US20030181568A1 - Conductive plastic compositions and method of manufacture thereof - Google Patents

Conductive plastic compositions and method of manufacture thereof Download PDF

Info

Publication number
US20030181568A1
US20030181568A1 US10331151 US33115102A US2003181568A1 US 20030181568 A1 US20030181568 A1 US 20030181568A1 US 10331151 US10331151 US 10331151 US 33115102 A US33115102 A US 33115102A US 2003181568 A1 US2003181568 A1 US 2003181568A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
fibers
carbon
glass
composition
wt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10331151
Inventor
Jayantha Amarasekera
Kim Balfour
Christian Lietzau
Original Assignee
Jayantha Amarasekera
Kim Balfour
Christian Lietzau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUSE OF INORGANIC OR NON-MACROMOLECULAR ORGANIC SUBSTANCES AS COMPOUNDING INGREDIENTS
    • C08K5/00Use of organic ingredients
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Abstract

An improved, conductive, polymeric composition comprises a polymeric resin; an electrically conductive filler system comprising small carbon fibers and either carbon powder or fibrous non-conductive filler or a combination of both. The amount of the conductive filler system utilized is dependent upon the desired electrical conductivity (surface and volume conductivity or resistivity) while preferably preserving intrinsic properties of the polymeric resin such as impact, flex modulus, class A finish, and the like. The conductive articles made from these compositions can therefore be used for electromagnetic shielding, electrostatic dissipation or antistatic purposes in packaging, electronic components, housings for electronic components and automotive housings.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • [0001]
    This application is a Continuation of U.S. Ser. No. 09/683,069, filed Nov. 15, 2001, and claims priority to U.S. Provisional Application Serial No. 60/287,127 filed Apr. 27, 2001, the entire contents of which are incorporated herein by reference.
  • BACKGROUND
  • [0002]
    Plastic (polymeric resin) is often the material of choice for components in electronic products such as computers, photocopiers, and the like because it offers design flexibility, cost-effective manufacturing, and light weight products. In order to function efficiently in such applications, normally insulating polymeric resin must be made electrically conductive to provide electromagnetic shielding, electrostatic dissipation or antistatic properties to such components.
  • [0003]
    Polymeric resins are typically made conductive by incorporating electrically conductive fillers such as carbon fibers, metal powders or flakes, vapor grown carbon fibers, carbon nanotubes, carbon black, and the like. However, the incorporation of carbon fibers having diameters greater than about 3 micrometers is detrimental to other properties such as the impact and surface finish of the composite. Metal powders and flakes greatly increase the specific gravity of polymeric compositions, making them less cost effective, while the use of carbon black can lead to components that exhibit sloughing. In recent years vapor grown carbon fibers (VGCF) and carbon nanotubes having diameters less than 75 nanometers have been found to maintain electrical conductivity while minimizing those problems associated with other conductive fillers. However the high cost of VGCF/carbon nanotubes makes the development of improved, cheaper, conductive polymeric composites important.
  • BRIEF SUMMARY
  • [0004]
    An improved, conductive, polymeric composition comprises a polymeric resin; and an electrically conductive filler system comprising small carbon fibers and carbon powder, fibrous non-conductive filler or a combination of carbon powder and fibrous non-conductive filler. The amount of the electrically conductive filler system utilized is dependent upon the desired electrical conductivity (surface and volume conductivity or resistivity) while preferably preserving intrinsic properties of the polymeric resin such as impact, flex modulus, class A finish, and the like. The conductive articles made from these compositions can therefore be used for electromagnetic shielding, electrostatic dissipation or antistatic purposes in packaging, electronic components, housings for electronic components and automotive housings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0005]
    Referring now to the Figures, which are meant to be exemplary, not limiting:
  • [0006]
    [0006]FIG. 1 is a three dimensional graph showing the effect of carbon powder-small carbon fiber interaction in polycarbonate on surface resistivity;
  • [0007]
    [0007]FIG. 2 is a graph of surface conductivity of polycarbonate resin containing small carbon fibers and carbon powder.
  • [0008]
    [0008]FIG. 3 is a three dimensional graph showing the effect of carbon powder-small carbon fiber interaction in polybutylene terephthalate on surface resistivity.
  • [0009]
    [0009]FIG. 4 is a three dimensional graph showing volume resistivity versus percent carbon power and small carbon fibers in polybutylene terephthalate.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • [0010]
    It has been unexpectedly found by the inventors hereof that an electrically conductive filler system comprising small carbon fibers and carbon powders, fibrous non-conductive fillers, or both, can be used to impart increased electrical conductivity to polymeric resins while maintaining properties such as impact strength, flexural modulus, shrinkage, class A finish, and the like in injection molded products. Small carbon fibers as defined herein may be either vapor grown carbon fibers or carbon nanotubes or a combination of both. In particular, it has been found that by adding either carbon powder or glass fibers or a combination of both with small carbon fibers to a polymeric resin, the electrical conductivity of the composition and its advantageous physical properties are maintained, while the weight percent (wt %) of small carbon fibers in the composition is substantially reduced. For example, the small carbon fiber concentration can be reduced up to about 85 wt % by the addition of up to about 25 wt % carbon powder without significant loss of electrical conductivity.
  • [0011]
    The polymeric resin used in the conductive compositions may be selected from a wide variety of thermoplastic resins and elastomers, blends of thermoplastic resins or thermoset resins. Specific nonlimiting examples of suitable thermoplastic resins include polyacetal, polyacrylic, styrene acrylonitrile, acrylonitrile-butadiene-styrene (ABS), polycarbonate, polystyrene, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, nylons (nylon-6, nylon-6/6, nylon-6/10, nylon-6/12, nylon-11 or nylon-12), polyamideimide, polyarylate, polyurethane, ethylene propylene diene rubber (EPR), ethylene propylene diene monomer (EPDM), polyarylsulfone, polyethersulfone, polyphenylene sulfide, polyvinyl chloride, polysulfone, polyetherimide, polytetrafluoroethylene, fluorinated ethylene propylene, perfluoroalkoxyethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyetherketone, polyether etherketone, polyether ketone ketone, and mixtures comprising any one of the foregoing thermoplastics.
  • [0012]
    Specific nonlimiting examples of blends of thermoplastic resins include acrylonitrile-butadiene-styrene/nylon, polycarbonate/acrylonitrile-butadiene-styrene, acrylonitrile butadiene styrene/polyvinyl chloride, polyphenylene ether/polystyrene, polyphenylene ether/nylon, polysulfone/acrylonitrile-butadiene-styrene, polycarbonate/thermoplastic urethane, polycarbonate/polyethylene terephthalate, polycarbonate/polybutylene terephthalate, thermoplastic elastomer alloys, nylon/elastomers, polyester/elastomers, polyethylene terephthalate/polybutylene terephthalate, acetal/elastomer, styrene-maleicanhydride/acrylonitrile-butadiene-styrene, polyether etherketone/polyethersulfone, polyether etherketone/polyetherimide polyethylene/nylon, polyethylene/polyacetal, and the like.
  • [0013]
    Specific nonlimiting examples of thermosetting resins include polyurethane, natural rubber, synthetic rubber, epoxy, phenolic, polyesters, polyamides, silicones, and mixtures comprising any one of the foregoing thermosetting resins. Blends of thermoset resins as well as blends of thermoplastic resins with thermosets can be utilized.
  • [0014]
    Polymeric resins are generally used in amounts of greater than or equal to about 10, preferably greater than or equal to about 30, and more preferably greater than or equal to about 40 weight percent (wt %) of the total composition. The polymeric resins are furthermore generally used in amounts of less than or equal to about 99, preferably less than or equal to about 85, and more preferably less than or equal to about 80 wt % of the total weight of the composition.
  • [0015]
    As stated above, “small carbon fibers” as used herein refers to graphitized or partially graphitized vapor grown carbon fibers and/or carbon nanotubes. Graphitic or partially graphitic vapor grown carbon fibers (VGCF) having “tree-ring” or “fishbone” structures with diameters of about 3.5 to about 2000 nanometers (nm) and aspect ratios greater than or equal to about 5 may be used. When VGCF are used, diameters of about 1, preferably about 3.5 to about 70 nm are preferred, with diameters of about 3.5 to about 50 nm being more preferred. It is also preferable to have average aspect ratios greater than or equal to about 100 and more preferably greater than or equal to about 1000. The VGCF may or may not contain embedded catalyst particles utilized in their production. Representative VGCF are described in, for example, U.S. Pat. Nos. 4,565,684 and 5,024,818 to Tibbetts et al.; U.S. Pat. No. 4,572,813 to Arakawa; U.S. Pat. No. 4,663,230 and U.S. Pat. No. 5,165,909 to Tennent; U.S. Pat. No. 4,816,289 to Komatsu et al.; U.S. Pat. No. 4,876,078 to Arakawa et al.; U.S. Pat. No. 5,589,152 to Tennent et al.; U.S. Pat. No. 5,591,382 to Nahass et al and EP 198 558 to Geus.
  • [0016]
    In general, VGCF are used in an amount greater than or equal to about 0.25, preferably greater than or equal to about 0.5, more preferably greater than or equal to about 1 wt %, based on the total composition. VGCF are furthermore generally present at less than or equal to about 30, preferably less than or equal to about 10, and more preferably less than or equal to about 8 wt %, based on the total weight of the composition.
  • [0017]
