexible member is formed in a bowed figure eight pattern.
14. The device of claim 10 wherein the lock comprises a locking element connected to the flexible member.
15. The device of claim 14 wherein the locking element comprises a loop connecting the two arms extending from the first place.
16. The device of claim 15 wherein the locking element comprises a first locking element, the lock further comprising a second locking element connected to the reshaper.
17. The device of claim 16 wherein the reshaper comprises a support wire, the second locking element comprising a bend in the support wire.
18. The device of claim 16 wherein the second locking element comprises a camming surface extending from the reshaper.
19. The device of claim 7 wherein the lock comprises a first locking element connected to the flexible member, the lock further comprising a second locking element connected to the reshaper.
20. The device of claim 19 wherein the reshaper comprises a support wire, the second locking element comprising a bend in the support wire.
21. The device of claim 19 wherein the second locking element comprises a camming surface extending from the reshaper.
22. The device of claim 7 further comprising a crimp, the flexible member comprising two ends held by the crimp.
23. The device of claim 22 wherein the flexible member is adapted to extend from an axis of the crimp in at least a first place and a second place, the first place comprising one end of the crimp.
24. The device of claim 23 wherein the second place comprises another end of the crimp.
25. A method of modifying the shape of tissue adjacent to a lumen, the method comprising:
delivering a device into the lumen, the device comprising an anchor and a reshaper extending from the anchor;
expanding the anchor into an expanded configuration to place the anchor in secure contact with a lumen wall;
locking the anchor in the expanded configuration; and
placing the reshaper in contact with the lumen wall to apply force to the lumen wall to modify the shape of tissue adjacent to the lumen wall.
26. The method of claim 25 wherein the anchor is a first anchor, the method further comprising expanding a second anchor into an expanded configuration.
27. The method of claim 26 further comprising locking the second anchor in the expanded configuration.
28. The method of claim 25 wherein the anchor comprises an anchor locking element, the locking step comprising moving the anchor locking element distally.
29. The method of claim 28 wherein the moving step comprises moving the anchor locking element over a camming surface.
30. The method of claim 25 wherein the anchor comprises an anchor locking element and the reshaper comprises a reshaper locking element, the locking step comprising engaging the anchor locking element with the reshaper locking element.
31. The method of claim 30 wherein the reshaper locking element comprises a camming surface, the locking step further comprising moving the anchor locking element distal to the camming surface.
32. The method of claim 25 wherein the placing step comprises applying a proximally-directed force to the anchor and the reshaper.
33. The method of claim 32 wherein the anchor is a first anchor, the method further comprising expanding a second anchor into an expanded configuration.
34. The method of claim 33 further comprising locking the second anchor in the expanded configuration.
US10429204 2002-01-30 2003-05-02 Device and method for modifying the shape of a body organ Active 2023-04-11 US7311729B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10066426 US6976995B2 (en) 2002-01-30 2002-01-30 Fixed length anchor and pull mitral valve device and method
US10142637 US6824562B2 (en) 2002-05-08 2002-05-08 Body lumen device anchor, device and assembly
US10331143 US6793673B2 (en) 2002-12-26 2002-12-26 System and method to effect mitral valve annulus of a heart
US10429204 US7311729B2 (en) 2002-01-30 2003-05-02 Device and method for modifying the shape of a body organ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10429204 US7311729B2 (en) 2002-01-30 2003-05-02 Device and method for modifying the shape of a body organ
US10861782 US7635387B2 (en) 2001-11-01 2004-06-03 Adjustable height focal tissue deflector
US11963417 US7828841B2 (en) 2002-05-08 2007-12-21 Device and method for modifying the shape of a body organ
US12642525 US8439971B2 (en) 2001-11-01 2009-12-18 Adjustable height focal tissue deflector

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10142637 Continuation-In-Part US6824562B2 (en) 2002-05-08 2002-05-08 Body lumen device anchor, device and assembly
US10331343 Continuation-In-Part US20030149566A1 (en) 2002-01-02 2002-12-31 System and method for a spoken language interface to a large database of changing records

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10003910 Continuation-In-Part US6949122B2 (en) 2001-11-01 2001-11-01 Focused compression mitral valve device and method

Publications (2)

Publication Number Publication Date
US20030236569A1 true true US20030236569A1 (en) 2003-12-25
US7311729B2 US7311729B2 (en) 2007-12-25

Family

ID=46282297

Family Applications (1)

