US20030167539A1 - Genetically modified plants having modulated flower development - Google Patents

Genetically modified plants having modulated flower development Download PDF

Info

Publication number
US20030167539A1
US20030167539A1 US09/849,772 US84977201A US2003167539A1 US 20030167539 A1 US20030167539 A1 US 20030167539A1 US 84977201 A US84977201 A US 84977201A US 2003167539 A1 US2003167539 A1 US 2003167539A1
Authority
US
United States
Prior art keywords
nucleic acid
plant
seq
leu
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/849,772
Inventor
Martin Yanofsky
Detlef Weigel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US09/849,772 priority Critical patent/US20030167539A1/en
Assigned to SALK INSTITUTE FOR BIOLOGICAL STUDIES, THE reassignment SALK INSTITUTE FOR BIOLOGICAL STUDIES, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEIGEL, DETLEF, YANOFSKY, MARTIN
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SALK INSTITUTE FOR BIOLOGICAL STUDIES, THE
Publication of US20030167539A1 publication Critical patent/US20030167539A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the invention relates generally to plant genetic engineering, and specifically to novel genetically engineered plants characterized as having a phenotype of early flower meristem development, and methods for producing such plants.
  • angiosperm species are induced to flower in response to environmental stimuli such as day length and temperature, and internal cues, such as age.
  • Adult organs of flowering plants develop from groups of stem cells called meristems.
  • the identity of a meristem is inferred from structures it produces: vegetative meristems give rise to roots and leaves, inflorescence meristems give rise to flower meristems, and flower meristems give rise to floral organs such as sepals and petals.
  • vegetative meristems give rise to roots and leaves
  • inflorescence meristems give rise to flower meristems
  • flower meristems give rise to floral organs such as sepals and petals.
  • meristems capable of generating new meristems of different identity, but their own identity can change during development.
  • the homologue of the Arabidopsis LEAFY gene is FLORICAULA (Coen, et al., Cell, 63:1311, 1990) and that of the APETALA1 gene is SQUAMOSA (Huijser, et al., EMBO J, 11:1239, 1992).
  • FLORICAULA Coen, et al., Cell, 63:1311, 1990
  • SQUAMOSA Huijser, et al., EMBO J, 11:1239, 1992.
  • the latter pair contains MADS box domains.
  • LEAFY is expressed very early in floral anlagen and floral primordia, consistent with it having a direct role in establishing floral meristem identity. In the developing floral primordium, LEAFY expression is detected much earlier than expression of the homeotic genes AG and AP3, suggesting that LEAFY plays a role in controlling the expression of floral homeotic genes.
  • the present invention arose out of the discovery that a genetically modified plant cell could be produced, from which a whole plant can be regenerated which stably incorporates a flower development genetic trait introduced into the plant cell. Specifically, the trait of early flowering can be imparted on a plant by genetic modification according to the method of the invention.
  • a method of producing a genetically modified plant characterized as having modulated flower meristem development comprises contacting a plant cell with a vector(s), comprising a nucleic acid sequence comprising at least one structural gene encoding a protein for modulating flower meristem development, operably associated with a promoter to obtain a transformed plant cell; producing plants from said transformed plant cell; and selecting a plant exhibiting modulated flower meristem development.
  • FIG. 1 shows a schematic illustration of pDW139, which is the parental plasmid for construction of 35S::LFY vectors. Open reading frame of LEAFY(LFY) is hatched; 5′ and 3′ untranslated regions are stippled.
  • FIG. 2 shows the early flowering phenotype of 35S::LFY tobacco plants. Left, control plant, transformed with an unrelated construct. Middle and right, two independently derived T 2 plants carrying a 35S::LFY transgene (lines 146.21, 146.26). Plants are five weeks old.
  • FIG. 3 shows precocious enlargement of apical meristem in 35S::LFY tobacco plants.
  • Panel (A) Control, transformed with an unrelated construct.
  • Panel (B) Experimental plant, transformed with a 35S::LFY construct. Size bar, 50 ⁇ m.
  • FIG. 4 shows the early flowering phenotype of 35S::LFY Arabidopsis plants.
  • Panel (A) Control plant, transformed with an unrelated construct.
  • the rosette leaves (rl) are significantly larger than the cotyledons (cot).
  • Panel (B) 35S::LFY transformant (line 151.106).
  • the first two rosette leaves (rl) are smaller than the cotyledons.
  • FIG. 5 shows the conversion of all shoots into flowers in 35S::LFY Arabidopsis plants.
  • Panel (A) For comparison, a drawing of a mature Arabidopsis plant (Nossen ecotype) of about six weeks of age is shown.
  • Panel (B) Top view of a wild-type Arabidopsis inflorescence, illustrating the indeterminacy of the shoot meristem.
  • Panels (C)-(E) show 35S::LFY plants (generated in the Nossen ecotype), three weeks old.
  • Panel (C) Replacement of shoots with single flowers (triangles) (line 151.201). A cotyledon is indicated (cot).
  • FIG. 6 shows constitutive expression of Arabidopsis LFY converts aspen shoots into flowers.
  • Panels a and b show five-month-old shoots of hybrid aspen ( Populous tremula x tremuloides ) grown in tissue culture.
  • Panel a shows a 35S::LFY transformant. Solitary, lateral flowers in the axils of leaves (lf) and an abnormal terminal flower (tf) are indicated.
  • Panel b shows a non-transgenic control. Arrowheads indicate axils of leaves, from which lateral vegetative shoots will emerge, normally in the following year.
  • FIG. 7 shows 35S::LFY phenotype is partly suppressed by an ap1 mutation.
  • Panel a shows five-week-old plants that carry the erecta mutation.
  • the 35S::LFY AP1 + plant (left) has no elongated primary shoot.
  • a primary shoot is well developed in the 35S::LFY ap1 plant (middle), although the primary shoot still terminates prematurely, and is shorter than that of the non-transgenic ap1 plant (right).
  • Panels b-d show a detailed view of 35S::LFY ap1 plants.
  • Panel b shows a close-up view of lateral shoot indicated by arrowhead in panel a.
  • Examples of monocotyledonous plants include, but are not limited to, asparagus, field and sweet corn, barley, wheat, rice, sorghum, onion, pearl millet, rye and oats.
  • Examples of dicotyledonous plants include, but are not limited to tomato, tobacco, cotton, rapeseed, field beans, soybeans, peppers, lettuce, peas, alfalfa, clover, cole crops or Brassica oleracea (e.g., cabbage, broccoli, cauliflower, brussel sprouts), radish, carrot, beets, eggplant, spinach, cucumber, squash, melons, cantaloupe, sunflowers and various ornamentals.
  • Exemplary models described herein include the tobacco plant and the perennial tree, aspen.
  • heterologous nucleic acid sequence refers to at least one structural gene operably associated with a regulatory sequence such as a promoter.
  • the nucleic acid sequence originates in a foreign species, or, in the same species if substantially modified from its original form.
  • heterologous nucleic acid sequence includes a nucleic acid originating in the same species, where such sequence is operably linked to a promoter that differs from the natural or wild-type promoter.
  • nucleic acid sequence refers to a polymer of deoxyribonucleotides or ribonucleotides, in the form of a separate fragment or as a component of a larger construct.
  • DNA encoding the proteins utilized in the method of the invention can be assembled from cDNA fragments or from oligonucleotides which provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit.
  • Polynucleotide or nucleic acid sequences of the invention include DNA, RNA and cDNA sequences.
  • Examples of structural genes that may be employed in the present invention include the LEAFY gene and the APETALA1 gene which control flowering. Also included in the present invention are structural and functional homologues of the LEAFY and APETALA1 genes. For example, in Antirrhinum majus, the snapdragon, the homologue of the LEAFY gene is the FLORICAULA gene and the homologue of the APETALA1 gene is the SQUAMOSA gene. Other genes which control flowering will be known to those of skill in the art or can be readily ascertained.
  • Nucleic acid sequences utilized in the invention can be obtained by several methods.
  • the DNA can be isolated using hybridization procedures which are well known in the art. These include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect shared nucleotide sequences; 2) antibody screening of expression libraries to detect shared structural features and 3) synthesis by the polymerase chain reaction (PCR). Sequences for specific genes can also be found in GenBank, National Institutes of Health computer database.
  • Hybridization procedures useful for screening for desired nucleic acid sequences utilized herein employ labeled mixed synthetic oligonucleotide probes where each probe is potentially the complete complement of a specific DNA sequence in the hybridization sample which includes a heterogeneous mixture of denatured double-stranded DNA.
  • hybridization is preferably performed on either single-stranded DNA or denatured double-stranded DNA.
  • Hybridization is particularly useful in the detection of cDNA clones derived from sources where an extremely low amount of mRNA sequences relating to the polypeptide of interest are present.
  • a cDNA expression library such as lambda gtl 11, can be screened indirectly for a heterologous polypeptide having at least one epitope, using antibodies specific for the heterologous protein.
  • antibodies can be either polyclonally or monoclonally derived and used to detect expression product indicative of the presence of heterologous protein cDNA.
  • a polypeptide sequence can be deduced from the genetic code, however, the degeneracy of the code must be taken into account.
  • Nucleic acid sequences utilized in the invention include sequences which are degenerate as a result of the genetic code. There are 20 natural amino acids, most of which are specified by more than one codon. Therefore, as long as the amino acid sequence of heterologous polypeptide results in a functional polypeptide (at least, in the case of the sense polynucleotide strand), all degenerate nucleotide sequences are included in the invention.
  • the heterologous nucleic acid sequences utilized herein are structural genes for flower meristem development.
  • such genes encode a protein that is sufficient for the initiation of flowering, and most preferably, the nucleic acid sequence encodes the LEAFY protein.
  • the LEAFY gene or other flower meristem development gene may be utilized alone or in combination with another structural gene, such as another gene which encodes a protein important in the development of flowering.
  • An example of such a gene is the APETALA1 gene.
  • Genetically modified plants of the present are produced by contacting a plant cell with a vector comprising a heterologous nucleic acid sequence comprising at least one structural gene encoding a protein that modulates flower meristem development.
  • the structural gene of interest must be operably associated with a promoter which is effective in the plant cells to cause transcription of the gene of interest.
  • a polyadenylation sequence or transcription control sequence also recognized in plant cells may also be employed. It is preferred that the vector harboring the heterologous nucleic acid sequence also contain one or more selectable marker genes so that the transformed cells can be selected from non-transformed cells in culture, as described herein.
  • operably associated refers to functional linkage between a promoter sequence and the structural gene regulated by the promoter nucleic acid sequence.
  • the operably linked promoter controls the expression of the polypeptide encoded by the structural gene.
  • the expression of structural genes employed in the present invention may be driven by a number of promoters.
  • the endogenous promoter of a structural gene of interest may be utilized for transcriptional regulation of the gene, preferably, the promoter is a foreign regulatory sequence.
  • suitable viral promoters include the 35S RNA and 19S RNA promoters of CaMV (Brisson, et al., Nature, 310:511, 1984; Odell, et al., Nature, 313:810, 1985); the full-length transcript promoter from Figwort Mosaic Virs (FMV) (Gowda, et al., J Cell Biochem., 13D: 301, 1989) and the coat protein promoter to TMV (Takamatsu, et al., EMBO J. 3:17, 1987).
  • CaMV 35S RNA and 19S RNA promoters of CaMV
  • FMV Figwort Mosaic Virs
  • TMV coat protein promoter to TMV
  • Promoters useful in the invention include both constitutive and inducible natural promoters as well as engineered promoters.
  • the CaMV promoters are examples of constitutive promoters.
  • an inducible promoter should 1) provide low expression in the absence of the inducer; 2) provide high expression in the presence of the inducer; 3) use an induction scheme that does not interfere with the normal physiology of the plant; and 4) have no effect on the expression of other genes.
  • inducible promoters useful in plants include those induced by chemical means, such as the yeast metallothionein promoter which is activated by copper ions (Mett, et al., Proc. Nat. Acad.
  • the particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of the structural gene product, e.g., LEAFY, to cause early floral meristem development:
  • the promoters used in the vector constructs of the present invention may be modified, if desired, to affect their control characteristics.
  • a selectable marker may be associated with the heterologous nucleic acid sequence, i.e., the structural gene operably linked to a promoter.
  • the term “marker” refers to a gene encoding a trait or a phenotype which permits the selection of, or the screening for, a plant or plant cell containing the marker.
  • the marker gene is an antibiotic resistance gene whereby the appropriate antibiotic can be used to select for transformed cells from among cells that are not transformed.
  • Suitable selectable markers include adenosine deaminase, dihydrofolate reductase, hygromycin-B-phosphotransferase, thymidine kinase, xanthine-guanine phospho-ribosyltransferase and amino-glycoside 3′-O-phosphotransferase II (kanamycin, neomycin and G418 resistance).
  • Other suitable markers will be known to those of skill in the art.
  • Vector(s) employed in the present invention for transformation of a plant cell to modulate flower meristem development comprise a nucleic acid sequence comprising at least one structural gene encoding a protein that modulates flower meristem development, operably associated with a promoter.
  • a suitable vector To commence a transformation process in accordance with the present invention, it is first necessary to construct a suitable vector and properly introduce it into the plant cell. The details of the construction of the vectors then utilized herein are known to those skilled in the art of plant genetic engineering.
  • the heterologous nucleic acid sequences utilized in the present invention can be introduced into plant cells using Ti plasmids, root-inducing (Ri) plasmids, and plant virus vectors.
  • Ti plasmids root-inducing (Ri) plasmids
  • plant virus vectors for reviews of such techniques see, for example, Weissbach & Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp. 421-463; and Grierson & Corey, 1988, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9, and Horsch, et al., Science, 227:1229, 1985, both incorporated herein by reference).
  • transformation of plants in accordance with the invention may be carried out in essentially any of the various ways known to those skilled in the art of plant molecular biology. (See, for example, Methods of Enzymology, Vol. 153, 1987, Wu and Grossman, Eds., Academic Press, incorporated herein by reference).
  • transformation means alteration of the genotype of a host plant by the introduction of a heterologous nucleic acid sequence.
  • a heterologous nucleic acid sequence can be introduced into a plant cell utilizing Agrobacterium tumefaciens containing the Ti plasmid.
  • Agrobacterium tumefaciens culture it is most advantageous to use a non-oncogenic strain of the Agrobacterium as the vector carrier so that normal non-oncogenic differentiation of the transformed tissues is possible.
  • the Agrobacterium harbor a binary Ti plasmid system.
  • Such a binary system comprises 1) a first Ti plasmid having a virulence region essential for the introduction of transfer DNA (T-DNA) into plants, and 2) a chimeric plasmid.
  • the latter contains at least one border region of the T-DNA region of a wild-type Ti plasmid flanking the nucleic acid to be transferred.
  • Binary Ti plasmid systems have been shown effective to transform plant cells (De Framond, Biotechnology, 1:262, 1983; Hoekema, et al., Nature, 303:179, 1983). Such a binary system is preferred because it does not require integration into Ti plasmid in Agrobacterium.
  • Methods involving the use of Agrobacterium include, but are not limited to: 1) co-cultivation of Agrobacterium with cultured isolated protoplasts; 2) transformation of plant cells or tissues with Agrobacterium; or 3) transformation of seeds, apices or meristems with Agrobacterium.
  • gene transfer can be accomplished by in situ transformation by Agrobacterium, as described by Bechtold, et al., ( C.R. Acad. Sci. Paris, 316:1194, 1993) and exemplified in the Examples herein. This approach is based on the vacuum infiltration of a suspension of Agrobacterium cells.
  • a preferred method of introducing heterologous nucleic acid into plant cells is to infect such plant cells, an explant, a meristem or a seed, with transformed Agrobacterium tumefaciens as described above. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots, roots, and develop further into plants.
  • a preferred vector(s) of the invention comprises a Ti plasmid binary system wherein the heterologous nucleic acid sequence encodes the LEAFY protein.
  • Such a vector may optionally contain a nucleic acid sequence which encodes a second flower development factor, such as APETALA1.
  • two vectors can be utilized wherein each vector contains a heterologous nucleic acid sequence.
  • Other flower development genes can be utilized for construction of one or more vectors, in a similar manner.
  • heterologous nucleic acid can be introduced into a plant cell by contacting the plant cell using mechanical or chemical means.
  • the nucleic acid can be mechanically transferred by microinjection directly into plant cells by use of micropipettes.
  • the nucleic acid may be transferred into the plant cell by using polyethylene glycol which forms a precipitation complex with genetic material that is taken up by the cell.
