US20030234443A1 - Low profile stacking system and method - Google Patents
Low profile stacking system and method Download PDFInfo
- Publication number
- US20030234443A1 US20030234443A1 US10457608 US45760803A US2003234443A1 US 20030234443 A1 US20030234443 A1 US 20030234443A1 US 10457608 US10457608 US 10457608 US 45760803 A US45760803 A US 45760803A US 2003234443 A1 US2003234443 A1 US 2003234443A1
- Authority
- US
- Grant status
- Application
- Patent type
- Prior art keywords
- circuit
- contacts
- csp
- integrated
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
- H01L23/3107—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
- H01L23/3114—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/4985—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5387—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
- H01L25/10—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices having separate containers
- H01L25/105—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/141—One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/147—Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16237—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81191—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81192—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/8121—Applying energy for connecting using a reflow oven
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
- H01L2224/81815—Reflow soldering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06517—Bump or bump-like direct electrical connections from device to substrate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06579—TAB carriers; beam leads
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
- H01L2225/04—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06582—Housing for the assembly, e.g. chip scale package [CSP]
- H01L2225/06586—Housing with external bump or bump-like connectors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
- H01L2225/10—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices having separate containers
- H01L2225/1005—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
- H01L2225/1011—All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
- H01L2225/1047—Details of electrical connections between containers
- H01L2225/107—Indirect electrical connections, e.g. via an interposer, a flexible substrate, using TAB
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01049—Indium [In]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0105—Tin [Sn]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01051—Antimony [Sb]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1305—Bipolar Junction Transistor [BJT]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1901—Structure
- H01L2924/1904—Component type
- H01L2924/19041—Component type being a capacitor
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/189—Printed circuits structurally associated with non-printed electric components characterised by the use of a flexible or folded printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
- H05K2201/056—Folded around rigid support or component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10689—Leaded Integrated Circuit [IC] package, e.g. dual-in-line [DIL]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10734—Ball grid array [BGA]; Bump grid array
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3457—Solder materials or compositions ; Methods of application thereof
- H05K3/3463—Solder compositions in relation to features of the printed circuit board or the mounting process
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/361—Assembling flexible printed circuits with other printed circuits
- H05K3/363—Assembling flexible printed circuits with other printed circuits by soldering
Abstract
Description
- [0001]The present application is a continuation-in-part of U.S. Patent Application Ser. No. 10/005,581, filed Oct. 26, 2001, pending, which is hereby incorporated by reference.
- [0002]The present invention relates to mounting integrated circuit devices on substrates and to mounting integrated circuits on substrates employed in stacked modules.
- [0003]A variety of methods are used to mount integrated circuit devices to substrates such as PWBs and flex circuitry. Solder paste is selectively applied to the integrated circuit device or substrate to which the IC is to be attached. The device and substrate are exposed to reflow temperatures of approximately 220° C. The device is, consequently, soldered to the substrate.
- [0004]Typically, however, the formed solder joints will re-melt during subsequent processing. Common tin-lead solders start to melt at 183° C. and, when exposed to such temperatures and higher, the exposed joint may re-melt and become unreliable.
- [0005]What is needed, therefore, is a technique and system for mounting integrated circuit devices on substrates that provides an efficient and readily implemented technique to create structures that reliably withstand subsequent exposure to typical tin-lead solder melting point temperatures.
- [0006]The present invention provides a system and method that mounts integrated circuit devices onto substrates and a system and method for employing the method in stacked modules. The contact pads of a packaged integrated circuit device are substantially exposed. A solder paste that includes higher temperature solder paste alloy is applied to a substrate or the contacts of the packaged device. The integrated circuit device is positioned to contact the contacts of the substrate with the higher temperature solder alloy paste between. Heat is applied to create high temperature joints between the contacts of the substrate and the integrated circuit device resulting in a device-substrate assembly with high temperature joints. The formed joints are less subject to re-melting in subsequent processing steps. The method may be employed in devising stacked module constructions such as those disclosed herein as preferred embodiments in accordance with the invention. Typically, the created joints are low in profile. In a method in accordance with the present invention, a first solder used to construct a stacked module has a higher melting point than a second solder used to populate a board with that module.
- [0007][0007]FIG. 1 depicts a typical prior art packaged integrated circuit device.
- [0008][0008]FIG. 2 depicts the device of FIG. 1 from which the solder ball contacts have been removed.
- [0009][0009]FIG. 3 depicts a set of substrate contacts upon which a high temperature solder paste has been applied in accordance with a preferred embodiment of the present invention.
- [0010][0010]FIG. 4 depicts portions of two flexible circuit connectors prepared for mounting of an integrated circuit device in accordance with a preferred embodiment of the present invention.
- [0011][0011]FIG. 5 depicts a device-substrate assembly in accordance with a preferred embodiment of the present invention.
- [0012][0012]FIG. 6 depicts a two-high integrated circuit module mounted to the two flexible circuit connectors depicted in FIG. 4 in accordance with a preferred embodiment of the present invention.
- [0013][0013]FIG. 7 depicts a four-high stacked module devised in accordance with a preferred embodiment of the present invention.
- [0014][0014]FIG. 1 depicts an exemplar integrated circuit device 10 having upper surface 11 and lower surface 13. Device 10 is an example of one type of the general class of devices commonly known in the art as chip-scale-packaged integrated circuits (“CSPs”). The present invention may employed with a wide variety of integrated circuit devices and is not, as those of skill in the art will understand, limited to devices having the profile depicted in FIG. 1. Further, although its preferred use is with plastic-bodied CSP devices, the invention provides advantages in mounting a variety of packaged integrated circuit devices in a wide variety of configurations including leaded and CSP topologies.
- [0015]Exemplar integrated circuit device 10 may include one or more integrated circuit die and body 12 and a set of contacts 14. The illustrated integrated circuit device 10 has CSP ball contacts 14 arrayed along surface 13 of its body 12. Typically, when integrated circuit device 10 is a CSP device, CSP ball contacts 14 are, as depicted, balls that are a mixture of tin and lead with a common relative composition of 63% tin and 37% lead. Such contacts typically have a melting point of about 183° C. Other contacts are sometimes found along a planar surface of integrated circuit devices and such other contacts may also be treated in accordance with the present invention where the opportunity arises as will be understood after gaining familiarity with the present disclosure.
- [0016]In the depiction of FIG. 2, CSP ball contacts 14 have been removed, leaving CSP pads 16 arrayed along lower surface 13. CSP pads 16 will typically exhibit a residual thin layer of tin/lead mixture after removal of CSP ball contacts 14. As those of skill will know, CSPs may be received without attached balls and the process and structures described herein will then not require “removal” of balls. Further, embodiments of the present invention may be implemented with CSPs already bearing ball contacts comprised of high temperature solders.
- [0017][0017]FIG. 3 depicts exemplar substrate 18 on which are disposed contacts 20. Substrate 18 is depicted as a rigid board such as a PWB or PCB such as are known in the art. In accordance with a preferred embodiment of the present invention, a solder paste 22 is applied to substrate contacts 20. In accordance with an alternative preferred embodiment of the invention, solder paste 22 is applied to the CSP pads 16 and not the substrate contacts 20. However, as those of skill will recognize, solder paste 22 may applied to both substrate contacts 20 and CSP pads 16 (or a set of contacts of other configuration when devices that are not CSP are used in accordance with the invention.) As those of skill understand, solder paste is a mixture of solder particles and flux.
- [0018]Two or more of the elements lead, tin, silver, copper, antimony or indium may be employed in a variety of combinations to devise a solder to be employed in solder paste 22 in accordance with the present invention. Therefore, in accordance with preferred embodiments of the present invention, a solder alloy employed in solder paste 22 exhibits a melting point equal to or greater than 235° C. and, preferably between 235° C. and 312° C. The alloy chosen should not have a melting point so high that the IC package is adversely affected, but it should also not be so low as to remelt during board assembly operations.
- [0019]Some market participants are starting to implement lead-free solders. Such lead-free solders will typically have melting points higher than those found in lead inclusive solders. Typically, those who use lead-free solders to populate boards with stacked modules will, for example, employ temperatures up to 240° C. in the process of attachment of stacked modules to boards. Consequently, a HT joint implemented with a lead-free alloy will, in conformity with preferred embodiments of the present invention, exhibit a melting point greater than those lead-free solders used to populate boards. Consequently, a preferred implementation of the HT joints of the present invention will have a melting point range of between 245° C. and 265° C. The lead-free solder alloy employed in such HT joints will be comprised of at least two of the following elements: tin, silver, copper, or indium.
- [0020]Preferably, an alloy used as a solder in the present invention will melt over a narrow temperature range. Disintegration of the module during board attachment or population will be less likely if the melt range is narrow. Most preferably, the top of the melting point range of the solder used in board attachment should be exceeded by 15° C. by the melting point of the solder used to manufacture the stacked module although in the case of lead-free solders, this is reduced to ameliorate issues that could arise from exposure of the package to high temperatures.
- [0021]The following combinations have been found to exhibit the following melting points, and the below recited combinations are merely a representative, but not exhaustive, list of examples of solder alloys appropriate for use in the present invention. As those of skill will recognize, these examples are instructive in selecting other preferred particular combinations of lead, tin, silver, copper, antimony, and indium that are readily employed to advantage in the present invention so as to arrive at alloys of at least two of the following solder elements: lead, tin, silver, copper, antimony, and indium that have in their combined mixture, a preferred melting point between 235° C. to 312° C. inclusive.
- [0022]a. A combination of 95% Sn and 5% Sb melts over a range of 235° C. to 240° C.
- [0023]b. A combination of 83% Pb and 10% Sb and 5% Sn and 2% Ag melts over a range of 237° C. to 247° C.
- [0024]c. A combination of 85% Pb and 10% Sb and 5% Sn melts over a range of 245° C. to 255° C.
- [0025]d. A combination of 90% Pb and 10% Sb melts over a range of 252° C. to 260° C.
- [0026]e. A combination of 92.5% Pb, 5% Sn and 2.5% Ag melts over a range of 287° C. to 296° C.
- [0027]f. A combination of 90% Pb and 10% Sn melts over a range of 275° C. to 302° C.
- [0028]g. A combination of 95% Pb and 5% Sn melts over a range of 308° C. to 312° C.
- [0029]h. A combination of 75% Pb and 25% Indium melts over a range of 240° C. to 260° C.
- [0030]Those of skill will note that solder alloys or mixtures may also be employed in embodiments of the present invention that exhibit melting points lower than 235° C., as would be exhibited for example with a 97% Sn and a 3% Sb alloy, but preferred embodiments will employ solder mixtures or alloys that melt between 235° C. and 312° C. inclusive.