Application Number Title Priority Date Filing Date
US10429204 Active 2023-04-11 US7311729B2 (en) 2002-01-30 2003-05-02 Device and method for modifying the shape of a body organ

Country Status (1)

Country Link
US (1) US7311729B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040186566A1 (en) * 2003-03-18 2004-09-23 Hindrichs Paul J. Body tissue remodeling methods and apparatus
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7004176B2 (en) 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US7007698B2 (en) 2002-04-03 2006-03-07 Boston Scientific Corporation Body lumen closure
US20060095117A1 (en) * 2004-11-03 2006-05-04 Popelar Carl F Apparatus and method for temporarily clamping a tubular graft to a prosthetic cardiac valve
US20070282375A1 (en) * 2006-05-03 2007-12-06 St. Jude Medical, Inc. Soft body tissue remodeling methods and apparatus
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7674287B2 (en) 2001-12-05 2010-03-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7695425B2 (en) 1997-01-02 2010-04-13 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US7695512B2 (en) 2000-01-31 2010-04-13 Edwards Lifesciences Ag Remotely activated mitral annuloplasty system and methods
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7722523B2 (en) 1998-07-29 2010-05-25 Edwards Lifesciences Llc Transventricular implant tools and devices
US7758639B2 (en) 2003-02-03 2010-07-20 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US7766812B2 (en) 2000-10-06 2010-08-03 Edwards Lifesciences Llc Methods and devices for improving mitral valve function
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7806928B2 (en) 2004-12-09 2010-10-05 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US7828842B2 (en) 2002-01-30 2010-11-09 Cardiac Dimensions, Inc. Tissue shaping device
US7828841B2 (en) 2002-05-08 2010-11-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7828843B2 (en) 2001-05-14 2010-11-09 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8006594B2 (en) * 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US8062358B2 (en) 2002-05-08 2011-11-22 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US8075608B2 (en) 2002-12-05 2011-12-13 Cardiac Dimensions, Inc. Medical device delivery system
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8187323B2 (en) 1997-12-17 2012-05-29 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US8506624B2 (en) 2002-01-09 2013-08-13 Edwards Lifesciences, Llc Devices and methods for heart valve treatment
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635387B2 (en) 2001-11-01 2009-12-22 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US8052751B2 (en) * 2003-07-02 2011-11-08 Flexcor, Inc. Annuloplasty rings for repairing cardiac valves
WO2006097931A3 (en) 2005-03-17 2007-07-26 Valtech Cardio Ltd Mitral valve treatment techniques
CA2671966A1 (en) 2006-12-05 2008-06-12 Valtech Cardio, Ltd. Segmented ring placement
US9192472B2 (en) 2008-06-16 2015-11-24 Valtec Cardio, Ltd. Annuloplasty devices and methods of delivery therefor
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8545553B2 (en) 2009-05-04 2013-10-01 Valtech Cardio, Ltd. Over-wire rotation tool
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
EP2506777A4 (en) 2009-12-02 2015-02-11 Valtech Cardio Ltd Delivery tool for implantation of spool assembly coupled to a helical anchor
US9198756B2 (en) 2010-11-18 2015-12-01 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
US9289295B2 (en) 2010-11-18 2016-03-22 Pavilion Medical Innovations, Llc Tissue restraining devices and methods of use
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP2775896A4 (en) 2011-11-08 2016-08-03 Valtech Cardio Ltd Controlled steering functionality for implant-delivery tool
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171320B2 (en) *
US626899A (en) * 1899-06-13 Device for moistening and sealing envelops
US4161046A (en) * 1978-05-10 1979-07-17 The United States Bedding Company Coil spring assembly
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US5061277A (en) * 1986-08-06 1991-10-29 Baxter International Inc. Flexible cardiac valvular support prosthesis
US5265601A (en) * 1992-05-01 1993-11-30 Medtronic, Inc. Dual chamber cardiac pacing from a single electrode
US5350420A (en) * 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5474557A (en) * 1993-09-21 1995-12-12 Mai; Christian Multibranch osteosynthesis clip with dynamic compression and self-retention
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5554177A (en) * 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5584867A (en) * 1994-04-05 1996-12-17 Ela Medical S.A. Method and apparatus for controlling a double atrial triple chamber cardiac pacemaker having a fallback mode
US5676671A (en) * 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
US5824071A (en) * 1996-09-16 1998-10-20 Circulation, Inc. Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5891193A (en) * 1993-11-04 1999-04-06 C.R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US5935361A (en) * 1996-07-17 1999-08-10 Fuji Photo Film Co., Ltd. Web splicing preparation method and apparatus
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6096064A (en) * 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
US6099552A (en) * 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6275730B1 (en) * 1997-03-14 2001-08-14 Uab Research Foundation Method and apparatus for treating cardiac arrythmia
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6358195B1 (en) * 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US20020035361A1 (en) * 1999-06-25 2002-03-21 Houser Russell A. Apparatus and methods for treating tissue
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6442427B1 (en) * 2000-04-27 2002-08-27 Medtronic, Inc. Method and system for stimulating a mammalian heart
US20020161377A1 (en) * 2001-04-27 2002-10-31 Dmitry Rabkin Apparatus for delivering, repositioning and/or retrieving self-expanding stents
US20020169502A1 (en) * 2001-05-14 2002-11-14 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US20030105520A1 (en) * 2001-12-05 2003-06-05 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6589208B2 (en) * 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US20030130731A1 (en) * 2002-01-09 2003-07-10 Myocor, Inc. Devices and methods for heart valve treatment