  • nucleic acid Another method for introducing nucleic acid into a plant cell is high velocity ballistic penetration by small particles with the nucleic acid to be introduced contained either within the matrix of small beads or particles, or on the surface thereof (Klein, et al., Nature 327:70, 1987). Although, typically only a single introduction of a new nucleic acid sequence is required, this method particularly provides for multiple introductions.
  • Cauliflower mosaic virus may also be used as a vector for introducing heterologous nucleic acid into plant cells (U.S. Pat. No. 4,407,956).
  • CaMV viral DNA genome is inserted into a parent bacterial plasmid creating a recombinant DNA molecule which can be propagated in bacteria.
  • the recombinant plasmid again may be cloned and further modified by introduction of the desired nucleic acid sequence.
  • the modified viral portion of the recombinant plasmid is then excised from the parent bacterial plasmid, and used to inoculate the plant cells or plants.
  • contacting refers to any means of introducing the vector(s) into the plant cell, including chemical and physical means as described above.
  • contacting refers to introducing the nucleic acid or vector into plant cells (including an explant, a meristem or a seed), via Agrobacterium tumefaciens transformed with the heterologous nucleic acid as described above.
  • Regeneration from protoplasts varies from species to species of plants, but generally a suspension of protoplasts is first made. In certain species, embryo formation can then be induced from the protoplast suspension, to the stage of ripening and germination as natural embryos.
  • the culture media will generally contain various amino acids and hormones, necessary for growth and regeneration. Examples of hormones utilized include auxin and cytokinins. It is sometimes advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these variables are controlled, regeneration is reproducible.
  • the mature transgenic plants are propagated by the taking of cuttings or by tissue culture techniques to produce multiple identical plants. Selection of desirable transgenotes is made and new varieties are obtained and propagated vegetatively for commercial use.
  • the mature transgenic plants can be self crossed to produce a homozygous inbred plant. The inbred plant produces seed containing the newly introduced foreign gene(s). These seeds can be grown to produce plants that would produce the selected phenotype, e.g. early flowering.
  • Parts obtained from the regenerated plant such as flowers, seeds, leaves, branches, fruit, and the like are included in the invention, provided that these parts comprise cells that have been transformed as described. Progeny and variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced nucleic acid sequences.
  • the LEAFY protein is likely to be a transcription factor, as it localizes to the nucleus and can bind to DNA in vitro.
  • most other floral regulatory genes including APETALA1, encode known transcription factors with a MADS DNA-binding domain (e.g., Mandel, et al., Nature, 360:273, 1992).
  • LFY ectopic LEAFY
  • CaMV cauliflower mosaic virus
  • the chimeric 35S::LFY gene was introduced into Arabidopsis and the distantly related tobacco plants by T-DNA mediated transformation.
  • Other examples show aspen trees transformed with LFY.
  • the phenotypic effects observed in transgenic plants show that LFY is not only necessary, but also sufficient for the initiation of flower development.
  • the pDW146 vector was used for transformation of tobacco.
  • the pDW151 vector was used for transformation of Arabidopsis. Both vectors are derived from plasmid pDW139, which contains the entire open reading frame of the LEAFY (LFY) gene from Arabidopsis thaliana (Weigel, D., et al., Cell, 69:843, 1992), plus 21 bp upstream of the initiation codon and 195 bp downstream of the stop codon (for cDNA sequence, see Weigel et al., supra; genomic sequence deposited in GenBank under accession number M91208).
  • LEAFY LEAFY
  • a Bg12 site was added by polymerase chain reaction (Saiki, et al., Science, 239:487, 1988).
  • a genomic ScaI site was eliminated in the cloning process, and it is followed immediately by an Asp718 site derived from the pBluescript KS+cloning vector (FIG. 1).
  • FIG. 1 shows a schematic illustration of pDW139 parental plasmid for construction of 35S::LFY vectors.
  • LEAFY LEAFY
  • pDW146 To construct pDW146, the 1.5 kb Bg12/Asp718 fragment carrying the LFY sequences was inserted into the binary T-DNA transformation vector pMON530 (Rogers, et al., Meth. Enzymol, 153:253, 1987), using the same sites in the vector.
  • This vector contains an expression cassette comprising a 0.3 kb fragment of the cauliflower mosaic virus 35S promoter, including the transcription initiation site (Guilley, et al., Cell, 30:763, 1982); Odell, et al., supra.); a multilinker containing several unique restriction sites; and a functional polyadenylation signal from the Ti plasmid T-DNA nopaline synthase gene (“3′ nos”; [Bevan, et al., Plant Cell, 1:141, 1983]).
  • pDW151 To construct pDW151, the Asp718 site of pDW139 was filled in with Klenow enzyme (Sambrook, et al., Molecular Cloning 2nd ed. (Cold Spring Harbor: Cold Spring Harbor Laboratory, 1989) and a Bg12 linker was added. The resulting Bg12 fragment was inserted into the BamH1 site of pCGN18, a transformation vector containing a CaMV 35S promoter 3′ nos expression cassette (Jack, et al, Cell, 76:703, 1994).
  • Klenow enzyme Standardbrook, et al., Molecular Cloning 2nd ed. (Cold Spring Harbor: Cold Spring Harbor Laboratory, 1989) and a Bg12 linker was added.
  • the resulting Bg12 fragment was inserted into the BamH1 site of pCGN18, a transformation vector containing a CaMV 35S promoter 3′ nos expression cassette (Jack, et al, Cell, 76:703, 1994).
  • pDW146 and pDW151 plasmid DNAs isolated from E. coli were transformed into Agrobacterium tumefaciens strain LBA4404 (Ooms, et al, Plasmid, 7:15, 1982) or ASE (Fraley, et al, Biotechnology 3:629, 1985), respectively, using the freeze-thaw method as described (Hofgen and Willmitzer, Nucl. Acids Res, 16:9877, 1988), except that LB medium (Sambrook, et al., supra) was used instead of YEB.
  • FIG. 2 shows the early flowering phenotype of 35S::LFY tobacco plants.
  • the left panel shows a control plant, transformed with an unrelated construct (a LFY promoter fused to a GUS reporter gene).
  • the middle and right panels show two independently derived T 2 plants carrying a 35S::LFY transgene (lines 146.21, 146.26).
  • the plants shown are five weeks old. Note abundant proliferation of leaves in the control, while the experimental plants have produced only two true leaves before initiating a terminal flower.
  • the insert shows a top view of floral bud of plant shown at the right. The bud is still unopened.
  • transgenic plants exhibit the same dramatic phenotype in the progeny of the primary transformants (T 2 generation).
  • Transgenic plants develop only one pair of true leaves, in addition to the embryonic leaves (cotyledons), before they produce a terminal flower (FIG. 2).
  • wild-type tobacco plants also produce a terminal flower, they generate twenty to twenty-five pairs of leaves before flowering.
  • constitutive LFY expression causes precocious conversion of the shoot meristem into a floral meristem.
  • Histological sections of transgenic plants reveal that the apical meristem is morphologically different from that of untransformed plants at least as early as five days after germination (FIG. 3). The result of these changes is that transformed plants produce visible floral buds after two weeks, while normal tobacco plants flower only after about three to five months (the exact time depends on environmental conditions, such as light intensity, fertilizer, size of pots in which plants are grown, etc.).
  • FIG. 3 shows precocious enlargement of apical meristem in 35S::LFY tobacco plants.
  • Panel (A) is a control, transformed with the unrelated construct described in FIG. 2.
  • Panel (B) shows an experimental plant, transformed with a 35S::LFY construct. Plants were sacrificed five days after germination, fixed, embedded in paraffin, and sectioned. Triangles indicate width of meristems. Note that the leaf primordia arising at the flanks of the 35S::LFYmeristem are retarded compared to those on the control meristem. Size bar, 50 ⁇ m.
  • the precocious flowers of 35S::LFY tobacco plants are abnormal in organ identity and organ number.
  • the floral buds are surrounded by small leaf-like organs, and petals are either absent or sepaloid.
  • Stamens and carpels are morphological normal, but their number deviates from wild-type, being in most cases higher. Neither second-order shoots nor flowers develop from the axils of the two true leaves, although adventitious shoots can arise from the hypocotyl.
  • pDW151 was introduced into Arabidopsis by vacuum infiltration (Bechtold, et al., C.R. Acad. Sci., 316:1194, 1993). Leaves of adult Arabidopsis thaliana plants of the ecotypes Wassilewskija (Ws-0) and Nossen (No-0) were infiltrated with ASE/pDW151, and seeds were harvested from the infiltrated plants. Seeds were grown on MS medium (Murashige and Skoog, Physiol. Plant 15:473, 1962) supplemented with 50 ⁇ g/ml kanamycin. Transformed plants were identified by their ability to grow on kanamycin containing medium. Using this method, 27 transgenic 35S::LFYArabidopsis plants were isolated, of which 21 exhibited essentially the same dramatic phenotype, which was very similar to that observed in 35S::LFYtobacco plants.
  • the transformation experiment utilized a new method that circumvents tissue culture and regeneration of plants from callus, and allows directly for the generation of transgenic seeds (Bechtold, et al., CR. Acad. Sci., 316:1194, 1993).
  • leaves of adult plants are vacuum-infiltrated with a suspension of Agrobacterium cells carrying a T-DNA plasmid.
  • the Agrobacterium cells grow in planta, where they transfer their T-DNA to host cells, including the precursors of gamete producing cells. Seeds were harvested from the infiltrated plants, and grown on antibiotic containing medium to select for transformants. A small fraction of seeds, between one in several hundred to one in several thousand, were stably transformed with the T-DNA. (A single Arabidopsis plant can produce several thousand seeds.)
  • FIG. 4 shows the early flowering phenotype of35S::LFY Arabidopsis plants.
  • panel (A) a control plant, transformed with an unrelated construct.
  • the rosette leaves (rl) are significantly larger than the cotyledons (cot).
  • Panel (B) shows a 35S::LFY transformant (line 151.106).
  • the first two rosette leaves (rl) are smaller than the cotyledons. A tiny shoot has formed, with what appear to be two cauline leaves (cl). The floral bud is still unopened. Both plants, which are 17 days old, were selected on kanamycin containing medium for a week, which is likely to have slowed their development somewhat.
  • FIG. 5 shows the conversion of all shoots into flowers in 35S::LFY Arabidopsis plants.
  • Panel (A) shows a drawing of a mature Arabidopsis plant (Nossen ecotype) of about six weeks of age. Note that indeterminate shoots develop from the axils of all rosette and stem leaves. These shoots bear a few leaves themselves, before they start to produce flowers.
  • Panel (B) shows a top view of a wild-type Arabidopsis inflorescence, illustrating the indeterminacy of the shoot meristem. Flowers develop in a phyllotactic spiral, with the youngest flowers being the closest to the center.
  • Panels (C)-(E), 35S::LFY plants (generated in the Nossen ecotype), three weeks old.
  • Panel (C) Replacement shoots with single flowers (triangles) (line 151.201).
  • a cotyledon is indicated (cot).
  • Panel (D) Development of a primary terminal flower (1°) on the main shoot, and development of single secondary flower (2°) in the axil of a cauline leaf (cl).
  • Single terminal flowers arising from the axils of curled rosette leaves (rl) are indicated by triangles (line 151.209).
  • Panel (E) Close-up view of primary and secondary flower shown in (D), at a different angle. Note that the primary terminal flower is abnormal.
  • the number of stamens (st) is reduced, and petals and sepals are absent.
  • a single first-whorl organ with leaf-, sepal- and carpel-like features is indicated by an asterisk.
  • 35S::LFY Arabidopsis plants flower earlier than wild-type plants. There are only two to five rosette leaves, compared to at least eight in wild-type plants, and a stage 12 floral bud can be visible as early as 17 days after germination (FIG. 4). Since it takes two weeks for the development of a stage 12 flower (Smyth, et al., Plant Cell, 2:755, 1990), flowers must initiate within a few days after germination. This is much earlier than in wild type, where the first flowers are initiated only when a plant is about two weeks old. Unlike tobacco, Arabidopsis has an open inflorescence, meaning that the shoot apical meristem remains undifferentiated until the plant dies.
  • the 35S::LFY plants not only flower earlier, but their primary axis terminates with a single flower, similar to the tfl mutant phenotype (see FIG. 1).
  • ectopic expression of LFY causes transformation of the indeterminate shoot meristem into a determinate floral meristem.
  • no normal lateral flowers are formed before the primary terminal flower develops (FIGS. 4B and 5D).
  • Additional terminal flowers develop from the axils of leaves in 35S::LFY plants, indicating a transformation of second-order shoot meristems as well (FIGS. 5C and 5D).
  • FIG. 5A illustrates the normal architecture of a mature Arabidopsis plant, with indeterminate shoots arising from the axils of all leaves.
  • 35S:LFY plants appear to flower faster than any other early flowering mutant that has been described in Arabidopsis, including the embryonicflower (emf) mutant, which appears to skip the rosette phase of vegetative development (Sung, et al., Science, 258:1645-1647, 1992).
  • emf mutants Unfortunately, the exact time of flower initiation in emf mutants has not been reported, but the data presented by Sung, et al., supra indicate that flower primordia are not formed before the plant is at least nine days old, making the emf phenotype distinct from the 35S:LFY phenotype. It appears that emf mutants pause after germination, and then proceed directly to the formation of an inflorescence.
  • the Dilleniidae are closely related to the Magnoliidae, the most primitive subclass of dicotyledonous plants.
  • the Asteridae are the most advanced subclass of dicotyledons (Cronquist, A., An Integrated System of Classification of Flowering Plants, 1981 (New York: Columbia University Press).
  • Hybrid aspen was transformed as described previously (Nilsson, O., et al., ibid). Levels of LFY RNA expression were similar to those of 35S::LFY Arabidopsis, as determined by Northern blot analysis. The number of vegetative leaves varied between the different regenerating shoots. Those with a higher number of vegetative leaves formed roots, allowing for transfer to the greenhouse. Individual flowers were removed either from primary transformants that had been transferred to the greenhouse, or from catkins collected in spring 1995 at Carlshem (Umeá, Sweden) from a tree whose age was determined by counting the number of annual rings in a core extracted with an increment borer at 1.5 m above ground level. Flowers were fixed in formaldehyde/acetic acid/ethanol, and destained in ethanol before photography.
  • Panel C is a close-up view of solitary male flower that formed in a leaf axil of a seven-month-old 35S::LFY transformant that had been transferred to the greenhouse.
  • Panel d shows a close-up view of male flower removed from wild-type catkin shown in panel e.
  • Panel e shows a cluster of male catkins of P. tremula, one of the parental species of hybrid aspen, taken from a 15-year-old tree. Red pigment in anthers is apparent. Scale bars: a,b, 5 mm; c, d, 1 mm; e, 20 mm.
  • 35S::LFY the transgene is expressed at higher effective levels in than the endogenous gene.
  • expression of the endogenous gene in the center of the shoot meristem (which eventually turns into a flower meristem and forms a terminal flower) is relatively low (Kelly, A. J., et al., supra.), and it is conceivable that the other genes, such as AP1, are the primary regulators of flower-meristem-identity in non-transgenic tobacco.
  • 35S::LFY was crossed into various mutant backgrounds.
  • a 35S::LFY tranformant (line DW151.117, Wassilewskija ecotype) was crossed to ap1-1 (Landberg erecta ecotype)(Irish, F.V. & Hampshire, I.M., Pl Cell 2:741, 1990.).
  • Transheterozygote F 1 progeny was either backcrossed to ap1-1 or allowed to self-fertilize.
  • the cal genotype of selfed F 2 progeny was determined by polymerase chain reaction (PCR)(Kempin, S.A., et al., Science, 267:552, 1994).
  • FIG. 7 shows that 35S::LFY phenotype is partly suppressed by an ap1 mutation.
  • Panel a shows five-week-old plants that carry the erecta mutation.
  • the 35S::LFY AP1 + plant (left) has no elongated primary shoot.
  • a primary shoot is well developed in the 35S::LFY ap1 plant (middle), although the primary shoot still terminates prematurely, and is shorter than that of the non-transgenic ap1 plant (right).
  • Panels b-d show a detailed view of 35S::LFY ap1 plants.
  • Panel b shows a close-up view of lateral shoot indicated by arrowhead in panel a.
  • Panel c shows emerging shoots in the axils of rosette leaves.
  • Panel d shows a top view of primary shoot with terminal flower (tf).
  • Panels c and d are from a four-week-old plant.
  • the ap1 effects are enhanced further by the cal-1 mutation, although there is no qualitative change in the 35S::LFY ap1 phenotype.
  • the ap2-1, ap2-2 and ufo-2 mutations caused only additive phenotypes, and did not significantly affect the shoot-to-flower conversion in 35S::LFY plants.
  • the apl-1 mutation suppressed the 35S::LFY phenotype to a notable extent, although terminal flowers were still formed (FIG. 7).
  • Both the primary and secondary shoots were affected, with the strongest effects being observed in lateral positions (FIG. 7 b,c ).
  • the solitary flowers that develop in the axils of rosette leaves of 35S::LFY AP1 + plants become complex shoots with an average of 10 nodes in 35S:LFY apl plants (FIG. 7 c ).
  • the present invention shows that constitutive expression of a single flower meristem identity gene, such as LFY or AP1, can induce precocious flower development in plants as diverse as Arabidopsis, an ephermeral weed, and aspen, a perennial tree.
  • a single flower meristem identity gene such as LFY or AP1
  • LFY or AP1 can induce precocious flower development in plants as diverse as Arabidopsis, an ephermeral weed, and aspen, a perennial tree.
  • the results not only contribute to the understanding of flower development and floral induction, they are also likely to be of interest because shorter flowering times lead to shorter generation times, which in turn allows acceleration of breeding programs.
  • Modern crop varieties are the result of continued improvement by breeding and two recently developed technologies have made breeding even more important.
  • the first technology is molecular mapping, with which genes encoding desirable traits can be rapidly located within the genome.

