US20030164119A1 - Additive for dewaterable slurry and slurry incorporating same - Google Patents

Additive for dewaterable slurry and slurry incorporating same Download PDF

Info

Publication number
US20030164119A1
US20030164119A1 US10/090,334 US9033402A US2003164119A1 US 20030164119 A1 US20030164119 A1 US 20030164119A1 US 9033402 A US9033402 A US 9033402A US 2003164119 A1 US2003164119 A1 US 2003164119A1
Authority
US
United States
Prior art keywords
cementitious slurry
fly ash
slurry according
water
up
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/090,334
Inventor
Basil Naji
Milton O'Chee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
James Hardie International Finance BV
Original Assignee
James Hardie Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by James Hardie Research Pty Ltd filed Critical James Hardie Research Pty Ltd
Priority to US10/090,334 priority Critical patent/US20030164119A1/en
Assigned to JAMES HARDIE RESEARCH PTY LIMITED reassignment JAMES HARDIE RESEARCH PTY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAJI, BASIL, O'CHEE, MILTON
Publication of US20030164119A1 publication Critical patent/US20030164119A1/en
Assigned to JAMES HARDIE INTERNATIONAL FINANCE B.V. reassignment JAMES HARDIE INTERNATIONAL FINANCE B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAMES HARDIE RESEARCH PTY LIMITED
Assigned to JAMES HARDIE INTERNATIONAL FINANCE B.V. reassignment JAMES HARDIE INTERNATIONAL FINANCE B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JAMES HARDIE RESEARCH PTY LIMITED
Application status is Abandoned legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements ; Spraying or sprinkling heads with rotating elements located upstream the outlet
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements ; Spraying or sprinkling heads with rotating elements located upstream the outlet with rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements ; Spraying or sprinkling heads with rotating elements located upstream the outlet
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements ; Spraying or sprinkling heads with rotating elements located upstream the outlet with rotating elements
    • B05B3/08Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements ; Spraying or sprinkling heads with rotating elements located upstream the outlet with rotating elements in association with stationary outlet or deflecting elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/303Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/02Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/12Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/90Reuse, recycling or recovery technologies cross-cutting to different types of waste
    • Y02W30/91Use of waste materials as fillers for mortars or concrete
    • Y02W30/92Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S106/00Compositions: coating or plastic
    • Y10S106/01Fly ash

Abstract

A cementitious slurry comprising fly ash having a predominant particle size of up to about 10 microns, and/or aluminous material having a predominant particle size of up to about 150 microns. The additive acts as a water reduction agent and can replace either wholly or partially a conventional plasticiser.

Description

    PRIORITY CLAIM
  • This application claims priority from the following Australian provisional patent applications, the full contents of which are hereby incorporated by cross-reference. [0001]
    Application No Title Date Filed
    PR3474 A Composite Product 2 Mar. 2001
    PR3475 Spattering Apparatus 2 Mar. 2001
    PR3476 Additive for a Dewaterable Slurry 2 Mar. 2001
    PR3477 A Method and Apparatus for Forming a 2 Mar. 2001
    Laminated Sheet Material by Spattering
    PR3478 Coatings for Building Products 2 Mar. 2001
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to admixtures for slurries and in particular cementitious slurry compositions. [0003]
  • 2. Description of the Related Art [0004]
  • As is well known in the art, most cementitious compositions are laid down or used in a slurry form. Increasing difficulty and expense in obtaining high quality aggregate for use in such cementitious material such as concrete has forced manufacturers to resort to low grade materials such as crushed stone, marine sand and even recycled crushed concrete obtained from demolitions or old structures. This leads to problems with the concrete such as a higher water demand, bleeding (where, as the slurry settles, water migrates to the surface), lower workability and pumpability. [0005]
  • In the past, these problems have been overcome by the addition of certain additives to the cementitious composition. These plasticisers, sometimes known as water reducers, dispersion agents or super plasticisers, act to increase the workability and validity of the slurry for a given quantity of water. Examples include lignosulphonates, naphthalene sulphonate-formaldehyde condensates. [0006]
  • Typically, these water reducers are added at around 0.3% by weight of cement and provide between 8 and 12% reduction in the water cement ratio, depending upon the addition procedure. Additions of up to 1% by cement provide up to 35% reduction in the water to cement ratio. In high performance concrete application, eg ultra high strength concrete, it is common to overdose in plasticiser/water reducer, (or combinations thereof) to obtain further water reduction of up to 50%. However, at such dosage levels detrimental effects are produced, eg setting times increased and compressive strength of a cementitious mixture reduced. [0007]
  • It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. [0008]
  • SUMMARY OF THE INVENTION
  • In a broad aspect, the present invention provides an additive for a cementitious slurry comprising of one or both of the following mineral components: [0009]
  • i) fly ash having a predominant particle size of up to about 10 microns, and [0010]
  • ii) aluminous material having a predominant particle size of up to about 150 microns. [0011]
  • The applicants have found that use of the small particle size fraction fly ash or large particle size fraction aluminous material acts as an efficient water reducer for cementitious slurries. The applicants have found that addition of a suitable quantity of such a mineral additive indeed provides a substantial reduction in water required to maintain a predetermined viscosity without any of the aforementioned detrimental effects arising from conventional techniques. The aforementioned additive does not significantly increase set times or cause excessive aeration, which can be a major problem with some known admixtures. Further, it inhibits bleeding and improves workability. [0012]
  • In a preferred embodiment, the aforementioned mineral additive can be used in combination with a conventional water reducer/plasticiser to enhance the water reduction capabilities of such a conventional additive. [0013]
  • In a second aspect, the present invention provides a cementitious slurry comprising an hydraulic binder, water, a plasticiser and a mineral additive including one or both of the following components: [0014]
  • i) fly ash having a predominant particle size of up to about 10 microns, [0015]
  • ii) aluminous material having a predominant particle size of up to about 150 microns, and [0016]
  • the mineral additive being added in a quantity sufficient to provide a water reduction effect. [0017]
  • In a third aspect, the present invention provides a method of reducing the water requirements of a cementitious slurry comprising adding an effective amount of one or both of the following mineral components: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns. [0018]
  • In a fourth aspect, the present invention provides a method of improving the properties of a cementitious slurry comprising adding an effective amount of one or both of the following mineral components: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns. [0019]
  • The reference to water reduction effect relates to the ability of the mineral additive to effectively reduce the quantity of water required to obtain a particular viscosity. As will be clear to persons skilled in the art, for certain applications, a slurry is designed to have a particular predetermined viscosity for flowability, pumpability or application reasons. The mineral additive described above provides excellent water reduction properties for a slurry. As discussed, it can be used on its own to provide water reduction to the slurry or in combination with a conventional plasticiser/water reducer. [0020]
  • When used in combination with an amount of conventional plasticiser/water reducer, it has been found that the aforementioned mineral additive enhances the water reduction properties of the slurry as will be discussed below. [0021]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The preferred embodiments of the present invention relate to the use of a mineral additive to manufacture and improve the properties of a cementitious slurry. More preferably, one or both of the following mineral additives may be used: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns. [0022]
  • The fly ash in the mineral additive refers to fly ash with a predominant particle size of up to about 10 microns. As will be clear to persons skilled in the art, fly ash is a solid powder having a chemical composition similar to or the same as the composition of material that is produced during the combustion of powdered coal. The composition typically comprises about 25 to 60% silica, about 10 to 30% Al[0023] 2O3, about 5 to 25% Fe2O3, up to about 20% CaO and up to about 5% MgO.
  • Fly ash particles are typically spherical and range in diameter from about 1 to 100 microns. It is the smaller size fraction of fly ash particles with a predominant size below about 10 microns that has surprising water reduction properties. [0024]
  • The fly ash preferably makes up about 30-100% based on weight of cement. Preferably, the fly ash is between about 40 and 90% and most preferably about 50 to 70% based on weight of cement. [0025]
  • Larger size fly ash particles have been known in the past to provide a water reduction effect. Smaller size particles, however, have always been considered unsuitable for water reduction for a few reasons. Firstly, it is expected in the art that the smaller the particle size, the more reactive the particle. Fly ash is a reactive pozzalan and accordingly, smaller size fraction fly ash was considered inappropriately reactive to act as a water reducer. [0026]
  • In addition, due to the high specific surface area of the smaller size fraction fly ash, it was expected that this material would in fact increase water demand. The applicants have surprisingly found that the opposite is in fact the case. The smaller size fraction fly ash boosts the water reducing properties of conventional water reduction agents by a substantial extent. [0027]
  • The aluminous material in the mineral additive preferably has a predominant particle size less than about 150 microns. The reference to “aluminous material” should not be taken literally but refers to alumina type materials including hydrated, partially hydrated and unhydrated alumina. Preferably, the alumina content of aluminous material based on the weight of cement is between about 5 and 30%, preferably about 10 to 25% and most preferably about 15 to 20%. [0028]
  • If a blend of hydrated alumina and fly ash is used in the mineral additive, the ratio of hydrated alumina:fly ash is preferably between about 1:1 to 1:10. [0029]
  • The term “hydraulic or cementitious binder” as used herein, means all inorganic materials which comprise compounds of calcium, aluminum, silicon, oxygen, and/or sulfur which exhibit “hydraulic activity” that is, which set solid and harden in the presence of water. Cements of this type include common Portland cements, fast setting or extra fast setting, sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements which contain secondary components such as fly ash, slag and the like. The amount of cement present in the composition of the preferred embodiments of the present invention has a lower limit of about 10 weight percent based on the total dry ingredients, preferably about 15 weight percent, more preferably about 20 weight percent, the upper limit of the amount of the cement is about 50 weight percent, preferably about 40 weight percent, more preferably about 30 weight percent. [0030]
  • The cementitious composition may optionally but preferably include at least one filler material, e.g. graded and ungraded aggregate such as washed river gravel, crushed igneous rock or limestone, lightweight aggregate, crushed hard-burnt clay bricks or air-cooled blast furnace slag, sand, calcium carbonate, silica flour, vermiculite, perlite, gypsum, etc. [0031]
  • The amount of filler present in the cementitious composition preferably has a lower limit of about 5 weight percent based on the total dry ingredients, preferably about 10 weight percent, more preferably about 15 weight percent; the upper limit being about 30 weight percent, preferably about 25 weight percent, more preferably about 20 weight percent. [0032]
  • The cementitious composition may optionally contain other additives including: cement plasticising agents such as melamine sulphonate-formaldehyde condensates, naphthalene sulphonate-formaldehyde condensates, naphthalene sulphonates, calcium lignosulphonates, sodium lignosulphonates, saccharose, sodium gluconate, sulphonic acids, carbohydrates, amino carboxylic acids, polyhydroxy carboxylic acids, sulphonated melamine, and the like. [0033]
  • The amount of conventional plasticiser used in the dry cement composition will vary, depending on the fluidising ability of the particular cement plasticiser selected. Generally, the amount of cement plasticiser is preferably in the range of about 0.3 to about 3 wt %, and more preferably about 0.5 to about 2 wt %, based on the weight of the dry cement composition. [0034]
  • Preferred plasticisers include Melment. F-10, a melamine-formaldehyde-sodium bisulphite polymer dispersant, marketed by SKW-Trostberg in the form of a fine white powder. Another suitable plasticiser is Neosyn, a condensed sodium salt of sulphonated naphthalene formaldehyde, available from Hodgson Chemicals. [0035]
  • Thickener may also be used in the cementitious composition including one or more of the polysaccharide rheology modifiers which can be further subdivided into cellulose based materials and derivatives thereof, starch based materials and derivatives thereof, and other polysaccharides. [0036]
  • Suitable cellulose based rheology-modifying agents include, for example, methylhydroxyethylcellulose, hydroxymethylethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, etc. The entire range of suitable rheology modifiers will not be listed here, nevertheless, many other cellulose materials have the same or similar properties as these and are equivalent. [0037]
  • Suitable starch based materials include, for example, amylopectin, amylose, sea-gel, starch acetates, starch hydroxyethyl ethers, ionic starches, long-chain alkylstarches, dextrins, amine starches, phosphate starches, and dialdehyde starches. [0038]
  • Other natural polysaccharide based rheology-modifying agents include, for example, alginic acid, phycocolloids, agar, gum arabic, guar gum, welan gum, locust bean gum, gum karaya, and gum tragacanth. [0039]
  • The thickener addition rate in the cementitious composition may range between 0.0001 and 0.5% based on the weight of the dry cement composition. [0040]
  • Latex addition of at least one latex selected from the group consisting of: an acrylic latex, a styrene latex, and a butadiene latex is also preferred. This component improves adherence, elasticity, stability and impermeability of the cementitious compositions containing it, and also favours formation of flexible films. [0041]
  • The latex may be used in solid amounts of about 0.5 to about 20 wt %, based on the weight of the dry cement composition. Preferably, it is present in an amount of about 1 to about 15 wt %, and more preferably about 10 wt %, based on the weight of the dry cement composition. [0042]
  • The cementitious composition may optionally incorporate as a substitute to the latex emulsion a proportion of a powdered vinyl polymer or other equivalent polymeric material, to enhance the adhesion; resilience and flexural strength; and abrasion resistance of the composition. [0043]
  • The powdered vinyl polymer is preferably polyvinyl acetate or a copolymer of vinyl acetate with another monomer, such as ethylene. A preferred vinyl acetate resin is VINNAPAS LL5044 thermoplastic resin powder, containing a vinyl acetate-ethylene copolymer, available from WACKER. [0044]
  • The powdered vinyl polymer may be used in amounts of about 0.5 to about 20 wt %, based on the weight of the dry cement composition. Preferably, it is present in an amount of about 1 to about 15 wt %, and more preferably about 10 wt %, based on the weight of the dry cement composition. [0045]
  • The cementitious composition may optionally contain about 0-40 wt % of other fillers/additives such as mineral oxides, hydroxides and clays, metal oxides and hydroxides, fire retardants such as magnesite, thickeners, silica fume or amorphous silica, colorants, pigments, water sealing agents, water reducing agents, setting rate modifiers, hardeners, filtering aids, plasticisers, dispersants, foaming agents or flocculating agents, water-proofing agents, density modifiers or other processing aids[0046]
  • EXAMPLES
  • So that the present invention may be more clearly understood it will now be described by way of example only with reference to the following embodiments. [0047]
  • Example 1 Effect of Water Reducer and Small Size Fraction Fly Ash Addition on % Water Reduction in a Cement:Fly Ash Mixture
  • Three mixes (total weight of solids=1000 gm each) were mixed with water to achieve a mix viscosity of 4-3 seconds cup drainage time. The details of the mixes are shown in Table 1 below. [0048]
    TABLE 1
    Mix 1 Mix 2 Mix 3
    Mix ingredients weight, gm weight, gm weight, gm
    Cement 300 gm 300 gm 300 gm
    Fly ash (large size 700 gm 700 gm 500 gm
    fraction)
    Fly ash (small size 200 gm
    fraction)
    Water reducer 3 gm 3 gm
    (sulphonated naphtha-
    lene formaldehyde)
    Styrene Acrylic Latex 60 ml 60 ml 60 ml
    Emulsion (56% solids)
    Welan Gum 0.1 gm 0.1 gm 0.1 gm
    (Kelcocrete)
    Water 550 ml 350 ml 325 ml
    Water reduction in 36% 41%
    mix, %
    Viscosity (drainage 3 seconds 3 seconds 4 seconds
    time in 50 ml cup)
  • It can be seen that the addition of 1% water reducer by weight in cement resulted in 36% reduction in mix water. This level of water reduction is, according to literature, about the limit of what can be achieved at such high water reducer dose. Using higher doses would result in excessively delayed setting time and reduction in the compressive strength in cementitious mixes. When part of the large size fraction fly ash was substituted with smaller size fraction (predominant particle size less that 10 microns) in mix 3, further water reduction was achieved, bringing total water reduction to 41%. This result is quite surprising, as the finer fly ash was expected to in fact increase the water demand in the mix due to its high surface area. [0049]
  • Although the water reducing effect of fly ash in cementitious mixes is well documented in literature, the plasticity enhancing effect of the smaller size fraction in an already plasticised cement:fly ash mixture is considered surprising given the universal rule that finer material exhibit larger surface area, leading to an increase in the water demand, needed as mechanical water coating the finer particles. [0050]
  • Example 1 demonstrates a means of enhancing the water reduction effect in plasticised mixes using a mineral additive with a specified size range, namely the small size fraction fly ash, without resorting to overdosing with water reducer. The result is a more durable mix with higher strength and reduced shrinkage. [0051]
  • Example 2 Water Reduction in Plasticised Mixes Substituting Large Size Fraction Fly Ash for Smaller Size Fraction Fly Ash
  • Two mixes (total weight of solids=1000 gm each) were mixed with water to achieve a mix viscosity in the range of 6-10 Poise. The details of the two mixes are shown in Table 2 below. [0052]
    TABLE 2
    Mix 1 Mix 2
    Mix ingredients weight, gm weight, gm
    Cement 300 gm 300 gm
    Fly ash (large size fraction) 400 gm 250 gm
    Fly ash (small size fraction) 150 gm
    Cenospheres 300 gm 300 gm
    Melment 15 (SKW Chemicals)  3 gm  3 gm
    (sulphonated melamine formaldehyde)
    MC 1834 Acrylic Resin (Rohm &  10 ml  10 ml
    Haas)
    Water 400 ml 325 ml
    Water reduction  19%
    Viscosity (Rotothinner) 6.5 Poise 8.8 Poise
  • It can be seen that Mix 1 which was comprised of cement, fly ash and cenospheres (ceramic hollow spheres) required 400 ml of water to achieve the required viscosity (in the presence of 1% addition of Melment F15 water reducer). The % solids in this case is 71.4%. [0053]
  • Mix 2, however, required only 325 ml of water to achieve a similar flowability. Such water reduction (around 20%) was enabled by substituting part of the larger fly ash particles with a smaller size fraction (minus 10 microns in size, average size=4 microns).The % solids in this case was increased to 75.5%. [0054]
  • Example 3 Water Reduction in Plasticised Mixes—Comparison of Silica to Fly Ash
  • Two mixes (total weight of solids=1000 gm) were mixed with water to achieve a mix viscosity of 4-3 seconds cup drainage time. The details of the two mixes are shown in Table 3 below. [0055]
    TABLE 3
    Mix 1 Mix 2
    Mix ingredients weight, gm weight, gm
    Cement 300 gm 300 gm
    Fly ash (large size fraction) 500 gm 500 gm
    Fly ash (small size fraction) 200 gm
    Silica 200 gm
    Water reducer  3 gm  3 gm
    (sulphonated naphthalene
    formaldehyde)
    Styrene Acrylic Latex Emulsion  60 ml  60 ml
    (56% solids)
    Welan Gum (Kelcocrete) 0.1 gm 0.1 gm
    Water 400 ml 325 ml
    Water reduction in plasticised mix  19%
    Viscosity (drainage time in 50 ml  4 seconds  4 seconds
    cup)
  • It can be seen that Mix 1 which was comprised of cement, fly ash and silica required 400 ml of water to achieve the required viscosity (in the presence of 1% water reducer addition). The % solids in this case is 71.4%. [0056]
  • Mix 2, however, required only 325 ml of water to achieve a similar flowability. Such water reduction (around 20%) was enabled by substituting the silica with ultra fine fraction (minus 10 microns in size, average size =4 microns).The % solids in this case was increased to 75.5%. [0057]
  • Example 4 Water Reduction in Plasticised Mixes Incorporating Combination of Hydrated Alumina and Fly Ash
  • In Table 4, the water requirements for two mixes containing 1.0% addition (by weight of cement) of a water reducer, ie sulphonated naphthalene formaldehyde, are compared. [0058]
    TABLE 4
    Weight (Mix 1) Weight (Mix 2)
    without hydrated With hydrated
    Mix ingredients alumina alumina
    Cement 10000 gm 10000 gm
    Fly ash (large size fraction) 16000 gm 16000 gm
    Fly ash (small size fraction) 8000 gm 8000 gm
    Calcium Carbonate (Omyacarb 6000 gm 4000 gm
    Grade 40)
    Hydrated Alumina 2000 gm
    Water reducer 100 gm 100 gm
    (naphthalene formaldehyde
    sulphonate)
    Welan Gum (Kelcocrete) 3 gm 3 gm
    Styrene Acrylic Latex Emulsion 2000 ml 2000 ml
    (56% solids)
    Water 16500 ml 12500
    Water reduction in plasticised mix, 25%
    %
    Viscosity (drainage time in 50 ml 3.5 seconds 3 seconds
    cup)
  • It can be seen that the addition of 2000 gm of hydrated alumina in mix 2 (in substitution of calcium carbonate), resulted in a significant reduction in the water demand, ie from 16500 to 12500 ml, for the same viscosity level. [0059]
  • This level of water reduction (around 25% in an already heavily plasticised mix) is quite unexpected. It is also contrary to conventional water reduction trends presented in cement chemistry literature which suggest that the amount of water reduction ranges generally between 15% to 35%, and that (beyond a particular dosage) further water reduction is not possible (Concrete Admixtures Handbook by, Ramachandran, 2[0060] nd edition, page 447).
  • From the examples outlined above it can be seen that using a mineral additive comprising small size fraction fly ash and/or aluminous materials provide water reduction in non-plasticised cementitious mixes or additional/enhanced water reduction in plasticised cementitious mixes containing a conventional water reducing agent. Such significant increase in water reduction between 20% and 40% will enable production of high performance cementitious mixes (lower shrinkage, higher strength, more durable), without the disadvantages of overdosing with conventional organic water reducers, ie delayed setting time, strength reduction, excessive aeration, etc. [0061]
  • It will be understood that the modifications or variations can be made to the aforementioned embodiments without departing from the spirit or scope of the present invention. In particular, it will be appreciated that the formulations, coatings, additives, methods and composite products of the present invention are suitable or may be adapted for use in conjunction with the methods and apparatus as described in the various priority documents. [0062]

Claims (14)

What is claimed is:
1. A cementitious slurry comprising:
a hydraulic binder;
water; and
a mineral additive including a component selected from the group consisting of:
i) fly ash having a predominant particle size of up to about 10 microns;
ii) aluminous material having a predominant particle size of up to about 150 microns; and
iii) both the fly ash of (i) and the aluminous material of (ii);
wherein the mineral additive is added in a quantity sufficient to provide a water reduction effect.
2. A cementitious slurry according to claim 1, wherein the fly ash comprises about 25-60% silica, about 10-30% Al2O3, about 5-25% Fe2O3 up to about 20% CaO and up to about 5% MgO.
2. A cementitious slurry according to claim 1, wherein the fly ash comprises about 30-100 wt % based on weight of cement in the slurry.
3. A cementitious slurry according to claim 1, wherein the aluminous material is selected from the group consisting of hydrated alumina, partially hydrated alumina and unhydrated alumina.
4. A cementitious slurry according to claim 1, wherein the aluminous material comprises about 5 to 30 wt % based on weight of cement in the slurry.
5. A cementitious slurry according to claim 1, wherein the ratio of hydrated alumina to fly ash is between about 1:1 and 1:10.
6. A cementitious slurry according to claim 1, wherein the hydraulic binder is selected from the group consisting of common Portland cements, fast setting or extra fast setting cement, sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements which contain secondary components such as fly ash, slag and the like.
7. A cementitious slurry according to claim 1, wherein the hydraulic binder is between about 10 and 50 wt % of total dry ingredients.
8. A cementitious slurry according to claim 1, wherein the cementitious slurry includes a conventional plasticiser.
9. A cementitious slurry according to claim 1, wherein the amount of conventional plasticiser is between about 0.3 to 3 wt % based on weight of the dry cement.
10. A cementitious slurry according to claim 1, wherein the cementitious slurry contains about 5 to 30 wt % of fillers.
11. A cementitious slurry according to claim 1, wherein the component is fly ash having a predominant particle size of up to about 10 microns.
12. A cementitious slurry according to claim 1, wherein the component is aluminous material having a predominant particle size of up to about 150 microns.
13. A cementitious slurry according to claim 1, wherein the component includes both the fly ash of (i) and the aluminous material of (ii).
US10/090,334 2002-03-04 2002-03-04 Additive for dewaterable slurry and slurry incorporating same Abandoned US20030164119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/090,334 US20030164119A1 (en) 2002-03-04 2002-03-04 Additive for dewaterable slurry and slurry incorporating same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/090,334 US20030164119A1 (en) 2002-03-04 2002-03-04 Additive for dewaterable slurry and slurry incorporating same
US10/960,150 US7419544B2 (en) 2001-03-02 2004-10-07 Additive for dewaterable slurry and slurry incorporating same
US12/195,533 US7708826B2 (en) 2001-03-02 2008-08-21 Additive for dewaterable slurry and slurry incorporating same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/960,150 Continuation US7419544B2 (en) 2001-03-02 2004-10-07 Additive for dewaterable slurry and slurry incorporating same

Publications (1)

Publication Number Publication Date
US20030164119A1 true US20030164119A1 (en) 2003-09-04

Family

ID=27804001

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/090,334 Abandoned US20030164119A1 (en) 2002-03-04 2002-03-04 Additive for dewaterable slurry and slurry incorporating same
US10/960,150 Active US7419544B2 (en) 2001-03-02 2004-10-07 Additive for dewaterable slurry and slurry incorporating same
US12/195,533 Active US7708826B2 (en) 2001-03-02 2008-08-21 Additive for dewaterable slurry and slurry incorporating same

Family Applications After (2)

Application Number Title Priority Date Filing Date
US10/960,150 Active US7419544B2 (en) 2001-03-02 2004-10-07 Additive for dewaterable slurry and slurry incorporating same
US12/195,533 Active US7708826B2 (en) 2001-03-02 2008-08-21 Additive for dewaterable slurry and slurry incorporating same

Country Status (1)

Country Link
US (3) US20030164119A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020170468A1 (en) * 2001-03-09 2002-11-21 Caidian Luo Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
US6893751B2 (en) 2001-03-02 2005-05-17 James Hardie Research Pty Limited Composite product
US20060011105A1 (en) * 2004-07-16 2006-01-19 Donald Blackmon Composition and method for stabilizing road base
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7815841B2 (en) 2000-10-04 2010-10-19 James Hardie Technology Limited Fiber cement composite materials using sized cellulose fibers
US7942964B2 (en) 2003-01-09 2011-05-17 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US8133352B2 (en) 2000-10-17 2012-03-13 James Hardie Technology Limited Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
CN103464348A (en) * 2013-09-13 2013-12-25 浙江南洋科技股份有限公司 Spraying method and spraying device for film with particles
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT337281T (en) * 2000-10-17 2006-09-15 James Hardie Int Finance Bv Fiber cement composite material with biocide treated cellulose fibers permanent
US20030164119A1 (en) * 2002-03-04 2003-09-04 Basil Naji Additive for dewaterable slurry and slurry incorporating same
MXPA05004969A (en) * 2002-11-05 2005-08-02 James Hardie Int Finance Bv Method and apparatus for producing calcium silicate hydrate.
WO2005012203A2 (en) * 2003-08-01 2005-02-10 Aalborg Universitet Method for preparing materials containing binder systems derived from amorphous silica and bases
FR2875802B1 (en) * 2004-09-29 2006-12-29 Inst Francais Du Petrole Material of cementing a well
KR101313015B1 (en) * 2005-10-17 2013-10-01 디씨 컴퍼니 리미티드 Cement additive and cement composition
US7341105B2 (en) * 2006-06-20 2008-03-11 Holcim (Us) Inc. Cementitious compositions for oil well cementing applications
US7799128B2 (en) * 2008-10-10 2010-09-21 Roman Cement, Llc High early strength pozzolan cement blends
CN102325735B (en) * 2008-12-23 2014-07-16 格雷斯公司 Suppression of antagonistic hydration reactions in blended cements
US9272953B2 (en) 2010-11-30 2016-03-01 Roman Cement, Llc High early strength cement-SCM blends
US8414700B2 (en) 2010-07-16 2013-04-09 Roman Cement, Llc Narrow PSD hydraulic cement, cement-SCM blends, and methods for making same
NO334970B1 (en) * 2011-06-01 2014-08-11 Elkem As cement Compositions
BR112014009653A2 (en) 2011-10-20 2017-05-09 Roman Cement Llc SCM-cement mixtures with compressed particles
WO2014066823A1 (en) 2012-10-26 2014-05-01 The Andersons, Inc. Cementitious clumping material
US10131575B2 (en) 2017-01-10 2018-11-20 Roman Cement, Llc Use of quarry fines and/or limestone powder to reduce clinker content of cementitious compositions

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244804A (en) * 1979-01-15 1981-01-13 Innova, Inc. Slime and sludge dewatering
US4339289A (en) * 1980-08-25 1982-07-13 Battelle Development Corporation Concrete overlay construction
US4379729A (en) * 1979-08-09 1983-04-12 Tarmac Industrial Holdings Limited Method and apparatus for the production of composite sheet material and a sheet material produced thereby
US4383960A (en) * 1980-06-18 1983-05-17 Adrien Delcoigne Process and mechanism for the elimination of excess water from a mixture of plaster and water, and the product obtained
US4441944A (en) * 1981-12-31 1984-04-10 Pmp Corporation Building board composition and method of making same
US4767491A (en) * 1985-02-15 1988-08-30 Moplefan S.P.A. Device for the continuous production of manufactured articles reinforced with mixtures of hydraulic binders
US4816091A (en) * 1987-09-24 1989-03-28 Miller Robert G Method and apparatus for producing reinforced cementious panel webs
US4840688A (en) * 1987-09-11 1989-06-20 Pfleiderer Industrie Gmbh & Co., Kg Method for the production of fibrous plaster boards
US4904503A (en) * 1987-09-29 1990-02-27 W. R. Grace & Co.-Conn. Rapid setting cementitious fireproofing compositions and method of spray applying same
US4994113A (en) * 1990-02-06 1991-02-19 Core-Guard Industries, Inc. Mixture for the preparation of building materials
US5338357A (en) * 1991-10-01 1994-08-16 Polyfibre S.A. Fibre reinforced shaped solid articles
US5583079A (en) * 1994-07-19 1996-12-10 Golitz; John T. Ceramic products, of glass, fly ash and clay and methods of making the same
US5681384A (en) * 1995-04-24 1997-10-28 New Jersey Institute Of Technology Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash
US5728458A (en) * 1995-04-04 1998-03-17 Diversitech Corporation Light-weight high-strength composite pad
US5820668A (en) * 1995-12-22 1998-10-13 Ib Technologies Llc Inorganic binder composition, production and uses thereof
US5888322A (en) * 1997-07-14 1999-03-30 Nalco Chemical Company Polymeric oxyalkylate viscosity modifiers for use in gypsum wallboard production
US6008275A (en) * 1997-05-15 1999-12-28 Mbt Holding Ag Cementitious mixture containing high pozzolan cement replacement and compatabilizing admixtures therefor
US6204214B1 (en) * 1996-03-18 2001-03-20 University Of Chicago Pumpable/injectable phosphate-bonded ceramics
US6387175B1 (en) * 2000-10-05 2002-05-14 Bethlehem Steel Corporation Roadway base intermediate, roadway base, and methods of manufacture
US6482258B2 (en) * 2000-01-28 2002-11-19 Mineral Resource Technologies, Llc Fly ash composition for use in concrete mix
US20020192510A1 (en) * 2001-03-02 2002-12-19 Basil Naji Composite product
US6682595B1 (en) * 2002-09-12 2004-01-27 Ronald Lee Barbour Settable composition containing potassium sulfate

Family Cites Families (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987408A (en) * 1958-03-27 1961-06-06 Corson G & W H Pozzolanic material
US3360392A (en) 1964-07-09 1967-12-26 Celotex Corp Apparatus and method for applying spatter finish
US3501324A (en) * 1966-07-15 1970-03-17 Osaka Packing Manufacturing aqueous slurry of hydrous calcium silicate and products thereof
US3679446A (en) * 1968-06-04 1972-07-25 Osaka Packing Molding materials of calcium silicate hydrate and shaped products thereof
DE1784657B2 (en) 1968-09-02 1977-12-01 Ferma International Entwicklungswerk Fuer Rationelle Fertigbaumethoden Und Maschinenanlagen Gmbh & Co Kg, 7516 Karlsbad
GB1136661A (en) * 1970-02-13 1968-12-11 W N Nicholson & Sons Ltd Improvements in or relating to agricultural implements
US3782985A (en) * 1971-11-26 1974-01-01 Cadcom Inc Lightweight,high strength concrete and method for manufacturing the same
US3843380A (en) 1972-12-26 1974-10-22 Scm Corp Process for spray drying pigment
DE2349910B2 (en) * 1973-10-04 1978-05-18 Hoechst Ag, 6000 Frankfurt
US3873025A (en) * 1974-05-06 1975-03-25 Stora Kopparbergs Bergslags Ab Method and apparatus for atomizing a liquid medium and for spraying the atomized liquid medium in a predetermined direction
US3932275A (en) * 1974-08-29 1976-01-13 Amax Resource Recovery Systems, Inc. Process for the treatment of mineral slimes
US4101335A (en) * 1976-11-04 1978-07-18 Cape Boards & Panels Ltd. Building board
FR2317246B1 (en) * 1975-07-09 1980-11-07 Sumitomo Chemical Co
US4039170A (en) * 1975-09-08 1977-08-02 Cornwell Charles E System of continuous dustless mixing and aerating and a method combining materials
US4052220A (en) 1975-09-10 1977-10-04 The Partners Limited Method of making an improved concrete
IE45045B1 (en) * 1975-10-28 1982-06-16 Ici Ltd Cementitious compositions
US4240840A (en) 1975-10-28 1980-12-23 Imperial Chemical Industries Limited Cementitious compositions
US4066723A (en) * 1976-03-19 1978-01-03 Caterpillar Tractor Co. Method and apparatus for making fibrous concrete
JPS5549023B2 (en) * 1976-05-10 1980-12-09
JPS5363419A (en) * 1976-11-18 1978-06-06 Asahi Glass Co Ltd Spraying appratus for grc
BG24579A1 (en) * 1977-03-11 1978-04-12 Simeonov Method of rapid setting of cement and improving ts quality
US4131480A (en) * 1977-03-16 1978-12-26 Fosroc Holdings (U.K.) Limited Pumpable cementitious compositions
NZ187098A (en) * 1977-05-03 1981-04-24 Hardie & Co Pty Ltd J Production of laminated asbestos cement slabs
US4188231A (en) * 1977-06-17 1980-02-12 Valore Rudolph C Methods of preparing iron oxide mortars or cements with admixtures and the resulting products
US4131638A (en) 1977-07-05 1978-12-26 Johns-Manville Corporation Process for the manufacture of calcium silicate hydrate objects
DE2829886C2 (en) * 1978-07-07 1988-08-25 Maschinenfabrik Max Kroenert, 2000 Hamburg, De
DE2835423A1 (en) * 1978-08-12 1980-03-06 Hoechst Ag Concrete and moertelzusatzmittel and its use
AU528009B2 (en) * 1978-11-21 1983-03-31 Stamicarbon B.V. Sheet of fibre-reinforced hydraulically bindable material
US4250134A (en) * 1979-06-20 1981-02-10 L. John Minnick Method for the production of cementitious compositions and aggregate derivatives from said compositions
IT1121592B (en) 1979-06-21 1986-04-02 Montedison Spa Method and device for the manufacture of concrete reinforcing plates
CA1132321A (en) * 1979-07-20 1982-09-28 Mold-Masters Limited Injection molding filter assembly
US4268316A (en) * 1979-07-27 1981-05-19 Martin Marietta Corporation Masonry cement composition
US4335177A (en) 1979-10-03 1982-06-15 Kurimoto Iron Works, Ltd. Glass fiber-reinforced cement plates
US4256504A (en) * 1979-10-16 1981-03-17 The United States Of America As Represented By The Secretary Of The Interior Fly ash-based cement
US4328145A (en) * 1979-10-26 1982-05-04 American Admixtures And Chemicals Corporation Additive for air-entrained super plasticized concrete, concrete produced thereby and method of producing air-entrained super plasticized concrete
CA1140846A (en) 1980-01-10 1983-02-08 Robert B. Bruce Sag-resistant gypsum board and method
JPS56109855A (en) * 1980-02-04 1981-08-31 Mitsubishi Chem Ind Manufacture of calcium silicate formed body
US4298413A (en) * 1980-03-03 1981-11-03 Teare John W Method and apparatus for producing concrete panels
US4374672A (en) * 1980-04-04 1983-02-22 The Detroit Edison Company Method of and composition for producing a stabilized fill material
CS222361B1 (en) 1980-06-13 1983-06-24 Jan Vrbecky Muxture for autoclaved lime-silicon concrete
US4441723A (en) * 1980-12-02 1984-04-10 General Connectors Corp. Duct seal
US4394175A (en) * 1981-05-07 1983-07-19 Cheriton Leslie W Self-levelling cementitious mixes
CH648272A5 (en) * 1981-10-12 1985-03-15 Sika Ag Alkali-free setting and curing accelerator, as well as method for accelerating the setting and hardening of a hydraulic binder.
JPS6257590B2 (en) * 1982-02-24 1987-12-01 Mitsubishi Chem Ind
US4450022A (en) * 1982-06-01 1984-05-22 United States Gypsum Company Method and apparatus for making reinforced cement board
GB2128178B (en) 1982-10-01 1986-01-08 Bryan James Walker Lightweight aggregate
US4478736A (en) 1983-01-14 1984-10-23 Monier Resources, Inc. Composition and process for the treatment of clay slimes
US4495301A (en) * 1983-04-06 1985-01-22 Dresser Industries, Inc. Insulating refractories
US4504335A (en) * 1983-07-20 1985-03-12 United States Gypsum Company Method for making reinforced cement board
US4572862A (en) * 1984-04-25 1986-02-25 Delphic Research Laboratories, Inc. Fire barrier coating composition containing magnesium oxychlorides and high alumina calcium aluminate cements or magnesium oxysulphate
FR2573064B1 (en) * 1984-11-15 1991-10-25 Schlumberger Cie Dowell cement slurry allege improved composition for cementing oil wells and gas
JPS61178462A (en) * 1985-02-05 1986-08-11 Denki Kagaku Kogyo Kk High strength cement composition
JPS6217056A (en) * 1985-07-12 1987-01-26 Shimizu Construction Co Ltd High fluidity concrete
CN1019099B (en) * 1985-08-06 1992-11-18 电气化学工业株式会社 High-strength water hard composite
NO158499C (en) * 1985-09-03 1988-09-21 Elkem As Hydraulic cement slurry.
JPH0436109B2 (en) * 1985-11-07 1992-06-15 Kao Corp
US5580508A (en) 1986-04-04 1996-12-03 Ube Industries, Ltd. Process for preparing calcium silicate articles
JPS62252357A (en) 1986-04-23 1987-11-04 Mitsubishi Chem Ind Manufacture of water-repellant calcium silicate formed body
DE3619363C2 (en) * 1986-06-09 1992-08-06 Chemische Werke Brockhues Ag, 6229 Walluf, De
US4915740A (en) * 1986-09-25 1990-04-10 Denki Kagaku Kogyo Kabushiki Kaisha Hydraulic material composition having high strength
US4772328A (en) 1986-12-18 1988-09-20 Basf Corporation Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
US5073197A (en) 1988-08-12 1991-12-17 National Research Development Corporation Cement compositions
EP0314242A1 (en) * 1987-10-28 1989-05-03 Pumptech N.V. Additives for oilfield cements and corresponding cement slurries
NO165673C (en) * 1987-11-16 1991-03-20 Elkem As Hydraulic cement slurry.
SU1571024A1 (en) 1988-01-04 1990-06-15 Херсонский Сельскохозяйственный Институт Им.А.Д.Цюрупы Complex additive for concrete mix
US4846889A (en) * 1988-02-02 1989-07-11 The Dow Chemical Company Polymeric blend useful in thin-bed mortar compositions comprising a water-soluble cellulose ether and a water-insoluble, but water-dispersible polymer
JPH07115902B2 (en) 1988-05-06 1995-12-13 信越化学工業株式会社 Extruded cement composition
GB8813894D0 (en) * 1988-06-11 1988-07-13 Redland Roof Tiles Ltd Process for production of concrete building products
IT1226339B (en) * 1988-07-18 1991-01-09 Fibronit Spa Apparatus and process for the production of slabs for construction consisting of cement, inert materials and additives and reinforced with plastics mesh.
IT8822310D0 (en) 1988-10-14 1988-10-14 Fibronit Spa Building sheets of cement material reinforced with plastics mesh and glass fibers
SU1668346A1 (en) 1989-01-09 1991-08-07 Хабаровский политехнический институт Method for decorative finishing surfaces of concrete articles
DK160709C (en) * 1989-03-10 1991-09-16 Kkkk As Process for the preparation of acid-proof sulfur concrete pipes.
CH679149A5 (en) 1989-05-19 1991-12-31 Sika Ag
DE69008066D1 (en) 1989-07-19 1994-05-19 Takeda Chemical Industries Ltd Hydraulic inorganic composition and moldings thereof.
US5192366A (en) * 1989-12-05 1993-03-09 Denki Kagaku Koygo Kabushiki Kaisha Cement admixture and cement composition
US5174821A (en) 1989-12-12 1992-12-29 Taisei Corporation Hydraulic composition, formed products therefrom and segregation reduction agent for hydraulic substances
US5032548A (en) * 1990-02-27 1991-07-16 Marathon Oil Company Construction material containing catalytic cracking catalyst particles
JPH04260645A (en) 1991-02-12 1992-09-16 Nkk Corp Production of hydraulic composition and cured product
GB9102904D0 (en) 1991-02-12 1991-03-27 Ici America Inc Modified cementitious composition
KR960016061B1 (en) * 1991-04-09 1996-11-27 기무라 미찌오 Low heat building cement composition
JP2635884B2 (en) 1991-06-25 1997-07-30 日本国土開発株式会社 Concrete composition
TW210994B (en) * 1991-09-03 1993-08-11 Hoechst Ag
US5236773A (en) * 1991-10-25 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Fire-resistant barriers for composite materials
US5536310A (en) * 1991-11-27 1996-07-16 Sandoz Ltd. Cementitious compositions containing fly ash
US5556458A (en) * 1991-11-27 1996-09-17 Sandoz Ltd. Cementitious compositions
US5314119A (en) * 1992-04-20 1994-05-24 Latanick Equipment, Inc. Method and apparatus for applying thin coatings of fluid droplets
JP2736206B2 (en) 1992-06-23 1998-04-02 株式会社クボタ Extrusion method of the cementitious building material
US5342485A (en) * 1992-08-05 1994-08-30 Reynolds Metals Company Process for preparing ultra-white alumina trihydrate
US5549859A (en) * 1992-08-11 1996-08-27 E. Khashoggi Industries Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions
US5453310A (en) * 1992-08-11 1995-09-26 E. Khashoggi Industries Cementitious materials for use in packaging containers and their methods of manufacture
US5508072A (en) * 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5294255A (en) * 1992-09-23 1994-03-15 Specrete-Ip Incorporated Pumpable backfill grout
JP2688155B2 (en) 1992-11-04 1997-12-08 株式会社クボタ Extrusion molding method of a fiber reinforced mineral products
CA2110658A1 (en) 1992-12-16 1994-06-17 Theodor A. Burge Thixotroping and set-accelerating additive for mixtures containing a hydraulic binder, process using the additive, apparatus for preparing the mixtures containing a hydraulic binder as well as the additive
US5439518A (en) * 1993-01-06 1995-08-08 Georgia-Pacific Corporation Flyash-based compositions
US5346012A (en) 1993-02-01 1994-09-13 Halliburton Company Fine particle size cement compositions and methods
JPH06256053A (en) * 1993-03-01 1994-09-13 Denki Kagaku Kogyo Kk Cement admixture and cement composition
US5383521A (en) * 1993-04-01 1995-01-24 Halliburton Company Fly ash cementing compositions and methods
JP3420274B2 (en) * 1993-04-05 2003-06-23 ダブリュー・アール・グレース・アンド・カンパニー−コーン The novel cement dispersant composition excellent in fluidity dropping prevention
US5366637A (en) 1993-05-24 1994-11-22 Betz Laboratories, Inc. Method for dewatering municipal solid waste refuse
US5490889A (en) * 1993-05-27 1996-02-13 Kirkpatrick; William D. Blended hydraulic cement for both general and special applications
US5374308A (en) * 1993-05-27 1994-12-20 Kirkpatrick; William D. Blended hydraulic cement for both general and special applications
DE4320508A1 (en) 1993-06-21 1994-12-22 Hoechst Ag Thickener combinations of macro surfactants and organic additives for aqueous application systems
JP3101788B2 (en) 1993-07-26 2000-10-23 信越化学工業株式会社 Cement composition
US5484480A (en) * 1993-10-19 1996-01-16 Jtm Industries, Inc. Use of alumina clay with cement fly ash mixtures
JPH07187734A (en) * 1993-12-24 1995-07-25 Sekisui Chem Co Ltd Curable inorganic composition
WO1995021050A1 (en) * 1994-02-01 1995-08-10 Northwestern University Extruded fiber-reinforced cement matrix composites
US5403394A (en) * 1994-02-24 1995-04-04 Burgand; Yves Self-leveling floor coating material
DE4416160A1 (en) 1994-05-09 1995-11-16 Durapact Glasfaserbetontechn Method and apparatus for the continuous production of fiber-reinforced molded bodies from hydraulically setting materials
US5624491A (en) * 1994-05-20 1997-04-29 New Jersey Institute Of Technology Compressive strength of concrete and mortar containing fly ash
US5562832A (en) 1995-01-13 1996-10-08 Beloit Technologies, Inc. Absorptive sludge dewatering process for papermaking waste
AUPN504095A0 (en) * 1995-08-25 1995-09-21 James Hardie Research Pty Limited Cement formulation
DE19607081C2 (en) * 1996-02-24 1999-09-09 Bilfinger & Berger Umweltverfa A method for immobilizing pollutants and to solidify the immobilized system, and use of the products obtained
JP3719546B2 (en) 1996-04-22 2005-11-24 株式会社エーアンドエーマテリアル Calcium silicate board and a manufacturing method thereof
JP3318487B2 (en) * 1996-05-24 2002-08-26 ニチハ株式会社 Method of manufacturing a wood cement board
SE9603418D0 (en) 1996-09-19 1996-09-19 Eka Chemicals Ab A method for the preparation of a hardening composition
CN1160070A (en) * 1996-12-09 1997-09-24 万启洪 Multipurpose temp.-resistent water-proof material
US5714003A (en) * 1997-02-12 1998-02-03 Mineral Resource Technologies, Llc Blended hydraulic cement
AUPO612097A0 (en) * 1997-04-10 1997-05-08 James Hardie Research Pty Limited Building products
GB9708831D0 (en) * 1997-04-30 1997-06-25 Unilever Plc Suspensions with high storage stability, comprising an aqueous silicate solution and filler material
JPH10330146A (en) 1997-05-29 1998-12-15 Sekisui Chem Co Ltd Production of hydraulic inorganic molded product
AU738096B2 (en) * 1997-08-15 2001-09-06 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US5900053A (en) * 1997-08-15 1999-05-04 Halliburton Energy Services, Inc. Light weight high temperature well cement compositions and methods
US5817230A (en) 1997-08-29 1998-10-06 University Of Kentucky Research Foundation Method for improving the pozzolanic character of fly ash
JPH1192202A (en) 1997-09-24 1999-04-06 Matsushita Electric Works Ltd Production of inorganic hardened molded form
JPH11139859A (en) * 1997-11-04 1999-05-25 Sumitomo Osaka Cement Co Ltd Very quick-hardening cement composition
US6409819B1 (en) * 1998-06-30 2002-06-25 International Mineral Technology Ag Alkali activated supersulphated binder
KR20000014685A (en) * 1998-08-24 2000-03-15 정종순 Light insulating mortar composition having improved curing property and contraction-stability
JP2000160057A (en) 1998-11-27 2000-06-13 Ando Corp Material for building and civil engineering work
JP2001026485A (en) 1999-07-13 2001-01-30 Sumitomo Osaka Cement Co Ltd Formed body of hydraulic composition
AUPQ246599A0 (en) 1999-08-26 1999-09-16 James Hardie Research Pty Limited Extrudable cementitious material
GB9928977D0 (en) * 1999-12-08 2000-02-02 Mbt Holding Ag Process
US6533848B1 (en) * 2000-03-13 2003-03-18 University Of Kentucky Research Foundation Technology and methodology for the production of high quality polymer filler and super-pozzolan from fly ash
US6572697B2 (en) * 2000-03-14 2003-06-03 James Hardie Research Pty Limited Fiber cement building materials with low density additives
US6375853B1 (en) * 2000-03-17 2002-04-23 Roe-Hoan Yoon Methods of using modified natural products as dewatering aids for fine particles
US6809131B2 (en) * 2000-07-10 2004-10-26 The Regents Of The University Of Michigan Self-compacting engineered cementitious composite
AU9505501A (en) * 2000-10-04 2002-04-15 James Hardie Res Pty Ltd Fiber cement composite materials using cellulose fibers loaded with inorganic and/or organic substances
JP5089009B2 (en) * 2000-10-04 2012-12-05 ジェイムズ ハーディー テクノロジー リミテッドJames Hardie Technology Limited Fiber cement composite materials using sizing already cellulose fibers
FR2815342B1 (en) * 2000-10-13 2003-08-01 Francais Ciments Cementitious composition, its use for the achievement of self-leveling floor screed and screed thus obtained
US20050126430A1 (en) * 2000-10-17 2005-06-16 Lightner James E.Jr. Building materials with bioresistant properties
NZ525393A (en) * 2000-10-17 2006-03-31 James Hardie Int Finance Bv Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials
AT337281T (en) * 2000-10-17 2006-09-15 James Hardie Int Finance Bv Fiber cement composite material with biocide treated cellulose fibers permanent
US20030164119A1 (en) * 2002-03-04 2003-09-04 Basil Naji Additive for dewaterable slurry and slurry incorporating same
US7155866B2 (en) * 2002-11-05 2007-01-02 Certainteed Corporation Cementitious exterior sheathing product having improved interlaminar bond strength
US7028436B2 (en) * 2002-11-05 2006-04-18 Certainteed Corporation Cementitious exterior sheathing product with rigid support member
JP2005034695A (en) * 2003-07-16 2005-02-10 Kyowa Exeo Corp Device and method for collecting molten fly ash
RU2243189C1 (en) * 2003-07-30 2004-12-27 Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет - УПИ" Method of production of non-steam-and-pressure cured concrete and composition of mixture of such concrete
US6832652B1 (en) * 2003-08-22 2004-12-21 Bj Services Company Ultra low density cementitious slurries for use in cementing of oil and gas wells

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4244804A (en) * 1979-01-15 1981-01-13 Innova, Inc. Slime and sludge dewatering
US4379729A (en) * 1979-08-09 1983-04-12 Tarmac Industrial Holdings Limited Method and apparatus for the production of composite sheet material and a sheet material produced thereby
US4383960A (en) * 1980-06-18 1983-05-17 Adrien Delcoigne Process and mechanism for the elimination of excess water from a mixture of plaster and water, and the product obtained
US4339289A (en) * 1980-08-25 1982-07-13 Battelle Development Corporation Concrete overlay construction
US4441944A (en) * 1981-12-31 1984-04-10 Pmp Corporation Building board composition and method of making same
US4767491A (en) * 1985-02-15 1988-08-30 Moplefan S.P.A. Device for the continuous production of manufactured articles reinforced with mixtures of hydraulic binders
US4840688A (en) * 1987-09-11 1989-06-20 Pfleiderer Industrie Gmbh & Co., Kg Method for the production of fibrous plaster boards
US4816091A (en) * 1987-09-24 1989-03-28 Miller Robert G Method and apparatus for producing reinforced cementious panel webs
US4904503A (en) * 1987-09-29 1990-02-27 W. R. Grace & Co.-Conn. Rapid setting cementitious fireproofing compositions and method of spray applying same
US4994113A (en) * 1990-02-06 1991-02-19 Core-Guard Industries, Inc. Mixture for the preparation of building materials
US5338357A (en) * 1991-10-01 1994-08-16 Polyfibre S.A. Fibre reinforced shaped solid articles
US5583079A (en) * 1994-07-19 1996-12-10 Golitz; John T. Ceramic products, of glass, fly ash and clay and methods of making the same
US5728458A (en) * 1995-04-04 1998-03-17 Diversitech Corporation Light-weight high-strength composite pad
US5681384A (en) * 1995-04-24 1997-10-28 New Jersey Institute Of Technology Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash
US5820668A (en) * 1995-12-22 1998-10-13 Ib Technologies Llc Inorganic binder composition, production and uses thereof
US6204214B1 (en) * 1996-03-18 2001-03-20 University Of Chicago Pumpable/injectable phosphate-bonded ceramics
US6008275A (en) * 1997-05-15 1999-12-28 Mbt Holding Ag Cementitious mixture containing high pozzolan cement replacement and compatabilizing admixtures therefor
US5888322A (en) * 1997-07-14 1999-03-30 Nalco Chemical Company Polymeric oxyalkylate viscosity modifiers for use in gypsum wallboard production
US6482258B2 (en) * 2000-01-28 2002-11-19 Mineral Resource Technologies, Llc Fly ash composition for use in concrete mix
US6387175B1 (en) * 2000-10-05 2002-05-14 Bethlehem Steel Corporation Roadway base intermediate, roadway base, and methods of manufacture
US20020192510A1 (en) * 2001-03-02 2002-12-19 Basil Naji Composite product
US6749897B2 (en) * 2001-03-02 2004-06-15 James Hardie Research Pty Limited Coatings for building products and methods of using same
US6682595B1 (en) * 2002-09-12 2004-01-27 Ronald Lee Barbour Settable composition containing potassium sulfate

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658794B2 (en) 2000-03-14 2010-02-09 James Hardie Technology Limited Fiber cement building materials with low density additives
US7727329B2 (en) 2000-03-14 2010-06-01 James Hardie Technology Limited Fiber cement building materials with low density additives
US8603239B2 (en) 2000-03-14 2013-12-10 James Hardie Technology Limited Fiber cement building materials with low density additives
US8182606B2 (en) 2000-03-14 2012-05-22 James Hardie Technology Limited Fiber cement building materials with low density additives
US7815841B2 (en) 2000-10-04 2010-10-19 James Hardie Technology Limited Fiber cement composite materials using sized cellulose fibers
US8268119B2 (en) 2000-10-17 2012-09-18 James Hardie Technology Limited Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials
US8133352B2 (en) 2000-10-17 2012-03-13 James Hardie Technology Limited Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials
US6893751B2 (en) 2001-03-02 2005-05-17 James Hardie Research Pty Limited Composite product
US7704316B2 (en) 2001-03-02 2010-04-27 James Hardie Technology Limited Coatings for building products and methods of making same
US20050208287A1 (en) * 2001-03-02 2005-09-22 Basil Naji Composite product
US7857906B2 (en) 2001-03-09 2010-12-28 James Hardie Technology Limited Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
US7344593B2 (en) 2001-03-09 2008-03-18 James Hardie International Finance B.V. Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
US20020170468A1 (en) * 2001-03-09 2002-11-21 Caidian Luo Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7942964B2 (en) 2003-01-09 2011-05-17 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US8333836B2 (en) 2003-01-09 2012-12-18 James Hardie Technology Limited Fiber cement composite materials using bleached cellulose fibers
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
US20100272511A1 (en) * 2004-07-16 2010-10-28 Enviroad, Llc Composition and method for stabilizing road base
US7758280B2 (en) 2004-07-16 2010-07-20 Enviroad, Llc Composition and method for stabilizing road base
US20080300346A1 (en) * 2004-07-16 2008-12-04 Enviroad, Llc Composition and method for stabilizing road base
US20060011105A1 (en) * 2004-07-16 2006-01-19 Donald Blackmon Composition and method for stabilizing road base
US8993462B2 (en) 2006-04-12 2015-03-31 James Hardie Technology Limited Surface sealed reinforced building element
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
CN103464348A (en) * 2013-09-13 2013-12-25 浙江南洋科技股份有限公司 Spraying method and spraying device for film with particles

Also Published As

Publication number Publication date
US20050045067A1 (en) 2005-03-03
US20080302277A1 (en) 2008-12-11
US7419544B2 (en) 2008-09-02
US7708826B2 (en) 2010-05-04

Similar Documents

Publication Publication Date Title
US6749897B2 (en) Coatings for building products and methods of using same
CA2286609C (en) Cementitious gypsum-containing binders and compositions and materials made therefrom
US5718759A (en) Cementitious gypsum-containing compositions and materials made therefrom
RU2470884C2 (en) Light cementing compositions and construction products and methods for production thereof
US8366823B2 (en) Fly ash based lightweight cementitious composition with high compressive strength and fast set
US6437027B1 (en) Process for producing dispersant for powdery hydraulic composition
US7056964B2 (en) High strength flooring compositions
US4188231A (en) Methods of preparing iron oxide mortars or cements with admixtures and the resulting products
EP1081113A1 (en) Gypsum-cement system for construction materials
US7041167B2 (en) Low density accelerant and strength enhancing additive for cementitious products and methods of using same
US3232777A (en) Cementitious composition and method of preparation
JP6207591B2 (en) Stable geopolymer compositions of dimensions and methods
US20070056479A1 (en) Concrete mixtures incorporating high carbon pozzolans and foam admixtures
US4318744A (en) Strength enhancing admixture for concrete compositions
CA2367798C (en) Polymer-cement composites and methods of making same
US6310143B1 (en) Derivatized polycarboxylate dispersants
EP0077129B1 (en) Additive for hydraulic cement mixes
US4210457A (en) Portland cement-fly ash-aggregate concretes
US4746365A (en) Utilization of latexes with hydraulic cement and gypsum compositions
US6869474B2 (en) Very fast setting cementitious composition
US5439518A (en) Flyash-based compositions
US6451104B2 (en) Method for producing a blended cementitious composition
US6800130B2 (en) Construction material
US4268316A (en) Masonry cement composition
US6387173B2 (en) Composition and method to prepare a concrete composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: JAMES HARDIE RESEARCH PTY LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAJI, BASIL;O'CHEE, MILTON;REEL/FRAME:012957/0343

Effective date: 20020529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V., NETHERLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:016309/0067

Effective date: 20050207

Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V.,NETHERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:016309/0067

Effective date: 20050207

AS Assignment

Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V., NETHERLAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:015980/0271

Effective date: 20050207

Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V.,NETHERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:015980/0271

Effective date: 20050207