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20030144697A1 (en) * 2002-01-30 2003-07-31 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6602289B1 (en) * 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US20030171776A1 (en) * 2002-03-06 2003-09-11 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US20030212453A1 (en) * 2002-05-08 2003-11-13 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US20040010305A1 (en) * 2001-12-05 2004-01-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20040039443A1 (en) * 1999-06-30 2004-02-26 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6716158B2 (en) * 2001-09-07 2004-04-06 Mardil, Inc. Method and apparatus for external stabilization of the heart
US6718985B2 (en) * 2001-04-24 2004-04-13 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty using local plications
US20040073302A1 (en) * 2002-02-05 2004-04-15 Jonathan Rourke Method and apparatus for improving mitral valve function
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US20040098116A1 (en) * 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20040127982A1 (en) * 2002-10-01 2004-07-01 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20040133240A1 (en) * 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US20040133273A1 (en) * 2002-11-15 2004-07-08 Cox Daniel L. Apparatuses and methods for heart valve repair
US20040133220A1 (en) * 2000-01-31 2004-07-08 Randall Lashinski Adjustable transluminal annuloplasty system
US20040148020A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040148021A1 (en) * 2002-08-29 2004-07-29 Cartledge Richard G. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US20040148019A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040153147A1 (en) * 2003-02-03 2004-08-05 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US6776784B2 (en) * 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US20040176840A1 (en) * 2000-01-31 2004-09-09 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6790231B2 (en) * 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6793673B2 (en) * 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US6797001B2 (en) * 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US20040193191A1 (en) * 2003-02-06 2004-09-30 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6810882B2 (en) * 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US20040220654A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20040243227A1 (en) * 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20050004667A1 (en) * 2003-06-05 2005-01-06 Cardiac Dimensions, Inc. A Delaware Corporation Device, system and method to affect the mitral valve annulus of a heart
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US6960229B2 (en) * 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995623A (en) 1974-12-23 1976-12-07 American Hospital Supply Corporation Multipurpose flow-directed catheter
FR2306671B1 (en) 1975-04-11 1977-11-10 Rhone Poulenc Ind
US4164046A (en) 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4550870A (en) 1983-10-13 1985-11-05 Alchemia Ltd. Partnership Stapling device
US4830023A (en) 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5261916A (en) 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5417708A (en) 1994-03-09 1995-05-23 Cook Incorporated Intravascular treatment system and percutaneous release mechanism therefor
US5601600A (en) 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
EP0950385A3 (en) 1995-12-14 1999-10-27 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US5645560A (en) 1995-12-15 1997-07-08 Cardiovascular Dynamics, Inc. Fixed focal balloon for interactive angioplasty and stent implantation
US5827293A (en) 1996-05-13 1998-10-27 Elliott; James B. Subcutaneous insertion device
US6077295A (en) 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5895391A (en) 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US6395017B1 (en) 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US5800393A (en) 1997-03-07 1998-09-01 Sahota; Harvinder Wire perfusion catheter
US5978705A (en) 1997-03-14 1999-11-02 Uab Research Foundation Method and apparatus for treating cardiac arrhythmia using auxiliary pulse
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
US5984944A (en) 1997-09-12 1999-11-16 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6503271B2 (en) 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6342067B1 (en) 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6129755A (en) 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
NL1009551C2 (en) 1998-07-03 2000-01-07 Cordis Europ Vena cava filter improvements for controlled ejection.
US6458092B1 (en) 1998-09-30 2002-10-01 C. R. Bard, Inc. Vascular inducing implants
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
WO2000060995A9 (en) 1999-04-09 2002-06-13 Evalve Inc Methods and apparatus for cardiac valve repair
US6210432B1 (en) 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6368284B1 (en) 1999-11-16 2002-04-09 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for diagnosing and monitoring myocardial ischemia and outcomes thereof
CN1806775A (en) 2000-01-14 2006-07-26 维亚科公司 Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
DE60132005D1 (en) 2000-06-23 2008-01-31 Viacor Inc Automatic circular convolution for Mitral Valve Repair
WO2002005888A1 (en) 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
EP1401358B1 (en) 2000-06-30 2016-08-17 Medtronic, Inc. Apparatus for performing a procedure on a cardiac valve
WO2002019951A1 (en) 2000-09-07 2002-03-14 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US7070618B2 (en) 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
US7591826B2 (en) 2000-12-28 2009-09-22 Cardiac Dimensions, Inc. Device implantable in the coronary sinus to provide mitral valve therapy
US6643546B2 (en) 2001-02-13 2003-11-04 Quetzal Biomedical, Inc. Multi-electrode apparatus and method for treatment of congestive heart failure
US6733521B2 (en) 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6721598B1 (en) 2001-08-31 2004-04-13 Pacesetter, Inc. Coronary sinus cardiac lead for stimulating and sensing in the right and left heart and system