Abstract

The present invention provides a genetically modified plant and a method for producing such a plant characterized as having modulated flower meristem development. As an illustrative example, the invention provides genetically modified tobacco and aspen plants characterized as having early floral meristem development and comprising a structural gene encoding the LEAFY protein in its genome.

Description

  • This application is a continuation of U.S. patent application Ser. No. 09/204,094, which is a continuation of U.S. patent application Ser. No. 08/576,156, now U.S. Pat. No. 5,844,199, which is a continuation-in-part of U.S. patent application Ser. No. 08/360,336, now U.S. Pat. No. 5,637,785, all of which are hereby incorporated by reference in their entirety.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The invention relates generally to plant genetic engineering, and specifically to novel genetically engineered plants characterized as having a phenotype of early flower meristem development, and methods for producing such plants. [0003]
  • 2. Description of Related Art [0004]
  • Most angiosperm species are induced to flower in response to environmental stimuli such as day length and temperature, and internal cues, such as age. Adult organs of flowering plants develop from groups of stem cells called meristems. The identity of a meristem is inferred from structures it produces: vegetative meristems give rise to roots and leaves, inflorescence meristems give rise to flower meristems, and flower meristems give rise to floral organs such as sepals and petals. Not only are meristems capable of generating new meristems of different identity, but their own identity can change during development. For example, a vegetative shoot meristem can be transformed into an inflorescence meristem upon floral induction, and in some species, the inflorescence meristem itself will eventually become a flower meristem. Despite the importance of meristem transitions in plant development, little is known about the underlying mechanisms. [0005]
  • Following germination, the shoot meristem produces a series of leaf meristems on its flanks. However, once floral induction has occurred, the shoot meristem switches to the production of flower meristems. Flower meristems produce floral organ primordial which develop individually into sepals, petals, stamens or carpels. Thus, flower formation can be thought of as a series of distinct developmental steps, i.e. floral induction, the formation of flower primordia and the production of flower organs. Mutations disrupting each of the steps have been isolated in a variety of species, suggesting that a genetic hierarchy directs the flowering process (see for review, Weigel and Meyerowitz, [0006] In Molecular Basis of Morphogenesis (ed. M. Bernfield). 51st Annual Symposium of the Society for Developmental Biology, pp. 93-107, New York, 1993).
  • Recently, studies of two distantly related dicotyledons, [0007] Arabidopsis thaliana and Antirrhinum majus, led to the identification of three classes of homeotic genes, acting alone or in combination to determine floral organ identity (Bowman, et al., Development, 112:1, 1991; Carpenter and Coen, Genes Devl., 4:1483, 1990; Schwarz-Sommer, et al., Science, 250:931, 1990). Several of these genes are transcription factors whose conserved DNA-binding domain has been designated the MADS box (Schwarz-Sommer, et al., supra).
  • Earlier acting genes that control the identity of flower meristems have also been characterized. Flower meristems are derived from inflorescence meristems in both Arabidopsis and Antirrhinum. Two factors that control the development of meristematic cells into flowers are known. In Arabidopsis, the factors are the products of the LEAFY gene (Weigel, et al., [0008] Cell 69:843, 1992) and the APETALA1 gene (Mandel, et al., Nature 360:273, 1992). When either of these genes is inactivated by mutation, structures combining the properties of flowers and inflorescence develop (Weigel, et al., supra; Irish and Sussex, Plant Cell, 2:741, 1990). In Antirrhinum, the homologue of the Arabidopsis LEAFY gene is FLORICAULA (Coen, et al., Cell, 63:1311, 1990) and that of the APETALA1 gene is SQUAMOSA (Huijser, et al., EMBO J, 11:1239, 1992). The latter pair contains MADS box domains.
  • LEAFY is expressed very early in floral anlagen and floral primordia, consistent with it having a direct role in establishing floral meristem identity. In the developing floral primordium, LEAFY expression is detected much earlier than expression of the homeotic genes AG and AP3, suggesting that LEAFY plays a role in controlling the expression of floral homeotic genes. [0009]
  • There is increasing incentive by those working in the field of plant biotechnology to successfully genetically engineer plants, including the major crop varieties. One genetic modification that would be economically desirable would be to accelerate the flowering time of a plant. Induction of flowering is often the limiting factor for growing crop plants. One of the most important factors controlling induction of flowering is day length, which varies seasonally as well as geographically. There is a need to develop a method for controlling and inducing flowering in plants, regardless of the locale or the environmental conditions, thereby allowing production of crops, at any given time. Since most crop products (e.g., seeds, grains, fruits), are derived from flowers, such a method for controlling flowering would be economically invaluable. [0010]
  • SUMMARY OF THE INVENTION
  • The present invention arose out of the discovery that a genetically modified plant cell could be produced, from which a whole plant can be regenerated which stably incorporates a flower development genetic trait introduced into the plant cell. Specifically, the trait of early flowering can be imparted on a plant by genetic modification according to the method of the invention. [0011]
  • In a first embodiment, the present invention provides a genetically modified plant comprising at least one heterologous nucleic acid sequence in its genome and characterized as having modulated floral meristem development. Preferably, the plant is genetically modified by introduction of a nucleic acid sequence encoding the LEAFY protein. Alternatively, the plant is genetically modified by transformation with a nucleic acid sequence encoding the LEAFY protein or a nucleic acid sequence encoding the APETALA1 protein, or both. The invention also provides plant cells, plant tissue and seeds derived from the genetically modified plant. [0012]
  • In a second embodiment, the invention provides a vector(s) for transformation of a plant cell to modulate flower meristem development, wherein said vector(s) comprises a nucleic acid sequence comprising at least one structural gene encoding a protein that modulates flower meristem development, operably associated with a promoter. Preferably, the vector comprises a nucleic acid sequence encoding the LEAFY protein. [0013]
  • Also provided is a method of producing a genetically modified plant characterized as having modulated flower meristem development. The method comprises contacting a plant cell with a vector(s), comprising a nucleic acid sequence comprising at least one structural gene encoding a protein for modulating flower meristem development, operably associated with a promoter to obtain a transformed plant cell; producing plants from said transformed plant cell; and selecting a plant exhibiting modulated flower meristem development. [0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a schematic illustration of pDW139, which is the parental plasmid for construction of 35S::LFY vectors. Open reading frame of LEAFY(LFY) is hatched; 5′ and 3′ untranslated regions are stippled. [0015]
  • FIG. 2 shows the early flowering phenotype of 35S::LFY tobacco plants. Left, control plant, transformed with an unrelated construct. Middle and right, two independently derived T[0016] 2 plants carrying a 35S::LFY transgene (lines 146.21, 146.26). Plants are five weeks old.
  • FIG. 3 shows precocious enlargement of apical meristem in 35S::LFY tobacco plants. Panel (A), Control, transformed with an unrelated construct. Panel (B), Experimental plant, transformed with a 35S::LFY construct. Size bar, 50 μm. [0017]
  • FIG. 4 shows the early flowering phenotype of 35S::LFY Arabidopsis plants. Panel (A), Control plant, transformed with an unrelated construct. The rosette leaves (rl) are significantly larger than the cotyledons (cot). Panel (B), 35S::LFY transformant (line 151.106). The first two rosette leaves (rl) are smaller than the cotyledons. A small shoot has formed, with what appear to be two cauline (=stem) leaves (cl). [0018]
  • FIG. 5 shows the conversion of all shoots into flowers in 35S::LFY Arabidopsis plants. Panel (A), For comparison, a drawing of a mature Arabidopsis plant (Nossen ecotype) of about six weeks of age is shown. Panel (B), Top view of a wild-type Arabidopsis inflorescence, illustrating the indeterminacy of the shoot meristem. Panels (C)-(E) show 35S::LFY plants (generated in the Nossen ecotype), three weeks old. Panel (C), Replacement of shoots with single flowers (triangles) (line 151.201). A cotyledon is indicated (cot). Panel (D), Development of a primary terminal flower (1°) on the main shoot, and development of single secondary flower (2°) in the axil of a cauline leaf (cl). Single terminal flowers arising from the axils of curled rosette leaves (rl) are indicated by triangles (line 151.209). Panel (E), Close-up view of primary and secondary flower shown in (D), at a different angle. The gynoecium (g), comprising the carpels, appears largely normal. The number of stamens (st) is reduced, and petals and sepals are absent. A single first-whorl organ with leaf-, sepal- and carpel-like features is indicated by an asterisk. [0019]
  • FIG. 6 shows constitutive expression of Arabidopsis LFY converts aspen shoots into flowers. Panels a and b show five-month-old shoots of hybrid aspen ([0020] Populous tremula x tremuloides) grown in tissue culture. Panel a shows a 35S::LFY transformant. Solitary, lateral flowers in the axils of leaves (lf) and an abnormal terminal flower (tf) are indicated. Panel b shows a non-transgenic control. Arrowheads indicate axils of leaves, from which lateral vegetative shoots will emerge, normally in the following year. Note that aspen plants regenerated from tissue culture show the same juvenile phenotype during the first growing cycle as plants grown from seed (Nilsson, O., Thesis, Swedish Univ. Agricul. Sciences, 1995) Panel C is a close-up view of solitary male flower that formed in a leaf axil of a seven-month-old 35S::LFY transformant that had been transferred to the greenhouse. Panel d shows a close-up view of male flower removed from wild-type catkin shown in panel e. Note bract (b) subtending wild-type flower. Panel e shows a cluster of male catkins of P. tremula, one of the parental species of hybrid aspen, taken from a 15-year-old tree. Red pigment in anthers is apparent. Scale bars: a, b, 5 mm; c, d, 1 mm; e, 20 mm.
  • FIG. 7 shows 35S::LFY phenotype is partly suppressed by an ap1 mutation. Panel a shows five-week-old plants that carry the erecta mutation. The 35S::LFY AP1[0021] +plant (left) has no elongated primary shoot. A primary shoot is well developed in the 35S::LFY ap1 plant (middle), although the primary shoot still terminates prematurely, and is shorter than that of the non-transgenic ap1 plant (right). Panels b-d show a detailed view of 35S::LFY ap1 plants. Panel b shows a close-up view of lateral shoot indicated by arrowhead in panel a. Panel c shows emerging shoots in the axils of rosette leaves. Panel d shows a top view of primary shoot with terminal flower (tf). Panels c and d are from a four-week-old plant. The ap1 effects are enhanced further by the cal-1 mutation, although there is no qualitative change in the 35S::LFY ap1 phenotype.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides a genetically modified plant which is characterized as having the phenotypic trait of early flower development, or early flowering. The plant is genetically modified by at least one structural gene that encodes a protein, such as LEAFY, which is sufficient to induce flowering in the plant. [0022]
  • In a first embodiment, the invention provides a genetically modified plant comprising at least one heterologous nucleic acid sequence in its genome and characterized as having modulated flower meristem development. Also included herein are plant cells and plant tissue, all derived from the genetically modified plant of the invention. In addition, seeds which can germinate into a genetically modified plant as described herein are also provided. [0023]
  • The term “genetic modification” as used herein refers to the introduction of one or more heterologous nucleic acid sequences into one or more plant cells, which can generate whole, sexually competent, viable plants. The term “genetically modified” as used herein refers to a plant which has been generated through the aforementioned process. Genetically modified plants of the invention are capable of self-pollinating or cross-pollinating with other plants of the same species so that the foreign gene, carried in the germ line, can be inserted into or bred into agriculturally useful plant varieties. The term “plant cell” as used herein refers to protoplasts, gamete producing cells, and cells which regenerate into whole plants. Accordingly, a seed comprising multiple plant cells capable of regenerating into a whole plant, is included in the definition of “plant cell”. [0024]
  • As used herein, the term “plant” refers to either a whole plant, a plant part, a plant cell, or a group of plant cells, such as plant tissue, for example. Plantlets are also included within the meaning of “plant”. Plants included in the invention are any flowering plants amenable to transformation techniques, including both monocotyledonous and dicotyledonous plants. [0025]
  • Examples of monocotyledonous plants include, but are not limited to, asparagus, field and sweet corn, barley, wheat, rice, sorghum, onion, pearl millet, rye and oats. Examples of dicotyledonous plants include, but are not limited to tomato, tobacco, cotton, rapeseed, field beans, soybeans, peppers, lettuce, peas, alfalfa, clover, cole crops or [0026] Brassica oleracea (e.g., cabbage, broccoli, cauliflower, brussel sprouts), radish, carrot, beets, eggplant, spinach, cucumber, squash, melons, cantaloupe, sunflowers and various ornamentals. Exemplary models described herein include the tobacco plant and the perennial tree, aspen.
  • The term “heterologous nucleic acid sequence” as used herein refers to at least one structural gene operably associated with a regulatory sequence such as a promoter. The nucleic acid sequence originates in a foreign species, or, in the same species if substantially modified from its original form. For example, the term “heterologous nucleic acid sequence” includes a nucleic acid originating in the same species, where such sequence is operably linked to a promoter that differs from the natural or wild-type promoter. [0027]
  • As used herein, the term “nucleic acid sequence” refers to a polymer of deoxyribonucleotides or ribonucleotides, in the form of a separate fragment or as a component of a larger construct. DNA encoding the proteins utilized in the method of the invention can be assembled from cDNA fragments or from oligonucleotides which provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit. Polynucleotide or nucleic acid sequences of the invention include DNA, RNA and cDNA sequences. [0028]
  • Examples of structural genes that may be employed in the present invention include the LEAFY gene and the APETALA1 gene which control flowering. Also included in the present invention are structural and functional homologues of the LEAFY and APETALA1 genes. For example, in [0029] Antirrhinum majus, the snapdragon, the homologue of the LEAFY gene is the FLORICAULA gene and the homologue of the APETALA1 gene is the SQUAMOSA gene. Other genes which control flowering will be known to those of skill in the art or can be readily ascertained.
  • Nucleic acid sequences utilized in the invention can be obtained by several methods. For example, the DNA can be isolated using hybridization procedures which are well known in the art. These include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect shared nucleotide sequences; 2) antibody screening of expression libraries to detect shared structural features and 3) synthesis by the polymerase chain reaction (PCR). Sequences for specific genes can also be found in GenBank, National Institutes of Health computer database. [0030]
  • Hybridization procedures useful for screening for desired nucleic acid sequences utilized herein employ labeled mixed synthetic oligonucleotide probes where each probe is potentially the complete complement of a specific DNA sequence in the hybridization sample which includes a heterogeneous mixture of denatured double-stranded DNA. For such screening, hybridization is preferably performed on either single-stranded DNA or denatured double-stranded DNA. Hybridization is particularly useful in the detection of cDNA clones derived from sources where an extremely low amount of mRNA sequences relating to the polypeptide of interest are present. In other words, by using stringent hybridization conditions directed to avoid non-specific binding, it is possible, for example, to allow the autoradiographic visualization of a specific cDNA clone by the hybridization of the target DNA to that single probe in the mixture which is its complete complement (Wallace, et al., [0031] Nucleic Acid Research, 9:879, 1981).
  • Specific DNA sequences encoding a heterologous protein of interest, such as LEAFY protein, can also be obtained by: 1) isolation of double-stranded DNA sequences from the genomic DNA; 2) chemical synthesis of a DNA sequence to provide the necessary codons for the polypeptide of interest; and 3) in vitro synthesis of a double-stranded DNA sequence by reverse transcription of mRNA isolated from a eukaryotic donor cell. In the latter case, a double-stranded DNA complement of mRNA is eventually formed which is generally referred to as cDNA. [0032]
  • A cDNA expression library, such as lambda gtl 11, can be screened indirectly for a heterologous polypeptide having at least one epitope, using antibodies specific for the heterologous protein. Such antibodies can be either polyclonally or monoclonally derived and used to detect expression product indicative of the presence of heterologous protein cDNA. [0033]
  • A polypeptide sequence can be deduced from the genetic code, however, the degeneracy of the code must be taken into account. Nucleic acid sequences utilized in the invention include sequences which are degenerate as a result of the genetic code. There are 20 natural amino acids, most of which are specified by more than one codon. Therefore, as long as the amino acid sequence of heterologous polypeptide results in a functional polypeptide (at least, in the case of the sense polynucleotide strand), all degenerate nucleotide sequences are included in the invention. [0034]
  • “Modulated” flower meristem development as used herein, refers to flower development in the plant which may be either accelerated or inhibited/delayed as compared to the naturally occurring, unmanipulated plant. Therefore, the term “modulate” envisions the acceleration or augmentation of flower development when development is desirable or suppression or inhibition of flower development when development is not desirable. [0035]
  • The heterologous nucleic acid sequences utilized herein are structural genes for flower meristem development. Preferably, such genes encode a protein that is sufficient for the initiation of flowering, and most preferably, the nucleic acid sequence encodes the LEAFY protein. The LEAFY gene or other flower meristem development gene may be utilized alone or in combination with another structural gene, such as another gene which encodes a protein important in the development of flowering. An example of such a gene is the APETALA1 gene. [0036]
  • Genetically modified plants of the present are produced by contacting a plant cell with a vector comprising a heterologous nucleic acid sequence comprising at least one structural gene encoding a protein that modulates flower meristem development. To be effective once introduced into plant cells, the structural gene of interest must be operably associated with a promoter which is effective in the plant cells to cause transcription of the gene of interest. Additionally, a polyadenylation sequence or transcription control sequence, also recognized in plant cells may also be employed. It is preferred that the vector harboring the heterologous nucleic acid sequence also contain one or more selectable marker genes so that the transformed cells can be selected from non-transformed cells in culture, as described herein. [0037]