    Carbon nanotubes, in contrast, are presently produced by laser-evaporation of graphite or carbon arc synthesis, yielding fullerene-related structures that consist of graphene cylinders that may be open, or closed at either end with caps containing pentagonal and/or hexagonal rings. Nanotubes may consist of a single wall wherein the tube diameter is about 0.7 to about 2.4 nm, or have multiple, concentrically arranged walls wherein the tube diameter is from about 2 to about 50 nm. When carbon nanotubes are used it is preferred to have an average aspect ratio greater than or equal to about 5, preferably greater than or equal to about 100, more preferably greater than or equal to about 1000. Representative carbon nanotubes are described in U.S. Pat. No. 6,183,714 to Smalley et al, U.S. Pat. No. 5,591,312 to Smalley, U.S. Pat. No. 5,641,455 to Ebbesen et al, U.S. Pat. No. 5,830,326 to Iijima et al, U.S. Pat. No. 5,591,832 to Tanaka et al, U.S. Pat. No. 5,919,429 to Tanaka et al.
  • [0018]
    In general, carbon nanotubes are used in an amount of greater than or equal to about 0.025, preferably greater than or equal to about 0.05, and more preferably greater than or equal to about 0.1 wt %, based on the total weight of the composition. The carbon nanotubes are furthermore present in amounts of less than or equal to about 30 wt %, preferably less than or equal to about 10 wt %, more preferably less than or equal to about 8 wt %, based on the total weight of the composition.
  • [0019]
    The small carbon fibers are used together with carbon powder or glass fibers, or a combination of the two. Suitable carbon powders (carbon black) are those capable imparting electrical conductivity to polymeric resins. Preferred carbon blacks are those having average particle sizes less than about 200 nm, preferably less than about 100 nm, more preferably less than about 50 nm. Preferred conductive carbon blacks may also have surface areas greater than about 200 square meter per gram (m2/g), preferably greater than about 400 m2/g, yet more preferably greater than about 1000 m2/g. Preferred conductive carbon blacks may have a pore volume (dibutyl phthalate absorption) greater than about 40 cubic centimeters per hundred grams (cm3/100 g), preferably greater than about 100 cm3/100 g, more preferably greater than about 150 cm3/100 g. The carbon black preferably has low ionic content (chlorides, sulfates, phosphates, fluorides, and nitrates) of about 4 parts per million per gram (ppm/g) or less, with about 2 ppm/g or less more preferred, about 1 ppm/g or less even more preferred, and about 0.5 ppm/g or less especially preferred. Exemplary carbon powders include the carbon black commercially available from Columbian Chemicals under the trade name Conductex®; the acetylene black available from Chevron Chemical, under the trade names S.C.F. (Super Conductive Furnace) and E.C.F. (Electric Conductive Furnace); the carbon blacks available from Cabot Corp. under the trade names Vulcan XC72 and Black Pearls; and the carbon blacks commercially available from Akzo Co. Ltd under the trade names Ketjen Black EC 300 and EC 600.
  • [0020]
    In general, conductive carbon blacks are used in an amount of greater than or equal to about 0.25, preferably greater than or equal to about 0.5, and more preferably greater than or equal to about 1.0 wt %, based on the total weight of the composition. The conductive carbon blacks are furthermore present in amounts of less than or equal to about 25 wt %, preferably less than or equal to about 20 wt %, and more preferably less than or equal to about 15 wt %, based on the total weight of the composition.
  • [0021]
    When present, the fibrous, non-conductive filler is selected from those that will impart improved properties to polymeric composites, and that have an aspect ratio greater than 1. As used herein, “fibrous” fillers may therefore exist in the form of whiskers, needles, rods, tubes, strands, elongated platelets, lamellar platelets, ellipsoids, micro fibers, nanofibers and nanotubes, elongated fullerenes, and the like. Where such fillers exist in aggregate form, an aggregate having an aspect ratio greater than 1 will also suffice for the purpose of this invention. Examples of such fillers well known in the art include those described in “Plastic Additives Handbook, 5th Edition” Hans Zweifel, Ed, Carl Hanser Verlag Publishers, Munich, 2001. Non-limiting examples of suitable fibrous fillers include short inorganic fibers, including processed mineral fibers such as those derived from blends comprising at least one of aluminum silicates, aluminum oxides, magnesium oxides, and calcium sulfate hemihydrate, boron fibers, ceramic fibers such as silicon carbide, and fibers from mixed oxides of aluminum, boron and silicon sold under the trade name NEXTEL®) by 3M Co., St. Paul, Minn., USA. Also included among fibrous fillers are single crystal fibers or “whiskers” including silicon carbide, alumina, boron carbide, iron, nickel, copper. Fibrous fillers such as glass fibers, basalt fibers, including textile glass fibers and quartz may also be included.
  • [0022]
    Also included are natural organic fibers known to those skilled in the art, including wood flour obtained by pulverizing wood, and fibrous products such as cellulose, cotton, sisal, jute, cloth, hemp cloth, felt, and natural cellulosic fabrics such as Kraft paper, cotton paper and glass fiber containing paper, starch, cork flour, lignin, ground nut shells, corn, rice grain husks and mixtures comprising at least one of the foregoing.
  • [0023]
    In addition, organic reinforcing fibrous fillers and synthetic reinforcing fibers may be used. This includes organic polymers capable of forming fibers such as polyethylene terephthalate, polybutylene terephthalate and other polyesters, polyarylates, polyethylene, polyvinylalcohol, polytetrafluoroethylene, acrylic resins, high tenacity fibers with high thermal stability including aromatic polyamides, polyaramid fibers such as those commercially available from Du Pont de Nemours under the trade name Kevlar, polybenzimidazole, polyimide fibers such as those available from Dow Chemical Co. under the trade names polyimide 2080 and PBZ fiber, polyphenylene sulfide, polyether ether ketone, polyimide, polybenzoxazole, aromatic polyimides or polyetherimides, and the like. Combinations of any of the foregoing fibers may also be used.
  • [0024]
    Such reinforcing fillers may be provided in the form of monofilament or multifilament fibers and can be used either alone or in combination with other types of fiber, through, for example, co-weaving or core/sheath, side-by-side, orange-type or matrix and fibril constructions, or by other methods known to one skilled in the art of fiber manufacture. Typical cowoven structures include glass fiber-carbon fiber, carbon fiber-aromatic polyimide (aramid) fiber, and aromatic polyimide fiber-glass fiber. Fibrous fillers may be supplied in the form of, for example, rovings, woven fibrous reinforcements, such as 0-90 degree fabrics, non-woven fibrous reinforcements such as continuous strand mat, chopped strand mat, tissues, papers and felts and 3-dimensionally woven reinforcements, performs and braids.
  • [0025]
    In general, the amount of fibrous filler present in the composition can be up to about 50 wt %, and preferably from about 0 to about 20 wt %, based on the total weight of the composition.
  • [0026]
    In a preferred embodiment, glass fibers are used as the non-conductive fibrous fillers to improve conductivity in these applications. Useful glass fibers can be formed from any type of fiberizable glass composition known to those skilled in the art, and include those prepared from fiberizable glass compositions commonly known as “E-glass,” “A-glass,” “C-glass,” “D-glass,” “R-glass,” “S-glass,” as well as E-glass derivatives that are fluorine-free and/or boron-free. Most reinforcement mats comprise glass fibers formed from E-glass and are included in the conductive compositions of this invention. Such compositions and methods of making glass filaments therefrom are well known to those skilled in the art.
  • [0027]
    Commercially produced glass fibers generally having nominal filament diameters of about 4.0 to about 35.0 micrometers, and most commonly produced E-glass fibers having nominal filament diameters of about 9.0 to about 30.0 micrometers may be included in the conductive compositions. The filaments are made by standard processes, e.g., by steam or air blowing, flame blowing, and mechanical pulling. The preferred filaments for plastics reinforcement are made by mechanical pulling. Use of non-round fiber cross section is also possible. The glass fibers may be sized or unsized. Sized glass fibers are conventionally coated on at least a portion of their surfaces with a sizing composition selected for compatibility with the polymeric matrix material. The sizing composition facilitates wet-out and wet-through of the matrix material upon the fiber strands and assists in attaining desired physical properties in the composite.
  • [0028]
    The glass fibers are preferably glass strands that have been sized. In preparing the glass fibers, a number of filaments can be formed simultaneously, sized with the coating agent and then bundled into what is called a strand. Alternatively the strand itself may be first formed of filaments and then sized. The amount of sizing employed is generally that amount which is sufficient to bind the glass filaments into a continuous strand and ranges from about 0.1 to about 5 wt %, and more typically ranges from about 0.1 to 2 wt % based on the weight of the glass fibers. Generally, this may be about 1.0 wt % based on the weight of the glass filament. Glass fibers in the form of chopped strands about one-fourth inch long or less and preferably about one-eighth inch long may also be used. They may also be longer than about one-fourth inch in length if desired.
  • [0029]
    In general, the glass fibers are present in the composition in an amount of up to about 50 wt % based on the total weight of the composition, and preferably from about 0 to about 20 wt %, based on the total weight of the composition.
  • [0030]
    Although the relative quantities of polymeric resin, small carbon fibers and either carbon powder and/or fibrous, non-conductive filler are set forth above in general terms, the precise quantities will depend on the particular resin, small carbon fiber, carbon powder, and fibrous non-conductive filler, as well as the desired conductivity and physical properties of the final composition. However, the amount of carbon powder and/or fibrous non-conductive filler is preferably an amount effective to retain the electrical conductivity (surface and/or volume conductivity) while at the same time reducing the required concentration of small carbon fiber concentration in the composition by about 20 wt % or more, with a reduction of about 35 wt % or more preferred, a reduction of about 50 wt % or more even more preferred, and a reduction of up to about 85 wt % or so especially preferred (based upon the small carbon fiber concentration to attain the same surface resistivity without the use of the carbon powder or fibrous non-conductive fibers).
  • [0031]
    For example, from FIG. 1 it can be seen that the addition of 3 wt % of carbon powder to polycarbonate resin containing 1 wt % small carbon fibers produces a surface resistivity similar to the polymeric resin containing only 2 wt % small carbon fibers. Similarly FIG. 2 shows that the addition of approximately about 5 wt % small carbon fibers (Sm. Carbon Fibers (SCF)) to polycarbonate resin produces a surface resistivity of 105 ohm/square. A similar surface resistivity can be obtained when approximately about 18 wt % of carbon powder (CCP) alone is used. If however, about 3 wt % small carbon fibers are combined with about 10 wt % carbon powder in polycarbonate resin (SCF/(10 wt % CCP)), then the same surface resistivity is attainable. Thus, synergy between conductive components helps achieve the same surface resistivity while reducing their concentration.
  • [0032]
    [0032]FIGS. 3 and 4 demonstrate a similar synergy between small carbon fibers and carbon powder in polybutylene terephthalate resin that consequently improves both the surface and volume resistivity of the composition.
  • [0033]
    Similarly when glass fibers are added to a polymeric resin containing small carbon fibers, the electrical conductivity of the composite is increased depending upon the concentration of glass fibers as demonstrated in Examples 1 and 2 below. This allows the development of cost-efficient, electrostatic dissipative, surface conductive, non-contaminating polymeric molding compositions with little or no warp and excellent dimensional stability. Thus by employing carbon powder and/or glass fibers in a composition comprising polymeric resin and small carbon fibers, the amount of small carbon fibers can be reduced while maintaining surface and volume resistivity.
  • [0034]
    Optional additives may also be present in the conductive composition. For example, a coupling agent such as sodium or zinc stearate or an epoxy, including, but not limited to, 3,4-epoxy cyclohexylmethyl-3,4-epoxy cyclohexanecarboxylate, epoxidized soy bean oil, and mixtures comprising at least one of the foregoing coupling agents, among others, can be used to improve impact and hydrolytic resistance, tab-bending performance, and other characteristics of the molded composition.
  • [0035]
    Additionally, the composition may optionally also contain additives such as antioxidants, such as, for example, organophosphites, for example, tris(nonyl-phenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite or distearyl pentaerythritol diphosphite, alkylated monophenols, polyphenols and alkylated reaction products of polyphenols with dienes, such as, for example, tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane, 3,5-di-tert-butyl-4-hydroxyhydrocinnamate, octadecyl 2,4-di-tert-butylphenyl phosphite, butylated reaction products of para-cresol and dicyclopentadiene, alkylated hydroquinones, hydroxylated thiodiphenyl ethers, alkylidene-bisphenols, benzyl compounds, esters of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid with monohydric or polyhydric alcohols, esters of beta-(5-tert-butyl-4-hydroxy-3-methylphenyl)-propionic acid with monohydric or polyhydric alcohols; esters of thioalkyl or thioaryl compounds, such as, for example, distearylthiopropionate, dilaurylthiopropionate, ditridecylthiodipropionate, amides of beta-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionic acid; fillers and reinforcing agents, such as, for example, silicates, TiO2, calcium carbonate, talc, mica and other additives such as, for example, mold release agents, UV absorbers, stabilizers such as light stabilizers and others, lubricants, plasticizers, pigments, dyes, colorants, anti-static agents, blowing agents, flame retardants, impact modifiers, among others, as well as combinations comprising at least one of the foregoing additives.
  • [0036]
    In the processing of such conductive composites, the polymeric resin along with the conductive components, optional non-conductive fibrous filler and additional additives may be compounded or melt blended in a commercially available melt blending production device such as, for example, an extruder, roll mill, dough mixer, and the like. The polymeric resin may be initially in the form of powder, strands or pellets and may be pre-compounded with either the small carbon fibers, carbon black or glass fibers in a Henschel mixer or any other type of mixer capable of imparting shear to the mixture so as to bring the components into intimate contact. The pre-compounded mixture may then be extruded at a suitable temperature into a strand that is quenched and pelletized. Alternately, the polymeric resin may be directly added to the extruder with the small carbon fibers, carbon black and glass fibers added either concurrently or sequentially into the extruder to form the conductive strand. The small carbon fibers, carbon black or the glass fibers may also be added to the extruder in concentrated masterbatch form as detailed in U.S. Pat. Nos. 5,445,327, 5,556,892 and 5,744,235 to Creehan, U.S. Pat. No 5,872,177 to Whitehouse, U.S. Pat. No. 5,654,357 to Menashi et al, U.S. Pat. No. 5,484,837 to King et al, U.S. Pat. No. 4,005,053 to Briggs et al. Extruder temperature is generally sufficient to cause the polymeric resin to flow so that proper dispersion and wetting of the conductive and non-conductive fibrous filler may be achieved. The conductive pellets formed as a result of extrusion or conductive sheet obtained from a roll mill, is then subjected to a finishing or forming process such as injection molding, blow molding, vacuum forming and the like to form a usable conductive article.
  • [0037]
    In one embodiment, in one manner of proceeding, powdered polycarbonate resin is first blended with the masterbatch containing small carbon fibers in a Henschel high-speed mixer. Other low shear processes including but not limited to hand mixing may also accomplish this blending. The blend is then fed into the throat of a twin-screw extruder via a hopper. The glass may be incorporated into the composition by feeding unchopped strands or filaments directly into the extruder via a side feeder. The dispersed glass fibers are reduced in length as a result of the shearing action on the glass strands in the extruder barrel. The carbon black may also be compounded into a masterbatch with a desired polymeric resin and fed into the extruder either at the throat or through a side feeder. The extruder is generally operated at a temperature sufficient to cause the polymeric resin to flow. The extrudate is immediately quenched in a water batch and pelletized. The pellets so prepared when cutting the extrudate may be one-fourth inch long or less and contain finely divided uniformly dispersed glass fibers and small carbon fibers/carbon powder in the blend composition. The pellets are generally subjected to a forming or finishing process such as injection molding, blow molding, or vacuum forming to render a conductive article.
  • [0038]
    Conductive compositions made in this manner can be used for a variety of useful applications where electromagnetic shielding, electrostatic dissipation and antistatic properties are necessary such as in IC chip trays, electronic packaging, automotive exterior body panel applications, computer housings etc. The addition of glass helps maintain dimensional stability and prevent warping in such applications.
  • [0039]
    The invention is further described by the following non-limiting examples:
  • EXAMPLE 1
  • [0040]
    GTX 820 (a thermoplastic blend of nylon 6,6 and polyphenylene ether) from GE Plastics was blended in a 30 mm twin screw Werner and Pfleiderer extruder with nylon-6,6 masterbatch containing 20 wt % VGCF obtained from Hyperion Catalysis International. The GTX 820 was fed via a hopper at the throat of the extruder along with the nylon-6, 6 masterbatch. For compositions containing glass fibers, chopped glass fibers were added to the extruder through a side feeder. The die temperature was set at 315° C. The extrudate was immediately quenched in a water bath and pelletized. The pellets were dried in an oven and injection molded into 4-inch diameter discs of 0.125 inch thickness on a 120 ton VanDorn injection molding machine. The surface resistivity was obtained using the Keithley Electrometer, high resistivity meter 6517A with the 8007 resistivity test fixture. Table 1 shows the measured surface resistivity for compositions 1-5, which contain no glass fibers compositions 7-10, which contain 20 wt % glass fibers (G5000 obtained from Owens Corning Fiber glass (OCF)) and compositions 11-13, which contain 15 wt % glass fibers. It can clearly be seen that with the addition of glass fibers, surface resistivity decreases significantly.
  • EXAMPLE 2
  • [0041]
    Lexan (polycarbonate) resin from GE Plastics was blended in a 30 mm twin screw Werner and Pfleiderer extruder with polycarbonate masterbatch containing VGCF obtained from Hyperion Catalysis International. The VGCF are present in an amount of about 15 wt % in the masterbatch. The Lexan along with the VGCF masterbatch are fed into the extruder through at the throat. The glass is fed into the extruder through a side feeder. The temperature of the die was set at 315° C. The extrudate was immediately quenched in a water bath and pelletized. The pellets were dried in an oven and injection molded into 4 inch diameter discs of 0.125″ thickness on a 120 ton VanDorn injection molding machine. The surface resistivity was obtained using the Keithley Electrometer, high resistivity meter 6517A with the 8007 resistivity test fixture.
  • [0042]
    Table 2 shows measured surface resistivity for compositions 14-18, which contain no glass fibers, compositions 20-23, which contain 20 wt % glass fibers (G1100 obtained from Owens Corning Fiber glass (OCF)), and compositions 24-25, which contain 15 wt % glass fibers. Again it can clearly be seen that with the addition of glass fibers, surface resistivity decreases significantly. For example, composition 17 containing 26.67 wt % of the polycarbonate masterbatch has a surface resistivity of 1.4×1011 ohms/square while composition 23 and 24 containing 23.33 and 26.67 wt % polycarbonate masterbatch and 15 wt % glass fibers have lower surface resistivities of 8.2×109 and 5.3×107 ohms/square respectively.
    TABLE 1
    Compo-
    sition 1* 2* 3* 4* 5* 7 8 9 10 11 12 13
    GTX 820 95 90 85 80 75 75 72.5 70 67.5 70 67.5 65
    Blend
    (wt %)
    G5000 20 20 20 20 15 15 15
    Glass
    (wt %)
    Nylon 6,6  5 10 15 20 25  5 7.5 10 12.5 15 17.5 20
    Master-
    batch
    (wt %)
    Surface    >102 2.1 × 1011 8.9 × 107 3.2 × 105 1.7 × 105    >1012 5 × 1011 1.4 × 108 2 × 107 2.3 × 106 1.4 × 106 3.2 × 105
    Resistivity
    (ohm/
    square)
  • [0043]
    [0043]
    TABLE 2
    Composition 14* 15* 16* 17* 18* 20 21 22 23 24
    Lexan resin(wt %) 93.3  86.67 80 73.33 66.7 73.3 67.7 60 61.67 58.33
    G1100 Glass(wt %) 20   20   20 15 15
    Polycarbonate Masterbatch(wt %)  6.7 13.3 20 26.67 33.3  6.7 13.3 20 23.33 26.67
    Surface Resistivity (ohm/square) >1012 >1012   >1012 1.4 × 1011 1.5 × 107 >1012 >1012 1 × 1012 8.2 × 109 5.3 × 107
  • [0044]
    While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention.

Claims (26)

  1. 1. An improved, conductive, polymeric composition comprises:
    a polymeric resin; and
    an electrically conductive filler system comprising vapor grown carbon fibers and either carbon powder, fibrous non-conductive filler, or a combination of carbon powders and fibrous non-conductive filler.
  2. 2. The composition of claim 1, wherein the polymeric resin is a thermoplastic selected from the group consisting of polyacetal, polyacrylic, styrene acrylonitrile, acrylonitrile-butadiene-styrene, polycarbonate, polystyrene, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, nylons, polyamideimide, polyarylates, polyurethane, ethylene propylene rubber, ethylene propylene diene monomer, polyarylsulfone, polyethersulfone, polyphenylene ether, polyphenylene sulfide, polyvinyl chloride, polysulfone, polyetherimide, polytetrafluoroethylene, fluorinated ethylene propylene, perfluoroalkoxy, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyetherketone, polyether etherketone, polyether ketone ketone; and mixtures comprising at least one of the foregoing thermoplastic or a thermoset selected from the group consisting of polyurethanes, natural rubber, synthetic rubber, epoxy, phenolic, polyesters, polyamides, silicones; and mixtures comprising at least one of the foregoing thermosets.
  3. 3. The composition of claim 1, wherein the polymeric resin comprises a blend of a thermoplastic resin with a thermoset.
  4. 4. The composition of claim 1, wherein the polymeric resin comprises about 10 to about 99 wt % of the total composition.
  5. 5. The composition of claim 1, wherein the vapor grown carbon fibers are selected from the group consisting of graphitic vapor grown carbon fibers, partially graphitic vapor grown carbon fibers, and mixtures comprising one of the foregoing vapor grown carbon fibers.
  6. 6. The composition of claim 1, wherein the vapor grown carbon fiber comprises about 0.25 to about 30 wt % of the total composition.
  7. 7. The composition of claim 1, wherein the vapor grown carbon fibers have diameters of about 0.3 to about 2000 nanometers and an aspect ratio of greater than about 5.
  8. 8. The composition of claim 1, wherein the carbon powder comprises about 0.25 to about 25 wt % of the total composition.
  9. 9. The composition of claim 1, wherein the carbon powder is carbon black.
  10. 10. The composition of claim 1, wherein the fibrous non-conductive filler is selected from the group consisting of aluminum silicates, aluminum oxides, magnesium oxides, calcium sulfate hemihydrate, boron fibers, ceramic fibers, silicon carbide, basalt fibers, silicon carbide, alumina, boron carbide, glass, quartz, wood flour, cellulose, cotton, sisal, jute, hemp cloth, felt, starch, cork flour, lignin, ground nut shells, corn, rice grain husks, polyethylene terephthalate fibers, polyvinylalcohol fibers, aromatic polyamide fibers, polybenzimidazole fibers, polyimide fibers, polyphenylene sulfide fibers, polyether ether ketone fibers, polybenzoxazole fibers, polyester fibers, polyethylene fibers, polytetrafluoroethylene fibers, polyacrylic fibers, polyvinyl alcohol fibers, aramid fibers and mixtures comprising at least one of the foregoing fibrous non-conducting fillers.
  11. 11. The composition of claim 1, wherein the fibrous non-conductive filler is glass fiber selected from the group consisting of E-glass, A-glass, C-glass, D-glass, R-glass, S-glass, and mixtures comprising at least one of the foregoing glass fibers and is present in an amount of up to about 50 wt % of the total composition
  12. 12. The composition of claim 1, wherein the fibrous non-conductive filler comprises up to about 50 wt % of the total composition.
  13. 13. A conductive composition comprising:
    a thermosetting polymeric resin;
    vapor grown carbon fibers;
    carbon black; and
    glass fibers.
  14. 14. The composition of claim 13, wherein the thermosetting polymeric resin is selected from the group consisting of polyurethanes, natural rubber, synthetic rubber, epoxy, phenolic, polyesters, polyamides, silicones; and mixtures comprising at least one of the foregoing thermosetting resins.
  15. 15. The composition of claim 13, wherein the vapor grown carbon fibers have a diameter of about 3.5 to about 2000 nm, an average aspect ratio greater than or equal to about 5, and comprise about 0.25 to about 30 wt % of the total composition.
  16. 16. The composition of claim 13, wherein the carbon black comprises about 0.25 to about 25 wt % of the total composition.
  17. 17. The composition of claim 13, wherein the glass fibers comprise about 0 to about 50 wt % of the total composition.
  18. 18. A method of forming an extruded conductive pellet comprising:
    melt blending a polymeric resin, vapor grown carbon fibers and carbon powder, glass fibers or a mixture of carbon powder and glass fibers;
    extruding the blend; and
    pelletizing the extrudate.
  19. 19. The method of claim 18, wherein the polymeric resin is a thermoplastic selected from the group consisting of polyacetal, polyacrylic, styrene acrylonitrile, acrylonitrile-butadiene-styrene, polycarbonate, polystyrene, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, nylons, polyamideimide, polyarylates, polyurethane, ethylene propylene rubber, ethylene propylene diene monomer, polyarylsulfone, polyethersulfone, polyphenylene ether, polyphenylene sulfide, polyvinyl chloride, polysulfone, polyetherimide, polytetrafluoroethylene, fluorinated ethylene propylene, perfluoroalkoxy, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyetherketone, polyether etherketone, polyether ketone ketone; and mixtures comprising at least one of the foregoing thermoplastic or a thermoset selected from the group consisting of polyurethanes, natural rubber, synthetic rubber, epoxy, phenolic, polyesters, polyamides, silicones; and mixtures comprising at least one of the foregoing thermosets.
  20. 20. The method of claim 18, wherein the vapor grown carbon fibers are selected from the group consisting of graphitic vapor grown carbon fibers, partially graphitic vapor grown carbon fibers, and mixtures comprising one of the foregoing vapor grown carbon fibers.
  21. 21. The method of claim 18, wherein the vapor grown carbon fiber comprises about 0.25 to about 30 wt % of the total composition.
  22. 22. The method of claim 18, wherein the carbon powder comprises about 0.25 to about 25 wt % of the total composition.
  23. 23. The method of claim 18, wherein the carbon powder is carbon black.
  24. 24. The method of claim 18, wherein the glass fiber is selected from the group consisting of E-glass, A-glass, C-glass, D-glass, R-glass, S-glass, and mixtures comprising at least one of the foregoing glass fibers and comprises up to about 50 wt % of the total composition.
  25. 25. The method of claim 18, wherein the melt blending is conducted in processing equipment selected from the group consisting of extruders, roll mills, and dough mixers.
  26. 26. The method of claim 18, wherein the extruded conductive pellet is further subjected to injection molding, blow molding, vacuum forming, and the like to form a conductive article.
US10331151 2001-04-27 2002-12-27 Conductive plastic compositions and method of manufacture thereof Abandoned US20030181568A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US28712701 true 2001-04-27 2001-04-27
US09683069 US6689835B2 (en) 2001-04-27 2001-11-15 Conductive plastic compositions and method of manufacture thereof
US10331151 US20030181568A1 (en) 2001-04-27 2002-12-27 Conductive plastic compositions and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10331151 US20030181568A1 (en) 2001-04-27 2002-12-27 Conductive plastic compositions and method of manufacture thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09683069 Continuation US6689835B2 (en) 2001-04-27 2001-11-15 Conductive plastic compositions and method of manufacture thereof

Publications (1)

Publication Number Publication Date
US20030181568A1 true true US20030181568A1 (en) 2003-09-25

Family

ID=26964274

Family Applications (2)

Application Number Title Priority Date Filing Date
US09683069 Active US6689835B2 (en) 2001-04-27 2001-11-15 Conductive plastic compositions and method of manufacture thereof
US10331151 Abandoned US20030181568A1 (en) 2001-04-27 2002-12-27 Conductive plastic compositions and method of manufacture thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09683069 Active US6689835B2 (en) 2001-04-27 2001-11-15 Conductive plastic compositions and method of manufacture thereof

Country Status (1)

Country Link
US (2) US6689835B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762073B1 (en) * 2003-02-24 2004-07-13 Donald P. Cullen Method of fabricating electronic interconnect devices using direct imaging of dielectric composite material
US20060280938A1 (en) * 2005-06-10 2006-12-14 Atkinson Paul M Thermoplastic long fiber composites, methods of manufacture thereof and articles derived thererom
US20080035894A1 (en) * 2006-08-11 2008-02-14 Bayer Materialscience Ag Antistatic and electrically conductive polyurethanes
US20080272026A1 (en) * 2004-12-10 2008-11-06 David Brian Edwards Electrostatically Dissipative Packages and Articles
US20090127516A1 (en) * 2005-07-20 2009-05-21 Masaya Kotaki Electroconductive curable resins
US20090247039A1 (en) * 2006-12-11 2009-10-01 Sabic Innovative Plastics Ip Bv Intrinsically conductive thermoplastic composition and compounding processing for making conductive fiber
US20100201023A1 (en) * 2007-09-24 2010-08-12 Arkema France Method for preparing composite materials
US7829006B2 (en) 2001-02-15 2010-11-09 Integral Technologies, Inc. Method to form vehicle component devices from conductive loaded resin-based materials
US20100308279A1 (en) * 2005-09-16 2010-12-09 Chaohui Zhou Conductive Silicone and Methods for Preparing Same
CN102220001A (en) * 2011-06-09 2011-10-19 深圳市科聚新材料有限公司 Polyphenylene sulfide composite material and preparation method thereof
US20130207052A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Method for preparing carbon nano material/polymer composites
US20130207051A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
CN103642160A (en) * 2013-10-31 2014-03-19 陈潜 Modified plastic and preparation method
CN104119589A (en) * 2013-04-23 2014-10-29 浙江康辉木业有限公司 Preparation method for carbon-plastic fiber composite material
CN105778527A (en) * 2016-05-27 2016-07-20 李红玉 Electronic product packaging film material
US20160260516A1 (en) * 2013-10-15 2016-09-08 Basf Se Conductive thermoplastic polyurethane

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138702A9 (en) * 1999-11-12 2007-06-21 General Electric Company Molded, filled polymer compositions with reduced splay and a method of making
DE60211581D1 (en) * 2001-03-23 2006-06-29 Oreal Skin treatment composition containing fibers and ubiquinones
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
JP2005517788A (en) * 2002-02-20 2005-06-16 エレクトロヴァク・ファブリケーション・エレクトロテクニシャー・スペズィアラーティケル・ゲーエムベーハー Composite and manufacturing method flame retardant polymer
EP1461390A1 (en) * 2002-04-01 2004-09-29 Carbon Nanotechnologies, Inc. Composite of single-wall carbon nanotubes and aromatic polyamide and process for making the same
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
DE10259498A1 (en) * 2002-12-19 2004-07-01 Bayer Ag Conductive thermoplastics with carbon black and carbon nanofibrils
CN100373503C (en) * 2002-12-26 2008-03-05 昭和电工株式会社 Carbonaceous material for forming electrically conductive material and use thereof
ES2437194T3 (en) * 2003-02-18 2014-01-09 Arkema France Use of carbon nanotubes in mixtures of polyamide and polyolefin
KR100991167B1 (en) * 2003-02-19 2010-11-02 듀폰-미쯔이 플루오로케미칼 가부시끼가이샤 Process for manufacturing a heat-meltable fluoropolymer composite composition and a heat-meltable fluoropolymer composite composition
US7285591B2 (en) * 2003-03-20 2007-10-23 The Trustees Of The University Of Pennsylvania Polymer-nanotube composites, fibers, and processes
US7208115B2 (en) * 2003-03-31 2007-04-24 Lockheed Martin Corporation Method of fabricating a polymer matrix composite electromagnetic shielding structure
US7132062B1 (en) 2003-04-15 2006-11-07 Plasticolors, Inc. Electrically conductive additive system and method of making same
KR20060060682A (en) * 2003-08-08 2006-06-05 제너럴 일렉트릭 캄파니 Electrically conductive compositions comprising carbon nanotubes and method of manufacture thereof
US20040211942A1 (en) * 2003-04-28 2004-10-28 Clark Darren Cameron Electrically conductive compositions and method of manufacture thereof
EP1620506B1 (en) * 2003-05-02 2011-03-09 E.I. Du Pont De Nemours And Company Polyesters containing microfibers, and methods for making and using same
US20040232389A1 (en) * 2003-05-22 2004-11-25 Elkovitch Mark D. Electrically conductive compositions and method of manufacture thereof
US20040262581A1 (en) * 2003-06-27 2004-12-30 Rodrigues David E. Electrically conductive compositions and method of manufacture thereof
JP5409999B2 (en) * 2003-07-28 2014-02-05 ウィリアム・マーシュ・ライス・ユニバーシティ To obtain a polymer composite, sidewall functionalization of carbon nanotubes with an organic silane
US20050031840A1 (en) * 2003-08-05 2005-02-10 Xerox Corporation RF connector
US7052763B2 (en) 2003-08-05 2006-05-30 Xerox Corporation Multi-element connector
US7026432B2 (en) * 2003-08-12 2006-04-11 General Electric Company Electrically conductive compositions and method of manufacture thereof
US7354988B2 (en) * 2003-08-12 2008-04-08 General Electric Company Electrically conductive compositions and method of manufacture thereof
WO2005023937A1 (en) * 2003-09-02 2005-03-17 Showa Denko K.K. Electrically conducting polymer and production method and use thereof
US7309727B2 (en) * 2003-09-29 2007-12-18 General Electric Company Conductive thermoplastic compositions, methods of manufacture and articles derived from such compositions
US20050070658A1 (en) * 2003-09-30 2005-03-31 Soumyadeb Ghosh Electrically conductive compositions, methods of manufacture thereof and articles derived from such compositions
JP4563665B2 (en) * 2003-10-06 2010-10-13 株式会社クレハ Semiconductive film, a charge control member, and a manufacturing method of the semiconductive film
US7265175B2 (en) * 2003-10-30 2007-09-04 The Trustees Of The University Of Pennsylvania Flame retardant nanocomposite
DE602004011818T2 (en) * 2003-12-05 2008-09-11 Showa Denko K.K. Electric conductive resin composition and shape product from
US20050186531A1 (en) * 2004-02-20 2005-08-25 Joshua Friedman Heated compule
US8989840B2 (en) 2004-03-30 2015-03-24 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844343B2 (en) * 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable medical device
US7877150B2 (en) * 2004-03-30 2011-01-25 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7844344B2 (en) 2004-03-30 2010-11-30 Medtronic, Inc. MRI-safe implantable lead
US9155877B2 (en) * 2004-03-30 2015-10-13 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
EP1735383A4 (en) * 2004-04-12 2010-09-01 Showa Denko Kk Electrically conducting resin composition and container for transporting semiconductor-related parts
US20120049127A1 (en) * 2004-04-29 2012-03-01 Compagnie Plastic Omnium Electrically conductive ptfe tape
JP4149413B2 (en) * 2004-05-21 2008-09-10 日信工業株式会社 Carbon fiber composite material and a manufacturing method thereof
US20050277726A1 (en) * 2004-05-27 2005-12-15 Zuo Yi Conductive/dissipative plastic compositions for molding articles
US20060293434A1 (en) * 2004-07-07 2006-12-28 The Trustees Of The University Of Pennsylvania Single wall nanotube composites
US7566749B2 (en) * 2004-08-31 2009-07-28 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
US8280526B2 (en) * 2005-02-01 2012-10-02 Medtronic, Inc. Extensible implantable medical lead
US20080160311A1 (en) * 2005-02-02 2008-07-03 Masato Tani Carbon Nanotube-Loaded Inorganic Particle
US7462656B2 (en) * 2005-02-15 2008-12-09 Sabic Innovative Plastics Ip B.V. Electrically conductive compositions and method of manufacture thereof
US7853332B2 (en) 2005-04-29 2010-12-14 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US8027736B2 (en) * 2005-04-29 2011-09-27 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
US7718155B2 (en) * 2005-10-06 2010-05-18 Headwaters Technology Innovation, Llc Carbon nanostructures manufactured from catalytic templating nanoparticles
US7887771B2 (en) * 2005-10-06 2011-02-15 Headwaters Technology Innovation, Llc Carbon nanorings manufactured from templating nanoparticles
US8133637B2 (en) * 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
WO2007044889A3 (en) * 2005-10-11 2007-11-01 Univ Southern Illinois Composite friction materials having carbon nanotube and carbon nanofiber friction enhancers
WO2007050460A8 (en) * 2005-10-25 2007-10-25 Inorganic Specialists Inc Carbon nanofiber paper and applications
US20070154717A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Thermally stable composite material
US20070154716A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Composite material
US20070155949A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Thermally stable composite material
US20070152195A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Electrostatic dissipative composite material
US8264137B2 (en) * 2006-01-03 2012-09-11 Samsung Electronics Co., Ltd. Curing binder material for carbon nanotube electron emission cathodes
US20070158287A1 (en) * 2006-01-10 2007-07-12 Engineered Products & Services, Inc. Electrically-Conductive Plastic Hangers
US20070160771A1 (en) * 2006-01-10 2007-07-12 Engineered Products And Services, Inc. Electrically-conductive plastic hangers
WO2007090166A3 (en) * 2006-02-01 2008-03-06 Polyone Corp Exothermic polyphenylene sulfide compounds
US7935276B2 (en) * 2006-02-09 2011-05-03 Headwaters Technology Innovation Llc Polymeric materials incorporating carbon nanostructures
KR100764659B1 (en) 2006-03-23 2007-10-08 재단법인서울대학교산학협력재단 Glass Fiber Reinforced Nano Composites For Outdoor Antenna Having Microwave Shielding Property
US20080090951A1 (en) * 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
US8283403B2 (en) * 2006-03-31 2012-10-09 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US20110160346A1 (en) * 2006-03-31 2011-06-30 Applied Nanotech Holdings, Inc. Dispersion of carbon nanotubes by microfluidic process
US8129463B2 (en) * 2006-03-31 2012-03-06 Applied Nanotech Holdings, Inc. Carbon nanotube-reinforced nanocomposites
US20070238832A1 (en) * 2006-04-05 2007-10-11 General Electric Company Method of making a poly(arylene ether)/polyamide composition
JP2009532574A (en) * 2006-04-05 2009-09-10 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) / polyamide composition, methods, and articles
US20070276077A1 (en) * 2006-04-05 2007-11-29 Nano-Proprietary, Inc. Composites
US20070235698A1 (en) * 2006-04-05 2007-10-11 General Electric Company vehicular body part
US20070235697A1 (en) * 2006-04-05 2007-10-11 General Electric Company Poly(arylene ether)/polyamide composition
US8445587B2 (en) * 2006-04-05 2013-05-21 Applied Nanotech Holdings, Inc. Method for making reinforced polymer matrix composites
WO2007130358A3 (en) * 2006-05-02 2008-11-27 Superbulbs Inc Plastic led bulb
KR20090007741A (en) 2006-05-02 2009-01-20 슈퍼불브스, 인크. Heat removal design for led bulbs
CA2645228A1 (en) 2006-05-02 2007-11-15 Superbulbs, Inc. Method of light dispersion and preferential scattering of certain wavelengths of light for light-emitting diodes and bulbs constructed therefrom
US20090311436A1 (en) * 2006-05-16 2009-12-17 Board Of Trustees Of Michigan State University Conductive composite materials with graphite coated particles
US20070276081A1 (en) * 2006-05-23 2007-11-29 Shengmei Yuan High modulus thermoplastic compositions
KR100758341B1 (en) 2006-06-16 2007-09-14 주식회사 어플라이드카본나노 Conductive polymer matrix composites in which metal-nanofiber mixture is dispersed and its fabrication methods
US8030376B2 (en) 2006-07-12 2011-10-04 Minusnine Technologies, Inc. Processes for dispersing substances and preparing composite materials
EP2392623B1 (en) * 2006-08-02 2013-09-18 Battelle Memorial Institute Electrically conductive coating composition
US7476339B2 (en) * 2006-08-18 2009-01-13 Saint-Gobain Ceramics & Plastics, Inc. Highly filled thermoplastic composites
US20080131798A1 (en) * 2006-12-01 2008-06-05 Reginald Parker Biologically photoconductive organic dispersion
US20080128659A1 (en) * 2006-12-05 2008-06-05 Reginald Parker Biologically modified buckypaper and compositions
US7718156B2 (en) * 2006-12-20 2010-05-18 Headwaters Technology Innovation, Llc Method for manufacturing carbon nanostructures having minimal surface functional groups
US9044593B2 (en) 2007-02-14 2015-06-02 Medtronic, Inc. Discontinuous conductive filler polymer-matrix composites for electromagnetic shielding
US8483842B2 (en) 2007-04-25 2013-07-09 Medtronic, Inc. Lead or lead extension having a conductive body and conductive body contact
US8273268B2 (en) 2007-08-13 2012-09-25 Polyone Corporation Electrically conductive polyolefin blends
JP2010538444A (en) * 2007-09-07 2010-12-09 インオーガニック スペシャリスツ インク Silicone-modified nanofiber paper as an anode material for lithium secondary batteries
US8188823B2 (en) * 2007-09-21 2012-05-29 Abb Technology Ag Dry-type transformer with a polymer shield case and a method of manufacturing the same
US8003016B2 (en) 2007-09-28 2011-08-23 Sabic Innovative Plastics Ip B.V. Thermoplastic composition with improved positive temperature coefficient behavior and method for making thereof
WO2009045438A1 (en) 2007-10-03 2009-04-09 Superbulbs, Inc. Glass led light bulbs
WO2009054948A1 (en) 2007-10-24 2009-04-30 Superbulbs, Inc. Diffuser for led light sources
US9037263B2 (en) 2008-03-12 2015-05-19 Medtronic, Inc. System and method for implantable medical device lead shielding
US7817431B2 (en) * 2008-04-28 2010-10-19 Honda Motor Co., Ltd. Chassis for an electrical component
WO2009137548A1 (en) * 2008-05-08 2009-11-12 E. I. Du Pont De Nemours And Company Portable electronic device cover comprising renewable polyamide resin composition
GB0810453D0 (en) 2008-06-07 2008-07-09 Hexcel Composites Ltd Improved conductivity of resin materials and composite materials
US8003014B2 (en) 2008-07-02 2011-08-23 Eaton Corporation Dielectric isolators
US9136036B2 (en) * 2008-07-02 2015-09-15 Miller Waster Mills Injection moldable, thermoplastic composite materials
US8956556B2 (en) 2008-07-02 2015-02-17 Eaton Corporation Dielectric isolators
US20100036466A1 (en) * 2008-08-11 2010-02-11 Pacesetter, Inc. Lead construction with composite material shield layer
US9683311B2 (en) * 2009-02-02 2017-06-20 Arkema Inc. High performance fibers
US20100249282A1 (en) * 2009-03-30 2010-09-30 E.I. Du Pont De Nemours And Company Environmentally friendly electronic device housings
US20120035696A1 (en) 2009-04-30 2012-02-09 Medtronic, Inc. Termination of a shield within an implantable medical lead
US8524120B2 (en) 2009-06-19 2013-09-03 Sabic Innovative Plastics Ip B.V. Single conductive pellets of long glass fiber reinforced thermoplastic resin and manufacturing method thereof
CA2716056A1 (en) * 2009-09-30 2011-03-30 Ipl Inc. Thermally conductive polymer compositions
KR101269422B1 (en) * 2009-12-30 2013-06-04 제일모직주식회사 Polycarbonate Resin Composition having Excellent Wear resistance and Electric Conductivity, and Method of Preparing the Same
US20110301282A1 (en) * 2010-06-03 2011-12-08 Eric Magni Black colored master batch carbon nanotube and method of manufacture thereof
US8944789B2 (en) * 2010-12-10 2015-02-03 National Oilwell Varco, L.P. Enhanced elastomeric stator insert via reinforcing agent distribution and orientation
US20120246873A1 (en) * 2011-04-01 2012-10-04 Rama Konduri Hollow articles comprising fiber-filled polyester compositions, methods of manufacture, and uses thereof
US20130059968A1 (en) * 2011-09-06 2013-03-07 Fei-Lin Yang Plastic composition
US8591069B2 (en) 2011-09-21 2013-11-26 Switch Bulb Company, Inc. LED light bulb with controlled color distribution using quantum dots
US9957379B2 (en) * 2012-01-03 2018-05-01 Lockheed Martin Corporation Structural composite materials with high strain capability
US9463317B2 (en) 2012-04-19 2016-10-11 Medtronic, Inc. Paired medical lead bodies with braided conductive shields having different physical parameter values
US20140175338A1 (en) * 2012-12-21 2014-06-26 Polyone Corporation Electrically conductive polyphenylene sulfide compounds
US9734930B2 (en) 2013-09-24 2017-08-15 Samsung Electronics Co., Ltd. Conductive resin composition and display device using the same
CN104262962A (en) * 2014-09-09 2015-01-07 丹阳丹金汽车部件有限公司 Carbon nanotube grafted glass fiber multi-scale reinforced composite material and preparation method thereof
DE102016202385A1 (en) * 2016-02-17 2017-08-17 Siemens Aktiengesellschaft Compact dry transformer with an electrical winding and method for producing an electric winding
US9583884B1 (en) 2016-02-26 2017-02-28 Northrop Grumman Systems Corporation Electrostatic discharge (ESD) safe connector insert

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2465319A (en) * 1941-07-29 1949-03-22 Du Pont Polymeric linear terephthalic esters
US4005053A (en) * 1974-06-25 1977-01-25 Polysar Limited Polymer-oil-black masterbatch
US4141927A (en) * 1975-05-22 1979-02-27 General Electric Company Novel polyetherimide-polyester blends
US4195015A (en) * 1976-07-30 1980-03-25 Ato Chimie Heat and aging stable copolyetheresteramides and method of manufacturing same
US4199326A (en) * 1978-03-23 1980-04-22 Fung Paul S T Emulsified fuel composition and surfactant useful therein
US4331786A (en) * 1979-10-02 1982-05-25 Ato Chimie Moldable and/or extrudable polyether-ester-amide block copolymers
US4332920A (en) * 1974-05-31 1982-06-01 Ato Chimie Mouldable and extrudable polyether-ester-amide block copolymers
US4333422A (en) * 1980-08-27 1982-06-08 Mahoney Fred G Hot fuel gas generator with dual controls
US4378230A (en) * 1975-12-31 1983-03-29 Rhee Eun B Method for improving fuel efficiency
US4443591A (en) * 1983-01-21 1984-04-17 General Electric Company Method for making polyetherimide
US4447348A (en) * 1981-02-25 1984-05-08 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4455410A (en) * 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4492338A (en) * 1981-02-26 1985-01-08 Ottorino Sparano Ultrasonic apparatus, particularly for liquid processing
US4492382A (en) * 1983-12-21 1985-01-08 J. T. Thorpe Company Refractory fiber ladle preheater sealing rings
US4565684A (en) * 1984-08-20 1986-01-21 General Motors Corporation Regulation of pyrolysis methane concentration in the manufacture of graphite fibers
US4572813A (en) * 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
US4637945A (en) * 1984-07-23 1987-01-20 Denki Kagaku Kogyo Kabushiki Kaisha Anti-static jacket for floppy disk
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US4666620A (en) * 1978-09-27 1987-05-19 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4749451A (en) * 1986-02-05 1988-06-07 Basf Aktiengesellschaft Electrochemical coating of carbon fibers
US4816289A (en) * 1984-04-25 1989-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for production of a carbon filament
US4839441A (en) * 1987-02-26 1989-06-13 Atochem Polyesteramides, polyetheresteramides and process for preparation thereof
US4908419A (en) * 1982-01-29 1990-03-13 General Electric Company Polyetherimide-polyarylate, blends
US4908418A (en) * 1982-01-29 1990-03-13 General Electric Company Ternary polymer blends
US5004561A (en) * 1986-03-31 1991-04-02 Mitsubishi Gas Chemical Company, Inc. Electromagnetic wave-shielding thermoplastic resin composition
US5024818A (en) * 1990-10-09 1991-06-18 General Motors Corporation Apparatus for forming carbon fibers
US5093435A (en) * 1984-06-29 1992-03-03 Amoco Corporation Molded electrical device and composition therefore
US5284903A (en) * 1990-06-28 1994-02-08 General Electric Company Blends of polyetherimide resins and polyester resins derived from a cyclohexanedimethanol and a carbocylic acid or ester
US5300553A (en) * 1991-10-15 1994-04-05 Yazaki Corporation Method of producing electrically conductive composite
US5300203A (en) * 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
US5302274A (en) * 1990-04-16 1994-04-12 Minitech Co. Electrochemical gas sensor cells using three dimensional sensing electrodes
US5312866A (en) * 1989-11-30 1994-05-17 Mitsui Toatsu Chemicals, Incorporated Polyimide based resin composition
US5385970A (en) * 1993-07-30 1995-01-31 General Electric Company Halogen-free flame retardant ternary blends
US5411558A (en) * 1992-09-08 1995-05-02 Kao Corporation Heavy oil emulsion fuel and process for production thereof
US5484837A (en) * 1994-10-25 1996-01-16 Far Eastern Textile, Ltd. Black masterbatch
US5514748A (en) * 1989-07-30 1996-05-07 Mitsui Toatsu Chemicals, Inc. Polyimide based resin composition comprising cured phenolic resins and liquid crystal polymers
US5591832A (en) * 1993-11-19 1997-01-07 Japan Chemical Engineering & Machinery Co., Ltd. Benzylated lignocellulosic substance and a producing method thereof
US5591312A (en) * 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
US5591382A (en) * 1993-03-31 1997-01-07 Hyperion Catalysis International Inc. High strength conductive polymers
US5604284A (en) * 1993-03-03 1997-02-18 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
US5641455A (en) * 1995-12-22 1997-06-24 Minnesota Mining & Manufacturing Company Sterilizer with gas control
US5718995A (en) * 1996-06-12 1998-02-17 Eastman Kodak Company Composite support for an imaging element, and imaging element comprising such composite support
US5744235A (en) * 1989-07-27 1998-04-28 Hyperion Catalysis International Process for preparing composite structures
US5863301A (en) * 1994-06-02 1999-01-26 Empresa Colombiana De Petroleos ("Ecopetrol") Method of produce low viscosity stable crude oil emulsion
US5863466A (en) * 1997-02-06 1999-01-26 Mor; Ebrahim Electrostatic dissipative composition
US5866647A (en) * 1994-04-15 1999-02-02 Dana Corporation Polymeric based composite bearing
US5872177A (en) * 1995-01-10 1999-02-16 Cabot Corporation Carbon black compositions and improved polymer compositions
US6063874A (en) * 1998-08-31 2000-05-16 General Electric Co. Polyetherimide resin/polyester resin blends
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
US6248262B1 (en) * 2000-02-03 2001-06-19 General Electric Company Carbon-reinforced thermoplastic resin composition and articles made from same
US6252011B1 (en) * 1994-05-31 2001-06-26 Eastman Chemical Company Blends of polyetherimides with polyesters of 2,6-naphthalenedicarboxylic acid
US20020004028A1 (en) * 1998-09-18 2002-01-10 Margrave John L. Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
US6344513B1 (en) * 1999-02-26 2002-02-05 Teijin Limited Resin composition and jig for use in transportation
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US20020031465A1 (en) * 1998-07-21 2002-03-14 Yahachi Saito Production of carbon nanotube
US20020035170A1 (en) * 1999-02-12 2002-03-21 Paul Glatkowski Electromagnetic shielding composite comprising nanotubes
US6365069B2 (en) * 1999-03-19 2002-04-02 Quantum Composites Inc. Process of injection molding highly conductive molding compounds and an apparatus for this process
US20020039675A1 (en) * 1999-11-18 2002-04-04 Braun James C. Compounding and molding process for fuel cell collector plates
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US6376057B1 (en) * 1998-11-19 2002-04-23 Fuji Photo Film, Co., Ltd. Packaging material for photographic photosensitive material
US6376795B1 (en) * 2000-10-24 2002-04-23 Lsi Logic Corporation Direct current dechucking system
US20020048632A1 (en) * 2000-08-24 2002-04-25 Smalley Richard E. Polymer-wrapped single wall carbon nanotubes
US6384128B1 (en) * 2000-07-19 2002-05-07 Toray Industries, Inc. Thermoplastic resin composition, molding material, and molded article thereof
US20020053257A1 (en) * 2000-11-03 2002-05-09 Lockheed Martin Corporation Rapid manufacturing of carbon nanotube composite structures
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US20030004058A1 (en) * 2001-05-21 2003-01-02 Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture
US20030001141A1 (en) * 2001-04-26 2003-01-02 Yi Sun Method for dissolving nanostructural materials
US20030010910A1 (en) * 1996-08-08 2003-01-16 William Marsh Rice University Continuous fiber of single-wall carbon nanotubes
US20030012722A1 (en) * 2002-07-02 2003-01-16 Jie Liu High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation
US20030026754A1 (en) * 2001-07-10 2003-02-06 Clarke Mark S.F. Production of stable aqueous dispersions of carbon nanotubes
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US20030038279A1 (en) * 2000-05-10 2003-02-27 Katsutoshi Ishioka Electrically conductive resin composition
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US20030044608A1 (en) * 2001-09-06 2003-03-06 Fuji Xerox Co., Ltd. Nanowire, method for producing the nanowire, nanonetwork using the nanowires, method for producing the nanonetwork, carbon structure using the nanowire, and electronic device using the nanowire
US20030053801A1 (en) * 2001-09-20 2003-03-20 Eastman Kodak Company One-time-use camera having closure and method for preparing one-time-use camera for recycling
US6544463B1 (en) * 1999-07-26 2003-04-08 The Trustees Of The University Of Pennsylvania Hybrid materials and methods for producing the same
US6555945B1 (en) * 1999-02-25 2003-04-29 Alliedsignal Inc. Actuators using double-layer charging of high surface area materials
US20030083421A1 (en) * 2001-08-29 2003-05-01 Satish Kumar Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
US20030089893A1 (en) * 2001-10-29 2003-05-15 Hyperion Catalysis International, Inc. Polymers containing functionalized carbon nanotubes
US20030092824A1 (en) * 2001-11-07 2003-05-15 Bastiaens Jozef Herman Peter Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US20030089890A1 (en) * 2001-07-11 2003-05-15 Chunming Niu Polyvinylidene fluoride composites and methods for preparing same
US20030100653A1 (en) * 2001-10-25 2003-05-29 Chacko Antony P. Resistive nanocomposite compositions
US20030108477A1 (en) * 2001-12-10 2003-06-12 Keller Teddy M. Bulk synthesis of carbon nanotubes from metallic and ethynyl compounds
US20030111333A1 (en) * 2001-12-17 2003-06-19 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6673864B2 (en) * 2000-11-30 2004-01-06 General Electric Company Conductive polyester/polycarbonate blends, methods for preparation thereof, and articles derived therefrom
US20040009346A1 (en) * 2002-06-28 2004-01-15 Jyongsik Jang Novel carbon nano-particle and method of preparing the same and transparent conductive polymer composite containing the same
US20040021133A1 (en) * 2002-07-31 2004-02-05 Nagpal Vidhu J. High refractive index polymerizable composition
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US20040028859A1 (en) * 1998-09-11 2004-02-12 Legrande Wayne B. Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
US6734262B2 (en) * 2002-01-07 2004-05-11 General Electric Company Methods of forming conductive thermoplastic polyetherimide polyester compositions and articles formed thereby

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852113A (en) * 1971-12-30 1974-12-03 Osaka Soda Co Ltd Positive electrode for high energy primary cells and cells using same
JPH0413449B2 (en) 1984-04-20 1992-03-09 Nikkiso Co Ltd
US5165909A (en) 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US4855091A (en) 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JP2862578B2 (en) 1989-08-14 1999-03-03 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Resin composition
US5036580A (en) * 1990-03-14 1991-08-06 E. I. Du Pont De Nemours And Company Process for manufacturing a polymeric encapsulated transformer
US5354607A (en) * 1990-04-16 1994-10-11 Xerox Corporation Fibrillated pultruded electronic components and static eliminator devices
US5830326A (en) 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
US5256335A (en) * 1992-11-09 1993-10-26 Shell Oil Company Conductive polyketone polymers
US5654357A (en) 1994-07-12 1997-08-05 Cabot Cororation Dispersible carbonblack pellets
US5476878A (en) 1994-09-16 1995-12-19 Regents Of The University Of California Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures
JP3544237B2 (en) 1995-02-09 2004-07-21 株式会社東芝 The method of manufacturing giant fullerene

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2465319A (en) * 1941-07-29 1949-03-22 Du Pont Polymeric linear terephthalic esters
US4332920A (en) * 1974-05-31 1982-06-01 Ato Chimie Mouldable and extrudable polyether-ester-amide block copolymers
US4005053A (en) * 1974-06-25 1977-01-25 Polysar Limited Polymer-oil-black masterbatch
US4141927A (en) * 1975-05-22 1979-02-27 General Electric Company Novel polyetherimide-polyester blends
US4378230A (en) * 1975-12-31 1983-03-29 Rhee Eun B Method for improving fuel efficiency
US4195015A (en) * 1976-07-30 1980-03-25 Ato Chimie Heat and aging stable copolyetheresteramides and method of manufacturing same
US4199326A (en) * 1978-03-23 1980-04-22 Fung Paul S T Emulsified fuel composition and surfactant useful therein
US4666620A (en) * 1978-09-27 1987-05-19 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4331786A (en) * 1979-10-02 1982-05-25 Ato Chimie Moldable and/or extrudable polyether-ester-amide block copolymers
US4333422A (en) * 1980-08-27 1982-06-08 Mahoney Fred G Hot fuel gas generator with dual controls
US4447348A (en) * 1981-02-25 1984-05-08 The Lubrizol Corporation Carboxylic solubilizer/surfactant combinations and aqueous compositions containing same
US4492338A (en) * 1981-02-26 1985-01-08 Ottorino Sparano Ultrasonic apparatus, particularly for liquid processing
US4908419A (en) * 1982-01-29 1990-03-13 General Electric Company Polyetherimide-polyarylate, blends
US4908418A (en) * 1982-01-29 1990-03-13 General Electric Company Ternary polymer blends
US4455410A (en) * 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4443591A (en) * 1983-01-21 1984-04-17 General Electric Company Method for making polyetherimide
US4572813A (en) * 1983-09-06 1986-02-25 Nikkiso Co., Ltd. Process for preparing fine carbon fibers in a gaseous phase reaction
US4492382A (en) * 1983-12-21 1985-01-08 J. T. Thorpe Company Refractory fiber ladle preheater sealing rings
US4816289A (en) * 1984-04-25 1989-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Process for production of a carbon filament
US5093435A (en) * 1984-06-29 1992-03-03 Amoco Corporation Molded electrical device and composition therefore
US4637945A (en) * 1984-07-23 1987-01-20 Denki Kagaku Kogyo Kabushiki Kaisha Anti-static jacket for floppy disk
US4565684A (en) * 1984-08-20 1986-01-21 General Motors Corporation Regulation of pyrolysis methane concentration in the manufacture of graphite fibers
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US4749451A (en) * 1986-02-05 1988-06-07 Basf Aktiengesellschaft Electrochemical coating of carbon fibers
US5004561A (en) * 1986-03-31 1991-04-02 Mitsubishi Gas Chemical Company, Inc. Electromagnetic wave-shielding thermoplastic resin composition
US4839441A (en) * 1987-02-26 1989-06-13 Atochem Polyesteramides, polyetheresteramides and process for preparation thereof
US5744235A (en) * 1989-07-27 1998-04-28 Hyperion Catalysis International Process for preparing composite structures
US5514748A (en) * 1989-07-30 1996-05-07 Mitsui Toatsu Chemicals, Inc. Polyimide based resin composition comprising cured phenolic resins and liquid crystal polymers
US5516837A (en) * 1989-11-30 1996-05-14 Mitsui Toatsu Chemicals, Inc. Polyimide based resin composition
US5312866A (en) * 1989-11-30 1994-05-17 Mitsui Toatsu Chemicals, Incorporated Polyimide based resin composition
US5302274A (en) * 1990-04-16 1994-04-12 Minitech Co. Electrochemical gas sensor cells using three dimensional sensing electrodes
US5284903A (en) * 1990-06-28 1994-02-08 General Electric Company Blends of polyetherimide resins and polyester resins derived from a cyclohexanedimethanol and a carbocylic acid or ester
US5024818A (en) * 1990-10-09 1991-06-18 General Motors Corporation Apparatus for forming carbon fibers
US5300553A (en) * 1991-10-15 1994-04-05 Yazaki Corporation Method of producing electrically conductive composite
US5300203A (en) * 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
US5411558A (en) * 1992-09-08 1995-05-02 Kao Corporation Heavy oil emulsion fuel and process for production thereof
US5591312A (en) * 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
US5604284A (en) * 1993-03-03 1997-02-18 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
US5886098A (en) * 1993-03-03 1999-03-23 Sanyo Chemical Industries, Ltd. Polyetheresteramide and antistatic resin composition
US5591382A (en) * 1993-03-31 1997-01-07 Hyperion Catalysis International Inc. High strength conductive polymers
US5385970A (en) * 1993-07-30 1995-01-31 General Electric Company Halogen-free flame retardant ternary blends
US5591832A (en) * 1993-11-19 1997-01-07 Japan Chemical Engineering & Machinery Co., Ltd. Benzylated lignocellulosic substance and a producing method thereof
US5866647A (en) * 1994-04-15 1999-02-02 Dana Corporation Polymeric based composite bearing
US6252011B1 (en) * 1994-05-31 2001-06-26 Eastman Chemical Company Blends of polyetherimides with polyesters of 2,6-naphthalenedicarboxylic acid
US5863301A (en) * 1994-06-02 1999-01-26 Empresa Colombiana De Petroleos ("Ecopetrol") Method of produce low viscosity stable crude oil emulsion
US5484837A (en) * 1994-10-25 1996-01-16 Far Eastern Textile, Ltd. Black masterbatch
US5872177A (en) * 1995-01-10 1999-02-16 Cabot Corporation Carbon black compositions and improved polymer compositions
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
US5641455A (en) * 1995-12-22 1997-06-24 Minnesota Mining & Manufacturing Company Sterilizer with gas control
US5718995A (en) * 1996-06-12 1998-02-17 Eastman Kodak Company Composite support for an imaging element, and imaging element comprising such composite support
US20030106998A1 (en) * 1996-08-08 2003-06-12 William Marsh Rice University Method for producing boron nitride coatings and fibers and compositions thereof
US20030075682A1 (en) * 1996-08-08 2003-04-24 Colbert Daniel T. Method for forming composite arrays of single-wall carbon nanotubes and compositions thereof
US20030066960A1 (en) * 1996-08-08 2003-04-10 William Marsh Rice University Apparatus for growing continuous single-wall carbon nanotube fiber
US20030010910A1 (en) * 1996-08-08 2003-01-16 William Marsh Rice University Continuous fiber of single-wall carbon nanotubes
US5863466A (en) * 1997-02-06 1999-01-26 Mor; Ebrahim Electrostatic dissipative composition
US20020031465A1 (en) * 1998-07-21 2002-03-14 Yahachi Saito Production of carbon nanotube
US6346189B1 (en) * 1998-08-14 2002-02-12 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube structures made using catalyst islands
US6063874A (en) * 1998-08-31 2000-05-16 General Electric Co. Polyetherimide resin/polyester resin blends
US20040028859A1 (en) * 1998-09-11 2004-02-12 Legrande Wayne B. Electrically conductive and electromagnetic radiation absorptive coating compositions and the like
US20020004028A1 (en) * 1998-09-18 2002-01-10 Margrave John L. Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers
US6187823B1 (en) * 1998-10-02 2001-02-13 University Of Kentucky Research Foundation Solubilizing single-walled carbon nanotubes by direct reaction with amines and alkylaryl amines
US6376057B1 (en) * 1998-11-19 2002-04-23 Fuji Photo Film, Co., Ltd. Packaging material for photographic photosensitive material
US20020035170A1 (en) * 1999-02-12 2002-03-21 Paul Glatkowski Electromagnetic shielding composite comprising nanotubes
US6555945B1 (en) * 1999-02-25 2003-04-29 Alliedsignal Inc. Actuators using double-layer charging of high surface area materials
US6344513B1 (en) * 1999-02-26 2002-02-05 Teijin Limited Resin composition and jig for use in transportation
US6365069B2 (en) * 1999-03-19 2002-04-02 Quantum Composites Inc. Process of injection molding highly conductive molding compounds and an apparatus for this process
US6544463B1 (en) * 1999-07-26 2003-04-08 The Trustees Of The University Of Pennsylvania Hybrid materials and methods for producing the same
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US20020039675A1 (en) * 1999-11-18 2002-04-04 Braun James C. Compounding and molding process for fuel cell collector plates
US6372376B1 (en) * 1999-12-07 2002-04-16 General Motors Corporation Corrosion resistant PEM fuel cell
US6248262B1 (en) * 2000-02-03 2001-06-19 General Electric Company Carbon-reinforced thermoplastic resin composition and articles made from same
US6540945B2 (en) * 2000-02-03 2003-04-01 General Electric Company Carbon-reinforced thermoplastic resin composition and articles made from same
US20030038279A1 (en) * 2000-05-10 2003-02-27 Katsutoshi Ishioka Electrically conductive resin composition
US6384128B1 (en) * 2000-07-19 2002-05-07 Toray Industries, Inc. Thermoplastic resin composition, molding material, and molded article thereof
US20020068170A1 (en) * 2000-08-24 2002-06-06 Smalley Richard E. Polymer-wrapped single wall carbon nanotubes
US20020046872A1 (en) * 2000-08-24 2002-04-25 Smalley Richard E. Polymer-wrapped single wall carbon nanotubes
US20020048632A1 (en) * 2000-08-24 2002-04-25 Smalley Richard E. Polymer-wrapped single wall carbon nanotubes
US6407922B1 (en) * 2000-09-29 2002-06-18 Intel Corporation Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader
US6376795B1 (en) * 2000-10-24 2002-04-23 Lsi Logic Corporation Direct current dechucking system
US20020053257A1 (en) * 2000-11-03 2002-05-09 Lockheed Martin Corporation Rapid manufacturing of carbon nanotube composite structures
US6673864B2 (en) * 2000-11-30 2004-01-06 General Electric Company Conductive polyester/polycarbonate blends, methods for preparation thereof, and articles derived therefrom
US20030001141A1 (en) * 2001-04-26 2003-01-02 Yi Sun Method for dissolving nanostructural materials
US6689835B2 (en) * 2001-04-27 2004-02-10 General Electric Company Conductive plastic compositions and method of manufacture thereof
US20030004058A1 (en) * 2001-05-21 2003-01-02 Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture
US20030026754A1 (en) * 2001-07-10 2003-02-06 Clarke Mark S.F. Production of stable aqueous dispersions of carbon nanotubes
US20030089890A1 (en) * 2001-07-11 2003-05-15 Chunming Niu Polyvinylidene fluoride composites and methods for preparing same
US20030083421A1 (en) * 2001-08-29 2003-05-01 Satish Kumar Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
US20030044608A1 (en) * 2001-09-06 2003-03-06 Fuji Xerox Co., Ltd. Nanowire, method for producing the nanowire, nanonetwork using the nanowires, method for producing the nanonetwork, carbon structure using the nanowire, and electronic device using the nanowire
US6528572B1 (en) * 2001-09-14 2003-03-04 General Electric Company Conductive polymer compositions and methods of manufacture thereof
US20030053801A1 (en) * 2001-09-20 2003-03-20 Eastman Kodak Company One-time-use camera having closure and method for preparing one-time-use camera for recycling
US20030100653A1 (en) * 2001-10-25 2003-05-29 Chacko Antony P. Resistive nanocomposite compositions
US20030089893A1 (en) * 2001-10-29 2003-05-15 Hyperion Catalysis International, Inc. Polymers containing functionalized carbon nanotubes
US20030092824A1 (en) * 2001-11-07 2003-05-15 Bastiaens Jozef Herman Peter Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US20030108477A1 (en) * 2001-12-10 2003-06-12 Keller Teddy M. Bulk synthesis of carbon nanotubes from metallic and ethynyl compounds
US20030111333A1 (en) * 2001-12-17 2003-06-19 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
US6734262B2 (en) * 2002-01-07 2004-05-11 General Electric Company Methods of forming conductive thermoplastic polyetherimide polyester compositions and articles formed thereby
US20040009346A1 (en) * 2002-06-28 2004-01-15 Jyongsik Jang Novel carbon nano-particle and method of preparing the same and transparent conductive polymer composite containing the same
US20030012722A1 (en) * 2002-07-02 2003-01-16 Jie Liu High yiel vapor phase deposition method for large scale sing walled carbon nanotube preparation
US20040021133A1 (en) * 2002-07-31 2004-02-05 Nagpal Vidhu J. High refractive index polymerizable composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829006B2 (en) 2001-02-15 2010-11-09 Integral Technologies, Inc. Method to form vehicle component devices from conductive loaded resin-based materials
US20100326236A1 (en) * 2001-02-15 2010-12-30 Integral Technologies, Inc. Low cost housings for vehicle mechanical devices and systems manufactured from conductive loaded resin-based materials
US6762073B1 (en) * 2003-02-24 2004-07-13 Donald P. Cullen Method of fabricating electronic interconnect devices using direct imaging of dielectric composite material
US20080272026A1 (en) * 2004-12-10 2008-11-06 David Brian Edwards Electrostatically Dissipative Packages and Articles
WO2006135597A1 (en) * 2005-06-10 2006-12-21 General Electric Company Thermoplastic long fiber composites, methods of manufacture thereof and articles derived therefrom
US20060280938A1 (en) * 2005-06-10 2006-12-14 Atkinson Paul M Thermoplastic long fiber composites, methods of manufacture thereof and articles derived thererom
US20090127516A1 (en) * 2005-07-20 2009-05-21 Masaya Kotaki Electroconductive curable resins
US8114314B2 (en) 2005-07-20 2012-02-14 Agency For Science, Technology And Research Electroconductive curable resins
US20100308279A1 (en) * 2005-09-16 2010-12-09 Chaohui Zhou Conductive Silicone and Methods for Preparing Same
US7504052B2 (en) * 2006-08-11 2009-03-17 Bayer Material Science Ag Antistatic and electrically conductive polyurethanes
US20080035894A1 (en) * 2006-08-11 2008-02-14 Bayer Materialscience Ag Antistatic and electrically conductive polyurethanes
US20090247039A1 (en) * 2006-12-11 2009-10-01 Sabic Innovative Plastics Ip Bv Intrinsically conductive thermoplastic composition and compounding processing for making conductive fiber
US20100201023A1 (en) * 2007-09-24 2010-08-12 Arkema France Method for preparing composite materials
CN102220001A (en) * 2011-06-09 2011-10-19 深圳市科聚新材料有限公司 Polyphenylene sulfide composite material and preparation method thereof
CN102220001B (en) 2011-06-09 2013-04-24 深圳市科聚新材料有限公司 Polyphenylene sulfide composite material and preparation method thereof
US20130207052A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Method for preparing carbon nano material/polymer composites
US20130207051A1 (en) * 2012-02-13 2013-08-15 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
US9576706B2 (en) * 2012-02-13 2017-02-21 Korea Kumho Petrochemical Co., Ltd. Method for preparing carbon nano material/polymer composites
US9837180B2 (en) * 2012-02-13 2017-12-05 Korea Kumho Petrochemical Co., Ltd. Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
CN104119589A (en) * 2013-04-23 2014-10-29 浙江康辉木业有限公司 Preparation method for carbon-plastic fiber composite material
US20160260516A1 (en) * 2013-10-15 2016-09-08 Basf Se Conductive thermoplastic polyurethane
CN103642160A (en) * 2013-10-31 2014-03-19 陈潜 Modified plastic and preparation method
CN105778527A (en) * 2016-05-27 2016-07-20 李红玉 Electronic product packaging film material

Also Published As

Publication number Publication date Type
US6689835B2 (en) 2004-02-10 grant
US20020183438A1 (en) 2002-12-05 application

Similar Documents

Publication Publication Date Title
US5643990A (en) Resin Compound
US4664971A (en) Plastic article containing electrically conductive fibers
Al-Saleh et al. A review of vapor grown carbon nanofiber/polymer conductive composites
US4500595A (en) Stainless steel fiber-thermosplastic granules and molded articles therefrom
US4365037A (en) Glass fiber-reinforced polyarylene sulfide resin composition
US6998434B2 (en) Carbon fiber reinforced resin composition, molding compounds and molded products therefrom
US4559164A (en) Electrically conductive poly(butylene terephthalate) moldings and compositions therefor
US6706793B2 (en) Intumescent fire retardant composition and method of manufacture thereof
Kim et al. Fabrication of aligned carbon nanotube-filled rubber composite
Velasco-Santos et al. Carbon nanotube-polymer nanocomposites: The role of interfaces
US4460731A (en) Reinforced thermoplastic polyester compositions
US5820788A (en) Electroconductive antistatic polymers containing carbonaceous fibers
US20060001013A1 (en) Conductive polyolefins with good mechanical properties
US4602051A (en) Resin composition having electromagnetic wave shielding effort
Cheng et al. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites
US6184280B1 (en) Electrically conductive polymer composition
US5651922A (en) High strength conductive polymers
US20080153959A1 (en) Thermally Conducting and Electrically Insulating Moldable Compositions and Methods of Manufacture Thereof
US4806586A (en) Reinforced molding resin composition
US20060280938A1 (en) Thermoplastic long fiber composites, methods of manufacture thereof and articles derived thererom
Jacob et al. Dielectric characteristics of sisal–oil palm hybrid biofibre reinforced natural rubber biocomposites
US20040016912A1 (en) Conductive thermoplastic composites and methods of making
Müller et al. Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties
CN101712780A (en) Low-density, high-rigidity and high-tenacity polypropylene nano composite material and preparation method thereof
US6409942B1 (en) Electrically conductive compositions and methods for producing same