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171320B2 (en) *
US626899A (en) * 1899-06-13 Device for moistening and sealing envelops
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4161046A (en) * 1978-05-10 1979-07-17 The United States Bedding Company Coil spring assembly
US5061277A (en) * 1986-08-06 1991-10-29 Baxter International Inc. Flexible cardiac valvular support prosthesis
US5061277B1 (en) * 1986-08-06 2000-02-29 Baxter Travenol Lab Flexible cardiac valvular support prosthesis
US5350420A (en) * 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5265601A (en) * 1992-05-01 1993-11-30 Medtronic, Inc. Dual chamber cardiac pacing from a single electrode
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
US5474557A (en) * 1993-09-21 1995-12-12 Mai; Christian Multibranch osteosynthesis clip with dynamic compression and self-retention
US6077297A (en) * 1993-11-04 2000-06-20 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5891193A (en) * 1993-11-04 1999-04-06 C.R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5584867A (en) * 1994-04-05 1996-12-17 Ela Medical S.A. Method and apparatus for controlling a double atrial triple chamber cardiac pacemaker having a fallback mode
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5554177A (en) * 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5676671A (en) * 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
US5935361A (en) * 1996-07-17 1999-08-10 Fuji Photo Film Co., Ltd. Web splicing preparation method and apparatus
US5824071A (en) * 1996-09-16 1998-10-20 Circulation, Inc. Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6275730B1 (en) * 1997-03-14 2001-08-14 Uab Research Foundation Method and apparatus for treating cardiac arrythmia
US6096064A (en) * 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6099552A (en) * 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6183512B1 (en) * 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US6602289B1 (en) * 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US20030018358A1 (en) * 1999-06-25 2003-01-23 Vahid Saadat Apparatus and methods for treating tissue
US20020035361A1 (en) * 1999-06-25 2002-03-21 Houser Russell A. Apparatus and methods for treating tissue
US20040039443A1 (en) * 1999-06-30 2004-02-26 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20040138744A1 (en) * 2000-01-31 2004-07-15 Randall Lashinski Transluminal mitral annuloplasty with active anchoring
US20040133220A1 (en) * 2000-01-31 2004-07-08 Randall Lashinski Adjustable transluminal annuloplasty system
US20040176840A1 (en) * 2000-01-31 2004-09-09 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6358195B1 (en) * 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6442427B1 (en) * 2000-04-27 2002-08-27 Medtronic, Inc. Method and system for stimulating a mammalian heart
US6589208B2 (en) * 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6810882B2 (en) * 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US6790231B2 (en) * 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6656221B2 (en) * 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US6718985B2 (en) * 2001-04-24 2004-04-13 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty using local plications
US20020161377A1 (en) * 2001-04-27 2002-10-31 Dmitry Rabkin Apparatus for delivering, repositioning and/or retrieving self-expanding stents
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US20020169502A1 (en) * 2001-05-14 2002-11-14 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6776784B2 (en) * 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6716158B2 (en) * 2001-09-07 2004-04-06 Mardil, Inc. Method and apparatus for external stabilization of the heart
US20050197692A1 (en) * 2001-10-16 2005-09-08 Extensia Medical, Inc. Systems for heart treatment
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20050197693A1 (en) * 2001-10-16 2005-09-08 Extensia Medical, Inc. Systems for heart treatment
US20050197694A1 (en) * 2001-10-16 2005-09-08 Extensia Medical, Inc. Systems for heart treatment
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20040249452A1 (en) * 2001-11-01 2004-12-09 Adams John M. Focused compression mitral valve device and method
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20030105520A1 (en) * 2001-12-05 2003-06-05 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US20040193260A1 (en) * 2001-12-05 2004-09-30 Alferness Clifton A. Anchor and pull mitral valve device and method
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US20040010305A1 (en) * 2001-12-05 2004-01-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20030130731A1 (en) * 2002-01-09 2003-07-10 Myocor, Inc. Devices and methods for heart valve treatment
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20040019377A1 (en) * 2002-01-14 2004-01-29 Taylor Daniel C. Method and apparatus for reducing mitral regurgitation
US20030144697A1 (en) * 2002-01-30 2003-07-31 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6960229B2 (en) * 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20040073302A1 (en) * 2002-02-05 2004-04-15 Jonathan Rourke Method and apparatus for improving mitral valve function
US20030171776A1 (en) * 2002-03-06 2003-09-11 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6797001B2 (en) * 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US20030212453A1 (en) * 2002-05-08 2003-11-13 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US6824562B2 (en) * 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US20040243227A1 (en) * 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20040102839A1 (en) * 2002-06-26 2004-05-27 Cohn William E. Method and apparatus for improving mitral valve function
US20040148021A1 (en) * 2002-08-29 2004-07-29 Cartledge Richard G. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US20040127982A1 (en) * 2002-10-01 2004-07-01 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US20040148020A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040148019A1 (en) * 2002-11-12 2004-07-29 Vidlund Robert M. Devices and methods for heart valve treatment
US20040133273A1 (en) * 2002-11-15 2004-07-08 Cox Daniel L. Apparatuses and methods for heart valve repair
US20040098116A1 (en) * 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US6793673B2 (en) * 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US20040243228A1 (en) * 2002-12-26 2004-12-02 Leonard Kowalsky System and method to effect the mitral valve annulus of a heart
US20040133240A1 (en) * 2003-01-07 2004-07-08 Cardiac Dimensions, Inc. Electrotherapy system, device, and method for treatment of cardiac valve dysfunction
US20040153147A1 (en) * 2003-02-03 2004-08-05 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040193191A1 (en) * 2003-02-06 2004-09-30 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20040220654A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20050004667A1 (en) * 2003-06-05 2005-01-06 Cardiac Dimensions, Inc. A Delaware Corporation Device, system and method to affect the mitral valve annulus of a heart
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US7695425B2 (en) 1997-01-02 2010-04-13 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US8267852B2 (en) 1997-01-02 2012-09-18 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US8460173B2 (en) 1997-01-02 2013-06-11 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US8226711B2 (en) 1997-12-17 2012-07-24 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US8187323B2 (en) 1997-12-17 2012-05-29 Edwards Lifesciences, Llc Valve to myocardium tension members device and method
US7722523B2 (en) 1998-07-29 2010-05-25 Edwards Lifesciences Llc Transventricular implant tools and devices
US7695512B2 (en) 2000-01-31 2010-04-13 Edwards Lifesciences Ag Remotely activated mitral annuloplasty system and methods
US9198757B2 (en) 2000-10-06 2015-12-01 Edwards Lifesciences, Llc Methods and devices for improving mitral valve function
US7766812B2 (en) 2000-10-06 2010-08-03 Edwards Lifesciences Llc Methods and devices for improving mitral valve function
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7828843B2 (en) 2001-05-14 2010-11-09 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US7674287B2 (en) 2001-12-05 2010-03-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7857846B2 (en) 2001-12-05 2010-12-28 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7678145B2 (en) 2002-01-09 2010-03-16 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8506624B2 (en) 2002-01-09 2013-08-13 Edwards Lifesciences, Llc Devices and methods for heart valve treatment
US8070805B2 (en) 2002-01-09 2011-12-06 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US9408695B2 (en) 2002-01-30 2016-08-09 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US7828842B2 (en) 2002-01-30 2010-11-09 Cardiac Dimensions, Inc. Tissue shaping device
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US7007698B2 (en) 2002-04-03 2006-03-07 Boston Scientific Corporation Body lumen closure
US7828841B2 (en) 2002-05-08 2010-11-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US9474608B2 (en) 2002-05-08 2016-10-25 Cardiac Dimensions Pty. Ltd. Body lumen device anchor, device and assembly
US8062358B2 (en) 2002-05-08 2011-11-22 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US8182529B2 (en) 2002-12-05 2012-05-22 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty device delivery method
US8075608B2 (en) 2002-12-05 2011-12-13 Cardiac Dimensions, Inc. Medical device delivery system
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US7758639B2 (en) 2003-02-03 2010-07-20 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040186566A1 (en) * 2003-03-18 2004-09-23 Hindrichs Paul J. Body tissue remodeling methods and apparatus
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7004176B2 (en) 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US9301843B2 (en) 2003-12-19 2016-04-05 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7814635B2 (en) 2003-12-19 2010-10-19 Cardiac Dimensions, Inc. Method of making a tissue shaping device
US7993397B2 (en) 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8932349B2 (en) 2004-09-02 2015-01-13 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060095117A1 (en) * 2004-11-03 2006-05-04 Popelar Carl F Apparatus and method for temporarily clamping a tubular graft to a prosthetic cardiac valve
US7806928B2 (en) 2004-12-09 2010-10-05 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US8512399B2 (en) 2005-04-15 2013-08-20 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US9101338B2 (en) 2006-05-03 2015-08-11 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US20070282375A1 (en) * 2006-05-03 2007-12-06 St. Jude Medical, Inc. Soft body tissue remodeling methods and apparatus
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US9421083B2 (en) 2007-02-05 2016-08-23 Boston Scientific Scimed Inc. Percutaneous valve, system and method
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8137394B2 (en) 2007-12-21 2012-03-20 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8006594B2 (en) * 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves

Also Published As

Publication number Publication date Type
US7311729B2 (en) 2007-12-25 grant

Similar Documents

Publication Publication Date Title
US7004958B2 (en) Transvenous staples, assembly and method for mitral valve repair
US8551161B2 (en) Cardiac valve annulus restraining device
US7959666B2 (en) Methods and apparatus for endovascularly replacing a heart valve
US8747459B2 (en) System and method for transapical delivery of an annulus anchored self-expanding valve
US6709456B2 (en) Percutaneous mitral annuloplasty with hemodynamic monitoring
US7824442B2 (en) Methods and apparatus for endovascularly replacing a heart valve
US7588582B2 (en) Methods for remodeling cardiac tissue
US7947075B2 (en) Minimally invasive heart valve replacement
US7144363B2 (en) Systems for heart treatment
US20040127981A1 (en) Devices, systems, and methods for retaining a native heart valve leaflet
US6425916B1 (en) Methods and devices for implanting cardiac valves
US20100286767A1 (en) Annuloplasty ring with intra-ring anchoring
US7988724B2 (en) Systems and methods for delivering a medical implant
US20040210240A1 (en) Method and repair device for treating mitral valve insufficiency
US20090093670A1 (en) Treating Dysfunctional Cardiac Tissue
US20070100439A1 (en) Chordae tendinae restraining ring
US6572652B2 (en) Method and devices for decreasing elevated pulmonary venous pressure
US20060106279A1 (en) Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant having an adjustable bridge stop
US20140324164A1 (en) Techniques for percutaneous mitral valve replacement and sealing
US20090326648A1 (en) Devices, systems, and methods for reshaping a heart valve annulus, including the use of an adjustable bridge implant system
US20060178700A1 (en) Medical device suitable for use in treatment of a valve
US20050055089A1 (en) Devices, systems, and methods for reshaping a heart valve annulus
US20060106456A9 (en) Devices, systems, and methods for reshaping a heart valve annulus
US20080039935A1 (en) Methods and apparatus for mitral valve repair
US7503931B2 (en) System and method to effect the mitral valve annulus of a heart

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARDIAC DIMENSIONS, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATHIS, MARK L.;KOWALSKY, LEONARD;REUTER, DAVID G.;AND OTHERS;REEL/FRAME:015816/0854;SIGNING DATES FROM 20030811 TO 20050225

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: CARDIAC DIMENSIONS PTY. LTD., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARDIAC DIMENSIONS, INC.;REEL/FRAME:032759/0069

Effective date: 20140411

FPAY Fee payment

Year of fee payment: 8