  • The term “operably associated” refers to functional linkage between a promoter sequence and the structural gene regulated by the promoter nucleic acid sequence. The operably linked promoter controls the expression of the polypeptide encoded by the structural gene. [0038]
  • The expression of structural genes employed in the present invention may be driven by a number of promoters. Although the endogenous promoter of a structural gene of interest may be utilized for transcriptional regulation of the gene, preferably, the promoter is a foreign regulatory sequence. For plant expression vectors, suitable viral promoters include the 35S RNA and 19S RNA promoters of CaMV (Brisson, et al., [0039] Nature, 310:511, 1984; Odell, et al., Nature, 313:810, 1985); the full-length transcript promoter from Figwort Mosaic Virs (FMV) (Gowda, et al., J Cell Biochem., 13D: 301, 1989) and the coat protein promoter to TMV (Takamatsu, et al., EMBO J. 6:307, 1987). Alternatively, plant promoters such as the light-inducible promoter from the small subunit of ribulose bis-phosphate carboxylase (ssRUBISCO) (Coruzzi, et al., EMBO J., 3:1671, 1984; Broglie, et al., Science, 224:838, 1984); mannopine synthase promoter (Velten, et al., EMBO J., 3:2723, 1984) nopaline synthase (NOS) and octopine synthase (OCS) promoters (carried on tumor-inducing plasmids ofAgrobacterium tumefaciens) or heat shock promoters, e.g., soybean hsp 17.5-E or hsp 17.3-B (Gurley, et al., Mol. Cell. Biol., 6:559, 1986; Severin, et al., Plant Mol. Biol., 15:827, 1990) may be used.
  • Promoters useful in the invention include both constitutive and inducible natural promoters as well as engineered promoters. The CaMV promoters are examples of constitutive promoters. To be most useful, an inducible promoter should 1) provide low expression in the absence of the inducer; 2) provide high expression in the presence of the inducer; 3) use an induction scheme that does not interfere with the normal physiology of the plant; and 4) have no effect on the expression of other genes. Examples of inducible promoters useful in plants include those induced by chemical means, such as the yeast metallothionein promoter which is activated by copper ions (Mett, et al., [0040] Proc. Nat. Acad. Sci., U.S.A., 90:4567, 1993); In2-1 and In2-2 regulator sequences which are activated by substituted benzenesulfonamides, e.g., herbicide safeners (Hershey, et al., Plant Mol. Biol., 17:679, 1991); and the GRE regulatory sequences which are induced by glucocorticoids (Schena, et al., Proc. Natl. Acad. Sci., USA., 88:10421, 1991). Other promoters, both constitutive and inducible and enhancers will be known to those of skill in the art.
  • The particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of the structural gene product, e.g., LEAFY, to cause early floral meristem development: The promoters used in the vector constructs of the present invention may be modified, if desired, to affect their control characteristics. [0041]
  • Tissue specific promoters may also be utilized in the present invention. An example of a tissue specific promoter is the promoter expressed in shoot meristems (Atanassova, et al., [0042] Plant J., 2:291, 1992). Other tissue specific promoters useful in transgenic plants, including the cdc2a promoter and cyc07 promoter, will be known to those of skill in the art. (See for example, Ito, et al., Plant Mol. Biol., 24:863, 1994; Martinez, et al., Proc. Natl. Acad. Sci. USA, 89:7360, 1992; Medford, et al., Plant Cell, 3:359, 1991; Terada, et al., Plant Journal, 3:241, 1993; Wissenbach, et al., Plant Journal, 4:411, 1993).
  • Optionally, a selectable marker may be associated with the heterologous nucleic acid sequence, i.e., the structural gene operably linked to a promoter. As used herein, the term “marker” refers to a gene encoding a trait or a phenotype which permits the selection of, or the screening for, a plant or plant cell containing the marker. Preferably, the marker gene is an antibiotic resistance gene whereby the appropriate antibiotic can be used to select for transformed cells from among cells that are not transformed. Examples of suitable selectable markers include adenosine deaminase, dihydrofolate reductase, hygromycin-B-phosphotransferase, thymidine kinase, xanthine-guanine phospho-ribosyltransferase and amino-[0043] glycoside 3′-O-phosphotransferase II (kanamycin, neomycin and G418 resistance). Other suitable markers will be known to those of skill in the art.
  • Vector(s) employed in the present invention for transformation of a plant cell to modulate flower meristem development comprise a nucleic acid sequence comprising at least one structural gene encoding a protein that modulates flower meristem development, operably associated with a promoter. To commence a transformation process in accordance with the present invention, it is first necessary to construct a suitable vector and properly introduce it into the plant cell. The details of the construction of the vectors then utilized herein are known to those skilled in the art of plant genetic engineering. [0044]
  • For example, the heterologous nucleic acid sequences utilized in the present invention can be introduced into plant cells using Ti plasmids, root-inducing (Ri) plasmids, and plant virus vectors. (For reviews of such techniques see, for example, Weissbach & Weissbach, 1988, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp. 421-463; and Grierson & Corey, 1988, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9, and Horsch, et al., [0045] Science, 227:1229, 1985, both incorporated herein by reference).
  • One of skill in the art will be able to select an appropriate vector for introducing the heterologous nucleic acid sequence in a relatively intact state. Thus, any vector which will produce a plant carrying the introduced DNA sequence should be sufficient. Even a naked piece of DNA would be expected to be able to confer the properties of this invention, though at low efficiency. The selection of the vector, or whether to use a vector, is typically guided by the method of transformation selected. [0046]
  • The transformation of plants in accordance with the invention may be carried out in essentially any of the various ways known to those skilled in the art of plant molecular biology. (See, for example, Methods of Enzymology, Vol. 153, 1987, Wu and Grossman, Eds., Academic Press, incorporated herein by reference). As used herein, the term “transformation” means alteration of the genotype of a host plant by the introduction of a heterologous nucleic acid sequence. [0047]
  • For example, a heterologous nucleic acid sequence can be introduced into a plant cell utilizing [0048] Agrobacterium tumefaciens containing the Ti plasmid. In using an A. tumefaciens culture as a transformation vehicle, it is most advantageous to use a non-oncogenic strain of the Agrobacterium as the vector carrier so that normal non-oncogenic differentiation of the transformed tissues is possible. It is also preferred that the Agrobacterium harbor a binary Ti plasmid system. Such a binary system comprises 1) a first Ti plasmid having a virulence region essential for the introduction of transfer DNA (T-DNA) into plants, and 2) a chimeric plasmid. The latter contains at least one border region of the T-DNA region of a wild-type Ti plasmid flanking the nucleic acid to be transferred. Binary Ti plasmid systems have been shown effective to transform plant cells (De Framond, Biotechnology, 1:262, 1983; Hoekema, et al., Nature, 303:179, 1983). Such a binary system is preferred because it does not require integration into Ti plasmid in Agrobacterium.
  • Methods involving the use of Agrobacterium include, but are not limited to: 1) co-cultivation of Agrobacterium with cultured isolated protoplasts; 2) transformation of plant cells or tissues with Agrobacterium; or 3) transformation of seeds, apices or meristems with Agrobacterium. [0049]
  • In addition, gene transfer can be accomplished by in situ transformation by Agrobacterium, as described by Bechtold, et al., ([0050] C.R. Acad. Sci. Paris, 316:1194, 1993) and exemplified in the Examples herein. This approach is based on the vacuum infiltration of a suspension of Agrobacterium cells.
  • The preferred method of introducing heterologous nucleic acid into plant cells is to infect such plant cells, an explant, a meristem or a seed, with transformed [0051] Agrobacterium tumefaciens as described above. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots, roots, and develop further into plants. A preferred vector(s) of the invention comprises a Ti plasmid binary system wherein the heterologous nucleic acid sequence encodes the LEAFY protein. Such a vector may optionally contain a nucleic acid sequence which encodes a second flower development factor, such as APETALA1. Alternatively, two vectors can be utilized wherein each vector contains a heterologous nucleic acid sequence. Other flower development genes can be utilized for construction of one or more vectors, in a similar manner.
  • Alternatively, heterologous nucleic acid can be introduced into a plant cell by contacting the plant cell using mechanical or chemical means. For example, the nucleic acid can be mechanically transferred by microinjection directly into plant cells by use of micropipettes. Alternatively, the nucleic acid may be transferred into the plant cell by using polyethylene glycol which forms a precipitation complex with genetic material that is taken up by the cell. [0052]
  • Heterologous nucleic acid can also be introduced into plant cells by electroporation (Fromm, et al, [0053] Proc. Natl. Acad. Sci., U.S.A., 82:5824, 1985, which is incorporated herein by reference). In this technique, plant protoplasts are electroporated in the presence of vectors or nucleic acids containing the relevant nucleic acid sequences. Electrical impulses of high field strength reversibly permeabilize membranes allowing the introduction of nucleic acids. Electroporated plant protoplasts reform the cell wall, divide and form a plant callus. Selection of the transformed plant cells with the transformed gene can be accomplished using phenotypic markers as described herein.
  • Another method for introducing nucleic acid into a plant cell is high velocity ballistic penetration by small particles with the nucleic acid to be introduced contained either within the matrix of small beads or particles, or on the surface thereof (Klein, et al., [0054] Nature 327:70, 1987). Although, typically only a single introduction of a new nucleic acid sequence is required, this method particularly provides for multiple introductions.
  • Cauliflower mosaic virus (CaMV) may also be used as a vector for introducing heterologous nucleic acid into plant cells (U.S. Pat. No. 4,407,956). CaMV viral DNA genome is inserted into a parent bacterial plasmid creating a recombinant DNA molecule which can be propagated in bacteria. After cloning, the recombinant plasmid again may be cloned and further modified by introduction of the desired nucleic acid sequence. The modified viral portion of the recombinant plasmid is then excised from the parent bacterial plasmid, and used to inoculate the plant cells or plants. [0055]
  • In another embodiment, the invention includes a method of producing a genetically modified plant characterized as having modulated flower meristem development, said method comprising contacting a plant cell with a vector, comprising a heterologous nucleic acid sequence comprising at least one structural gene encoding a protein for modulating flower meristem development, operably associated with a promoter to obtain a transformed plant cell; growing a plant from said transformed plant cell; and selecting a plant exhibiting modulated flower meristem development. [0056]
  • As used herein, the term “contacting” refers to any means of introducing the vector(s) into the plant cell, including chemical and physical means as described above. Preferably, contacting refers to introducing the nucleic acid or vector into plant cells (including an explant, a meristem or a seed), via [0057] Agrobacterium tumefaciens transformed with the heterologous nucleic acid as described above.
  • Normally, a plant cell is regenerated to obtain a whole plant from the transformation process. The immediate product of the transformation is referred to as a “transgenote”. The term “growing” or “regeneration” as used herein means growing a whole plant from a plant cell, a group of plant cells, a plant part (including seeds), or a plant piece (e.g., from a protoplast, callus, or tissue part). [0058]
  • Regeneration from protoplasts varies from species to species of plants, but generally a suspension of protoplasts is first made. In certain species, embryo formation can then be induced from the protoplast suspension, to the stage of ripening and germination as natural embryos. The culture media will generally contain various amino acids and hormones, necessary for growth and regeneration. Examples of hormones utilized include auxin and cytokinins. It is sometimes advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these variables are controlled, regeneration is reproducible. [0059]
  • Regeneration also occurs from plant callus, explants, organs or parts. Transformation can be performed in the context of organ or plant part regeneration. (see [0060] Methods in Enzymology, Vol. 118 and Klee, et al., Annual Review of Plant Physiology, 38:467, 1987). Utilizing the leaf disk-transformation-regeneration method of Horsch, et al., Science, 227:1229, 1985, disks are cultured on selective media, followed by shoot formation in about 2-4 weeks. Shoots that develop are excised from calli and transplanted to appropriate root-inducing selective medium. Rooted plantlets are transplanted to soil as soon as possible after roots appear. The plantlets can be repotted as required, until reaching maturity.
  • In vegetatively propagated crops, the mature transgenic plants are propagated by the taking of cuttings or by tissue culture techniques to produce multiple identical plants. Selection of desirable transgenotes is made and new varieties are obtained and propagated vegetatively for commercial use. In seed propagated crops, the mature transgenic plants can be self crossed to produce a homozygous inbred plant. The inbred plant produces seed containing the newly introduced foreign gene(s). These seeds can be grown to produce plants that would produce the selected phenotype, e.g. early flowering. [0061]
  • Parts obtained from the regenerated plant, such as flowers, seeds, leaves, branches, fruit, and the like are included in the invention, provided that these parts comprise cells that have been transformed as described. Progeny and variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced nucleic acid sequences. [0062]
  • Plants exhibiting modulated flower meristem development can be selected by visual observation. The invention includes a plant produced by the method of the invention, including plant tissue, seeds, and other plant cells derived from the genetically modified plant. [0063]
  • In yet another embodiment, the invention provides a method for modulating flower meristem development in a plant cell, said method comprising contacting said plant cell with a vector as described above to obtain a transformed plant cell, growing the transformed plant cell under plant forming conditions, and modulating flower meristem development in the plant. The method of the invention requires that the promoter sequence operably linked with the structural gene. The promoter is an inducible promoter when induction of flower development is desired. For example, a plant cell and plant is produced as described above and modulated flower meristem development is induced by contacting the promoter, linked with a nucleic acid sequence encoding LEAFY, with an appropriate inducer. Such inducible promoters are described above, and include those promoters preferably inducible by chemical means. [0064]
  • While the present examples demonstrate that constitutive expression of a floral regulatory gene (LEAFY) causes accelerated flowering, this system could be modified such that flowering would be inhibited. For example, dominant-negative versions of floral regulatory genes could be expressed constitutively. Dominant-negative mutants are proteins that actively interfere with the function of a normal, endogenous protein. Thus, the action of a gene can be blocked without inactivating the structural gene itself or its RNA. This strategy has been successful for transcription factors (e.g., Attardi, et al., [0065] Proc. Natl. Acad Sci. USA, 90:10563, 1993; Lloyd, et al., Nature, 352:635, 1991; Logeat, et al., EMBO J., 10:1827, 1991: Mantovani, et al., J. Biol. Chem., 269:20340, 1994; Ransone, et al., Proc. Natl. Acad. Sci. USA, 87:3806, 1990; Richardson, et al., Mech. Dev., 45:173, 1994; Tsai, et al., Genes Dev., 6:2258, 1992.) The LEAFY protein is likely to be a transcription factor, as it localizes to the nucleus and can bind to DNA in vitro. Likewise, most other floral regulatory genes, including APETALA1, encode known transcription factors with a MADS DNA-binding domain (e.g., Mandel, et al., Nature, 360:273, 1992).
  • The above disclosure generally describes the present invention. A more complete understanding can be obtained by reference to the following specific examples which are provided herein for purposes of illustration only and are not intended to limit the scope of the invention. [0066]
  • EXAMPLES
  • To study the effects of ectopic LEAFY (LFY) expression, a chimeric gene in which the LFY coding region is under the control of the constitutive 35S promoter from cauliflower mosaic virus (CaMV) was constructed (Odell, J.T., et al. [0067] Nature, 313:810, 1985.) By way of illustration, the chimeric 35S::LFY gene was introduced into Arabidopsis and the distantly related tobacco plants by T-DNA mediated transformation. Other examples show aspen trees transformed with LFY. The phenotypic effects observed in transgenic plants show that LFY is not only necessary, but also sufficient for the initiation of flower development.
  • Example 1 Construction of Transformation Vectors
  • For transformation of tobacco, the pDW146 vector was used. For transformation of Arabidopsis, the pDW151 vector was used. Both vectors are derived from plasmid pDW139, which contains the entire open reading frame of the LEAFY (LFY) gene from [0068] Arabidopsis thaliana (Weigel, D., et al., Cell, 69:843, 1992), plus 21 bp upstream of the initiation codon and 195 bp downstream of the stop codon (for cDNA sequence, see Weigel et al., supra; genomic sequence deposited in GenBank under accession number M91208). At the 5′ end, a Bg12 site was added by polymerase chain reaction (Saiki, et al., Science, 239:487, 1988). At the 3′ end, a genomic ScaI site was eliminated in the cloning process, and it is followed immediately by an Asp718 site derived from the pBluescript KS+cloning vector (FIG. 1).
  • FIG. 1 shows a schematic illustration of pDW139 parental plasmid for construction of 35S::LFY vectors. The open reading frame of LEAFY (LFY) is hatched; 5′ and 3′ untranslated regions are stippled. [0069]
  • To construct pDW146, the 1.5 kb Bg12/Asp718 fragment carrying the LFY sequences was inserted into the binary T-DNA transformation vector pMON530 (Rogers, et al., [0070] Meth. Enzymol, 153:253, 1987), using the same sites in the vector. This vector contains an expression cassette comprising a 0.3 kb fragment of the cauliflower mosaic virus 35S promoter, including the transcription initiation site (Guilley, et al., Cell, 30:763, 1982); Odell, et al., supra.); a multilinker containing several unique restriction sites; and a functional polyadenylation signal from the Ti plasmid T-DNA nopaline synthase gene (“3′ nos”; [Bevan, et al., Plant Cell, 1:141, 1983]).
  • To construct pDW151, the Asp718 site of pDW139 was filled in with Klenow enzyme (Sambrook, et al., [0071] Molecular Cloning 2nd ed. (Cold Spring Harbor: Cold Spring Harbor Laboratory, 1989) and a Bg12 linker was added. The resulting Bg12 fragment was inserted into the BamH1 site of pCGN18, a transformation vector containing a CaMV 35S promoter 3′ nos expression cassette (Jack, et al, Cell, 76:703, 1994).
  • pDW146 and pDW151 plasmid DNAs isolated from [0072] E. coli were transformed into Agrobacterium tumefaciens strain LBA4404 (Ooms, et al, Plasmid, 7:15, 1982) or ASE (Fraley, et al, Biotechnology 3:629, 1985), respectively, using the freeze-thaw method as described (Hofgen and Willmitzer, Nucl. Acids Res, 16:9877, 1988), except that LB medium (Sambrook, et al., supra) was used instead of YEB.