- [0031][0031]FIG. 4 depicts portions of two flexible circuit connectors 24A and 24B prepared for mounting of a device 10 in accordance with a preferred embodiment of the present invention. Exemplar flex circuits 24A and 24B may be simple flex circuitry or may exhibit the more sophisticated designs of flex circuitry such as those that would be constructed in accordance with the detailed descriptions provided in U.S. Patent Application Ser. No. 10/005,581 which has been made part of this application by incorporation by reference. For clarity of exposition, depicted flex circuits 24A and 24B exhibit a single conductive layer 26 and a first outer layer 28. Conductive layer 26 is supported by substrate layer 30, which, in a preferred embodiment, is a polyimide. Outer layer 32 resides along the lower surface of the flex circuits 24A and 24B. Optional outer layers 28 and 32, when present, are typically a covercoat or solder mask material. Windows 34 are created through outer layer 32 and intermediate layer 30 to expose flex contacts 36.
- [0032]As depicted in FIG. 4, solder paste 22 is applied to flex contacts 36 which are demarked at the level of conductive layer 26. Solder paste 22 may also alternatively or in addition, be applied to the CSP pads 16 of a CSP. Windows 34 provide openings through which module contacts may be disposed in a later stacked module assembly step. Those of skill will recognize that the method of the present invention is applicable to a wide variety of substrates including solid PWB's, rigid flex, and flexible substrates such as flexible circuits, for example, and the substrate employed can be prepared in accordance with the present invention in a manner appropriate for the intended application. Where the invention is employed with rigid substrates such as a PWB, multilayer strategies and windowing in substrate layers are techniques which are useful in conjunction with the present invention, but not essential.
- [0033][0033]FIG. 5 depicts a device-substrate assembly in accordance with a preferred embodiment of the present invention as may be employed in the construction of a low profile stacked module. The features depicted in FIG. 5 are not drawn to scale, and show various features in an enlarged aspect for purposes of illustration. As shown, integrated circuit device 10 is disposed upon flex circuits 24A and 24B which have been, in a preferred embodiment of the method of the present invention, previously prepared as shown in earlier FIG. 4. Module contacts 40 have been appended to flex circuits 24A and 24B to provide connective facility for the device-flex combination whether as part of a stacked module or otherwise.
- [0034]High temperature joint contacts 38 (“HT joints”) are formed by the melting of the lead alloy in previously applied solder paste 22 and the application of a selected heat range appropriate for the solder mixtures identified previously. Thus, HT joints 38 will, after solidification, typically not re-melt unless exposed subsequently to such temperature ranges. The temperature range applied in this step of assembly will not typically be subsequently encountered in a later assembly operation such as, for example, the application of a stacked module to a DIMM board. Consequently, in one embodiment, the present invention is articulated as a stacked module having HT joints that is appended to a DIMM board with traditional lower melting point solder.
- [0035][0035]FIG. 6 depicts a two-high stacked module devised in accordance with a preferred embodiment of the present invention. Stacked module 50 shown in FIG. 6 includes lower integrated circuit device 52 and upper integrated circuit device 54. A stacked module 50 may be devised in accordance with the present invention that includes more than two packaged integrated circuit devices. Flex circuits 56A and 56B are depicted connecting lower integrated circuit device 52 and upper integrated circuit device 54. Those of skill will also recognize that module 50 may be implemented with a single flexible circuit connector. Further, the flexible circuit connectors employed in accordance with the invention may exhibit one or more conductive layers. Flex circuits 56A and 56B may be any circuit connector structure that provides connective facility between two integrated circuits having a contact array. Those of skill will note that flexible circuits 56A and 56B may exhibit single conductive layers (such as, for example, the flexible circuit connectors earlier illustrated herein and identified for descriptive purposes as flex circuits 24A and 24B in FIG. 5) or may exhibit multiple conductive layers. Examples of other preferred flexible circuit structures are found in U.S. Application Ser. No. 10/005,581 which has been incorporated by reference and those of skill will readily appreciate how a variety of circuit structures may be employed in preferred embodiments. Further, the connective structures used to connect lower integrated circuit 52 with upper integrated circuit 54 need not literally be flexible circuit connectors but may be flexible in portions and rigid in other portions.
- [0036]HT contacts 38 are employed in the preferred embodiment of FIG. 6 to provide connective facility between the respective integrated circuits and contacts borne by the flex circuits 56A and 56B. Preferably, HT joints 38 will exhibit a height dimension smaller than that of CSP ball contacts 14 shown earlier as part of typical CSPs in FIG. 1. As those of skill will recognize, HT joints 38 are depicted in a scale that is enlarged relative to joint sizes that would typically be encountered in actual practice of preferred modes of the invention. Thus, module 50 will preferably present a lower profile than stacked modules created employing typical CSP contacts 14 on each of the constituent integrated circuit packages employed in a stacked module 50.
- [0037][0037]FIG. 7 depicts module 60 as having lower integrated circuit element 52, upper IC element 54, 3rd IC element 58, and 4th IC element 62. When the present invention is employed between flex circuits in stacking multiple levels of CSPs, as for example in FIG. 7, some embodiments will present HT contacts that have minimal heights that do not cause appreciable separation between the flex circuitry associated IC 52 and IC 54, for example, or between IC 54 and IC 62, for example. For such embodiments, the apparent height for illustrated HT joints 39, particularly, that lie between respective layers of flex circuitry will be understood to be exaggerated in the depiction of FIG. 7. Three sets of flex circuitry pairs 56A and 56B are also shown but, as in other embodiments, the invention may be implemented with a variety of substrates including single flex circuits in place of the depicted pair and with flexible circuits that have one or plural conductive layers.
- [0038]As shown, the HT joints provide connections between integrated circuit devices and substrates and the overall profile of module 60 is reduced by use of the present invention that provides advantages in subsequent processing steps such as, for example, affixation of module 60 to DIMM boards, for example.
- [0039]To construct a stacked module in accordance with a preferred embodiment of the present invention, if present, ball contacts 14 are removed from a CSP leaving CSP contacts 16 that typically exhibit a residual layer of solder. A high temperature solder paste composed from a lead alloy or mixture that has a preferable melting point equal to or higher than 235° C. and preferably less than 312° C. is applied to substrate contacts 20 of a substrate such as a flexible circuit and/or the substrate contacts to which it is to be mounted. The CSP is positioned to place the CSP pads 16 and substrate contacts 22 in appropriate proximity. Heat is applied sufficient to melt the lead solder alloy of solder paste 22 thus forming HT joints 38. The flexible circuit is positioned to place portions of the flexible circuit connector between the first CSP and a second CSP that is connected to the substrate with HT joints created using the process described for creating HT joints.
- [0040]In understanding the present invention, it may be helpful to articulate the relative melting points in terms of variables to illustrate the relationships between the HT joints used to construct a stacked module and the solders used to populate a board with such a HT joint-implemented stacked module. In use in board population, the present invention will provide a stacked high module that is assembled using the HT joints that exhibit melting point ranges between X and Y degrees where X is less than Y. Attachment of the stacked module to a board is then implemented with a solder having a melting point between A and B degrees where A and B are less than X.
- [0041]Although the present invention has been described in detail, it will be apparent to those skilled in the art that the invention may be embodied in a variety of specific forms and that various changes, substitutions and alterations can be made without departing from the spirit and scope of the invention. The described embodiments are only illustrative and not restrictive and the scope of the invention is, therefore, indicated by the following claims.
Claims (32)
- 1. A stacked circuit module comprising:a first integrated circuit element;a second integrated circuit element;a flexible circuit connector connecting the first and second integrated circuit elements, the first and second integrated circuits being connected to the flexible circuit connector by a plurality of high temperature joints, each of the plurality of high temperature joints having melting points between 232° C. and 312° C. inclusive.
- 2. A high temperature joint in a stacked circuit module in which a first integrated circuit element is disposed above a second integrated circuit element, the high temperature joint comprising:an alloy comprised of lead and antimony having the proportion of no more than 95% tin and at least 5% antimony, the alloy having a melting point between 235° C. to 260° C.
- 3. A high temperature joint in a stacked circuit module in which a first integrated circuit element is disposed above a second integrated circuit element, the high temperature joint comprising:an alloy comprised of lead and tin, the alloy having a melting point between 275° C. and 312° C.
- 4. A high temperature joint in a stacked circuit module in which a first integrated circuit element is disposed above a second integrated circuit element, the high temperature joint comprising:an alloy comprised of lead, the alloy having a melting point of between 235° C. and 312° C.
- 5. A stacked circuit module comprising:a first integrated circuit;a second integrated circuit disposed above the first integrated circuit;a flex circuit connecting the first and second integrated circuits, the first integrated circuit and the second integrated circuit being connected to the flex circuit through high temperature joints devised in accordance with
claim 4 and the flex circuit comprising;first and second outer layers;first and second conductive layers, between which there is an intermediate layer, the first and second conductive layers and the intermediate layer being interior to the first and second outer layers, the second conductive layer having demarked first and second flex contacts, the first flex contacts being accessible through first windows through the second outer layer and the second flex contacts being accessible through second windows through the first outer layer, the first conductive layer, and the intermediate layer. - 6. The stacked circuit module of
claim 5 in which the second flex contacts are accessible through module windows through the second outer layer. - 7. The stacked circuit module of
claim 5 in which the first and second conductive layers are metal. - 8. The stacked circuit module of
claim 5 in which selected ones of the first flex contacts are connected to selected ones of the second flex contacts. - 9. The stacked circuit module of
claim 5 in which selected ones of the first flex contacts are connected to the first conductive layer. - 10. The stacked circuit module flex circuit of
claim 7 in which the metal of the first and second conductive layers is alloy 110. - 11. The flex circuit of
claim 8 in which the connected selected ones of the first and second flex contacts are connected with traces. - 12. The flex circuit of
claim 5 in which selected ones of the first flex contacts and selected ones of the second flex contacts are connected to the first conductive layer with vias. - 13. The flex circuit of
claim 12 in which selected ones of the first flex contacts are connected to the first conductive layer with on-pad vias. - 14. The flex circuit of
claim 12 in which selected ones of the second flex contacts are connected to the first conductive layer with off-pad vias. - 15. A stacked circuit module comprising:a first flex circuit having first and second conductive layers;a second flex circuit having first and second conductive layers;a first integrated circuit element and a second integrated circuit element, each of the first and second integrated circuit elements being connected to the first flex circuit and the second flex circuit with solder joints having a melting point equal to or greater than 235° C.