  • Example 2 Generation of Transgenic Tobacco Plants
  • For generation of transgenic tobacco plants, leaf pieces of sterily grown tobacco strain [0073] Nicotiana tabacum var. Xanthi were infected with LBA4404/pDW146, and plants were regenerated as described (Horsch, et al., Science, 227:1229, 1985). Selection for transformed plants was with 200 μg/ml kanamycin. Kanamycin resistant regenerated plants were transferred to soil, and seeds were harvested from the primary transformants.
  • FIG. 2 shows the early flowering phenotype of 35S::LFY tobacco plants. The left panel shows a control plant, transformed with an unrelated construct (a LFY promoter fused to a GUS reporter gene). The middle and right panels show two independently derived T[0074] 2 plants carrying a 35S::LFY transgene (lines 146.21, 146.26). The plants shown are five weeks old. Note abundant proliferation of leaves in the control, while the experimental plants have produced only two true leaves before initiating a terminal flower. The insert shows a top view of floral bud of plant shown at the right. The bud is still unopened.
  • Of 32 transgenic tobacco lines analyzed in detail, 27 exhibit the same dramatic phenotype in the progeny of the primary transformants (T[0075] 2 generation). Transgenic plants develop only one pair of true leaves, in addition to the embryonic leaves (cotyledons), before they produce a terminal flower (FIG. 2). Although wild-type tobacco plants also produce a terminal flower, they generate twenty to twenty-five pairs of leaves before flowering. Thus, constitutive LFY expression causes precocious conversion of the shoot meristem into a floral meristem. Histological sections of transgenic plants reveal that the apical meristem is morphologically different from that of untransformed plants at least as early as five days after germination (FIG. 3). The result of these changes is that transformed plants produce visible floral buds after two weeks, while normal tobacco plants flower only after about three to five months (the exact time depends on environmental conditions, such as light intensity, fertilizer, size of pots in which plants are grown, etc.).
  • FIG. 3 shows precocious enlargement of apical meristem in 35S::LFY tobacco plants. Panel (A) is a control, transformed with the unrelated construct described in FIG. 2. Panel (B) shows an experimental plant, transformed with a 35S::LFY construct. Plants were sacrificed five days after germination, fixed, embedded in paraffin, and sectioned. Triangles indicate width of meristems. Note that the leaf primordia arising at the flanks of the 35S::LFYmeristem are retarded compared to those on the control meristem. Size bar, 50 μm. [0076]
  • The precocious flowers of 35S::LFY tobacco plants are abnormal in organ identity and organ number. The floral buds are surrounded by small leaf-like organs, and petals are either absent or sepaloid. Stamens and carpels are morphological normal, but their number deviates from wild-type, being in most cases higher. Neither second-order shoots nor flowers develop from the axils of the two true leaves, although adventitious shoots can arise from the hypocotyl. [0077]
  • Example 3 Generation of Transgenic Arabidopsis Plants
  • pDW151 was introduced into Arabidopsis by vacuum infiltration (Bechtold, et al., [0078] C.R. Acad. Sci., 316:1194, 1993). Leaves of adult Arabidopsis thaliana plants of the ecotypes Wassilewskija (Ws-0) and Nossen (No-0) were infiltrated with ASE/pDW151, and seeds were harvested from the infiltrated plants. Seeds were grown on MS medium (Murashige and Skoog, Physiol. Plant 15:473, 1962) supplemented with 50 μg/ml kanamycin. Transformed plants were identified by their ability to grow on kanamycin containing medium. Using this method, 27 transgenic 35S::LFYArabidopsis plants were isolated, of which 21 exhibited essentially the same dramatic phenotype, which was very similar to that observed in 35S::LFYtobacco plants.
  • The transformation experiment utilized a new method that circumvents tissue culture and regeneration of plants from callus, and allows directly for the generation of transgenic seeds (Bechtold, et al., [0079] CR. Acad. Sci., 316:1194, 1993). In this method, leaves of adult plants are vacuum-infiltrated with a suspension of Agrobacterium cells carrying a T-DNA plasmid. The Agrobacterium cells grow in planta, where they transfer their T-DNA to host cells, including the precursors of gamete producing cells. Seeds were harvested from the infiltrated plants, and grown on antibiotic containing medium to select for transformants. A small fraction of seeds, between one in several hundred to one in several thousand, were stably transformed with the T-DNA. (A single Arabidopsis plant can produce several thousand seeds.)
  • The following description of the 35S::LFY phenotype in Arabidopsis is based on the analysis of first generation transformants. The phenotype should not change significantly in subsequent generations, because these transformants have been grown from seeds, as opposed to having been regenerated from tissue culture. The same method has been used to generate transformants with four other constructs, none of which cause the phenotype observed with the 35 S::LFY construct. FIG. 4 shows the early flowering phenotype of35S::LFY Arabidopsis plants. In panel (A), a control plant, transformed with an unrelated construct. The rosette leaves (rl) are significantly larger than the cotyledons (cot). Panel (B) shows a 35S::LFY transformant (line 151.106). The first two rosette leaves (rl) are smaller than the cotyledons. A tiny shoot has formed, with what appear to be two cauline leaves (cl). The floral bud is still unopened. Both plants, which are 17 days old, were selected on kanamycin containing medium for a week, which is likely to have slowed their development somewhat. [0080]
  • FIG. 5 shows the conversion of all shoots into flowers in 35S::LFY Arabidopsis plants. Panel (A) shows a drawing of a mature Arabidopsis plant (Nossen ecotype) of about six weeks of age. Note that indeterminate shoots develop from the axils of all rosette and stem leaves. These shoots bear a few leaves themselves, before they start to produce flowers. Panel (B) shows a top view of a wild-type Arabidopsis inflorescence, illustrating the indeterminacy of the shoot meristem. Flowers develop in a phyllotactic spiral, with the youngest flowers being the closest to the center. Panels (C)-(E), 35S::LFY plants (generated in the Nossen ecotype), three weeks old. Panel (C), Replacement shoots with single flowers (triangles) (line 151.201). A cotyledon is indicated (cot). Panel (D), Development of a primary terminal flower (1°) on the main shoot, and development of single secondary flower (2°) in the axil of a cauline leaf (cl). Single terminal flowers arising from the axils of curled rosette leaves (rl) are indicated by triangles (line 151.209). Panel (E), Close-up view of primary and secondary flower shown in (D), at a different angle. Note that the primary terminal flower is abnormal. The gynoecium (g), comprising the carpels, appears largely normal. The number of stamens (st) is reduced, and petals and sepals are absent. A single first-whorl organ with leaf-, sepal- and carpel-like features is indicated by an asterisk. [0081]
  • 35S::LFY Arabidopsis plants flower earlier than wild-type plants. There are only two to five rosette leaves, compared to at least eight in wild-type plants, and a stage 12 floral bud can be visible as early as 17 days after germination (FIG. 4). Since it takes two weeks for the development of a stage 12 flower (Smyth, et al., [0082] Plant Cell, 2:755, 1990), flowers must initiate within a few days after germination. This is much earlier than in wild type, where the first flowers are initiated only when a plant is about two weeks old. Unlike tobacco, Arabidopsis has an open inflorescence, meaning that the shoot apical meristem remains undifferentiated until the plant dies. The 35S::LFY plants not only flower earlier, but their primary axis terminates with a single flower, similar to the tfl mutant phenotype (see FIG. 1). Thus, ectopic expression of LFY causes transformation of the indeterminate shoot meristem into a determinate floral meristem. In contrast with the tfl mutant phenotype, no normal lateral flowers are formed before the primary terminal flower develops (FIGS. 4B and 5D). Additional terminal flowers develop from the axils of leaves in 35S::LFY plants, indicating a transformation of second-order shoot meristems as well (FIGS. 5C and 5D). Surprisingly, most 35S::LFY plants develop a tiny shoot, with one or two leaves that resemble cauline (stem) leaves of wild type (FIGS. 4B and 5D). For comparison, FIG. 5A illustrates the normal architecture of a mature Arabidopsis plant, with indeterminate shoots arising from the axils of all leaves.
  • The early flowering phenotype, and the transformation of a shoot into a floral meristem, show that LFY activity is sufficient to determine the identity of a meristem. However, since the shoot meristem produces leaves before it is converted into a floral meristem, there appear to be additional factors that prevent the shoot meristem from responding to LFY activity immediately after germination. [0083]
  • 35S:LFY plants appear to flower faster than any other early flowering mutant that has been described in Arabidopsis, including the embryonicflower (emf) mutant, which appears to skip the rosette phase of vegetative development (Sung, et al., [0084] Science, 258:1645-1647, 1992). Unfortunately, the exact time of flower initiation in emf mutants has not been reported, but the data presented by Sung, et al., supra indicate that flower primordia are not formed before the plant is at least nine days old, making the emf phenotype distinct from the 35S:LFY phenotype. It appears that emf mutants pause after germination, and then proceed directly to the formation of an inflorescence.
  • The exact phenotype of individual 35S::LFY Arabidopsis plants varies. Most flowers observed are virtually identical to wild-type flowers (FIGS. 5D and E). Very importantly, for further analysis, stamens and carpels are fertile. The primary terminal flowers are often abnormal, in that the outer organs are leaf-like or absent, and the numbers of petals is reduced, similar to the effect seen in the terminal flowers of 35S::LFY tobacco plants (FIG. 5E). In addition, carpels can be unfused, and the number of stamens can be lower than the wild-type number of six. [0085]
  • The finding that the LEAFY gene from Arabidopsis can modify flowering in tobacco implies that the mode of LEAFY function is well conserved among flowering plants, that the Arabidopsis gene is likely to function in a wide variety of flowering plants. Arabidopsis and tobacco belong to two very divergent subclasses among the class of dicotyledonous plants. Arabidopsis is a genus within the family Brassicaceae, which belongs to the order Capparales within the subclass Dilleniidae. Tobacco, [0086] Nicotiana tabacum, belongs to the family Solanaceae, within the order Solanales of the subclass Asteridae. The Dilleniidae are closely related to the Magnoliidae, the most primitive subclass of dicotyledonous plants. In contrast, the Asteridae are the most advanced subclass of dicotyledons (Cronquist, A., An Integrated System of Classification of Flowering Plants, 1981 (New York: Columbia University Press).
  • The two familes to which Arabidopsis and tobacco belong, Brassicaceae and Solanaceae, are large familes of major economic importance (Heywood, V.H., [0087] Flowering Plants of the World, 1993, (New York: Oxford University Press). Main crops within the Brassicaceae include oilseed rape and cabbage and its relatives, such as kale, cauliflower, broccoli, and Chinese cabbage. The family Solanaceae is one of the most important serving humankind, containing many essential vegetables and fruits such as potatoes, tomatoes, aubergines, paprika, chilies, and bell peppers.
  • Recent work has shown that close homologs of Arabidopsis floral regulatory genes exist in monocotyledonous plants. For example, homologs of the APETALA1 and LEAFY genes have been identified in maize (Veit, et al., [0088] Plant Cell, 5:1205, 1993; Weigel and Meyerowitz, In Molecular Basis of Morphogenesis, pp. 91-105, 1993, (New York: Wiley-Liss).
  • Example 4 Conversion of Aspen Shoots
  • Because constitutive expression of LFY can induce flowers precociously during the vegetative phase of Arabidopsis, other species were examined as well. The effect of constitutive LFY expression was studied in a perennial tree, hybrid aspen, which is derived from parental species that flower naturally only after 8-20 years (Schreiner, E.J. in [0089] USDA Agiculture Handbook, 450: Seeds of Woody Plants in the United States (ed. Schopmeyer, C. S.) pp. 645-655 (U.S. Government Printing Office, Washington D.C., 1974). 35S::LFY aspen plants were obtained by Agrobacterium-mediated transformation of stem segments and subsequent regeneration of transgenic shoots in tissue culture (Nilsson, O., et al., Transgen. Res., 1:209, 1992).
  • Hybrid aspen was transformed as described previously (Nilsson, O., et al., ibid). Levels of LFY RNA expression were similar to those of 35S::LFY Arabidopsis, as determined by Northern blot analysis. The number of vegetative leaves varied between the different regenerating shoots. Those with a higher number of vegetative leaves formed roots, allowing for transfer to the greenhouse. Individual flowers were removed either from primary transformants that had been transferred to the greenhouse, or from catkins collected in spring 1995 at Carlshem (Umeá, Sweden) from a tree whose age was determined by counting the number of annual rings in a core extracted with an increment borer at 1.5 m above ground level. Flowers were fixed in formaldehyde/acetic acid/ethanol, and destained in ethanol before photography. [0090]
  • FIG. 6 shows that constitutive expression of Arabidopsis LFY converts aspen shoots into flowers. Panels a and b show five-month-old shoots of hybrid aspen ([0091] Populous tremula x tremuloides) grown in tissue culture. Panel a shows a 35S::LFY transformant. Solitary, lateral flowers in the axils of leaves (lf) and an abnormal terminal flower (tf) are indicated. Panel b shows a non-transgenic control. Arrowheads indicate axils of leaves, from which lateral vegetative shoots will emerge, normally in the following year. Note that aspen plants regenerated from tissue culture show the same juvenile phenotype during the first growing cycle as plants grown from seed (Nilsson, O., supra) Panel C is a close-up view of solitary male flower that formed in a leaf axil of a seven-month-old 35S::LFY transformant that had been transferred to the greenhouse. Panel d shows a close-up view of male flower removed from wild-type catkin shown in panel e. Note bract (b) subtending wild-type flower. Panel e shows a cluster of male catkins of P. tremula, one of the parental species of hybrid aspen, taken from a 15-year-old tree. Red pigment in anthers is apparent. Scale bars: a,b, 5 mm; c, d, 1 mm; e, 20 mm.
  • Regenerating 35S::LFY aspen shoots initially produced solitary flowers in the axils of normal leaves (FIG. 6[0092] a,e). However, the number of vegetative leaves is limited, and the shoot meristem is prematurely consumed in the formation of an aberrant terminal flower (FIG. 6a). Precocious flower development is specific to 35S::LFYtransformants, as such an effect was not observed in non-transgenic controls (FIG. 6b). Furthermore, not a single instance of precocious flower development has been seen in the more than 1,500 other lines of transgenic aspen that were generated with various constructs during the past six years at the Swedish University of Agricultural Sciences (Nilsson O., et al., 1992 supra; Nilsson, 0. Thesis, Swedish University of Agricultural Sciences, 1995).
  • Although wild-type Arabidopsis and aspen are rather different, one being a weed and the other a tree, the overall phenotype of 35S::LFY aspen very much resembles that of 35S::LFYArabidopsis. In wild-type plants of both species, flowers are normally formed in lateral positions on inflorescence shoots. In aspen, these inflorescence shoots are called catkins and arise from the leaf axils of adult trees (FIG. 6[0093] d, e). In both 35S::LFY Arabidopsis and 35S::LFY aspen, solitary flowers form instead of shoots in the axils of vegetative leaves. Moreover, as in Arabidopsis, the secondary shoots of trangenic aspen are more severely affected than the primary shoot.
  • An apparent LFY orthologue from poplar has been described (Strauss, S.H., el al., [0094] Mole. Breed, 1:5, 1995) which, similarly to tobacco LFY (Kelly, A., et al., Pl. Cell, 7:225, 1995) is already expressed during the vegetative stage. The vegetative expression might have suggested that LFY activity is not sufficient to induce flower development in these species. The present results in aspen, which is the same in genus as poplar, indicate that this is not the case, a finding that extends to tobacco, which also flowers very early when transformed with a 35S:: Arabidopsis LFY construct (see Examples 1-3). One possible explanation for the effects of 35S::LFY in these species is that the transgene is expressed at higher effective levels in than the endogenous gene. In tobacco, expression of the endogenous gene in the center of the shoot meristem (which eventually turns into a flower meristem and forms a terminal flower) is relatively low (Kelly, A. J., et al., supra.), and it is conceivable that the other genes, such as AP1, are the primary regulators of flower-meristem-identity in non-transgenic tobacco.
  • Example 5 Mediation of Leafy Activity by Apetala1
  • In addition to LFY, mutations in the genes AP1, CAL, APETALA2 (AP2) and UNUSUAL FLORAL ORGANS (UFO) are known to affect the identity of Arabidopsis flower meristems (Mandel, M.A., et al., [0095] Nature, 360-273, 1992; Irish, V.F. & Sussex, I.M., Pl. Cell, 2:741, 1990; Jofuku, K.D., et al., Pl. Cell, 6, 1994-Levin, J.Z. & Meyerowitz, E.M. Pl. Cell, 7:529, 1995) although lfy mutations have generally the strongest effects, and are the only ones that consistently cause a complete transformation of at least a few flowers into shoots. Mutations in all five genes also affect the identity of floral organs, but meristem-identity and organ-identity defects are at least in some cases separable (Bowman, J.L., et al., Development, 119:721, 1993; Jack, T., et al., Cell, 76:703, 1994). To determine whether any of the other genes are required to mediate the effects of 35S::LFY on meristem identity, or whether their inactivation would merely affect the identity of floral organs in 35S::LFY flowers, the 35S::LFY transgene was crossed into various mutant backgrounds.
  • A 35S::LFY tranformant (line DW151.117, Wassilewskija ecotype) was crossed to ap1-1 (Landberg erecta ecotype)(Irish, F.V. & Sussex, I.M., Pl [0096] Cell 2:741, 1990.). Transheterozygote F1 progeny was either backcrossed to ap1-1 or allowed to self-fertilize. The cal genotype of selfed F2 progeny was determined by polymerase chain reaction (PCR)(Kempin, S.A., et al., Science, 267:552, 1994).
  • FIG. 7 shows that 35S::LFY phenotype is partly suppressed by an ap1 mutation. Panel a shows five-week-old plants that carry the erecta mutation. The 35S::LFY AP1[0097] +plant (left) has no elongated primary shoot. A primary shoot is well developed in the 35S::LFY ap1 plant (middle), although the primary shoot still terminates prematurely, and is shorter than that of the non-transgenic ap1 plant (right). Panels b-d show a detailed view of 35S::LFY ap1 plants. Panel b shows a close-up view of lateral shoot indicated by arrowhead in panel a. Panel c shows emerging shoots in the axils of rosette leaves. Panel d shows a top view of primary shoot with terminal flower (tf). Panels c and d are from a four-week-old plant. The ap1 effects are enhanced further by the cal-1 mutation, although there is no qualitative change in the 35S::LFY ap1 phenotype.
  • The ap2-1, ap2-2 and ufo-2 mutations caused only additive phenotypes, and did not significantly affect the shoot-to-flower conversion in 35S::LFY plants. In contrast, the apl-1 mutation suppressed the 35S::LFY phenotype to a notable extent, although terminal flowers were still formed (FIG. 7). Both the primary and secondary shoots were affected, with the strongest effects being observed in lateral positions (FIG. 7[0098] b,c). The solitary flowers that develop in the axils of rosette leaves of 35S::LFY AP1+plants become complex shoots with an average of 10 nodes in 35S:LFY apl plants (FIG. 7c). These observations not only confirmed that LFY can induce AP1(which fails to become activated in early arising flowers of lfy mutants), but also that the combined activities of LFY and AP1 are ever more effective in transforming shoot meristems into flower meristems than LFY activity alone.
  • Taken together, these results suggest that competence to respond to flower-meristem-identity genes is acquired gradually. In young meristems, competence appears to be low, and both LFY and AP1 are required to promote flower development over that of shoots. Competence increases later in the life cycle, and LFY alone becomes sufficient to induce flower development. [0099]
  • SUMMARY
  • The present invention shows that constitutive expression of a single flower meristem identity gene, such as LFY or AP1, can induce precocious flower development in plants as diverse as Arabidopsis, an ephermeral weed, and aspen, a perennial tree. The results not only contribute to the understanding of flower development and floral induction, they are also likely to be of interest because shorter flowering times lead to shorter generation times, which in turn allows acceleration of breeding programs. Modern crop varieties are the result of continued improvement by breeding and two recently developed technologies have made breeding even more important. The first technology is molecular mapping, with which genes encoding desirable traits can be rapidly located within the genome. Introduction of such traits into agriculturally important varieties is now greatly assisted by monitoring linked molecular markers, instead of testing for actual expression of these traits. The second technology is transformation of plants with hybrid genes conferring various traits such as engineeered pathogen resistance. However, progress in this area has been delayed because the number of plant varieties amenable to transformation is often restricted, and extensive backcrossing is needed to introgress transgenes into a desired background. In both cases, marker-assisted breeding and transgene introgression, reduction of generation time through the induction of precocious flowering should prove useful. [0100]
  • The foregoing is meant to illustrate, but not to limit, the scope of the invention. Indeed, those of ordinary skill in the art can readily envision and produce further embodiments, based on the teachings herein, without undue experimentation. [0101]
  • 1 8 1 1275 DNA Arabdopsis thaliana CDS (1)...(1275) 1 atg gat cct gaa ggt ttc acg agt ggc tta ttc cgg tgg aac cca acg 48 Met Asp Pro Glu Gly Phe Thr Ser Gly Leu Phe Arg Trp Asn Pro Thr 1 5 10 15 aga gca ttg gtt caa gca cca cct ccg gtt cca cct ccg ctg cag caa 96 Arg Ala Leu Val Gln Ala Pro Pro Pro Val Pro Pro Pro Leu Gln Gln 20 25 30 cag ccg gtg aca ccg cag acg gct gct ttt ggg atg cga ctt ggt ggt 144 Gln Pro Val Thr Pro Gln Thr Ala Ala Phe Gly Met Arg Leu Gly Gly 35 40 45 tta gag gga cta ttc ggt cca tac ggt ata cgt ttc tac acg gcg gcg 192 Leu Glu Gly Leu Phe Gly Pro Tyr Gly Ile Arg Phe Tyr Thr Ala Ala 50 55 60 aag ata gcg gag tta ggt ttt acg gcg agc acg ctt gtg ggt atg aag 240 Lys Ile Ala Glu Leu Gly Phe Thr Ala Ser Thr Leu Val Gly Met Lys 65 70 75 80 gac gag gag ctt gaa gag atg atg aat agt ctc tct cat atc ttt cgt 288 Asp Glu Glu Leu Glu Glu Met Met Asn Ser Leu Ser His Ile Phe Arg 85 90 95 tgg gag ctt ctt gtt ggt gaa cgg tac ggt atc aaa gct gcc gtt aga 336 Trp Glu Leu Leu Val Gly Glu Arg Tyr Gly Ile Lys Ala Ala Val Arg 100 105 110 gct gaa cgg aga cga ttg caa gaa gag gag gaa gag gaa tct tct aga 384 Ala Glu Arg Arg Arg Leu Gln Glu Glu Glu Glu Glu Glu Ser Ser Arg 115 120 125 cgc cgt cat ttg cta ctc tcc gcc gct ggt gat tcc ggt act cat cac 432 Arg Arg His Leu Leu Leu Ser Ala Ala Gly Asp Ser Gly Thr His His 130 135 140 gct ctt gat gct ctc tcc caa gaa gat gat tgg aca ggg tta tct gag 480 Ala Leu Asp Ala Leu Ser Gln Glu Asp Asp Trp Thr Gly Leu Ser Glu 145 150 155 160 gaa ccg gtg cag caa caa gac cag act gat gcg gcg ggg aat aac ggc 528 Glu Pro Val Gln Gln Gln Asp Gln Thr Asp Ala Ala Gly Asn Asn Gly 165 170 175 gga gga gga agt ggt tac tgg gac gca ggt caa gga aag atg aag aag 576 Gly Gly Gly Ser Gly Tyr Trp Asp Ala Gly Gln Gly Lys Met Lys Lys 180 185 190 caa cag cag cag aga cgg aga aag aaa cca atg ctg acg tca gtg gaa 624 Gln Gln Gln Gln Arg Arg Arg Lys Lys Pro Met Leu Thr Ser Val Glu 195 200 205 acc gac gaa gac gtc aac gaa ggt gag gat gac gac ggg atg gat aac 672 Thr Asp Glu Asp Val Asn Glu Gly Glu Asp Asp Asp Gly Met Asp Asn 210 215 220 ggc aac gga ggt agt ggt ttg ggg aca gag aga cag agg gag cat ccg 720 Gly Asn Gly Gly Ser Gly Leu Gly Thr Glu Arg Gln Arg Glu His Pro 225 230 235 240 ttt atc gta acg gag cct ggg gaa gtg gca cgt ggc aaa aag aac ggc 768 Phe Ile Val Thr Glu Pro Gly Glu Val Ala Arg Gly Lys Lys Asn Gly 245 250 255 tta gat tat ctg ttc cac ttg tac gaa caa tgc cgt gag ttc ctt ctt 816 Leu Asp Tyr Leu Phe His Leu Tyr Glu Gln Cys Arg Glu Phe Leu Leu 260 265 270 cag gtc cag aca att gct aaa gac cgt ggc gaa aaa tgc ccc acc aag 864 Gln Val Gln Thr Ile Ala Lys Asp Arg Gly Glu Lys Cys Pro Thr Lys 275 280 285 gtg acg aac caa gta ttc agg tac gcg aag aaa tca gga gcg agt tac 912 Val Thr Asn Gln Val Phe Arg Tyr Ala Lys Lys Ser Gly Ala Ser Tyr 290 295 300 ata aac aag cct aaa atg cga cac tac gtt cac tgt tac gct ctc cac 960 Ile Asn Lys Pro Lys Met Arg His Tyr Val His Cys Tyr Ala Leu His 305 310 315 320 tgc cta gac gaa gaa gct tca aat gct ctc aga aga gcg ttt aaa gaa 1008 Cys Leu Asp Glu Glu Ala Ser Asn Ala Leu Arg Arg Ala Phe Lys Glu 325 330 335 cgc ggt gag aac gtt ggc tca tgg cgt cag gct tgt tac aag cca ctt 1056 Arg Gly Glu Asn Val Gly Ser Trp Arg Gln Ala Cys Tyr Lys Pro Leu 340 345 350 gtg aac atc gct tgt cgt cat ggc tgg gat ata gac gcc gtc ttt aac 1104 Val Asn Ile Ala Cys Arg His Gly Trp Asp Ile Asp Ala Val Phe Asn 355 360 365 gct cat cct cgt ctc tct att tgg tat gtt cca aca aag ctg cgt cag 1152 Ala His Pro Arg Leu Ser Ile Trp Tyr Val Pro Thr Lys Leu Arg Gln 370 375 380 ctt tgc cat ttg gag cgg aac aat gcg gtt gct gcg gct gcg gct tta 1200 Leu Cys His Leu Glu Arg Asn Asn Ala Val Ala Ala Ala Ala Ala Leu 385 390 395 400 gtt ggc ggt att agc tgt acc gga tcg tcg acg tct gga cgt ggt gga 1248 Val Gly Gly Ile Ser Cys Thr Gly Ser Ser Thr Ser Gly Arg Gly Gly 405 410 415 tgc ggc ggc gac gac ttg cgt ttc tag 1275 Cys Gly Gly Asp Asp Leu Arg Phe * 420 2 424 PRT Arabdopsis thaliana 2 Met Asp Pro Glu Gly Phe Thr Ser Gly Leu Phe Arg Trp Asn Pro Thr 1 5 10 15 Arg Ala Leu Val Gln Ala Pro Pro Pro Val Pro Pro Pro Leu Gln Gln 20 25 30 Gln Pro Val Thr Pro Gln Thr Ala Ala Phe Gly Met Arg Leu Gly Gly 35 40 45 Leu Glu Gly Leu Phe Gly Pro Tyr Gly Ile Arg Phe Tyr Thr Ala Ala 50 55 60 Lys Ile Ala Glu Leu Gly Phe Thr Ala Ser Thr Leu Val Gly Met Lys 65 70 75 80 Asp Glu Glu Leu Glu Glu Met Met Asn Ser Leu Ser His Ile Phe Arg 85 90 95 Trp Glu Leu Leu Val Gly Glu Arg Tyr Gly Ile Lys Ala Ala Val Arg 100 105 110 Ala Glu Arg Arg Arg Leu Gln Glu Glu Glu Glu Glu Glu Ser Ser Arg 115 120 125 Arg Arg His Leu Leu Leu Ser Ala Ala Gly Asp Ser Gly Thr His His 130 135 140 Ala Leu Asp Ala Leu Ser Gln Glu Asp Asp Trp Thr Gly Leu Ser Glu 145 150 155 160 Glu Pro Val Gln Gln Gln Asp Gln Thr Asp Ala Ala Gly Asn Asn Gly 165 170 175 Gly Gly Gly Ser Gly Tyr Trp Asp Ala Gly Gln Gly Lys Met Lys Lys 180 185 190 Gln Gln Gln Gln Arg Arg Arg Lys Lys Pro Met Leu Thr Ser Val Glu 195 200 205 Thr Asp Glu Asp Val Asn Glu Gly Glu Asp Asp Asp Gly Met Asp Asn 210 215 220 Gly Asn Gly Gly Ser Gly Leu Gly Thr Glu Arg Gln Arg Glu His Pro 225 230 235 240 Phe Ile Val Thr Glu Pro Gly Glu Val Ala Arg Gly Lys Lys Asn Gly 245 250 255 Leu Asp Tyr Leu Phe His Leu Tyr Glu Gln Cys Arg Glu Phe Leu Leu 260 265 270 Gln Val Gln Thr Ile Ala Lys Asp Arg Gly Glu Lys Cys Pro Thr Lys 275 280 285 Val Thr Asn Gln Val Phe Arg Tyr Ala Lys Lys Ser Gly Ala Ser Tyr 290 295 300 Ile Asn Lys Pro Lys Met Arg His Tyr Val His Cys Tyr Ala Leu His 305 310 315 320 Cys Leu Asp Glu Glu Ala Ser Asn Ala Leu Arg Arg Ala Phe Lys Glu 325 330 335 Arg Gly Glu Asn Val Gly Ser Trp Arg Gln Ala Cys Tyr Lys Pro Leu 340 345 350 Val Asn Ile Ala Cys Arg His Gly Trp Asp Ile Asp Ala Val Phe Asn 355 360 365 Ala His Pro Arg Leu Ser Ile Trp Tyr Val Pro Thr Lys Leu Arg Gln 370 375 380 Leu Cys His Leu Glu Arg Asn Asn Ala Val Ala Ala Ala Ala Ala Leu 385 390 395 400 Val Gly Gly Ile Ser Cys Thr Gly Ser Ser Thr Ser Gly Arg Gly Gly 405 410 415 Cys Gly Gly Asp Asp Leu Arg Phe 420 3 1054 DNA Arabdopsis thaliana CDS (124)...(891) 3 ctttccaatt ggttcatacc aaagtctgag ctcttcttta tatctctctt gtagtttctt 60 attgggggtc tttgttttgt ttggttcttt tagagtaaga agtttcttaa aaaaggatca 120 aaa atg gga agg ggt agg gtt caa ttg aag agg ata gag aac aag atc 168 Met Gly Arg Gly Arg Val Gln Leu Lys Arg Ile Glu Asn Lys Ile 1 5 10 15 aat aga caa gtg aca ttc tcg aaa aga aga gct ggt ctt ttg aag aaa 216 Asn Arg Gln Val Thr Phe Ser Lys Arg Arg Ala Gly Leu Leu Lys Lys 20 25 30 gct cat gag atc tct gtt ctc tgt gat gct gaa gtt gct ctt gtt gtc 264 Ala His Glu Ile Ser Val Leu Cys Asp Ala Glu Val Ala Leu Val Val 35 40 45 ttc tcc cat aag ggg aaa ctc ttc gaa tac tcc act gat tct tgt atg 312 Phe Ser His Lys Gly Lys Leu Phe Glu Tyr Ser Thr Asp Ser Cys Met 50 55 60 gag aag ata ctt gaa cgc tat gag agg tac tct tac gcc gaa aga cag 360 Glu Lys Ile Leu Glu Arg Tyr Glu Arg Tyr Ser Tyr Ala Glu Arg Gln 65 70 75 ctt att gca cct gag tcc gac gtc aat aca aac tgg tcg atg gag tat 408 Leu Ile Ala Pro Glu Ser Asp Val Asn Thr Asn Trp Ser Met Glu Tyr 80 85 90 95 aac agg ctt aag gct aag att gag ctt ttg gag aga aac cag agg cat 456 Asn Arg Leu Lys Ala Lys Ile Glu Leu Leu Glu Arg Asn Gln Arg His 100 105 110 tat ctt ggg gaa gac ttg caa gca atg agc cct aaa gag ctt cag aat 504 Tyr Leu Gly Glu Asp Leu Gln Ala Met Ser Pro Lys Glu Leu Gln Asn 115 120 125 ctg gag cag cag ctt gac act gct ctt aag cac atc cgc act aga aaa 552 Leu Glu Gln Gln Leu Asp Thr Ala Leu Lys His Ile Arg Thr Arg Lys 130 135 140 aac caa ctt atg tac gag tcc atc aat gag ctc caa aaa aag gag aag 600 Asn Gln Leu Met Tyr Glu Ser Ile Asn Glu Leu Gln Lys Lys Glu Lys 145 150 155 gcc ata cag gag caa aac agc atg ctt tct aaa cag atc aag gag agg 648 Ala Ile Gln Glu Gln Asn Ser Met Leu Ser Lys Gln Ile Lys Glu Arg 160 165 170 175 gaa aaa att ctt agg gct caa cag gag cag tgg gat cag cag aac caa 696 Glu Lys Ile Leu Arg Ala Gln Gln Glu Gln Trp Asp Gln Gln Asn Gln 180 185 190 ggc cac aat atg cct ccc cct ctg cca ccg cag cag cac caa atc cag 744 Gly His Asn Met Pro Pro Pro Leu Pro Pro Gln Gln His Gln Ile Gln 195 200 205 cat cct tac atg ctc tct cat cag cca tct cct ttt ctc aac atg ggt 792 His Pro Tyr Met Leu Ser His Gln Pro Ser Pro Phe Leu Asn Met Gly 210 215 220 ggt ctg tat caa gaa gat gat cca atg gca atg agg aat gat ctc gaa 840 Gly Leu Tyr Gln Glu Asp Asp Pro Met Ala Met Arg Asn Asp Leu Glu 225 230 235 ctg act ctt gaa ccc gtt tac aac tgc aac ctt ggc tgc ttc gcc gca 888 Leu Thr Leu Glu Pro Val Tyr Asn Cys Asn Leu Gly Cys Phe Ala Ala 240 245 250 255 tga agcatttcca tatatatatt tgtaatcgtc aacaataaaa acagtttgcc 941 * acatacatat aaatagtggc taggctcttt tcatccaatt aatatatttt ggcaaatgtt 1001 cgatgttctt atatcatcat atataaatta gcaggctcct ttcttttttt gta 1054 4 255 PRT Arabdopsis thaliana 4 Met Gly Arg Gly Arg Val Gln Leu Lys Arg Ile Glu Asn Lys Ile Asn 1 5 10 15 Arg Gln Val Thr Phe Ser Lys Arg Arg Ala Gly Leu Leu Lys Lys Ala 20 25 30 His Glu Ile Ser Val Leu Cys Asp Ala Glu Val Ala Leu Val Val Phe 35 40 45 Ser His Lys Gly Lys Leu Phe Glu Tyr Ser Thr Asp Ser Cys Met Glu 50 55 60 Lys Ile Leu Glu Arg Tyr Glu Arg Tyr Ser Tyr Ala Glu Arg Gln Leu 65 70 75 80 Ile Ala Pro Glu Ser Asp Val Asn Thr Asn Trp Ser Met Glu Tyr Asn 85 90 95 Arg Leu Lys Ala Lys Ile Glu Leu Leu Glu Arg Asn Gln Arg His Tyr 100 105 110 Leu Gly Glu Asp Leu Gln Ala Met Ser Pro Lys Glu Leu Gln Asn Leu 115 120 125 Glu Gln Gln Leu Asp Thr Ala Leu Lys His Ile Arg Thr Arg Lys Asn 130 135 140 Gln Leu Met Tyr Glu Ser Ile Asn Glu Leu Gln Lys Lys Glu Lys Ala 145 150 155 160 Ile Gln Glu Gln Asn Ser Met Leu Ser Lys Gln Ile Lys Glu Arg Glu 165 170 175 Lys Ile Leu Arg Ala Gln Gln Glu Gln Trp Asp Gln Gln Asn Gln Gly 180 185 190 His Asn Met Pro Pro Pro Leu Pro Pro Gln Gln His Gln Ile Gln His 195 200 205 Pro Tyr Met Leu Ser His Gln Pro Ser Pro Phe Leu Asn Met Gly Gly 210 215 220 Leu Tyr Gln Glu Asp Asp Pro Met Ala Met Arg Asn Asp Leu Glu Leu 225 230 235 240 Thr Leu Glu Pro Val Tyr Asn Cys Asn Leu Gly Cys Phe Ala Ala 245 250 255 5 1191 DNA Antirihinum majus CDS (1)...(1191) 5 atg gat cct gat gca ttc ttg ttc aaa tgg gac cac aga acc gcc ctc 48 Met Asp Pro Asp Ala Phe Leu Phe Lys Trp Asp His Arg Thr Ala Leu 1 5 10 15 cct caa cca aac agg ctc ctc gac gcc gtg gcc cca ccg cct cct ccg 96 Pro Gln Pro Asn Arg Leu Leu Asp Ala Val Ala Pro Pro Pro Pro Pro 20 25 30 ccg cct cag gcg ccg tca tac tcc atg agg cca aga gaa ctc ggc ggc 144 Pro Pro Gln Ala Pro Ser Tyr Ser Met Arg Pro Arg Glu Leu Gly Gly 35 40 45 tta gaa gaa tta ttc caa gct tat ggc atc aga tac tac act gcc gct 192 Leu Glu Glu Leu Phe Gln Ala Tyr Gly Ile Arg Tyr Tyr Thr Ala Ala 50 55 60 aaa atc gct gaa ctt gga ttc act gtg aac acg ctt ttg gac atg agg 240 Lys Ile Ala Glu Leu Gly Phe Thr Val Asn Thr Leu Leu Asp Met Arg 65 70 75 80 gac gag gag cta gac gag atg atg aac agc ctt tgt cag att ttc agg 288 Asp Glu Glu Leu Asp Glu Met Met Asn Ser Leu Cys Gln Ile Phe Arg 85 90 95 tgg gac cta ctt gtc gga gag agg tat ggg att aag gcg gcg gtg aga 336 Trp Asp Leu Leu Val Gly Glu Arg Tyr Gly Ile Lys Ala Ala Val Arg 100 105 110 gcg gaa cga cgt cgt atc gac gag gag gaa gtg agg cgg agg cat ctc 384 Ala Glu Arg Arg Arg Ile Asp Glu Glu Glu Val Arg Arg Arg His Leu 115 120 125 ttg ttg ggt gat act acg cat gct ctt gat gct ctt tct caa gaa ggg 432 Leu Leu Gly Asp Thr Thr His Ala Leu Asp Ala Leu Ser Gln Glu Gly 130 135 140 ttg tcg gag gag ccg gtg cag caa gaa aag gaa gca atg gga agc ggc 480 Leu Ser Glu Glu Pro Val Gln Gln Glu Lys Glu Ala Met Gly Ser Gly 145 150 155 160 gga ggc ggt gta gga ggc gtg tgg gaa atg atg ggg gcg ggt ggt cga 528 Gly Gly Gly Val Gly Gly Val Trp Glu Met Met Gly Ala Gly Gly Arg 165 170 175 aaa gca ccg cag cgg cgt agg aag aat tac aaa ggg agg tct aga atg 576 Lys Ala Pro Gln Arg Arg Arg Lys Asn Tyr Lys Gly Arg Ser Arg Met 180 185 190 gct tcg atg gag gag gat gat gat gat gat gac gac gaa acc gaa ggg 624 Ala Ser Met Glu Glu Asp Asp Asp Asp Asp Asp Asp Glu Thr Glu Gly 195 200 205 gcg gaa gac gac gaa aat atc gta agc gag cgg cag agg gag cat ccg 672 Ala Glu Asp Asp Glu Asn Ile Val Ser Glu Arg Gln Arg Glu His Pro 210 215 220 ttt atc gtg acg gag ccc gga gag gtg gcg cgt ggg aaa aag aat ggt 720 Phe Ile Val Thr Glu Pro Gly Glu Val Ala Arg Gly Lys Lys Asn Gly 225 230 235 240 ctt gat tat ttg ttt cat ttg tac gag caa tgc cgc gac ttc ttg atc 768 Leu Asp Tyr Leu Phe His Leu Tyr Glu Gln Cys Arg Asp Phe Leu Ile 245 250 255 caa gtt caa act att gct aag gag aga ggt gaa aaa tgt ccc act aag 816 Gln Val Gln Thr Ile Ala Lys Glu Arg Gly Glu Lys Cys Pro Thr Lys 260 265 270 gtg acg aac caa gtg ttc agg tac gca aag aag gct ggc gct aac tac 864 Val Thr Asn Gln Val Phe Arg Tyr Ala Lys Lys Ala Gly Ala Asn Tyr 275 280 285 atc aac aaa cca aaa atg cgc cac tac gtg cac tgc tac gcc ctg cac 912 Ile Asn Lys Pro Lys Met Arg His Tyr Val His Cys Tyr Ala Leu His 290 295 300 tgc ctt gat gag gcc gcg tcc aat gca ctt cgt cgg gca ttc aag gag 960 Cys Leu Asp Glu Ala Ala Ser Asn Ala Leu Arg Arg Ala Phe Lys Glu 305 310 315 320 cgt ggt gag aac gtc ggt gca tgg cgt cag gca tgc tac aag ccc ttg 1008 Arg Gly Glu Asn Val Gly Ala Trp Arg Gln Ala Cys Tyr Lys Pro Leu 325 330 335 gtg gcc att gca gca aga caa gga tgg gat atc gat acc ata ttc aac 1056 Val Ala Ile Ala Ala Arg Gln Gly Trp Asp Ile Asp Thr Ile Phe Asn 340 345 350 gct cat ccc cgt ctc tcg atc tgg tat gtc ccc acc aag ctt cgt cag 1104 Ala His Pro Arg Leu Ser Ile Trp Tyr Val Pro Thr Lys Leu Arg Gln 355 360 365 ctc tgc cat gcc gag agg agc agt gcg gca gtt gct gcc acc agc tcc 1152 Leu Cys His Ala Glu Arg Ser Ser Ala Ala Val Ala Ala Thr Ser Ser 370 375 380 atc acc gga ggt ggg ccg gca gat cac ttg ccg ttt tag 1191 Ile Thr Gly Gly Gly Pro Ala Asp His Leu Pro Phe * 385 390 395 6 396 PRT Antirihinum majus 6 Met Asp Pro Asp Ala Phe Leu Phe Lys Trp Asp His Arg Thr Ala Leu 1 5 10 15 Pro Gln Pro Asn Arg Leu Leu Asp Ala Val Ala Pro Pro Pro Pro Pro 20 25 30 Pro Pro Gln Ala Pro Ser Tyr Ser Met Arg Pro Arg Glu Leu Gly Gly 35 40 45 Leu Glu Glu Leu Phe Gln Ala Tyr Gly Ile Arg Tyr Tyr Thr Ala Ala 50 55 60 Lys Ile Ala Glu Leu Gly Phe Thr Val Asn Thr Leu Leu Asp Met Arg 65 70 75 80 Asp Glu Glu Leu Asp Glu Met Met Asn Ser Leu Cys Gln Ile Phe Arg 85 90 95 Trp Asp Leu Leu Val Gly Glu Arg Tyr Gly Ile Lys Ala Ala Val Arg 100 105 110 Ala Glu Arg Arg Arg Ile Asp Glu Glu Glu Val Arg Arg Arg His Leu 115 120 125 Leu Leu Gly Asp Thr Thr His Ala Leu Asp Ala Leu Ser Gln Glu Gly 130 135 140 Leu Ser Glu Glu Pro Val Gln Gln Glu Lys Glu Ala Met Gly Ser Gly 145 150 155 160 Gly Gly Gly Val Gly Gly Val Trp Glu Met Met Gly Ala Gly Gly Arg 165 170 175 Lys Ala Pro Gln Arg Arg Arg Lys Asn Tyr Lys Gly Arg Ser Arg Met 180 185 190 Ala Ser Met Glu Glu Asp Asp Asp Asp Asp Asp Asp Glu Thr Glu Gly 195 200 205 Ala Glu Asp Asp Glu Asn Ile Val Ser Glu Arg Gln Arg Glu His Pro 210 215 220 Phe Ile Val Thr Glu Pro Gly Glu Val Ala Arg Gly Lys Lys Asn Gly 225 230 235 240 Leu Asp Tyr Leu Phe His Leu Tyr Glu Gln Cys Arg Asp Phe Leu Ile 245 250 255 Gln Val Gln Thr Ile Ala Lys Glu Arg Gly Glu Lys Cys Pro Thr Lys 260 265 270 Val Thr Asn Gln Val Phe Arg Tyr Ala Lys Lys Ala Gly Ala Asn Tyr 275 280 285 Ile Asn Lys Pro Lys Met Arg His Tyr Val His Cys Tyr Ala Leu His 290 295 300 Cys Leu Asp Glu Ala Ala Ser Asn Ala Leu Arg Arg Ala Phe Lys Glu 305 310 315 320 Arg Gly Glu Asn Val Gly Ala Trp Arg Gln Ala Cys Tyr Lys Pro Leu 325 330 335 Val Ala Ile Ala Ala Arg Gln Gly Trp Asp Ile Asp Thr Ile Phe Asn 340 345 350 Ala His Pro Arg Leu Ser Ile Trp Tyr Val Pro Thr Lys Leu Arg Gln 355 360 365 Leu Cys His Ala Glu Arg Ser Ser Ala Ala Val Ala Ala Thr Ser Ser 370 375 380 Ile Thr Gly Gly Gly Pro Ala Asp His Leu Pro Phe 385 390 395 7 747 DNA Antirihinum majus CDS (1)...(747) 7 atg ggg aga ggg aaa gta caa ctg aag agg ata gag aac aag atc aat 48 Met Gly Arg Gly Lys Val Gln Leu Lys Arg Ile Glu Asn Lys Ile Asn 1 5 10 15 aga cag gtg act ttc tca aag agg aga ggt cca ttg ttg aaa aaa gct 96 Arg Gln Val Thr Phe Ser Lys Arg Arg Gly Pro Leu Leu Lys Lys Ala 20 25 30 cat gag ctc tct gtg ctt tgt gat gct gaa gtg gct ctt att gtc ttc 144 His Glu Leu Ser Val Leu Cys Asp Ala Glu Val Ala Leu Ile Val Phe 35 40 45 tct aat aag ggg aag cta ttt gag tat tct act gat tct tgc atg gac 192 Ser Asn Lys Gly Lys Leu Phe Glu Tyr Ser Thr Asp Ser Cys Met Asp 50 55 60 agg atc ctg gag aag tat gaa agg tat tca ttt gca gaa aga cag tta 240 Arg Ile Leu Glu Lys Tyr Glu Arg Tyr Ser Phe Ala Glu Arg Gln Leu 65 70 75 80 gtt tca aat gaa cct cag tca cct gcg aat tgg acc ctc gaa tac agc 288 Val Ser Asn Glu Pro Gln Ser Pro Ala Asn Trp Thr Leu Glu Tyr Ser 85 90 95 aaa ctg aag gca aga att gag ctc ttg caa aga aac cat agg cac tat 336 Lys Leu Lys Ala Arg Ile Glu Leu Leu Gln Arg Asn His Arg His Tyr 100 105 110 atg gga gaa gat ctg gac tcc atg agc ctc aaa gag att cag agt cta 384 Met Gly Glu Asp Leu Asp Ser Met Ser Leu Lys Glu Ile Gln Ser Leu 115 120 125 gaa caa cag ctg gac act gct ctt aag aac att cgg acc aga aaa aac 432 Glu Gln Gln Leu Asp Thr Ala Leu Lys Asn Ile Arg Thr Arg Lys Asn 130 135 140 cag ctc ttg tac gat tca atc tct gaa ttg cag cat aag gag aag gca 480 Gln Leu Leu Tyr Asp Ser Ile Ser Glu Leu Gln His Lys Glu Lys Ala 145 150 155 160 ata caa gag caa aac acc atg ctg gca aag aag atc aaa gag aag gag 528 Ile Gln Glu Gln Asn Thr Met Leu Ala Lys Lys Ile Lys Glu Lys Glu 165 170 175 aag gaa att gca caa cag cca cag tgg gag cat cat cgc cac cac act 576 Lys Glu Ile Ala Gln Gln Pro Gln Trp Glu His His Arg His His Thr 180 185 190 aat gca tcg att atg cca ccg cca cca caa tat tcc atg gca cct caa 624 Asn Ala Ser Ile Met Pro Pro Pro Pro Gln Tyr Ser Met Ala Pro Gln 195 200 205 ttc ccc tgc ata aat gtc gga aac aca tat gaa gga gaa gga gca aat 672 Phe Pro Cys Ile Asn Val Gly Asn Thr Tyr Glu Gly Glu Gly Ala Asn 210 215 220 gag gat aga aga aat gag ctt gac ctc act ctt gat tca ctc tat tca 720 Glu Asp Arg Arg Asn Glu Leu Asp Leu Thr Leu Asp Ser Leu Tyr Ser 225 230 235 240 tgc cat ctt gga tgc ttt gct gca tga 747 Cys His Leu Gly Cys Phe Ala Ala * 245 8 248 PRT Antirihinum majus 8 Met Gly Arg Gly Lys Val Gln Leu Lys Arg Ile Glu Asn Lys Ile Asn 1 5 10 15 Arg Gln Val Thr Phe Ser Lys Arg Arg Gly Pro Leu Leu Lys Lys Ala 20 25 30 His Glu Leu Ser Val Leu Cys Asp Ala Glu Val Ala Leu Ile Val Phe 35 40 45 Ser Asn Lys Gly Lys Leu Phe Glu Tyr Ser Thr Asp Ser Cys Met Asp 50 55 60 Arg Ile Leu Glu Lys Tyr Glu Arg Tyr Ser Phe Ala Glu Arg Gln Leu 65 70 75 80 Val Ser Asn Glu Pro Gln Ser Pro Ala Asn Trp Thr Leu Glu Tyr Ser 85 90 95 Lys Leu Lys Ala Arg Ile Glu Leu Leu Gln Arg Asn His Arg His Tyr 100 105 110 Met Gly Glu Asp Leu Asp Ser Met Ser Leu Lys Glu Ile Gln Ser Leu 115 120 125 Glu Gln Gln Leu Asp Thr Ala Leu Lys Asn Ile Arg Thr Arg Lys Asn 130 135 140 Gln Leu Leu Tyr Asp Ser Ile Ser Glu Leu Gln His Lys Glu Lys Ala 145 150 155 160 Ile Gln Glu Gln Asn Thr Met Leu Ala Lys Lys Ile Lys Glu Lys Glu 165 170 175 Lys Glu Ile Ala Gln Gln Pro Gln Trp Glu His His Arg His His Thr 180 185 190 Asn Ala Ser Ile Met Pro Pro Pro Pro Gln Tyr Ser Met Ala Pro Gln 195 200 205 Phe Pro Cys Ile Asn Val Gly Asn Thr Tyr Glu Gly Glu Gly Ala Asn 210 215 220 Glu Asp Arg Arg Asn Glu Leu Asp Leu Thr Leu Asp Ser Leu Tyr Ser 225 230 235 240 Cys His Leu Gly Cys Phe Ala Ala 245