- 16. A method of constructing a stacked circuit module comprising the steps of:providing a first CSP having a plurality of ball contacts;removing the plurality of ball contacts from the first CSP leaving a plurality of CSP pads on the first CSP;providing a substrate having a plurality of substrate contacts;applying a solder paste to the plurality of substrate contacts of the substrate, the solder paste being comprised of an alloy of lead having a melting point, the melting point being equal to or greater than 235° C.;positioning the first CSP and the substrate relative to each other to place the CSP pads of the first CSP in contact with the substrate contacts of the substrate to which the solder paste has been applied;heating the first CSP and the substrate to cause the temperature at the CSP contacts and substrate contacts to reach the melting point.
- 17. The method of
claim 16 in which solder remains upon the plurality of CSP contacts after the removal of the ball contacts from the first CSP. - 18. The method of
claim 16 in which the substrate is a flexible circuit. - 19. The method of
claim 16 further comprising the step of connecting a second CSP to the substrate. - 20. The method of
claim 16 in which the substrate is a flexible circuit and further comprising the step of connecting a second CSP to the flexible circuit with an alloy of lead having a second CSP melting point equal to or greater than 235° C. and disposing the second CSP above the first CSP. - 21. The method of
claim 20 in which portions of the flexible circuit are disposed between the first and second CSPs. - 22. A method of constructing a stacked circuit module comprising the steps of:providing a first CSP having a plurality of ball contacts;removing the plurality of ball contacts from the first CSP leaving a plurality of CSP pads on the first CSP;providing a substrate having a plurality of substrate contacts;applying a solder paste to the plurality of CSP pads, the solder paste being comprised of an alloy of lead having a melting point, the melting point being equal to or greater than 235° C.;positioning the first CSP and the substrate relative to each other to place the CSP pads to which the solder paste has been applied in contact with the substrate contacts of the substrate;heating the first CSP and the substrate to cause the temperature at the CSP contacts and substrate contacts to reach the melting point.
- 23. A circuit board to which is connected a stacked circuit module devised in accordance with claims 16 or 22.
- 24. The circuit board of
claim 23 in which the stacked circuit module devised in accordance with claims 16 or 22 is connected to the board with a solder having a melting point below 235° C. - 25. A stacked circuit module comprising:a first integrated circuit;a second integrated circuit in stacked disposition relative to the first integrated circuit;a substrate through which the first and second integrated circuits are connected;a plurality of high temperature joints that connect the first integrated circuit to the substrate and the second integrated circuit to the substrate, the high temperature joints each having a melting point greater than 230° C.
- 26. A high-density circuit module comprising:a first CSP having first and second lateral sides and upper and lower major surfaces and a set of CSP pads along the lower major surface;a second CSP having first and second lateral sides and upper and lower major surfaces and a set of CSP pads along the lower major surface, the first CSP being disposed above the second CSP;a pair of flex circuits, each of which pair having a first conductive layer and a second conductive layer, both said conductive layers being interior to first and second outer layers, and demarcated at the second conductive layer of each flex circuit there being upper and lower flex contacts, the upper flex contacts being connected to the CSP pads of the first CSP with first high temperature joints and the lower flex contacts being connected to the CSP pads of the second CSP with second high temperature joints, the first and second high temperature joints each having melting points above 230° C.
- 27. The high-density circuit module of
claim 26 in which:a chip-enable module contact is connected to an enable lower flex contact that is connected to a chip select CSP pad of the first CSP. - 28. The high-density circuit module of
claim 27 in which the connection between the enable lower flex contact and the chip select CSP contact of the first CSP is through an enable connection at the first conductive layer. - 29. The high-density circuit module of
claim 26 in which a first one of the flex circuit pair is partially wrapped about the first lateral side of the second CSP and a second one of the flex circuit pair is partially wrapped about the second lateral side of the second CSP to dispose the upper flex contacts above the upper major surface of the second CSP and beneath the lower major surface of the first CSP. - 30. The high-density circuit module of
claim 26 in which the first CSP expresses an n-bit datapath and the second CSP expresses an n-bit datapath, each of the flex circuits of the flex circuit pair having supplemental lower flex contacts which, in combination with the lower flex contacts, provide connection for the set of module contacts and a set of supplemental module contacts to express a 2n-bit module datapath that combines the n-bit datapath expressed by the first CSP and the n-bit datapath expressed by the second CSP. - 31. A method of populating a circuit board comprising the steps of:obtaining a high-density circuit module comprised of: two or more packaged integrated circuits;a flexible circuit for connection between the two or more packaged integrated circuits, the connection between the two or more packaged integrated circuits being implemented through HT joints, the HT joints having a melting point range of between X and Y degrees Centigrade, where X is less than Y;attaching the high-density circuit module to the circuit board with solder joints, the solder joints having a melting point range of between A and B degrees Centigrade, where A is less than B and A and B are both less than X.
- 32. A method of populating a circuit board comprising the steps of:constructing a high-density circuit module having two or more integrated circuits with one integrated circuit disposed above another, the construction being implemented with a first solder having a melting point of X degrees; andattaching the stacked circuit module to a circuit board with a second solder having a melting point of Y degrees where Y is less than X.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10005581 US6576992B1 (en) | 2001-10-26 | 2001-10-26 | Chip scale stacking system and method |
US10457608 US20030234443A1 (en) | 2001-10-26 | 2003-06-09 | Low profile stacking system and method |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10457608 US20030234443A1 (en) | 2001-10-26 | 2003-06-09 | Low profile stacking system and method |
US10631886 US7026708B2 (en) | 2001-10-26 | 2003-07-14 | Low profile chip scale stacking system and method |
PCT/US2004/016347 WO2004112128A3 (en) | 2003-06-09 | 2004-05-25 | Low profile stacking system and method |
US10873847 US7094632B2 (en) | 2001-10-26 | 2004-06-22 | Low profile chip scale stacking system and method |
US11011469 US7180167B2 (en) | 2001-10-26 | 2004-12-14 | Low profile stacking system and method |
US11263627 US7656678B2 (en) | 2001-10-26 | 2005-10-31 | Stacked module systems |
US11403081 US20060255446A1 (en) | 2001-10-26 | 2006-04-12 | Stacked modules and method |
US11432206 US20080211077A1 (en) | 2001-10-26 | 2006-05-11 | Low profile chip scale stacking system and method |
US11626316 US20070117262A1 (en) | 2001-10-26 | 2007-01-23 | Low Profile Stacking System and Method |
US11626318 US20070114649A1 (en) | 2001-10-26 | 2007-01-23 | Low Profile Stacking System and Method |
US11873351 US7719098B2 (en) | 2001-10-26 | 2007-10-16 | Stacked modules and method |
US11873355 US20080120831A1 (en) | 2001-10-26 | 2007-10-16 | Stacked Modules and Method |
US11874775 US20080090329A1 (en) | 2001-10-26 | 2007-10-18 | Stacked Modules and Method |
US11874795 US20080088032A1 (en) | 2001-10-26 | 2007-10-18 | Stacked Modules and Method |
US12356432 US7626273B2 (en) | 2001-10-26 | 2009-01-20 | Low profile stacking system and method |
US12437340 US20090273069A1 (en) | 2001-10-26 | 2009-05-07 | Low profile chip scale stacking system and method |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US10005581 Continuation-In-Part US6576992B1 (en) | 2001-10-26 | 2001-10-26 | Chip scale stacking system and method | |
US10453398 Continuation-In-Part US6914324B2 (en) | 2001-10-26 | 2003-06-03 | Memory expansion and chip scale stacking system and method |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10631886 Continuation-In-Part US7026708B2 (en) | 2001-10-26 | 2003-07-14 | Low profile chip scale stacking system and method |
US11011469 Division US7180167B2 (en) | 2001-10-26 | 2004-12-14 | Low profile stacking system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030234443A1 true true US20030234443A1 (en) | 2003-12-25 |
Family
ID=34713105
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10457608 Abandoned US20030234443A1 (en) | 2001-10-26 | 2003-06-09 | Low profile stacking system and method |
US11011469 Expired - Fee Related US7180167B2 (en) | 2001-10-26 | 2004-12-14 | Low profile stacking system and method |
US11626316 Abandoned US20070117262A1 (en) | 2001-10-26 | 2007-01-23 | Low Profile Stacking System and Method |
US11626318 Abandoned US20070114649A1 (en) | 2001-10-26 | 2007-01-23 | Low Profile Stacking System and Method |
US12356432 Active US7626273B2 (en) | 2001-10-26 | 2009-01-20 | Low profile stacking system and method |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11011469 Expired - Fee Related US7180167B2 (en) | 2001-10-26 | 2004-12-14 | Low profile stacking system and method |
US11626316 Abandoned US20070117262A1 (en) | 2001-10-26 | 2007-01-23 | Low Profile Stacking System and Method |
US11626318 Abandoned US20070114649A1 (en) | 2001-10-26 | 2007-01-23 | Low Profile Stacking System and Method |
US12356432 Active US7626273B2 (en) | 2001-10-26 | 2009-01-20 | Low profile stacking system and method |
Country Status (1)
Country | Link |
---|---|
US (5) | US20030234443A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060125067A1 (en) * | 2004-09-03 | 2006-06-15 | Staktek Group L.P. | Flex circuit constructions for high capacity circuit module systems and methods |
US7442050B1 (en) | 2005-08-29 | 2008-10-28 | Netlist, Inc. | Circuit card with flexible connection for memory module with heat spreader |
US7480152B2 (en) * | 2004-09-03 | 2009-01-20 | Entorian Technologies, Lp | Thin module system and method |
US20090046431A1 (en) * | 2004-09-03 | 2009-02-19 | Staktek Group L.P. | High Capacity Thin Module System |
US7511968B2 (en) * | 2004-09-03 | 2009-03-31 | Entorian Technologies, Lp | Buffered thin module system and method |
US7619893B1 (en) | 2006-02-17 | 2009-11-17 | Netlist, Inc. | Heat spreader for electronic modules |
US7630202B2 (en) | 2004-04-09 | 2009-12-08 | Netlist, Inc. | High density module having at least two substrates and at least one thermally conductive layer therebetween |
US20110197438A1 (en) * | 2010-02-17 | 2011-08-18 | Masashi Kikuchii | Method of manufacturing semiconductor device |
US8018723B1 (en) | 2008-04-30 | 2011-09-13 | Netlist, Inc. | Heat dissipation for electronic modules |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7026708B2 (en) * | 2001-10-26 | 2006-04-11 | Staktek Group L.P. | Low profile chip scale stacking system and method |
US7371609B2 (en) * | 2001-10-26 | 2008-05-13 | Staktek Group L.P. | Stacked module systems and methods |
US6940729B2 (en) * | 2001-10-26 | 2005-09-06 | Staktek Group L.P. | Integrated circuit stacking system and method |
US7656678B2 (en) * | 2001-10-26 | 2010-02-02 | Entorian Technologies, Lp | Stacked module systems |
US7485951B2 (en) * | 2001-10-26 | 2009-02-03 | Entorian Technologies, Lp | Modularized die stacking system and method |
US6576992B1 (en) * | 2001-10-26 | 2003-06-10 | Staktek Group L.P. | Chip scale stacking system and method |
US7579687B2 (en) * | 2004-09-03 | 2009-08-25 | Entorian Technologies, Lp | Circuit module turbulence enhancement systems and methods |
US7423885B2 (en) * | 2004-09-03 | 2008-09-09 | Entorian Technologies, Lp | Die module system |
US20060053345A1 (en) * | 2004-09-03 | 2006-03-09 | Staktek Group L.P. | Thin module system and method |
US7606040B2 (en) * | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Memory module system and method |
US7606050B2 (en) * | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Compact module system and method |
US7468893B2 (en) * | 2004-09-03 | 2008-12-23 | Entorian Technologies, Lp | Thin module system and method |
US7606049B2 (en) * | 2004-09-03 | 2009-10-20 | Entorian Technologies, Lp | Module thermal management system and method |
US7324352B2 (en) * | 2004-09-03 | 2008-01-29 | Staktek Group L.P. | High capacity thin module system and method |
US7446410B2 (en) * | 2004-09-03 | 2008-11-04 | Entorian Technologies, Lp | Circuit module with thermal casing systems |
US20060049513A1 (en) * | 2004-09-03 | 2006-03-09 | Staktek Group L.P. | Thin module system and method with thermal management |
US7760513B2 (en) * | 2004-09-03 | 2010-07-20 | Entorian Technologies Lp | Modified core for circuit module system and method |
US20060261449A1 (en) * | 2005-05-18 | 2006-11-23 | Staktek Group L.P. | Memory module system and method |
FR2889405B1 (en) * | 2005-07-29 | 2010-12-10 | Thales Sa | Method for assembling electronic components contacts gate beads, in particular alloy of tin, silver and copper, and such components METHOD |
US7511969B2 (en) * | 2006-02-02 | 2009-03-31 | Entorian Technologies, Lp | Composite core circuit module system and method |
US7289327B2 (en) * | 2006-02-27 | 2007-10-30 | Stakick Group L.P. | Active cooling methods and apparatus for modules |
KR100780691B1 (en) * | 2006-03-29 | 2007-11-30 | 주식회사 하이닉스반도체 | Folding chip planr stack package |
US8031475B2 (en) * | 2007-07-12 | 2011-10-04 | Stats Chippac, Ltd. | Integrated circuit package system with flexible substrate and mounded package |
US8278141B2 (en) * | 2008-06-11 | 2012-10-02 | Stats Chippac Ltd. | Integrated circuit package system with internal stacking module |
US20110304041A1 (en) * | 2010-06-15 | 2011-12-15 | Chung Chi-Yuan | Electrically connecting routes of semiconductor chip package consolidated in die-attachment |
US8884420B1 (en) * | 2013-07-12 | 2014-11-11 | Infineon Technologies Austria Ag | Multichip device |
Citations (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3654394A (en) * | 1969-07-08 | 1972-04-04 | Gordon Eng Co | Field effect transistor switch, particularly for multiplexing |
US4513368A (en) * | 1981-05-22 | 1985-04-23 | Data General Corporation | Digital data processing system having object-based logical memory addressing and self-structuring modular memory |
US4645944A (en) * | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4654944A (en) * | 1985-09-13 | 1987-04-07 | Graf Richard W | Overhead cam valve spring compressor adapter |
US4763188A (en) * | 1986-08-08 | 1988-08-09 | Thomas Johnson | Packaging system for multiple semiconductor devices |
US4985703A (en) * | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US5117282A (en) * | 1990-10-29 | 1992-05-26 | Harris Corporation | Stacked configuration for integrated circuit devices |
US5224023A (en) * | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5239198A (en) * | 1989-09-06 | 1993-08-24 | Motorola, Inc. | Overmolded semiconductor device having solder ball and edge lead connective structure |
US5289062A (en) * | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5428190A (en) * | 1993-07-02 | 1995-06-27 | Sheldahl, Inc. | Rigid-flex board with anisotropic interconnect and method of manufacture |
US5448511A (en) * | 1994-06-01 | 1995-09-05 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
US5523695A (en) * | 1994-08-26 | 1996-06-04 | Vlsi Technology, Inc. | Universal test socket for exposing the active surface of an integrated circuit in a die-down package |
US5642055A (en) * | 1990-02-14 | 1997-06-24 | Particle Interconnect, Inc. | Electrical interconnect using particle enhanced joining of metal surfaces |
US5764497A (en) * | 1995-11-13 | 1998-06-09 | Minolta Co, Ltd. | Circuit board connection method and connection structure |
US5776797A (en) * | 1995-12-22 | 1998-07-07 | Fairchild Space And Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
US5917709A (en) * | 1997-06-16 | 1999-06-29 | Eastman Kodak Company | Multiple circuit board assembly having an interconnect mechanism that includes a flex connector |
US5949657A (en) * | 1997-12-01 | 1999-09-07 | Karabatsos; Chris | Bottom or top jumpered foldable electronic assembly |
US5953215A (en) * | 1997-12-01 | 1999-09-14 | Karabatsos; Chris | Apparatus and method for improving computer memory speed and capacity |
US6028365A (en) * | 1998-03-30 | 2000-02-22 | Micron Technology, Inc. | Integrated circuit package and method of fabrication |
US6072233A (en) * | 1998-05-04 | 2000-06-06 | Micron Technology, Inc. | Stackable ball grid array package |
US6097087A (en) * | 1997-10-31 | 2000-08-01 | Micron Technology, Inc. | Semiconductor package including flex circuit, interconnects and dense array external contacts |
US6121676A (en) * | 1996-12-13 | 2000-09-19 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US6222737B1 (en) * | 1999-04-23 | 2001-04-24 | Dense-Pac Microsystems, Inc. | Universal package and method of forming the same |
US6233650B1 (en) * | 1998-04-01 | 2001-05-15 | Intel Corporation | Using FET switches for large memory arrays |
US6265660B1 (en) * | 1997-07-09 | 2001-07-24 | Micron Technology, Inc. | Package stack via bottom leaded plastic (BLP) packaging |
US6266252B1 (en) * | 1997-12-01 | 2001-07-24 | Chris Karabatsos | Apparatus and method for terminating a computer memory bus |
US6281577B1 (en) * | 1996-06-28 | 2001-08-28 | Pac Tech-Packaging Technologies Gmbh | Chips arranged in plurality of planes and electrically connected to one another |
US6300679B1 (en) * | 1998-06-01 | 2001-10-09 | Semiconductor Components Industries, Llc | Flexible substrate for packaging a semiconductor component |
US20010040793A1 (en) * | 2000-02-01 | 2001-11-15 | Tetsuya Inaba | Electronic device and method of producing the same |
US6323060B1 (en) * | 1999-05-05 | 2001-11-27 | Dense-Pac Microsystems, Inc. | Stackable flex circuit IC package and method of making same |
US20020006032A1 (en) * | 2000-05-23 | 2002-01-17 | Chris Karabatsos | Low-profile registered DIMM |
US6351029B1 (en) * | 1999-05-05 | 2002-02-26 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US6376769B1 (en) * | 1999-05-18 | 2002-04-23 | Amerasia International Technology, Inc. | High-density electronic package, and method for making same |
US6392162B1 (en) * | 2000-11-10 | 2002-05-21 | Chris Karabatsos | Double-sided flexible jumper assembly and method of manufacture |
US6410857B1 (en) * | 2001-03-01 | 2002-06-25 | Lockheed Martin Corporation | Signal cross-over interconnect for a double-sided circuit card assembly |
US20020101261A1 (en) * | 2001-02-01 | 2002-08-01 | Chris Karabatsos | Tri-directional, high-speed bus switch |
US6433418B1 (en) * | 1998-07-24 | 2002-08-13 | Fujitsu Limited | Apparatus for a vertically accumulable semiconductor device with external leads secured by a positioning mechanism |
US6446158B1 (en) * | 1999-05-17 | 2002-09-03 | Chris Karabatsos | Memory system using FET switches to select memory banks |
US6444921B1 (en) * | 2000-02-03 | 2002-09-03 | Fujitsu Limited | Reduced stress and zero stress interposers for integrated-circuit chips, multichip substrates, and the like |
US20020139577A1 (en) * | 2001-03-27 | 2002-10-03 | Miller Charles A. | In-street integrated circuit wafer via |
US6462412B2 (en) * | 2000-01-18 | 2002-10-08 | Sony Corporation | Foldable, flexible laminate type semiconductor apparatus with reinforcing and heat-radiating plates |
US6465893B1 (en) * | 1990-09-24 | 2002-10-15 | Tessera, Inc. | Stacked chip assembly |
US20020164838A1 (en) * | 2001-05-02 | 2002-11-07 | Moon Ow Chee | Flexible ball grid array chip scale packages and methods of fabrication |
US6486544B1 (en) * | 1998-09-09 | 2002-11-26 | Seiko Epson Corporation | Semiconductor device and method manufacturing the same, circuit board, and electronic instrument |
US20020180022A1 (en) * | 1999-10-20 | 2002-12-05 | Seiko Epson Corporation | Semiconductor device |
US6552910B1 (en) * | 2000-06-28 | 2003-04-22 | Micron Technology, Inc. | Stacked-die assemblies with a plurality of microelectronic devices and methods of manufacture |
US6560117B2 (en) * | 2000-06-28 | 2003-05-06 | Micron Technology, Inc. | Packaged microelectronic die assemblies and methods of manufacture |
US6572387B2 (en) * | 1999-09-24 | 2003-06-03 | Staktek Group, L.P. | Flexible circuit connector for stacked chip module |
US6590282B1 (en) * | 2002-04-12 | 2003-07-08 | Industrial Technology Research Institute | Stacked semiconductor package formed on a substrate and method for fabrication |
US6600222B1 (en) * | 2002-07-17 | 2003-07-29 | Intel Corporation | Stacked microelectronic packages |
US6614664B2 (en) * | 2000-10-24 | 2003-09-02 | Samsung Electronics Co., Ltd. | Memory module having series-connected printed circuit boards |
US20030168725A1 (en) * | 1996-12-13 | 2003-09-11 | Tessera, Inc. | Methods of making microelectronic assemblies including folded substrates |
US6620651B2 (en) * | 2001-10-23 | 2003-09-16 | National Starch And Chemical Investment Holding Corporation | Adhesive wafers for die attach application |
US6627984B2 (en) * | 2001-07-24 | 2003-09-30 | Dense-Pac Microsystems, Inc. | Chip stack with differing chip package types |
US6660561B2 (en) * | 2000-06-15 | 2003-12-09 | Dpac Technologies Corp. | Method of assembling a stackable integrated circuit chip |
US6677670B2 (en) * | 2000-04-25 | 2004-01-13 | Seiko Epson Corporation | Semiconductor device |
US6683377B1 (en) * | 2000-05-30 | 2004-01-27 | Amkor Technology, Inc. | Multi-stacked memory package |
US20040021211A1 (en) * | 2002-08-05 | 2004-02-05 | Tessera, Inc. | Microelectronic adaptors, assemblies and methods |
US20040150107A1 (en) * | 2002-12-31 | 2004-08-05 | Cha Ki Bon | Stack package and fabricating method thereof |
Family Cites Families (174)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3411122A (en) | 1966-01-13 | 1968-11-12 | Ibm | Electrical resistance element and method of fabricating |
US3436604A (en) * | 1966-04-25 | 1969-04-01 | Texas Instruments Inc | Complex integrated circuit array and method for fabricating same |
US3436804A (en) * | 1968-04-23 | 1969-04-08 | Olin Mathieson | Process for forming composite aluminum alloy |
US3772776A (en) | 1969-12-03 | 1973-11-20 | Thomas & Betts Corp | Method of interconnecting memory plane boards |
US3727064A (en) * | 1971-03-17 | 1973-04-10 | Monsanto Co | Opto-isolator devices and method for the fabrication thereof |
US3746934A (en) | 1971-05-06 | 1973-07-17 | Siemens Ag | Stack arrangement of semiconductor chips |
US3766439A (en) | 1972-01-12 | 1973-10-16 | Gen Electric | Electronic module using flexible printed circuit board with heat sink means |
US3806767A (en) * | 1973-03-15 | 1974-04-23 | Tek Wave Inc | Interboard connector |
US3983547A (en) | 1974-06-27 | 1976-09-28 | International Business Machines - Ibm | Three-dimensional bubble device |
US4079511A (en) * | 1976-07-30 | 1978-03-21 | Amp Incorporated | Method for packaging hermetically sealed integrated circuit chips on lead frames |
US4103318A (en) | 1977-05-06 | 1978-07-25 | Ford Motor Company | Electronic multichip module |
US4288841A (en) | 1979-09-20 | 1981-09-08 | Bell Telephone Laboratories, Incorporated | Double cavity semiconductor chip carrier |
US4381421A (en) * | 1980-07-01 | 1983-04-26 | Tektronix, Inc. | Electromagnetic shield for electronic equipment |
US4398235A (en) | 1980-09-11 | 1983-08-09 | General Motors Corporation | Vertical integrated circuit package integration |
US4437235A (en) * | 1980-12-29 | 1984-03-20 | Honeywell Information Systems Inc. | Integrated circuit package |
JPH0315340B2 (en) | 1981-04-30 | 1991-02-28 | Hitachi Seisakusho Kk | |
US4406508A (en) | 1981-07-02 | 1983-09-27 | Thomas & Betts Corporation | Dual-in-line package assembly |
US4420794A (en) | 1981-09-10 | 1983-12-13 | Research, Incorporated | Integrated circuit switch |
US4712129A (en) | 1983-12-12 | 1987-12-08 | Texas Instruments Incorporated | Integrated circuit device with textured bar cover |
KR890004820B1 (en) | 1984-03-28 | 1989-11-27 | 제이.에이취.그래디 | Stacked double density memory module using industry standard memory chips |
US4587596A (en) * | 1984-04-09 | 1986-05-06 | Amp Incorporated | High density mother/daughter circuit board connector |
WO1986004208A1 (en) * | 1984-12-28 | 1986-07-17 | Micro Engineering Co., Ltd. | Method of stacking printed circuit boards |
EP0218796B1 (en) * | 1985-08-16 | 1990-10-31 | Dai-Ichi Seiko Co. Ltd. | Semiconductor device comprising a plug-in-type package |
US4696525A (en) | 1985-12-13 | 1987-09-29 | Amp Incorporated | Socket for stacking integrated circuit packages |
US4722691A (en) * | 1986-02-03 | 1988-02-02 | General Motors Corporation | Header assembly for a printed circuit board |
JPS62162891U (en) * | 1986-04-03 | 1987-10-16 | ||
US4839717A (en) | 1986-12-19 | 1989-06-13 | Fairchild Semiconductor Corporation | Ceramic package for high frequency semiconductor devices |
US5016138A (en) * | 1987-10-27 | 1991-05-14 | Woodman John K | Three dimensional integrated circuit package |
US4821007A (en) * | 1987-02-06 | 1989-04-11 | Tektronix, Inc. | Strip line circuit component and method of manufacture |
US5159535A (en) | 1987-03-11 | 1992-10-27 | International Business Machines Corporation | Method and apparatus for mounting a flexible film semiconductor chip carrier on a circuitized substrate |
US4862249A (en) | 1987-04-17 | 1989-08-29 | Xoc Devices, Inc. | Packaging system for stacking integrated circuits |
US4855810A (en) | 1987-06-02 | 1989-08-08 | Gelb Allan S | Thermoelectric heat pump |
US5034350A (en) | 1987-09-23 | 1991-07-23 | Sgs Thomson Microelectronics S.R.L. | Semiconductor device package with dies mounted on both sides of the central pad of a metal frame |
US4983533A (en) * | 1987-10-28 | 1991-01-08 | Irvine Sensors Corporation | High-density electronic modules - process and product |
US5198888A (en) * | 1987-12-28 | 1993-03-30 | Hitachi, Ltd. | Semiconductor stacked device |
US4833568A (en) * | 1988-01-29 | 1989-05-23 | Berhold G Mark | Three-dimensional circuit component assembly and method corresponding thereto |
US4891789A (en) * | 1988-03-03 | 1990-01-02 | Bull Hn Information Systems, Inc. | Surface mounted multilayer memory printed circuit board |
US4911643A (en) * | 1988-10-11 | 1990-03-27 | Beta Phase, Inc. | High density and high signal integrity connector |
US4956694A (en) | 1988-11-04 | 1990-09-11 | Dense-Pac Microsystems, Inc. | Integrated circuit chip stacking |
WO1990006609A1 (en) * | 1988-11-16 | 1990-06-14 | Motorola, Inc. | Flexible substrate electronic assembly |
DE69018846T2 (en) * | 1989-02-10 | 1995-08-24 | Fujitsu Ltd | A ceramic package as the semiconductor device type, and method of assembling same. |
DE69006609D1 (en) | 1989-03-15 | 1994-03-24 | Ngk Insulators Ltd | Ceramic lid for sealing a semiconductor element and method for sealing a semiconductor element in a ceramic package. |
JP2647194B2 (en) | 1989-04-17 | 1997-08-27 | 住友電気工業株式会社 | Sealing method of semiconductor package |
US4953060A (en) | 1989-05-05 | 1990-08-28 | Ncr Corporation | Stackable integrated circuit chip package with improved heat removal |
US5104820A (en) * | 1989-07-07 | 1992-04-14 | Irvine Sensors Corporation | Method of fabricating electronic circuitry unit containing stacked IC layers having lead rerouting |
US5057903A (en) | 1989-07-17 | 1991-10-15 | Microelectronics And Computer Technology Corporation | Thermal heat sink encapsulated integrated circuit |
DE68925727D1 (en) * | 1989-09-15 | 1996-03-28 | Hewlett Packard Gmbh | Method for determining the optimal working conditions in an electrochemical detector and electrochemical detector, this method benutzend |
US5068708A (en) | 1989-10-02 | 1991-11-26 | Advanced Micro Devices, Inc. | Ground plane for plastic encapsulated integrated circuit die packages |
US5012323A (en) * | 1989-11-20 | 1991-04-30 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
US5229641A (en) | 1989-11-25 | 1993-07-20 | Hitachi Maxell, Ltd. | Semiconductor card and manufacturing method therefor |
US5041902A (en) | 1989-12-14 | 1991-08-20 | Motorola, Inc. | Molded electronic package with compression structures |
JPH03227541A (en) | 1990-02-01 | 1991-10-08 | Hitachi Ltd | Semiconductor device |
US5041015A (en) | 1990-03-30 | 1991-08-20 | Cal Flex, Inc. | Electrical jumper assembly |
US5345205A (en) | 1990-04-05 | 1994-09-06 | General Electric Company | Compact high density interconnected microwave system |
US5261068A (en) | 1990-05-25 | 1993-11-09 | Dell Usa L.P. | Dual path memory retrieval system for an interleaved dynamic RAM memory unit |
US5050039A (en) | 1990-06-26 | 1991-09-17 | Digital Equipment Corporation | Multiple circuit chip mounting and cooling arrangement |
CA2022304C (en) * | 1990-07-30 | 1994-04-26 | Jonathan Willner | Miniaturized ground fault circuit interrupter |
US5446620A (en) | 1990-08-01 | 1995-08-29 | Staktek Corporation | Ultra high density integrated circuit packages |
EP0509065A4 (en) * | 1990-08-01 | 1994-02-09 | Staktek Corporation | |
US5499160A (en) * | 1990-08-01 | 1996-03-12 | Staktek Corporation | High density integrated circuit module with snap-on rail assemblies |
US5475920A (en) | 1990-08-01 | 1995-12-19 | Burns; Carmen D. | Method of assembling ultra high density integrated circuit packages |
US5377077A (en) | 1990-08-01 | 1994-12-27 | Staktek Corporation | Ultra high density integrated circuit packages method and apparatus |
JP3242101B2 (en) | 1990-10-05 | 2001-12-25 | 三菱電機株式会社 | The semiconductor integrated circuit |
JPH04162556A (en) | 1990-10-25 | 1992-06-08 | Mitsubishi Electric Corp | Lead frame and its manufacturing |
US5138434A (en) | 1991-01-22 | 1992-08-11 | Micron Technology, Inc. | Packaging for semiconductor logic devices |
US5289346A (en) * | 1991-02-26 | 1994-02-22 | Microelectronics And Computer Technology Corporation | Peripheral to area adapter with protective bumper for an integrated circuit chip |
JPH04284661A (en) * | 1991-03-13 | 1992-10-09 | Toshiba Corp | Semiconductor device |
US5219794A (en) | 1991-03-14 | 1993-06-15 | Hitachi, Ltd. | Semiconductor integrated circuit device and method of fabricating same |
US5099393A (en) * | 1991-03-25 | 1992-03-24 | International Business Machines Corporation | Electronic package for high density applications |
US5158912A (en) | 1991-04-09 | 1992-10-27 | Digital Equipment Corporation | Integral heatsink semiconductor package |
US5138430A (en) | 1991-06-06 | 1992-08-11 | International Business Machines Corporation | High performance versatile thermally enhanced IC chip mounting |
JPH0513666A (en) | 1991-06-29 | 1993-01-22 | Sony Corp | Complex semiconductor device |
US5214307A (en) * | 1991-07-08 | 1993-05-25 | Micron Technology, Inc. | Lead frame for semiconductor devices having improved adhesive bond line control |
US5311401A (en) * | 1991-07-09 | 1994-05-10 | Hughes Aircraft Company | Stacked chip assembly and manufacturing method therefor |
US5252857A (en) | 1991-08-05 | 1993-10-12 | International Business Machines Corporation | Stacked DCA memory chips |
JP2967621B2 (en) | 1991-08-27 | 1999-10-25 | 日本電気株式会社 | Method of manufacturing a package for a semiconductor device |
US5168926A (en) | 1991-09-25 | 1992-12-08 | Intel Corporation | Heat sink design integrating interface material |
US5397916A (en) * | 1991-12-10 | 1995-03-14 | Normington; Peter J. C. | Semiconductor device including stacked die |
US5281852A (en) * | 1991-12-10 | 1994-01-25 | Normington Peter J C | Semiconductor device including stacked die |
US5198965A (en) * | 1991-12-18 | 1993-03-30 | International Business Machines Corporation | Free form packaging of specific functions within a computer system |
US5241454A (en) | 1992-01-22 | 1993-08-31 | International Business Machines Corporation | Mutlilayered flexible circuit package |
US5262927A (en) | 1992-02-07 | 1993-11-16 | Lsi Logic Corporation | Partially-molded, PCB chip carrier package |
US5243133A (en) | 1992-02-18 | 1993-09-07 | International Business Machines, Inc. | Ceramic chip carrier with lead frame or edge clip |
US5222014A (en) | 1992-03-02 | 1993-06-22 | Motorola, Inc. | Three-dimensional multi-chip pad array carrier |
US5229916A (en) | 1992-03-04 | 1993-07-20 | International Business Machines Corporation | Chip edge interconnect overlay element |
US5259770A (en) | 1992-03-19 | 1993-11-09 | Amp Incorporated | Impedance controlled elastomeric connector |
US5438224A (en) | 1992-04-23 | 1995-08-01 | Motorola, Inc. | Integrated circuit package having a face-to-face IC chip arrangement |
US5361228A (en) | 1992-04-30 | 1994-11-01 | Fuji Photo Film Co., Ltd. | IC memory card system having a common data and address bus |
US5446313A (en) * | 1992-05-25 | 1995-08-29 | Hitachi, Ltd. | Thin type semiconductor device and module structure using the device |
US5247423A (en) | 1992-05-26 | 1993-09-21 | Motorola, Inc. | Stacking three dimensional leadless multi-chip module and method for making the same |
DE69325770T2 (en) * | 1992-06-02 | 1999-11-18 | Hewlett Packard Co | A method of computer-aided design for multi-layer technologies compounds |
US5343366A (en) | 1992-06-24 | 1994-08-30 | International Business Machines Corporation | Packages for stacked integrated circuit chip cubes |
US5729894A (en) * | 1992-07-21 | 1998-03-24 | Lsi Logic Corporation | Method of assembling ball bump grid array semiconductor packages |
JP3105089B2 (en) * | 1992-09-11 | 2000-10-30 | 株式会社東芝 | Semiconductor device |
US5432630A (en) | 1992-09-11 | 1995-07-11 | Motorola, Inc. | Optical bus with optical transceiver modules and method of manufacture |
US5731633A (en) * | 1992-09-16 | 1998-03-24 | Gary W. Hamilton | Thin multichip module |
US5402006A (en) * | 1992-11-10 | 1995-03-28 | Texas Instruments Incorporated | Semiconductor device with enhanced adhesion between heat spreader and leads and plastic mold compound |
US5313097A (en) * | 1992-11-16 | 1994-05-17 | International Business Machines, Corp. | High density memory module |
US5375041A (en) | 1992-12-02 | 1994-12-20 | Intel Corporation | Ra-tab array bump tab tape based I.C. package |
US5347428A (en) | 1992-12-03 | 1994-09-13 | Irvine Sensors Corporation | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
US5484959A (en) * | 1992-12-11 | 1996-01-16 | Staktek Corporation | High density lead-on-package fabrication method and apparatus |
US6205654B1 (en) * | 1992-12-11 | 2001-03-27 | Staktek Group L.P. | Method of manufacturing a surface mount package |
US5384690A (en) * | 1993-07-27 | 1995-01-24 | International Business Machines Corporation | Flex laminate package for a parallel processor |
US5337388A (en) | 1993-08-03 | 1994-08-09 | International Business Machines Corporation | Matrix of pluggable connectors for connecting large numbers of clustered electrical and/or opticcal cables to a module |
US5396573A (en) * | 1993-08-03 | 1995-03-07 | International Business Machines Corporation | Pluggable connectors for connecting large numbers of electrical and/or optical cables to a module through a seal |
US5386341A (en) * | 1993-11-01 | 1995-01-31 | Motorola, Inc. | Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape |
KR970000214B1 (en) * | 1993-11-18 | 1997-01-06 | 김광호 | Semiconductor device and method of producing the same |
US5477082A (en) | 1994-01-11 | 1995-12-19 | Exponential Technology, Inc. | Bi-planar multi-chip module |
US5744627A (en) * | 1994-01-28 | 1998-04-28 | Prolinx, Inc. | Boronic compound complexing reagents and complexes |
US5455740A (en) | 1994-03-07 | 1995-10-03 | Staktek Corporation | Bus communication system for stacked high density integrated circuit packages |
US5502333A (en) * | 1994-03-30 | 1996-03-26 | International Business Machines Corporation | Semiconductor stack structures and fabrication/sparing methods utilizing programmable spare circuit |
JPH07312469A (en) * | 1994-05-16 | 1995-11-28 | Nippon Mektron Ltd | Structure of bent part of multilayer flexible circuit board |
US5509197A (en) * | 1994-06-10 | 1996-04-23 | Xetel Corporation | Method of making substrate edge connector |
US6247228B1 (en) * | 1996-08-12 | 2001-06-19 | Tessera, Inc. | Electrical connection with inwardly deformable contacts |
US5592364A (en) * | 1995-01-24 | 1997-01-07 | Staktek Corporation | High density integrated circuit module with complex electrical interconnect rails |
US5514907A (en) * | 1995-03-21 | 1996-05-07 | Simple Technology Incorporated | Apparatus for stacking semiconductor chips |
US5612570A (en) * | 1995-04-13 | 1997-03-18 | Dense-Pac Microsystems, Inc. | Chip stack and method of making same |
JP2606177B2 (en) * | 1995-04-26 | 1997-04-30 | 日本電気株式会社 | Printed wiring board |
US5872051A (en) * | 1995-08-02 | 1999-02-16 | International Business Machines Corporation | Process for transferring material to semiconductor chip conductive pads using a transfer substrate |
US6025642A (en) * | 1995-08-17 | 2000-02-15 | Staktek Corporation | Ultra high density integrated circuit packages |
US6013948A (en) * | 1995-11-27 | 2000-01-11 | Micron Technology, Inc. | Stackable chip scale semiconductor package with mating contacts on opposed surfaces |
KR0184076B1 (en) * | 1995-11-28 | 1999-03-20 | 김광호 | Three-dimensional stacked package |
JP2794558B2 (en) * | 1996-06-27 | 1998-09-10 | 日本航空電子工業株式会社 | Electronics |
US5822856A (en) * | 1996-06-28 | 1998-10-20 | International Business Machines Corporation | Manufacturing circuit board assemblies having filled vias |
US6336262B1 (en) * | 1996-10-31 | 2002-01-08 | International Business Machines Corporation | Process of forming a capacitor with multi-level interconnection technology |
US6225688B1 (en) * | 1997-12-11 | 2001-05-01 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
JP3455040B2 (en) * | 1996-12-16 | 2003-10-06 | 株式会社日立製作所 | Source clock synchronous memory system and a memory unit |
JP3011233B2 (en) * | 1997-05-02 | 2000-02-21 | 日本電気株式会社 | Semiconductor package and the semiconductor mounting structure |
US6014316A (en) * | 1997-06-13 | 2000-01-11 | Irvine Sensors Corporation | IC stack utilizing BGA contacts |
US6028352A (en) * | 1997-06-13 | 2000-02-22 | Irvine Sensors Corporation | IC stack utilizing secondary leadframes |
US5895705A (en) * | 1997-07-11 | 1999-04-20 | Highland Industries, Inc. | Awning and backlit sign fabric having a selectively eradicable ink layer and a process for producing same |
US6040624A (en) * | 1997-10-02 | 2000-03-21 | Motorola, Inc. | Semiconductor device package and method |
US5869353A (en) * | 1997-11-17 | 1999-02-09 | Dense-Pac Microsystems, Inc. | Modular panel stacking process |
DE19754874A1 (en) * | 1997-12-10 | 1999-06-24 | Siemens Ag | Converting substrate with edge contacts into ball grid array |
US6186106B1 (en) * | 1997-12-29 | 2001-02-13 | Visteon Global Technologies, Inc. | Apparatus for routing electrical signals in an engine |
US6172874B1 (en) * | 1998-04-06 | 2001-01-09 | Silicon Graphics, Inc. | System for stacking of integrated circuit packages |
US6329709B1 (en) * | 1998-05-11 | 2001-12-11 | Micron Technology, Inc. | Interconnections for a semiconductor device |
JP2000088921A (en) * | 1998-09-08 | 2000-03-31 | Sony Corp | Semiconductor device |
US6187652B1 (en) * | 1998-09-14 | 2001-02-13 | Fujitsu Limited | Method of fabrication of multiple-layer high density substrate |
US6360935B1 (en) * | 1999-01-26 | 2002-03-26 | Board Of Regents Of The University Of Texas System | Apparatus and method for assessing solderability |
JP3602000B2 (en) * | 1999-04-26 | 2004-12-15 | 沖電気工業株式会社 | A semiconductor device and semiconductor module |
JP2000353767A (en) * | 1999-05-14 | 2000-12-19 | Universal Instr Corp | Board for mounting electronic component, package, mounting method, and method for housing integrated circuit chip in package |
US6218731B1 (en) * | 1999-05-21 | 2001-04-17 | Siliconware Precision Industries Co., Ltd. | Tiny ball grid array package |
JP3526788B2 (en) * | 1999-07-01 | 2004-05-17 | 沖電気工業株式会社 | A method of manufacturing a semiconductor device |
DE19933265A1 (en) * | 1999-07-15 | 2001-02-01 | Siemens Ag | TSOP memory chip housing assembly |
US6675469B1 (en) * | 1999-08-11 | 2004-01-13 | Tessera, Inc. | Vapor phase connection techniques |
US6689634B1 (en) * | 1999-09-22 | 2004-02-10 | Texas Instruments Incorporated | Modeling technique for selectively depopulating electrical contacts from a foot print of a grid array (BGA or LGA) package to increase device reliability |
KR100344927B1 (en) * | 1999-09-27 | 2002-07-19 | 삼성전자 주식회사 | Stack package and method for manufacturing the same |
CN1230046C (en) * | 1999-10-01 | 2005-11-30 | 精工爱普生株式会社 | Wiring board, semiconductor device and method of producing, testing and mounting the same |
KR100925361B1 (en) * | 1999-10-22 | 2009-11-09 | 소니 케미카루 앤드 인포메이션 디바이스 가부시키가이샤 | Low temperature-curable connecting material for anisotropically electroconductive connection |
US6489178B2 (en) * | 2000-01-26 | 2002-12-03 | Texas Instruments Incorporated | Method of fabricating a molded package for micromechanical devices |
US6528870B2 (en) * | 2000-01-28 | 2003-03-04 | Kabushiki Kaisha Toshiba | Semiconductor device having a plurality of stacked wiring boards |
US6522018B1 (en) * | 2000-05-16 | 2003-02-18 | Micron Technology, Inc. | Ball grid array chip packages having improved testing and stacking characteristics |
JP3390412B2 (en) * | 2000-08-07 | 2003-03-24 | 株式会社キャットアイ | head lamp |
JP4397109B2 (en) * | 2000-08-14 | 2010-01-13 | 富士通株式会社 | The method of manufacturing an information processing apparatus and the crossbar board unit back panel assembly |
US6707664B2 (en) * | 2001-02-11 | 2004-03-16 | Micron Technology, Inc. | Expandable keyboard for portable computers |
US6884653B2 (en) * | 2001-03-21 | 2005-04-26 | Micron Technology, Inc. | Folded interposer |
US6707684B1 (en) * | 2001-04-02 | 2004-03-16 | Advanced Micro Devices, Inc. | Method and apparatus for direct connection between two integrated circuits via a connector |
US6532162B2 (en) * | 2001-05-26 | 2003-03-11 | Intel Corporation | Reference plane of integrated circuit packages |
JP2003031885A (en) * | 2001-07-19 | 2003-01-31 | Toshiba Corp | Semiconductor laser device |
US6451626B1 (en) * | 2001-07-27 | 2002-09-17 | Charles W.C. Lin | Three-dimensional stacked semiconductor package |
WO2003019654A1 (en) * | 2001-08-22 | 2003-03-06 | Tessera, Inc. | Stacked chip assembly with stiffening layer |
US6927471B2 (en) * | 2001-09-07 | 2005-08-09 | Peter C. Salmon | Electronic system modules and method of fabrication |
US6977440B2 (en) * | 2001-10-09 | 2005-12-20 | Tessera, Inc. | Stacked packages |
KR20030029743A (en) * | 2001-10-10 | 2003-04-16 | 삼성전자주식회사 | Stack package using flexible double wiring substrate |
US6914324B2 (en) * | 2001-10-26 | 2005-07-05 | Staktek Group L.P. | Memory expansion and chip scale stacking system and method |
US6707148B1 (en) * | 2002-05-21 | 2004-03-16 | National Semiconductor Corporation | Bumped integrated circuits for optical applications |
US20040004281A1 (en) * | 2002-07-03 | 2004-01-08 | Jin-Chuan Bai | Semiconductor package with heat sink |
JP4085788B2 (en) * | 2002-08-30 | 2008-05-14 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof, circuit board, electronic apparatus |
US6838761B2 (en) * | 2002-09-17 | 2005-01-04 | Chippac, Inc. | Semiconductor multi-package module having wire bond interconnect between stacked packages and having electrical shield |
US6869825B2 (en) * | 2002-12-31 | 2005-03-22 | Intel Corporation | Folded BGA package design with shortened communication paths and more electrical routing flexibility |
US6841855B2 (en) * | 2003-04-28 | 2005-01-11 | Intel Corporation | Electronic package having a flexible substrate with ends connected to one another |
KR100592786B1 (en) * | 2003-08-22 | 2006-06-26 | 삼성전자주식회사 | Stack package made of area array type packages, and manufacturing method thereof |
US20050018495A1 (en) * | 2004-01-29 | 2005-01-27 | Netlist, Inc. | Arrangement of integrated circuits in a memory module |
Patent Citations (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3654394A (en) * | 1969-07-08 | 1972-04-04 | Gordon Eng Co | Field effect transistor switch, particularly for multiplexing |
US4513368A (en) * | 1981-05-22 | 1985-04-23 | Data General Corporation | Digital data processing system having object-based logical memory addressing and self-structuring modular memory |
US4645944A (en) * | 1983-09-05 | 1987-02-24 | Matsushita Electric Industrial Co., Ltd. | MOS register for selecting among various data inputs |
US4654944A (en) * | 1985-09-13 | 1987-04-07 | Graf Richard W | Overhead cam valve spring compressor adapter |
US4763188A (en) * | 1986-08-08 | 1988-08-09 | Thomas Johnson | Packaging system for multiple semiconductor devices |
US4985703A (en) * | 1988-02-03 | 1991-01-15 | Nec Corporation | Analog multiplexer |
US5239198A (en) * | 1989-09-06 | 1993-08-24 | Motorola, Inc. | Overmolded semiconductor device having solder ball and edge lead connective structure |
US5642055A (en) * | 1990-02-14 | 1997-06-24 | Particle Interconnect, Inc. | Electrical interconnect using particle enhanced joining of metal surfaces |
US6465893B1 (en) * | 1990-09-24 | 2002-10-15 | Tessera, Inc. | Stacked chip assembly |
US5117282A (en) * | 1990-10-29 | 1992-05-26 | Harris Corporation | Stacked configuration for integrated circuit devices |
US5289062A (en) * | 1991-03-18 | 1994-02-22 | Quality Semiconductor, Inc. | Fast transmission gate switch |
US5224023A (en) * | 1992-02-10 | 1993-06-29 | Smith Gary W | Foldable electronic assembly module |
US5428190A (en) * | 1993-07-02 | 1995-06-27 | Sheldahl, Inc. | Rigid-flex board with anisotropic interconnect and method of manufacture |
US5448511A (en) * | 1994-06-01 | 1995-09-05 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
US5523695A (en) * | 1994-08-26 | 1996-06-04 | Vlsi Technology, Inc. | Universal test socket for exposing the active surface of an integrated circuit in a die-down package |
US5764497A (en) * | 1995-11-13 | 1998-06-09 | Minolta Co, Ltd. | Circuit board connection method and connection structure |
US5776797A (en) * | 1995-12-22 | 1998-07-07 | Fairchild Space And Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
US6281577B1 (en) * | 1996-06-28 | 2001-08-28 | Pac Tech-Packaging Technologies Gmbh | Chips arranged in plurality of planes and electrically connected to one another |
US20030168725A1 (en) * | 1996-12-13 | 2003-09-11 | Tessera, Inc. | Methods of making microelectronic assemblies including folded substrates |
US6121676A (en) * | 1996-12-13 | 2000-09-19 | Tessera, Inc. | Stacked microelectronic assembly and method therefor |
US6208521B1 (en) * | 1997-05-19 | 2001-03-27 | Nitto Denko Corporation | Film carrier and laminate type mounting structure using same |
US5917709A (en) * | 1997-06-16 | 1999-06-29 | Eastman Kodak Company | Multiple circuit board assembly having an interconnect mechanism that includes a flex connector |
US6265660B1 (en) * | 1997-07-09 | 2001-07-24 | Micron Technology, Inc. | Package stack via bottom leaded plastic (BLP) packaging |
US6465877B1 (en) * | 1997-10-31 | 2002-10-15 | Micron Technology, Inc. | Semiconductor package including flex circuit, interconnects and dense array external contacts |
US6097087A (en) * | 1997-10-31 | 2000-08-01 | Micron Technology, Inc. | Semiconductor package including flex circuit, interconnects and dense array external contacts |
US6368896B2 (en) * | 1997-10-31 | 2002-04-09 | Micron Technology, Inc. | Method of wafer level chip scale packaging |
US6266252B1 (en) * | 1997-12-01 | 2001-07-24 | Chris Karabatsos | Apparatus and method for terminating a computer memory bus |
US5949657A (en) * | 1997-12-01 | 1999-09-07 | Karabatsos; Chris | Bottom or top jumpered foldable electronic assembly |
US5953215A (en) * | 1997-12-01 | 1999-09-14 | Karabatsos; Chris | Apparatus and method for improving computer memory speed and capacity |
US6028365A (en) * | 1998-03-30 | 2000-02-22 | Micron Technology, Inc. | Integrated circuit package and method of fabrication |
US6233650B1 (en) * | 1998-04-01 | 2001-05-15 | Intel Corporation | Using FET switches for large memory arrays |
US6072233A (en) * | 1998-05-04 | 2000-06-06 | Micron Technology, Inc. | Stackable ball grid array package |
US6300679B1 (en) * | 1998-06-01 | 2001-10-09 | Semiconductor Components Industries, Llc | Flexible substrate for packaging a semiconductor component |
US6433418B1 (en) * | 1998-07-24 | 2002-08-13 | Fujitsu Limited | Apparatus for a vertically accumulable semiconductor device with external leads secured by a positioning mechanism |
US6486544B1 (en) * | 1998-09-09 | 2002-11-26 | Seiko Epson Corporation | Semiconductor device and method manufacturing the same, circuit board, and electronic instrument |
US6222737B1 (en) * | 1999-04-23 | 2001-04-24 | Dense-Pac Microsystems, Inc. | Universal package and method of forming the same |
US6360433B1 (en) * | 1999-04-23 | 2002-03-26 | Andrew C. Ross | Universal package and method of forming the same |
US6426240B2 (en) * | 1999-05-05 | 2002-07-30 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US6514793B2 (en) * | 1999-05-05 | 2003-02-04 | Dpac Technologies Corp. | Stackable flex circuit IC package and method of making same |
US6323060B1 (en) * | 1999-05-05 | 2001-11-27 | Dense-Pac Microsystems, Inc. | Stackable flex circuit IC package and method of making same |
US6426549B1 (en) * | 1999-05-05 | 2002-07-30 | Harlan R. Isaak | Stackable flex circuit IC package and method of making same |
US6351029B1 (en) * | 1999-05-05 | 2002-02-26 | Harlan R. Isaak | Stackable flex circuit chip package and method of making same |
US6446158B1 (en) * | 1999-05-17 | 2002-09-03 | Chris Karabatsos | Memory system using FET switches to select memory banks |
US6376769B1 (en) * | 1999-05-18 | 2002-04-23 | Amerasia International Technology, Inc. | High-density electronic package, and method for making same |
US6572387B2 (en) * | 1999-09-24 | 2003-06-03 | Staktek Group, L.P. | Flexible circuit connector for stacked chip module |
US20020180022A1 (en) * | 1999-10-20 | 2002-12-05 | Seiko Epson Corporation | Semiconductor device |
US6462412B2 (en) * | 2000-01-18 | 2002-10-08 | Sony Corporation | Foldable, flexible laminate type semiconductor apparatus with reinforcing and heat-radiating plates |
US20010040793A1 (en) * | 2000-02-01 | 2001-11-15 | Tetsuya Inaba | Electronic device and method of producing the same |
US6444921B1 (en) * | 2000-02-03 | 2002-09-03 | Fujitsu Limited | Reduced stress and zero stress interposers for integrated-circuit chips, multichip substrates, and the like |
US6677670B2 (en) * | 2000-04-25 | 2004-01-13 | Seiko Epson Corporation | Semiconductor device |
US20020006032A1 (en) * | 2000-05-23 | 2002-01-17 | Chris Karabatsos | Low-profile registered DIMM |
US6683377B1 (en) * | 2000-05-30 | 2004-01-27 | Amkor Technology, Inc. | Multi-stacked memory package |
US6660561B2 (en) * | 2000-06-15 | 2003-12-09 | Dpac Technologies Corp. | Method of assembling a stackable integrated circuit chip |
US6552910B1 (en) * | 2000-06-28 | 2003-04-22 | Micron Technology, Inc. | Stacked-die assemblies with a plurality of microelectronic devices and methods of manufacture |
US6560117B2 (en) * | 2000-06-28 | 2003-05-06 | Micron Technology, Inc. | Packaged microelectronic die assemblies and methods of manufacture |
US6614664B2 (en) * | 2000-10-24 | 2003-09-02 | Samsung Electronics Co., Ltd. | Memory module having series-connected printed circuit boards |
US6392162B1 (en) * | 2000-11-10 | 2002-05-21 | Chris Karabatsos | Double-sided flexible jumper assembly and method of manufacture |
US20020101261A1 (en) * | 2001-02-01 | 2002-08-01 | Chris Karabatsos | Tri-directional, high-speed bus switch |
US6410857B1 (en) * | 2001-03-01 | 2002-06-25 | Lockheed Martin Corporation | Signal cross-over interconnect for a double-sided circuit card assembly |
US20020139577A1 (en) * | 2001-03-27 | 2002-10-03 | Miller Charles A. | In-street integrated circuit wafer via |
US20020164838A1 (en) * | 2001-05-02 | 2002-11-07 | Moon Ow Chee | Flexible ball grid array chip scale packages and methods of fabrication |
US6627984B2 (en) * | 2001-07-24 | 2003-09-30 | Dense-Pac Microsystems, Inc. | Chip stack with differing chip package types |
US6620651B2 (en) * | 2001-10-23 | 2003-09-16 | National Starch And Chemical Investment Holding Corporation | Adhesive wafers for die attach application |
US6590282B1 (en) * | 2002-04-12 | 2003-07-08 | Industrial Technology Research Institute | Stacked semiconductor package formed on a substrate and method for fabrication |
US6600222B1 (en) * | 2002-07-17 | 2003-07-29 | Intel Corporation | Stacked microelectronic packages |
US20040021211A1 (en) * | 2002-08-05 | 2004-02-05 | Tessera, Inc. | Microelectronic adaptors, assemblies and methods |
US20040150107A1 (en) * | 2002-12-31 | 2004-08-05 | Cha Ki Bon | Stack package and fabricating method thereof |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8345427B2 (en) | 2004-04-09 | 2013-01-01 | Netlist, Inc. | Module having at least two surfaces and at least one thermally conductive layer therebetween |
US7630202B2 (en) | 2004-04-09 | 2009-12-08 | Netlist, Inc. | High density module having at least two substrates and at least one thermally conductive layer therebetween |
US7839645B2 (en) | 2004-04-09 | 2010-11-23 | Netlist, Inc. | Module having at least two surfaces and at least one thermally conductive layer therebetween |
US7480152B2 (en) * | 2004-09-03 | 2009-01-20 | Entorian Technologies, Lp | Thin module system and method |
US20090046431A1 (en) * | 2004-09-03 | 2009-02-19 | Staktek Group L.P. | High Capacity Thin Module System |
US7616452B2 (en) * | 2004-09-03 | 2009-11-10 | Entorian Technologies, Lp | Flex circuit constructions for high capacity circuit module systems and methods |
US20060125067A1 (en) * | 2004-09-03 | 2006-06-15 | Staktek Group L.P. | Flex circuit constructions for high capacity circuit module systems and methods |
US7511968B2 (en) * | 2004-09-03 | 2009-03-31 | Entorian Technologies, Lp | Buffered thin module system and method |
US8033836B1 (en) | 2005-08-29 | 2011-10-11 | Netlist, Inc. | Circuit with flexible portion |
US7442050B1 (en) | 2005-08-29 | 2008-10-28 | Netlist, Inc. | Circuit card with flexible connection for memory module with heat spreader |
US7811097B1 (en) | 2005-08-29 | 2010-10-12 | Netlist, Inc. | Circuit with flexible portion |
US8864500B1 (en) | 2005-08-29 | 2014-10-21 | Netlist, Inc. | Electronic module with flexible portion |
US7619893B1 (en) | 2006-02-17 | 2009-11-17 | Netlist, Inc. | Heat spreader for electronic modules |
US8488325B1 (en) | 2006-02-17 | 2013-07-16 | Netlist, Inc. | Memory module having thermal conduits |
US7839643B1 (en) | 2006-02-17 | 2010-11-23 | Netlist, Inc. | Heat spreader for memory modules |
US8018723B1 (en) | 2008-04-30 | 2011-09-13 | Netlist, Inc. | Heat dissipation for electronic modules |
US8705239B1 (en) | 2008-04-30 | 2014-04-22 | Netlist, Inc. | Heat dissipation for electronic modules |
US20110197438A1 (en) * | 2010-02-17 | 2011-08-18 | Masashi Kikuchii | Method of manufacturing semiconductor device |
Also Published As
Publication number | Publication date | Type |
---|---|---|
US20050146031A1 (en) | 2005-07-07 | application |
US20090124045A1 (en) | 2009-05-14 | application |
US7626273B2 (en) | 2009-12-01 | grant |
US7180167B2 (en) | 2007-02-20 | grant |
US20070117262A1 (en) | 2007-05-24 | application |
US20070114649A1 (en) | 2007-05-24 | application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5742484A (en) | Flexible connector for circuit boards | |
US5657207A (en) | Alignment means for integrated circuit chips | |
US4967950A (en) | Soldering method | |
US5553769A (en) | Interconnection of a carrier substrate and a semiconductor device | |
US5057969A (en) | Thin film electronic device | |
US5730932A (en) | Lead-free, tin-based multi-component solder alloys | |
US6121069A (en) | Interconnect structure for joining a chip to a circuit card | |
US5872400A (en) | High melting point solder ball coated with a low melting point solder | |
US7670939B2 (en) | Semiconductor chip bump connection apparatus and method | |
US6013571A (en) | Microelectronic assembly including columnar interconnections and method for forming same | |
US5564617A (en) | Method and apparatus for assembling multichip modules | |
US20040232562A1 (en) | System and method for increasing bump pad height | |
US6570259B2 (en) | Apparatus to reduce thermal fatigue stress on flip chip solder connections | |
US6514845B1 (en) | Solder ball contact and method | |
US6333563B1 (en) | Electrical interconnection package and method thereof | |
US6521842B2 (en) | Hybrid surface mount and pin thru hole circuit board | |
US6659512B1 (en) | Integrated circuit package employing flip-chip technology and method of assembly | |
US5874043A (en) | Lead-free, high tin ternary solder alloy of tin, silver, and indium | |
US6566611B2 (en) | Anti-tombstoning structures and methods of manufacture | |
US5798285A (en) | Method of making electronic module with multiple solder dams in soldermask window | |
US20070176297A1 (en) | Reworkable stacked chip assembly | |
US6300578B1 (en) | Pad-on-via assembly technique | |
US5928001A (en) | Surface mountable flexible interconnect | |
US6583517B1 (en) | Method and structure for joining two substrates with a low melt solder joint | |
US5634268A (en) | Method for making direct chip attach circuit card |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STAKTEK GROUP L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARTRIDGE, JULIAN;CADY, JAMES W.;WILDER, JAMES;AND OTHERS;REEL/FRAME:014161/0950;SIGNING DATES FROM 20030605 TO 20030606 |
|
AS | Assignment |
Owner name: COMERICA BANK, AS AGENT, MICHIGAN Free format text: SECURITY AGREEMENT;ASSIGNOR:STAKTEK GROUP L.P.;REEL/FRAME:014546/0001 Effective date: 20030819 |
|
AS | Assignment |
Owner name: STAKTEK GROUP L.P. NOW KNOWN AS ENTORIAN TECHNOLOG Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:COMERICA BANK, AS AGENT;REEL/FRAME:023985/0954 Effective date: 20040219 |