Claims (21)

We claim:
1. A genetically modified plant, wherein its genome comprises a heterologous nucleotide sequence operably associated with a regulatory region, wherein the heterologous nucleotide sequence comprises:
a nucleotide sequence encoding a LEAFY protein of Arabidopsis (SEQ ID NO: 2) or a nucleotide sequence capable of hybridization under highly stringent conditions to the nucleic acid sequence of SEQ ID NO: 1; and
(i) a nucleic acid encoding an APETALA1 protein of Arabidopsis (SEQ ID NO: 4), or
(ii) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 3, or
(iii) a nucleic acid encoding a FLORICAULA protein (SEQ ID NO: 6) from Antirrhinum majus, or
(iv) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 5, or
(iii) a nucleic acid encoding a SQUAMOSA protein (SEQ ID NO:8) from Antirrhinum majus, or
(iv) a nucleic acid capable of hybridization under highly stringent conditions to SEQ ID NO: 7, or
(v) a combination of said nucleic acids,
wherein the genetically modified plant undergoes flower development at a time point earlier than that of a corresponding wildtype plant.
2. The genetically modified plant of claim 1, wherein the regulatory region comprises a promoter.
3. The genetically modified plant of claim 2, wherein the promoter is a constitutive promoter.
4. The genetically modified plant of claim 2, wherein the promoter is an inducible promoter.
5. The genetically modified plant of claim 1, wherein the heterologous nucleotide sequence further comprises a selectable marker.
6. The genetically modified plant of claim 1, wherein the plant is a dicotyledonous plant.
7. The genetically modified plant of claim 1, wherein the plant is a monocotyledonous plant.
8. A plant cell derived from the plant of claim 1.
9. Plant tissue derived from the plant of claim 1.
10. A seed which germinates into a plant comprising a heterologous nucleic acid sequence operably associated with a regulatory region, wherein the heterologous nucleic acid sequence comprises:
a nucleotide sequence encoding a LEAFY protein of Arabidopsis (SEQ ID NO: 2) or a nucleotide sequence capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 1; and
(i) a nucleic acid encoding an APETALA1 protein of Arabidopsis (SEQ ID NO: 4), or
(ii) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 3, or
(iii) a nucleic acid encoding a FLORICAULA protein (SEQ ID NO: 6) from Antirrhinum majus, or
(iv) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 5, or
(vi) a nucleic acid encoding a SQUAMOSA protein (SEQ ID NO:8) from Antirrhinum majus, or
(vii) a nucleic acid capable of hybridization under highly stringent conditions to SEQ ID NO: 7, or
(viii) a combination of said nucleic acids,
wherein the genetically modified plant undergoes flower development at a time point earlier than that of a corresponding wildtype plant.
11. A method of producing a genetically modified plant characterized as having early flower meristem development, said method comprising:
contacting a plant cell with a vector comprising a regulatory sequence operably associated with a nucleic acid sequence, wherein said nucleic acid sequence comprises:
a nucleotide sequence encoding a LEAFY protein of Arabidopsis (SEQ ID NO: 2) or a nucleotide sequence that is capable of hybridization under stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 1; and
(v) a nucleic acid encoding an APETALA1 protein of Arabidopsis (SEQ ID NO: 4), or
(vi) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 3, or
(vii) a nucleic acid encoding a FLORICAULA protein (SEQ ID NO: 6) from Antirrhinum majus, or
(viii) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 5, or
(ix) a nucleic acid encoding a SQUAMOSA protein (SEQ ID NO:8) from Antirrhinum majus, or
(x) a nucleic acid capable of hybridization under highly stringent conditions to SEQ ID NO: 7, or
(xi) a combination of said nucleic acids,
producing a plant from said transformed plant cell; and
selecting a plant exhibiting said early flower meristem development.
12. The method of claim 11, wherein the contacting is by physical means.
13. The method of claim 11, wherein the contacting is by chemical means.
14. The method of claim 11, wherein the plant cell is selected from the group consisting of protoplasts, gamete producing cells, and cells which regenerate into a whole plant.
15. The method of claim 11, wherein the promoter is a constitutive promoter.
16. The method of claim 11, wherein the promoter is an inducible promoter.
17. A vector comprising:
a regulatory sequence operably associated with a nucleotide sequence encoding a LEAFY protein of Arabidopsis (SEQ ID NO: 2) or a nucleotide sequence capable of hybridization under stringent conditions to a nucleotide sequence comprising the sequence of SEQ ID NO: 1; and
a nucleotide sequence encoding a protein selected from the group consisting of:
(ix) a nucleic acid encoding an APETALA1 protein of Arabidopsis (SEQ ID NO: 4), or
(x) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 3, or
(xi) a nucleic acid encoding a FLORICAULA protein (SEQ ID NO: 6) from Antirrhinum majus, or
(xii) a nucleic acid capable of hybridization under highly stringent conditions to a nucleic acid comprising the sequence of SEQ ID NO: 5, or
(xii) a nucleic acid encoding a SQUAMOSA protein (SEQ ID NO:8) from Antirrhinum majus, or
(xiii) a nucleic acid capable of hybridization under highly stringent conditions to SEQ ID NO: 7, or
(ix) a combination of said nucleic acids, wherein the genetically modified plant undergoes flower development at a time point earlier than that of a corresponding wildtype plant.
18. The vector of claim 17, wherein the vector comprises a T-DNA derived vector.
19. The vector of claim 17, wherein the regulatory sequence is a promoter.
20. The vector of claim 19, wherein the promoter is a constitutive promoter.
21. The vector of claim 19, wherein the promoter is an inducible promoter.
US09/849,772 1994-12-21 2001-05-04 Genetically modified plants having modulated flower development Abandoned US20030167539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/849,772 US20030167539A1 (en) 1994-12-21 2001-05-04 Genetically modified plants having modulated flower development

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/360,336 US5637785A (en) 1994-12-21 1994-12-21 Genetically modified plants having modulated flower development
US08/576,156 US5844119A (en) 1994-12-21 1995-12-21 Genetically modified plants having modulated flower development
US20409498A 1998-12-01 1998-12-01
US09/849,772 US20030167539A1 (en) 1994-12-21 2001-05-04 Genetically modified plants having modulated flower development

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US20409498A Continuation 1994-12-21 1998-12-01

Publications (1)

Publication Number Publication Date
US20030167539A1 true US20030167539A1 (en) 2003-09-04

Family

ID=23417554

Family Applications (3)

Application Number Title Priority Date Filing Date
US08/360,336 Expired - Lifetime US5637785A (en) 1994-12-21 1994-12-21 Genetically modified plants having modulated flower development
US08/576,156 Expired - Fee Related US5844119A (en) 1994-12-21 1995-12-21 Genetically modified plants having modulated flower development
US09/849,772 Abandoned US20030167539A1 (en) 1994-12-21 2001-05-04 Genetically modified plants having modulated flower development

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US08/360,336 Expired - Lifetime US5637785A (en) 1994-12-21 1994-12-21 Genetically modified plants having modulated flower development
US08/576,156 Expired - Fee Related US5844119A (en) 1994-12-21 1995-12-21 Genetically modified plants having modulated flower development

Country Status (10)

Country Link
US (3) US5637785A (en)
EP (1) EP0798958A4 (en)
JP (1) JPH10513042A (en)
AU (1) AU711551B2 (en)
BR (1) BR9510172A (en)
CA (1) CA2208061A1 (en)
FI (1) FI972581A (en)
NO (1) NO972903L (en)
NZ (1) NZ301454A (en)
WO (1) WO1996019105A1 (en)

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997025433A1 (en) * 1996-01-09 1997-07-17 Eidg. Technische Hochschule Zürich Ethz Regulation of flowering in plants
US6025543A (en) * 1996-06-05 2000-02-15 The Regents Of The University Of California Seed plants exhibiting early reproductive development and methods of making same
US6002069A (en) * 1996-06-05 1999-12-14 The Regents Of The University Of California Seed plants exhibiting inducible early reproductive development and methods of making same
US6025483A (en) * 1996-06-05 2000-02-15 The Regents Of The University Of California Maize and cauliflower apetalai gene products and nucleic acid molecules encoding same
US6395892B1 (en) 1998-04-06 2002-05-28 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Floral homeotic genes for manipulation of flowering in poplar and other plant species
US6693228B1 (en) 1999-02-25 2004-02-17 Wisconsin Alumni Research Foundation Alteration of flowering time in plants
US6828478B2 (en) 2001-05-09 2004-12-07 The Regents Of The University Of California Combinations of genes for producing seed plants exhibiting modulated reproductive development
AU2002364613A1 (en) * 2001-12-31 2003-07-24 Yeda Research And Development Co., Ltd A method to maintain a genic male-sterile female parental line of wheat through selfing of the maintainer line
EP1781083A4 (en) * 2004-06-18 2009-09-09 Univ California Brassica indehiscent1 sequences
DK1763582T3 (en) 2004-07-08 2015-01-12 Dlf Trifolium As Means and method of controlling the flowering of plants
WO2008121291A1 (en) 2007-03-28 2008-10-09 Monsanto Technology Llc Utility of snp markers associated with major soybean plant maturity and growth habit genomic regions
WO2009035852A2 (en) 2007-09-11 2009-03-19 Monsanto Technology Llc Increased alpha-prime beta-conglycinin soybeans
WO2009102890A2 (en) * 2008-02-12 2009-08-20 Dow Agrosciences Llc Dominant earliness mutation and gene in sunflower (helianthus annuus)
US8955523B2 (en) 2010-01-15 2015-02-17 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
US9039839B2 (en) 2010-04-08 2015-05-26 R.J. Reynolds Tobacco Company Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material
US9402415B2 (en) 2010-04-21 2016-08-02 R. J. Reynolds Tobacco Company Tobacco seed-derived components and materials
US11116237B2 (en) 2010-08-11 2021-09-14 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US9155321B2 (en) 2010-08-11 2015-10-13 R.J. Reynolds Tobacco Company Meltable smokeless tobacco composition
US9675102B2 (en) 2010-09-07 2017-06-13 R. J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US20120125354A1 (en) 2010-11-18 2012-05-24 R.J. Reynolds Tobacco Company Fire-Cured Tobacco Extract and Tobacco Products Made Therefrom
US9220295B2 (en) 2010-12-01 2015-12-29 R.J. Reynolds Tobacco Company Tobacco separation process for extracting tobacco-derived materials, and associated extraction systems
US9204667B2 (en) 2010-12-01 2015-12-08 R.J. Reynolds Tobacco Company Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products
US9775376B2 (en) 2010-12-01 2017-10-03 R.J. Reynolds Tobacco Company Smokeless tobacco pastille and moulding process for forming smokeless tobacco products
US20120152265A1 (en) 2010-12-17 2012-06-21 R.J. Reynolds Tobacco Company Tobacco-Derived Syrup Composition
US8893725B2 (en) 2011-01-28 2014-11-25 R. J. Reynolds Tobacco Company Polymeric materials derived from tobacco
US9107453B2 (en) 2011-01-28 2015-08-18 R.J. Reynolds Tobacco Company Tobacco-derived casing composition
US9254001B2 (en) 2011-04-27 2016-02-09 R.J. Reynolds Tobacco Company Tobacco-derived components and materials
US9192193B2 (en) 2011-05-19 2015-11-24 R.J. Reynolds Tobacco Company Molecularly imprinted polymers for treating tobacco material and filtering smoke from smoking articles
US9474303B2 (en) 2011-09-22 2016-10-25 R.J. Reynolds Tobacco Company Translucent smokeless tobacco product
US20130118512A1 (en) 2011-11-16 2013-05-16 R.J. Reynolds Tobacco Company Smokeless tobacco products with starch component
US20130125907A1 (en) 2011-11-17 2013-05-23 Michael Francis Dube Method for Producing Triethyl Citrate from Tobacco
US20130125904A1 (en) 2011-11-18 2013-05-23 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising pectin component
US10881132B2 (en) 2011-12-14 2021-01-05 R.J. Reynolds Tobacco Company Smokeless tobacco product comprising effervescent composition
US20130206150A1 (en) 2012-02-10 2013-08-15 R.J. Reynolds Tobacco Company Multi-layer smokeless tobacco composition
US9420825B2 (en) 2012-02-13 2016-08-23 R.J. Reynolds Tobacco Company Whitened tobacco composition
EP2827727B1 (en) 2012-03-19 2021-10-13 R. J. Reynolds Tobacco Company Method for treating an extracted tobacco pulp and tobacco products made therefrom
US20130269719A1 (en) 2012-04-11 2013-10-17 R.J. Reynolds Tobacco Company Method for treating plants with probiotics
US9485953B2 (en) 2012-07-19 2016-11-08 R.J. Reynolds Tobacco Company Method for treating tobacco plants with enzymes
US9289011B2 (en) 2013-03-07 2016-03-22 R.J. Reynolds Tobacco Company Method for producing lutein from tobacco
US9155334B2 (en) 2013-04-05 2015-10-13 R.J. Reynolds Tobacco Company Modification of bacterial profile of tobacco
US20150034109A1 (en) 2013-08-02 2015-02-05 R.J. Reynolds Tobacco Company Process for Producing Lignin from Tobacco
US10357054B2 (en) 2013-10-16 2019-07-23 R.J. Reynolds Tobacco Company Smokeless tobacco pastille
US9265284B2 (en) 2014-01-17 2016-02-23 R.J. Reynolds Tobacco Company Process for producing flavorants and related materials
US20160073686A1 (en) 2014-09-12 2016-03-17 R.J. Reynolds Tobacco Company Tobacco-derived filter element
US11219244B2 (en) 2014-12-22 2022-01-11 R.J. Reynolds Tobacco Company Tobacco-derived carbon material
US10881133B2 (en) 2015-04-16 2021-01-05 R.J. Reynolds Tobacco Company Tobacco-derived cellulosic sugar
US20170055565A1 (en) 2015-09-02 2017-03-02 R. J. Reynolds Tobacco Company Systems and Apparatus for Reducing Tobacco-Specific Nitrosamines in Dark-Fire Cured Tobacco Through Electronic Control of Curing Conditions
US20170059554A1 (en) 2015-09-02 2017-03-02 R. J. Reynolds Tobacco Company Method for monitoring use of a tobacco product
US10499684B2 (en) 2016-01-28 2019-12-10 R.J. Reynolds Tobacco Company Tobacco-derived flavorants
US11154087B2 (en) 2016-02-02 2021-10-26 R.J. Reynolds Tobacco Company Method for preparing flavorful compounds isolated from black liquor and products incorporating the flavorful compounds
US10721957B2 (en) 2016-10-04 2020-07-28 R.J. Reynolds Tobacco Company Tobacco-derived colorants and colored substrates
US10813383B2 (en) 2016-12-12 2020-10-27 R.J. Reynolds Tobacco Company Dehydration of tobacco and tobacco-derived materials
US10196778B2 (en) 2017-03-20 2019-02-05 R.J. Reynolds Tobacco Company Tobacco-derived nanocellulose material
US10470487B2 (en) 2017-04-06 2019-11-12 R.J. Reynolds Tobacco Company Smoke treatment
JP2020529206A (en) 2017-07-31 2020-10-08 アール・ジエイ・レイノルズ・タバコ・カンパニー Methods and compositions for virus-based gene editing in plants
BR112020004764A2 (en) 2017-09-11 2020-09-24 R.J. Reynolds Tobacco Company methods and compositions to increase the expression of genes of interest in a plant by coexpression with p21
US11278050B2 (en) 2017-10-20 2022-03-22 R.J. Reynolds Tobacco Company Methods for treating tobacco and tobacco-derived materials to reduce nitrosamines
WO2019239356A1 (en) 2018-06-15 2019-12-19 R. J. Reynolds Tobacco Company Purification of nicotine
US20200196658A1 (en) 2018-12-20 2020-06-25 R.J. Reynolds Tobacco Company Method for whitening tobacco
CN110343704B (en) * 2019-05-08 2020-12-11 中国科学院植物研究所 AP1 gene mutant and method for regulating and controlling plant calyx and petal opening time
US11213062B2 (en) 2019-05-09 2022-01-04 American Snuff Company Stabilizer for moist snuff
US20210068446A1 (en) 2019-09-11 2021-03-11 R. J. Reynolds Tobacco Company Oral product with cellulosic flavor stabilizer
WO2021048770A1 (en) 2019-09-11 2021-03-18 Nicoventures Trading Limited Alternative methods for whitening tobacco
US20210068448A1 (en) 2019-09-11 2021-03-11 Nicoventures Trading Limited Method for whitening tobacco
US20210068447A1 (en) 2019-09-11 2021-03-11 R. J. Reynolds Tobacco Company Pouched products with enhanced flavor stability
US11369131B2 (en) 2019-09-13 2022-06-28 Nicoventures Trading Limited Method for whitening tobacco
US11903406B2 (en) 2019-09-18 2024-02-20 American Snuff Company, Llc Method for fermenting tobacco
WO2021086367A1 (en) 2019-10-31 2021-05-06 Nicoventures Trading Limited Oral product and method of manufacture
US20210169126A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with salt inclusion
US20210169137A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Pouched products
WO2021116842A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products with controlled release
WO2021116881A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product in a pourous pouch comprising a fleece material
MX2022006980A (en) 2019-12-09 2022-08-25 Nicoventures Trading Ltd Pouched products with heat sealable binder.
WO2021116916A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral product with multiple flavors having different release profiles
WO2021116855A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral compositions and methods of manufacture
US20210169868A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions with reduced water content
US20210169121A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Liquid oral composition
US20210169784A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Buffered oral compositions
US20210169132A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition including gels
US20210169129A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Lipid-containing oral composition
US20210169890A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with polymeric component
WO2021116895A2 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Stimulus-responsive pouch
US11889856B2 (en) 2019-12-09 2024-02-06 Nicoventures Trading Limited Oral foam composition
US20210169783A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral products with controlled release
US20210169788A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral product and method of manufacture
US11793230B2 (en) 2019-12-09 2023-10-24 Nicoventures Trading Limited Oral products with improved binding of active ingredients
US20210169138A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Fibrous fleece material
US11672862B2 (en) 2019-12-09 2023-06-13 Nicoventures Trading Limited Oral products with reduced irritation
WO2021116865A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Agents for oral composition
US20210169123A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Pouched products with enhanced flavor stability
WO2021116919A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Fleece for oral product with releasable component
US20210170031A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with nanocrystalline cellulose
US11617744B2 (en) 2019-12-09 2023-04-04 Nico Ventures Trading Limited Moist oral compositions
US20210169786A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral composition with beet material
US20210169785A1 (en) 2019-12-09 2021-06-10 Nicoventures Trading Limited Oral compositions with reduced water activity
WO2021116856A2 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Oral products
WO2021116884A1 (en) 2019-12-09 2021-06-17 Nicoventures Trading Limited Layered fleece for pouched product
EP4072334A1 (en) 2019-12-09 2022-10-19 Nicoventures Trading Limited Oral product with dissolvable component
MX2022007085A (en) 2019-12-09 2022-08-19 Nicoventures Trading Ltd Nanoemulsion for oral use.
US11712059B2 (en) 2020-02-24 2023-08-01 Nicoventures Trading Limited Beaded tobacco material and related method of manufacture
WO2021250516A1 (en) 2020-06-08 2021-12-16 Nicoventures Trading Limited Effervescent oral composition comprising an active ingredient
US11937626B2 (en) 2020-09-04 2024-03-26 Nicoventures Trading Limited Method for whitening tobacco
WO2022053982A1 (en) 2020-09-11 2022-03-17 Nicoventures Trading Limited Alginate-based substrates
US20240008522A1 (en) 2020-11-18 2024-01-11 Nicoventures Trading Limited Oral products
EP4284972A1 (en) 2021-01-28 2023-12-06 Nicoventures Trading Limited Method for sealing pouches
JP2024510316A (en) 2021-03-19 2024-03-06 ニコベンチャーズ トレーディング リミテッド Extruded substrates for aerosol delivery devices
CA3212627A1 (en) 2021-03-19 2022-09-22 Caroline W. CLARK Beaded substrates for aerosol delivery devices
CA3216322A1 (en) 2021-04-22 2022-10-27 Nicoventures Trading Limited Effervescent oral composition
JP2024515358A (en) 2021-04-22 2024-04-09 ニコベンチャーズ トレーディング リミテッド Oral cavity composition and manufacturing method
US20220346436A1 (en) 2021-04-22 2022-11-03 Nicoventures Trading Limited Orally dissolving films
US20220354785A1 (en) 2021-04-22 2022-11-10 Nicoventures Trading Limited Oral lozenge products
US20220354155A1 (en) 2021-04-30 2022-11-10 Nicoventures Trading Limited Multi-compartment oral pouched product
WO2022229929A1 (en) 2021-04-30 2022-11-03 Nicoventures Trading Limited Oral products with high-density load
US20220369688A1 (en) 2021-05-06 2022-11-24 Nicoventures Trading Limited Oral compositions and related methods for reducing throat irritation
CA3222813A1 (en) 2021-06-16 2022-12-22 Anthony Richard Gerardi Pouched product comprising dissolvable composition
CA3223460A1 (en) 2021-06-21 2022-12-29 Nicoventures Trading Limited Oral product tablet and method of manufacture
WO2022269556A1 (en) 2021-06-25 2022-12-29 Nicoventures Trading Limited Oral products and method of manufacture
AU2022306261A1 (en) 2021-07-09 2024-02-29 Nicoventures Trading Limited Extruded structures
WO2023007440A1 (en) 2021-07-30 2023-02-02 Nicoventures Trading Limited Aerosol generating substrate comprising microcrystalline cellulose
US20230098503A1 (en) 2021-09-30 2023-03-30 Nicoventures Trading Limited Oral gum composition
WO2023053062A1 (en) 2021-09-30 2023-04-06 Nicoventures Trading Limited Oral product with a basic amine and an ion pairing agent
WO2023084499A1 (en) 2021-11-15 2023-05-19 Nicoventures Trading Limited Products with enhanced sensory characteristics
US20230148652A1 (en) 2021-11-15 2023-05-18 Nicoventures Trading Limited Oral products with nicotine-polymer complex
WO2023119134A1 (en) 2021-12-20 2023-06-29 Nicoventures Trading Limited Substrate material comprising beads for aerosol delivery devices
US20230309603A1 (en) 2022-03-31 2023-10-05 R.J. Reynolds Tobacco Company Agglomerated botanical material for oral products
WO2023194959A1 (en) 2022-04-06 2023-10-12 Nicoventures Trading Limited Pouched products with heat sealable binder
WO2023242822A1 (en) 2022-06-17 2023-12-21 Nicoventures Trading Limited Tobacco-coated sheet and consumable made therefrom
WO2024069542A1 (en) 2022-09-30 2024-04-04 R. J. Reynolds Tobacco Company Method for forming reconstituted tobacco
WO2024069544A1 (en) 2022-09-30 2024-04-04 Nicoventures Trading Limited Reconstituted tobacco substrate for aerosol delivery device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513532A (en) * 1983-04-14 1985-04-30 Cornnuts Hybrids, Inc. Genetic factor capable of altering leaf number and distribution in maize
EP0672155A1 (en) * 1992-06-30 1995-09-20 Asgrow Seed Company A method for obtaining a plant having altered floral morphology and a method for protecting plants against pest insects

Also Published As

Publication number Publication date
BR9510172A (en) 1997-10-14
JPH10513042A (en) 1998-12-15
EP0798958A1 (en) 1997-10-08
AU4688496A (en) 1996-07-10
US5844119A (en) 1998-12-01
WO1996019105A1 (en) 1996-06-27
AU711551B2 (en) 1999-10-14
CA2208061A1 (en) 1996-06-27
FI972581A (en) 1997-08-19
EP0798958A4 (en) 1998-05-27
NZ301454A (en) 1999-08-30
NO972903D0 (en) 1997-06-20
FI972581A0 (en) 1997-06-17
NO972903L (en) 1997-08-18
US5637785A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
US5844119A (en) Genetically modified plants having modulated flower development
US7692067B2 (en) Yield and stress tolerance in transgenic plants
US6248937B1 (en) Transcription factor and method for regulation of seed development, quality and stress-tolerance
US5880330A (en) Shoot meristem specific promoter sequences
AU757050B2 (en) Apomixis conferred by expression of SERK interacting proteins
Uberlacker et al. Ectopic expression of the maize homeobox genes ZmHox1a or ZmHox1b causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco.
AU2006314535A1 (en) EMP4 gene
US20100138962A1 (en) Use of plant chromatin remodeling genes for modulating plant architecture and growth
US6630616B1 (en) Arabidopsis MPC1 gene and methods for controlling flowering time
US5811536A (en) Cauliflower floral meristem identity genes and methods of using same
WO1996034088A2 (en) Control of floral induction in plants and uses therefor
CA2215335C (en) Cauliflower floral meristem identity genes and methods of using same
AU697810B2 (en) Genes regulating the response of (zea mays) to water deficit
AU3461099A (en) Control of floral induction in plants and uses therefor
US7632984B2 (en) Modulation of flowering time by the pft1 locus
Fan et al. BnGF14-2c Positively Regulates Flowering via the Vernalization Pathway in Semi-Winter Rapeseed. Plants 2022, 11, 2312
AU2012200697B2 (en) Modification of plant and seed development and plant responses to stresses and stimuli (4)
AU2013202724A1 (en) Modification of plant and seed development and plant responses to stresses and stimuli (6)

Legal Events

Date Code Title Description
AS Assignment

Owner name: SALK INSTITUTE FOR BIOLOGICAL STUDIES, THE, CALIFO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANOFSKY, MARTIN;WEIGEL, DETLEF;REEL/FRAME:012058/0422;SIGNING DATES FROM 20010727 TO 20010730

AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SALK INSTITUTE FOR BIOLOGICAL STUDIES, THE;REEL/FRAME:012200/0035

Effective date: 20010904

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION