US20030163999A1 - Evaporator fan control system for a multi-compartment refrigerator - Google Patents

Evaporator fan control system for a multi-compartment refrigerator Download PDF

Info

Publication number
US20030163999A1
US20030163999A1 US10/087,453 US8745302A US2003163999A1 US 20030163999 A1 US20030163999 A1 US 20030163999A1 US 8745302 A US8745302 A US 8745302A US 2003163999 A1 US2003163999 A1 US 2003163999A1
Authority
US
United States
Prior art keywords
compartment
thermostat
evaporator fan
fresh food
control module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/087,453
Other versions
US6622503B1 (en
Inventor
William Bennett
James Reier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robertshaw Controls Co
Original Assignee
Ranco Inc of Delaware
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ranco Inc of Delaware filed Critical Ranco Inc of Delaware
Priority to US10/087,453 priority Critical patent/US6622503B1/en
Assigned to RANCO INCORPORATED OF DELAWARE reassignment RANCO INCORPORATED OF DELAWARE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENNETT, WILLIAM B., REIER, JAMES T.
Publication of US20030163999A1 publication Critical patent/US20030163999A1/en
Application granted granted Critical
Publication of US6622503B1 publication Critical patent/US6622503B1/en
Assigned to CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT reassignment CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT GRANT OF A SECURITY INTEREST - PATENTS Assignors: FOX US BIDCO CORP., ROBERTSHAW CONTROLS COMPANY
Assigned to FOX US BIDCO CORP. reassignment FOX US BIDCO CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RANCO INCORPORATED OF DELAWARE
Assigned to CERBERUS BUSINESS FINANCE, LLC reassignment CERBERUS BUSINESS FINANCE, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FOX US BIDCO CORP., ROBERTSHAW CONTROLS COMPANY
Assigned to ROBERTSHAW US HOLDING CORP. reassignment ROBERTSHAW US HOLDING CORP. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: FOX US BIDCO CORP.
Assigned to SUN BSI FINANCE, LLC reassignment SUN BSI FINANCE, LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP
Assigned to BURNER SYSTEMS INTERNATIONAL, INC., ROBERTSHAW US HOLDING CORP., ROBERTSHAW CONTROLS COMPANY reassignment BURNER SYSTEMS INTERNATIONAL, INC. RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 039186/0671 Assignors: SUN BSI FINANCE, LLC
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT FIRST LIEN SECURITY AGREEMENT Assignors: BURNER SYSTEMS INTERNATIONAL, INC., ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP.
Assigned to GOLDMAN SACHS LENDING PARTNERS LLC, AS ADMINISTRATIVE AGENT reassignment GOLDMAN SACHS LENDING PARTNERS LLC, AS ADMINISTRATIVE AGENT SECOND LIEN SECURITY AGREEMENT Assignors: BURNER SYSTEMS INTERNATIONAL, INC., ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP.
Assigned to ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP. (F/K/A FOX US BIDCO CORP.) reassignment ROBERTSHAW CONTROLS COMPANY RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033766/0705 Assignors: CERBERUS BUSINESS FINANCE, LLC
Assigned to ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP. (F/K/A FOX US BIDCO CORP.) reassignment ROBERTSHAW CONTROLS COMPANY RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033713/0234 Assignors: CERBERUS BUSINESS FINANCE, LLC
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT FIRST LIEN PATENT SECURITY AGREEMENT Assignors: BURNER SYSTEMS INTERNATIONAL, INC., ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP.
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT SECOND LIEN PATENT SECURITY AGREEMENT Assignors: BURNER SYSTEMS INTERNATIONAL, INC., ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP.
Assigned to ROBERTSHAW US HOLDING CORP., BURNER SYSTEMS INTERNATIONAL, INC., ROBERTSHAW CONTROLS COMPANY reassignment ROBERTSHAW US HOLDING CORP. RELEASE OF 2ND LIEN SECURITY INTEREST Assignors: GOLDMAN SACHS LENDING PARTNERS LLC
Assigned to ROBERTSHAW CONTROLS COMPANY, ROBERTSHAW US HOLDING CORP., BURNER SYSTEMS INTERNATIONAL, INC. reassignment ROBERTSHAW CONTROLS COMPANY RELEASE OF 1ST LIEN SECURITY INTEREST Assignors: JPMORGAN CHASE BANK, N.A.
Anticipated expiration legal-status Critical
Assigned to ACQUIOM AGENCY SERVICES LLC reassignment ACQUIOM AGENCY SERVICES LLC OMNIBUS ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS RECORDED AT REEL 045474/FRAME 0351 Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Assigned to ACQUIOM AGENCY SERVICES LLC reassignment ACQUIOM AGENCY SERVICES LLC OMNIBUS ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS RECORDED AT REEL 045474/FRAME 0370 Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/23Time delays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening

Definitions

  • the present invention relates generally to temperature control systems for multi-compartment refrigerators, and more particularly to evaporator fan and damper control systems for regulating the temperature of the fresh food and freezer compartments of a refrigerator.
  • a typical multi-compartment refrigerator there are several methods for controlling the temperature of each of the compartments.
  • the refrigeration system i.e. the compressor, evaporator, fan, etc.
  • Air from the freezer compartment is directed to the fresh food compartment by means of an opening from the freezer to the fresh food compartment. Air is throttled in this opening by means of some type of air damper control.
  • the damper has traditionally been a manually operated mechanism, which can be adjusted by the user to vary the freezer temperature.
  • the fresh food temperature is generally controlled by a thermostat which senses the fresh food compartment temperature. The thermostat governs the operation of the compressor and evaporator fan.
  • the resulting freezer temperature is a function of the fresh food compartment set point temperature and the position of the manual damper. It is generally known that this type of control system is not ideal for temperature stability of the freezer, especially when the outside temperature changes and the fresh food set point temperature is changed. The advantage of this system is that it is very inexpensive to produce.
  • a less traditional means of control used currently in only approximately 15% of standard refrigerators produced in the United States is to cycle the compressor using a thermostat that senses the freezer temperature.
  • the air flow to the fresh food compartment is attenuated by a modulating air damper control.
  • This control uses a refrigerant charged bellows that expands and contracts in response to the temperature of the fresh food compartment.
  • the bellows movement is then used to drive a door, located in the air flow stream, to attenuate air flow to the fresh food compartment.
  • the movement of the door is very predictable, thus allowing this device to be offered on a production basis.
  • This type of control system allows for more accurate temperature control for both compartments than the method described above. Outside temperature variance and door openings are better compensated using this system.
  • the principal drawback for such a system is cost. Manufacturers positioning certain product as “high performance” are the users of this type of system.
  • the second drawback for such a system is that the fresh food compartment is still slaved to the freezer compartment.
  • the modulating damper can better compensate for changes in set point temperature of the freezer than a manually operated device, but some changes to the temperature of the fresh food compartment are apparent since the fan is only operating when the compressor is operating. The compressor operation is dependent on the thermostat, which is sensing freezer temperature only.
  • Another advantage of the modulating damper is that no external power is required for it to perform. Refrigerator manufacturers are very concerned about power consumption, and are very competitive in reducing power consumption. They are also under tremendous pressure from the Department of Energy to make incremental power consumption reductions.
  • Such systems typically utilize a freezer thermostat 101 to control the compressor 103 , condenser fan 105 , and evaporator fan 107 to regulate the freezer temperature to the set point of the freezer thermostat.
  • a multi-contact fresh food compartment thermostat 109 is then used to control a motorized damper 111 that regulates an opening between the freezer and the fresh food compartment.
  • the motor 111 also operates a multi-control-surface cam used to control two multi-throw switches 113 , 115 that connect and disconnect control of evaporator fan 107 between the two thermostats 101 , 109 and energize the motorized damper 111 to open or close.
  • the state of the switches illustrated in FIG. 3 relates to both compartments being at or below their set point temperatures. If the fresh food compartment thermostat 109 calls for cool (connection between terminal A and B), the motorized damper 111 is energized to open the damper and rotate the cam. When the cam reaches its fully open position, both switches 113 and 115 transition. Switch 113 then allows the fresh food compartment thermostat 109 to control the evaporator fan 107 . This increases circulation between the compartments, thereby reducing the amount of time that it takes to achieve the desired temperature.
  • the cam control surface that transitions the evaporator control switch 113 waits until the damper is fully open to allow the fresh food thermostat 109 to energize the fan 107 to reduce the power consumption of running the fan while the damper is in transition. In this state, however, the control of the evaporator fan via the freezer thermostat is disabled as its input through the multi-throw switch 113 is opened.
  • the multi-contact fresh food compartment thermostat 109 switches to again close contacts A and C.
  • the motorized damper 111 is energized to drive the damper closed.
  • the control surface on the cam immediately transitions switch 113 to return control of the evaporator fan 107 to the freezer thermostat 101 .
  • the control cam does not transition the switch 115 until the damper is fully closed, a power failure that occurs while the damper is in the process of closing but is not yet fully closed can result in a condition where the damper cannot be opened and the evaporator fan 107 cannot be energized. This situation occurs when the power failure lasts long enough for the fresh food compartment to warm above its thermostat set point, thereby closing contact A and B of thermostat 109 .
  • the present invention provide a new and improved evaporator fan control system for a multi-compartment refrigerator. More specifically, the present invention provides a new and improved evaporator fan control system that enables coordination between the fresh food compartment need for cooling and the freezer compartment need for cooling, while taking into consideration the operational system requirements for energy efficient defrost control.
  • an evaporator fan control system is presented that is particularly adapted for a multi-compartment refrigerator having a damper controlling an opening between compartments to allow cooling from a first compartment to be transferred to a second compartment.
  • This system comprises a first thermostat positioned to sense temperature in the first compartment, a second thermostat positioned to sense temperature in the second compartment, and an adaptive defrost timer control module that is operably coupled to the first and the second thermostat to determine when each compartment requires cooling.
  • the adaptive defrost timer control module provides an energization output to an evaporator fan.
  • the adaptive defrost timer control module energizes the evaporator fan when the second thermostat indicates that the second compartment requires cooling.
  • the adaptive defrost timer control module also energizes the evaporator fan when the first thermostat indicates that the first compartment requires cooling.
  • the adaptive defrost timer control module prevents energization of the evaporator fan when the adaptive defrost timer control enters a defrost cycle, regardless of a status of the first and the second thermostats.
  • the adaptive defrost timer control module further includes a time delay between indication from the second thermostat that the second compartment requires cooling and energization of the evaporator fan.
  • the time delay is of a duration sufficient to allow the damper to open. However, in one embodiment the time delay does not operate when the second thermostat indicates that the second compartment no longer requires cooling, thereby allowing the adaptive defrost timer control to immediately de-energize the evaporator fan.
  • an evaporator fan control system for a refrigerator having a freezer compartment and a fresh food compartment.
  • the cooling of the fresh food compartment is controlled via a damper regulating an opening between the freezer compartment and the fresh food compartment.
  • the system comprises an adaptive defrost timer control module having an output coupled to the evaporator fan for turning the evaporator fan on and off, and a thermostat positioned to sense a temperature of the fresh food compartment.
  • the thermostat provides an input to the adaptive defrost timer control module indicating when the fresh food compartment requires cooling. Further, the adaptive defrost timer control module turns the evaporator fan on when the thermostat indicates that the fresh food compartment requires cooling.
  • the adaptive defrost timer control module turns the evaporator fan off when in a defrost cycle regardless of an indication from the thermostat that the fresh food compartment requires cooling.
  • the system further comprises a second thermostat positioned to sense a temperature of the freezer compartment. This second thermostat provides an input to the adaptive defrost timer control module indicating when the freezer compartment requires cooling.
  • the adaptive defrost timer control module turns the evaporator fan on when the second thermostat indicates that the freezer compartment requires cooling.
  • the adaptive defrost timer control module turns the evaporator fan off when in the defrost cycle regardless of an indication from the second thermostat that the freezer compartment requires cooling.
  • the adaptive defrost timer control module turns the evaporator fan off when neither the thermostat indicates that the fresh food compartment requires cooling, nor the second thermostat indicates that the freezer compartment requires cooling.
  • the adaptive defrost timer control module delays turning the evaporator fan on for a period of time after the thermostat indicates that the fresh food compartment requires cooling to allow the damper to open between the freezer and the fresh food compartment. However, the adaptive defrost timer control module does not delay turning the evaporator fan off after the thermostat indicates that the fresh food compartment no longer requires cooling.
  • an evaporator fan control system for use in a frost free multi-compartment refrigerator.
  • the refrigerator has a freezer compartment that is cooled by a compressor and an evaporator fan, and a fresh food compartment that is cooled by operation of the evaporator fan to blow air from the freezer compartment into the fresh food compartment through a damper controlled opening between the two compartments.
  • Each compartment has installed therein a thermostat.
  • the refrigerator further includes a defrost heater to effectuate frost free operation.
  • the system of this embodiment comprises an adaptive defrost timer control module having control inputs for sensing the thermostat in the fresh food compartment and the thermostat in the freezer compartment, and control outputs for energizing the evaporator fan, the compressor, and the defrost heater in accordance with programmed logic.
  • This programmed logic is contained within the adaptive defrost timer control and includes a logical OR gate having an input indicating that the thermostat installed in the fresh food compartment requires cooling and an input indicating that the thermostat installed in the freezer compartment requires cooling and an output.
  • the logic also includes a logical NAND gate having an input from the output of the logical OR gate and an inverted input indicating that the refrigerator is in a defrost cycle and an output.
  • the adaptive defrost timer control module energizes the evaporator fan upon generation of a logical 1 at the output of the logical NAND gate.
  • the programmed logic includes a time delay on the input of the logical OR gate indicating that the thermostat installed in the fresh food compartment requires cooling.
  • This time delay is of a period sufficient to allow the damper to open. Further, the time delay does not operate when the input of the logical OR gate indicates that the thermostat installed in the fresh food compartment no longer requires cooling.
  • FIG. 1 is a simplified schematic block diagram of a refrigeration control system incorporating the evaporator fan control of the present invention
  • FIG. 2 is a logic diagram illustrating operational control logic constructed in accordance with the present invention
  • FIG. 3 is a simplified schematic block diagram of a prior refrigeration control system utilizing cam controlled switches to effectuate evaporator fan control
  • FIG. 4 is a simplified schematic block diagram of a second prior refrigeration control system utilizing cam controlled switches to effectuate evaporator fan control.
  • defrost timer opens and closes electrical contacts to control the defrost cycle and the cooling system. When one of these is switched on, the other is switched off.
  • the defrost timer closes a contact to the compressor circuit so it will run; the circuit to the defrost heater is open.
  • the freezer thermostat cold control
  • the defrost timer then switches into defrost mode and supplies power to the defrost heaters to melt any frost that has accumulated on the evaporator cooling coil.
  • the cold control contacts may remain closed during the defrost cycle, but since the defrost timer is no longer feeding power to that circuit, the compressor does not run.
  • the defrost thermostat or limit switch senses a set temperature, it opens the circuit to the defrost heaters, shutting them off.
  • the typical defrost timer remains in the defrost cycle until it advances back to the cooling mode. Since the limit switch is open, the heaters are no longer on for the rest of the cycle.
  • the latest, energy saving variation of the defrost system is computer controlled and called an adaptive defrost control.
  • This adaptive defrost control not only changes the period between defrost cycles change but it also varies the time duration of the defrost cycle itself.
  • the device is programmed to keep track of the appliance usage and how long it takes for the evaporator coil to be thoroughly defrosted. It will then calculate the amount of time required and adjust itself accordingly.
  • the adaptive defrost control uses a microprocessor to continuously monitor refrigeration system performance to determine optimal defrost frequency. Reducing frost that accumulates on the evaporator coil maintains system efficiency and performance. By adapting to changing conditions, and enacting a defrost cycle only when necessary, the control saves the system energy by not using the defrost heater so often.
  • the underlying theory of the adaptive defrost control concept is that for each unique evaporative refrigeration system there exists an optimum defrost period. If the defrost is accomplished in less than the optimum time, it means that defrost was initiated too soon and if more than the optimum time is required to defrost the evaporator coil it means that frost has accumulated to the point of degrading system performance.
  • an adaptive defrost timer control system the system operates at an optimum level. The increase in system performance and energy savings over prior systems more than justifies the cost of inclusion of the electronic controller.
  • the unused computing capacity of the adaptive defrost timer controller is utilized to effectuate the temperature control of the fresh food compartment.
  • utilization of the adaptive defrost timer control in accordance with the teachings of the present invention provides fully integrated control of the evaporator fan functionality in coordination with the other operating modes of the refrigerator. This coordinated control includes operation of the evaporator fan when the freezer calls for cooling, when the fresh food compartment calls for cooling, or when both call for cooling.
  • the coordination of control with the adaptive defrost timer control allows the evaporator fan to be disabled when in the defrost cycle, regardless of whether the freezer and/or the fresh food compartment call for cooling, functionality heretofore not provided, which further enhances the energy efficiency provided by this integrated control. Further, such integrated control allows for a significant reduction of parts that other systems using an adaptive defrost timer control require.
  • the adaptive defrost timer control module 10 is coupled to the refrigerator power 12 and ground 14 , and receives the control inputs from the fresh food compartment thermostat 16 , the freezer thermostat 18 , and the door switch 20 .
  • the control of the damper motor 22 to open and close the damper between the freezer and the fresh food compartment may be by any appropriate means that opens the damper when the fresh food compartment calls for cooling and that closes the damper when the fresh food compartment has reached its set point temperature.
  • the adaptive defrost timer control 10 senses the door switch 20 and utilizes this information in its monitoring of system operation and performance, the control of the refrigerator light 24 is directly via the door switch 20 .
  • the adaptive defrost control would operate the evaporator fan with the compressor in a freezer cooling mode, and would not operate the evaporator fan in the defrost mode.
  • the control for the evaporator fan would be switched to the fresh food compartment thermostat via a multi-throw switch as discussed above. This could result in the operation of the evaporator fan during the defrost cycle. Not only is such operation undesirable from a power consumption standpoint, but it greatly affects the defrost cycle by significantly varying the defrost time required.
  • the adaptive defrost control would then completely recalculate the optimum cycle periods for cooling and defrosting, thinking that such variation was the result of non-optimum cycle control. Such recalculation will result in a reduction in system efficiency and increased energy consumption.
  • the adaptive control would lengthen the frost accumulating period. Since the reduction in the defrost time was artificially produced by the fresh food compartment's operation of the evaporator fan, the lengthening of the frost accumulating period may well result in an undue build up of frost on the condenser coils, thereby reducing the cooling efficiency of the system. The converse also adversely affects the energy efficiency of the system.
  • the adaptive defrost control will shorten the frost accumulation period, i.e. run the heater more often. Once again, this greatly reduces the efficiency of the system and increases the power consumption.
  • the adaptive defrost timer control module 10 of the present invention coordinates the control of both the freezer and the fresh food compartment cooling. That is, operation of the evaporator fan 34 is now completely controlled and coordinated by the adaptive defrost timer control module 10 based on the input cooling requirements of the freezer and the fresh food compartments, and based on the adaptive defrost cycle.
  • the adaptive defrost timer control module 10 is an electronic control assembly based on an embedded microcontroller device.
  • the output to the compressor 28 and to the defrost heater 30 are energized from a single 1 form C relay under control of the microcontroller.
  • the compressor 28 is connected to the normally closed contact of the relay and the defrost heater 30 is connected to the normally open contact of the relay.
  • the common contact of the relay is tied to the freezer thermostat 18 , which cycles power from L 1 . Alternate wiring methods are available that allow the freezer thermostat 18 to be placed in series with the compressor output. Further, the freezer thermostat 18 may simply be sensed by the microcontroller as a control input. In that configuration the common contact is tied directly to L 1 .
  • the output to the evaporator fan 34 is energized from a solid state triac that is tied to L 1 . To this assembly the input from the fresh food thermostat 16 is added and input to the microcontroller device.
  • the actual configuration of the adaptive defrost timer control module 10 is not limiting of the invention.
  • FIG. 2 This control logic inputs the freezer thermostat 18 status and the fresh food thermostat 16 status to control the energization of the evaporator fan 34 .
  • An optional time delay 44 is illustrated that delays the processing of the signal from the fresh food compartment thermostat 16 a time sufficient to ensure that the baffle or damper between the freezer and the fresh food compartment is open before energizing the evaporator fan 34 . This further increases the energy efficiency of the system by not running the evaporator fan until it can actually affect the temperature of the fresh food compartment.
  • This delay preferably does not delay the turn off of the evaporator fan when the thermostat 16 no longer requires cooling.
  • the output energization signal 42 will be generated whenever either of these two inputs 16 , 18 signal that cooling is required. Further, the output energization signal 42 will be generated when both of these two inputs 16 , 18 signal that cooling is required.
  • the control logic also takes into consideration the defrost cycle on status signal 40 to prevent the generation of the energization signal 42 through a NAND function 38 . That is, even if one or both of the thermostats 16 , 18 require cooling, if the system is in the defrost cycle as indicated by a logical 1 on line 40 , the output 42 is held to a logical 0 thereby preventing operation of the evaporator fan 34 . Similarly, if the evaporator fan 34 is energized because, e.g., the fresh food thermostat 16 requires cooling, entrance into the defrost mode, which is calculated independent of the fresh food compartment requirements, will immediately de-energize the evaporator fan. Once the defrost cycle is complete, line 40 goes to a logical 0 and NAND gate 38 will output signal 42 to allow the evaporator fan to be energized if either or both of the thermostats 16 , 18 still requires cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

An evaporator fan control system is provided for a multi-compartment refrigerator that coordinates operation of the evaporator fan among a cooling cycle for a freezer compartment, a cooling cycle for a fresh food compartment, and an adaptive defrost cycle. An adaptive defrost timer control module is utilized to coordinate operation of the evaporator fan. This control module includes an embedded electronic controller having control logic programmed to operate the evaporator fan whenever either of the thermostats requires cooling, and to lock out operation of the evaporator fan whenever the system is performing a defrost cycle.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to temperature control systems for multi-compartment refrigerators, and more particularly to evaporator fan and damper control systems for regulating the temperature of the fresh food and freezer compartments of a refrigerator. [0001]
  • BACKGROUND OF THE INVENTION
  • In a typical multi-compartment refrigerator there are several methods for controlling the temperature of each of the compartments. It is common practice for the refrigeration system, i.e. the compressor, evaporator, fan, etc., to directly cool the freezer compartment. Air from the freezer compartment is directed to the fresh food compartment by means of an opening from the freezer to the fresh food compartment. Air is throttled in this opening by means of some type of air damper control. The damper has traditionally been a manually operated mechanism, which can be adjusted by the user to vary the freezer temperature. The fresh food temperature is generally controlled by a thermostat which senses the fresh food compartment temperature. The thermostat governs the operation of the compressor and evaporator fan. The resulting freezer temperature is a function of the fresh food compartment set point temperature and the position of the manual damper. It is generally known that this type of control system is not ideal for temperature stability of the freezer, especially when the outside temperature changes and the fresh food set point temperature is changed. The advantage of this system is that it is very inexpensive to produce. [0002]
  • A less traditional means of control used currently in only approximately 15% of standard refrigerators produced in the United States is to cycle the compressor using a thermostat that senses the freezer temperature. The air flow to the fresh food compartment is attenuated by a modulating air damper control. This control uses a refrigerant charged bellows that expands and contracts in response to the temperature of the fresh food compartment. The bellows movement is then used to drive a door, located in the air flow stream, to attenuate air flow to the fresh food compartment. The movement of the door is very predictable, thus allowing this device to be offered on a production basis. This type of control system allows for more accurate temperature control for both compartments than the method described above. Outside temperature variance and door openings are better compensated using this system. [0003]
  • The principal drawback for such a system is cost. Manufacturers positioning certain product as “high performance” are the users of this type of system. The second drawback for such a system is that the fresh food compartment is still slaved to the freezer compartment. The modulating damper can better compensate for changes in set point temperature of the freezer than a manually operated device, but some changes to the temperature of the fresh food compartment are apparent since the fan is only operating when the compressor is operating. The compressor operation is dependent on the thermostat, which is sensing freezer temperature only. Another advantage of the modulating damper is that no external power is required for it to perform. Refrigerator manufacturers are very concerned about power consumption, and are very competitive in reducing power consumption. They are also under tremendous pressure from the Department of Energy to make incremental power consumption reductions. [0004]
  • In response to these pressures and desires to reduce power consumption, manufacturers have sought to solve the problem of temperature variances due to the slaving of the air flow from the freezer to the fresh food compartment. Systems resulting from such endeavors, unlike the prior systems that operated based only on the temperature input from one of the freezer or the fresh food compartment, control the refrigeration components by sensing both the freezer temperature and the fresh food compartment temperature and by using a plurality of single and multi-throw switches to transfer control between the two thermostats. Unfortunately, the use of so many single and multi-throw switches to coordinate the control of the two thermostats, the evaporator fan, and the damper motor greatly increases the cost and complexity of such a system. The required wiring of these switches also increases the labor cost and reduces the overall reliability of such a system. [0005]
  • Such systems, such as that illustrated in FIG. 3, typically utilize a [0006] freezer thermostat 101 to control the compressor 103, condenser fan 105, and evaporator fan 107 to regulate the freezer temperature to the set point of the freezer thermostat. A multi-contact fresh food compartment thermostat 109 is then used to control a motorized damper 111 that regulates an opening between the freezer and the fresh food compartment. In addition to the damper, the motor 111 also operates a multi-control-surface cam used to control two multi-throw switches 113, 115 that connect and disconnect control of evaporator fan 107 between the two thermostats 101, 109 and energize the motorized damper 111 to open or close.
  • The state of the switches illustrated in FIG. 3 relates to both compartments being at or below their set point temperatures. If the fresh [0007] food compartment thermostat 109 calls for cool (connection between terminal A and B), the motorized damper 111 is energized to open the damper and rotate the cam. When the cam reaches its fully open position, both switches 113 and 115 transition. Switch 113 then allows the fresh food compartment thermostat 109 to control the evaporator fan 107. This increases circulation between the compartments, thereby reducing the amount of time that it takes to achieve the desired temperature. The cam control surface that transitions the evaporator control switch 113 waits until the damper is fully open to allow the fresh food thermostat 109 to energize the fan 107 to reduce the power consumption of running the fan while the damper is in transition. In this state, however, the control of the evaporator fan via the freezer thermostat is disabled as its input through the multi-throw switch 113 is opened.
  • When the fresh food compartment reaches its desired temperature, the multi-contact fresh [0008] food compartment thermostat 109 switches to again close contacts A and C. The motorized damper 111 is energized to drive the damper closed. The control surface on the cam immediately transitions switch 113 to return control of the evaporator fan 107 to the freezer thermostat 101. However, since the control cam does not transition the switch 115 until the damper is fully closed, a power failure that occurs while the damper is in the process of closing but is not yet fully closed can result in a condition where the damper cannot be opened and the evaporator fan 107 cannot be energized. This situation occurs when the power failure lasts long enough for the fresh food compartment to warm above its thermostat set point, thereby closing contact A and B of thermostat 109. Since the switch 115 has not been transitioned by the cam to the state show in FIG. 3 because the damper was not allowed to fully close, no power is provided to the motor 111. As such, the switch 113 stays in the freezer control position illustrated in FIG. 3, which means that the call for cooling from the fresh food compartment cannot be accommodated, and the temperature in this compartment will likely continue to rise. A service call is then required to reset the cam and the control switches to allow the system to work properly again.
  • One system that overcomes this failure condition is described in U.S. Pat. No. 5,490,395, entitled AIR BAFFLE FOR A REFRIGERATOR. In the system of this patent, the functionality of the single motorized [0009] damper control switch 115 illustrated in FIG. 3 is divided among two single pole, single throw switches 117, 118 as illustrated in the simplified FIG. 4. Unfortunately, the addition of an additional switch also requires a more complex cam that includes an additional cam control surface and an additional cam control surface follower to actuate the additional switch. While overcoming the problem discussed above, the additional cost and complexity of this solution accompanied with the resulting reduction in overall system reliability makes such a system undesirable and cost ineffective.
  • Therefore, there continues to exist a need in the art for a system that provides better temperature stability of both the freezer compartment and the fresh food compartment of a refrigerator, while reducing the cost and power consumption and increasing the overall reliability of the system. [0010]
  • BRIEF SUMMARY OF THE INVENTION
  • In light of the above, the present invention provide a new and improved evaporator fan control system for a multi-compartment refrigerator. More specifically, the present invention provides a new and improved evaporator fan control system that enables coordination between the fresh food compartment need for cooling and the freezer compartment need for cooling, while taking into consideration the operational system requirements for energy efficient defrost control. [0011]
  • In a preferred embodiment of the present invention, an evaporator fan control system is presented that is particularly adapted for a multi-compartment refrigerator having a damper controlling an opening between compartments to allow cooling from a first compartment to be transferred to a second compartment. This system comprises a first thermostat positioned to sense temperature in the first compartment, a second thermostat positioned to sense temperature in the second compartment, and an adaptive defrost timer control module that is operably coupled to the first and the second thermostat to determine when each compartment requires cooling. The adaptive defrost timer control module provides an energization output to an evaporator fan. Preferably, the adaptive defrost timer control module energizes the evaporator fan when the second thermostat indicates that the second compartment requires cooling. [0012]
  • Preferably, the adaptive defrost timer control module also energizes the evaporator fan when the first thermostat indicates that the first compartment requires cooling. In one embodiment the adaptive defrost timer control module prevents energization of the evaporator fan when the adaptive defrost timer control enters a defrost cycle, regardless of a status of the first and the second thermostats. In an embodiment where the multi-compartment refrigerator includes a damper that controls a flow of air between the first and the second compartments and that opens when the second thermostat indicates that the second compartment requires cooling, the adaptive defrost timer control module further includes a time delay between indication from the second thermostat that the second compartment requires cooling and energization of the evaporator fan. The time delay is of a duration sufficient to allow the damper to open. However, in one embodiment the time delay does not operate when the second thermostat indicates that the second compartment no longer requires cooling, thereby allowing the adaptive defrost timer control to immediately de-energize the evaporator fan. [0013]
  • In an alternate embodiment of the present invention, an evaporator fan control system for a refrigerator having a freezer compartment and a fresh food compartment is presented. The cooling of the fresh food compartment is controlled via a damper regulating an opening between the freezer compartment and the fresh food compartment. The system comprises an adaptive defrost timer control module having an output coupled to the evaporator fan for turning the evaporator fan on and off, and a thermostat positioned to sense a temperature of the fresh food compartment. The thermostat provides an input to the adaptive defrost timer control module indicating when the fresh food compartment requires cooling. Further, the adaptive defrost timer control module turns the evaporator fan on when the thermostat indicates that the fresh food compartment requires cooling. [0014]
  • Preferably, the adaptive defrost timer control module turns the evaporator fan off when in a defrost cycle regardless of an indication from the thermostat that the fresh food compartment requires cooling. In one embodiment, the system further comprises a second thermostat positioned to sense a temperature of the freezer compartment. This second thermostat provides an input to the adaptive defrost timer control module indicating when the freezer compartment requires cooling. The adaptive defrost timer control module turns the evaporator fan on when the second thermostat indicates that the freezer compartment requires cooling. Preferably, the adaptive defrost timer control module turns the evaporator fan off when in the defrost cycle regardless of an indication from the second thermostat that the freezer compartment requires cooling. Further, the adaptive defrost timer control module turns the evaporator fan off when neither the thermostat indicates that the fresh food compartment requires cooling, nor the second thermostat indicates that the freezer compartment requires cooling. [0015]
  • Further, the adaptive defrost timer control module delays turning the evaporator fan on for a period of time after the thermostat indicates that the fresh food compartment requires cooling to allow the damper to open between the freezer and the fresh food compartment. However, the adaptive defrost timer control module does not delay turning the evaporator fan off after the thermostat indicates that the fresh food compartment no longer requires cooling. [0016]
  • In yet a further embodiment of the present invention, an evaporator fan control system for use in a frost free multi-compartment refrigerator is presented. The refrigerator has a freezer compartment that is cooled by a compressor and an evaporator fan, and a fresh food compartment that is cooled by operation of the evaporator fan to blow air from the freezer compartment into the fresh food compartment through a damper controlled opening between the two compartments. Each compartment has installed therein a thermostat. The refrigerator further includes a defrost heater to effectuate frost free operation. The system of this embodiment comprises an adaptive defrost timer control module having control inputs for sensing the thermostat in the fresh food compartment and the thermostat in the freezer compartment, and control outputs for energizing the evaporator fan, the compressor, and the defrost heater in accordance with programmed logic. This programmed logic is contained within the adaptive defrost timer control and includes a logical OR gate having an input indicating that the thermostat installed in the fresh food compartment requires cooling and an input indicating that the thermostat installed in the freezer compartment requires cooling and an output. The logic also includes a logical NAND gate having an input from the output of the logical OR gate and an inverted input indicating that the refrigerator is in a defrost cycle and an output. The adaptive defrost timer control module energizes the evaporator fan upon generation of a logical 1 at the output of the logical NAND gate. [0017]
  • Preferably, the programmed logic includes a time delay on the input of the logical OR gate indicating that the thermostat installed in the fresh food compartment requires cooling. This time delay is of a period sufficient to allow the damper to open. Further, the time delay does not operate when the input of the logical OR gate indicates that the thermostat installed in the fresh food compartment no longer requires cooling. [0018]
  • Other features and advantages of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.[0019]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings: [0020]
  • FIG. 1 is a simplified schematic block diagram of a refrigeration control system incorporating the evaporator fan control of the present invention; [0021]
  • FIG. 2 is a logic diagram illustrating operational control logic constructed in accordance with the present invention; [0022]
  • FIG. 3 is a simplified schematic block diagram of a prior refrigeration control system utilizing cam controlled switches to effectuate evaporator fan control; and [0023]
  • FIG. 4 is a simplified schematic block diagram of a second prior refrigeration control system utilizing cam controlled switches to effectuate evaporator fan control.[0024]
  • While the invention will be described in connection with certain preferred embodiments, there is no intent to limit it to those embodiments. On the contrary, the intent is to cover all alternatives, modifications and equivalents as included within the spirit and scope of the invention as defined by the appended claims. [0025]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Ever striving for increased energy efficiency, advanced refrigerators typically employ some type of defrost system to ensure that frost build up does not reduce the effectiveness of the cooling cycle. The heart of typical defrost systems is the defrost timer, which opens and closes electrical contacts to control the defrost cycle and the cooling system. When one of these is switched on, the other is switched off. During the cooling mode, the defrost timer closes a contact to the compressor circuit so it will run; the circuit to the defrost heater is open. While in this mode, the freezer thermostat (cold control) cycles the compressor on and off to maintain an appropriate temperature in the freezer compartment. The defrost timer then switches into defrost mode and supplies power to the defrost heaters to melt any frost that has accumulated on the evaporator cooling coil. The cold control contacts may remain closed during the defrost cycle, but since the defrost timer is no longer feeding power to that circuit, the compressor does not run. [0026]
  • Once the defrost thermostat or limit switch senses a set temperature, it opens the circuit to the defrost heaters, shutting them off. The typical defrost timer remains in the defrost cycle until it advances back to the cooling mode. Since the limit switch is open, the heaters are no longer on for the rest of the cycle. [0027]
  • The latest, energy saving variation of the defrost system is computer controlled and called an adaptive defrost control. This adaptive defrost control not only changes the period between defrost cycles change but it also varies the time duration of the defrost cycle itself. The device is programmed to keep track of the appliance usage and how long it takes for the evaporator coil to be thoroughly defrosted. It will then calculate the amount of time required and adjust itself accordingly. The adaptive defrost control uses a microprocessor to continuously monitor refrigeration system performance to determine optimal defrost frequency. Reducing frost that accumulates on the evaporator coil maintains system efficiency and performance. By adapting to changing conditions, and enacting a defrost cycle only when necessary, the control saves the system energy by not using the defrost heater so often. [0028]
  • The underlying theory of the adaptive defrost control concept is that for each unique evaporative refrigeration system there exists an optimum defrost period. If the defrost is accomplished in less than the optimum time, it means that defrost was initiated too soon and if more than the optimum time is required to defrost the evaporator coil it means that frost has accumulated to the point of degrading system performance. Through the use of an adaptive defrost timer control system, the system operates at an optimum level. The increase in system performance and energy savings over prior systems more than justifies the cost of inclusion of the electronic controller. [0029]
  • In the evaporator fan control system of the present invention, the unused computing capacity of the adaptive defrost timer controller is utilized to effectuate the temperature control of the fresh food compartment. However, unlike a mere aggregation of functions, utilization of the adaptive defrost timer control in accordance with the teachings of the present invention provides fully integrated control of the evaporator fan functionality in coordination with the other operating modes of the refrigerator. This coordinated control includes operation of the evaporator fan when the freezer calls for cooling, when the fresh food compartment calls for cooling, or when both call for cooling. Also, the coordination of control with the adaptive defrost timer control allows the evaporator fan to be disabled when in the defrost cycle, regardless of whether the freezer and/or the fresh food compartment call for cooling, functionality heretofore not provided, which further enhances the energy efficiency provided by this integrated control. Further, such integrated control allows for a significant reduction of parts that other systems using an adaptive defrost timer control require. [0030]
  • As illustrated in FIG. 1, the adaptive defrost [0031] timer control module 10 is coupled to the refrigerator power 12 and ground 14, and receives the control inputs from the fresh food compartment thermostat 16, the freezer thermostat 18, and the door switch 20. The control of the damper motor 22 to open and close the damper between the freezer and the fresh food compartment may be by any appropriate means that opens the damper when the fresh food compartment calls for cooling and that closes the damper when the fresh food compartment has reached its set point temperature. Similarly, while the adaptive defrost timer control 10 senses the door switch 20 and utilizes this information in its monitoring of system operation and performance, the control of the refrigerator light 24 is directly via the door switch 20.
  • The control and coordination of the [0032] compressor 26 and the condenser fan 28 in the freezer cooling mode and of the defrost heater 30 as regulated by its defrost thermostat 32 in the freezer condenser adaptive defrost cycle are conventional. However, unlike conventional systems that currently use an adaptive defrost timer control, the control and coordination of the evaporator fan 34 is now fully integrated in the adaptive defrost timer control 10 of the present invention.
  • In prior systems, the adaptive defrost control would operate the evaporator fan with the compressor in a freezer cooling mode, and would not operate the evaporator fan in the defrost mode. However, if the fresh food compartment would require cooling, regardless of what mode in which the adaptive defrost control was operating, the control for the evaporator fan would be switched to the fresh food compartment thermostat via a multi-throw switch as discussed above. This could result in the operation of the evaporator fan during the defrost cycle. Not only is such operation undesirable from a power consumption standpoint, but it greatly affects the defrost cycle by significantly varying the defrost time required. The adaptive defrost control would then completely recalculate the optimum cycle periods for cooling and defrosting, thinking that such variation was the result of non-optimum cycle control. Such recalculation will result in a reduction in system efficiency and increased energy consumption. [0033]
  • If the operation of the evaporator fan during the defrost cycle reduced the amount of time for defrost (as determined by [0034] defrost thermostat 32 opening sooner than expected), the adaptive control would lengthen the frost accumulating period. Since the reduction in the defrost time was artificially produced by the fresh food compartment's operation of the evaporator fan, the lengthening of the frost accumulating period may well result in an undue build up of frost on the condenser coils, thereby reducing the cooling efficiency of the system. The converse also adversely affects the energy efficiency of the system. That is, if the defrost cycle time is lengthened by the operation of the evaporator fan, the adaptive defrost control will shorten the frost accumulation period, i.e. run the heater more often. Once again, this greatly reduces the efficiency of the system and increases the power consumption.
  • To prevent such inefficient recalculations, the adaptive defrost [0035] timer control module 10 of the present invention coordinates the control of both the freezer and the fresh food compartment cooling. That is, operation of the evaporator fan 34 is now completely controlled and coordinated by the adaptive defrost timer control module 10 based on the input cooling requirements of the freezer and the fresh food compartments, and based on the adaptive defrost cycle.
  • The adaptive defrost [0036] timer control module 10 is an electronic control assembly based on an embedded microcontroller device. In one embodiment, the output to the compressor 28 and to the defrost heater 30 are energized from a single 1 form C relay under control of the microcontroller. The compressor 28 is connected to the normally closed contact of the relay and the defrost heater 30 is connected to the normally open contact of the relay. The common contact of the relay is tied to the freezer thermostat 18, which cycles power from L1. Alternate wiring methods are available that allow the freezer thermostat 18 to be placed in series with the compressor output. Further, the freezer thermostat 18 may simply be sensed by the microcontroller as a control input. In that configuration the common contact is tied directly to L1. The output to the evaporator fan 34 is energized from a solid state triac that is tied to L1. To this assembly the input from the fresh food thermostat 16 is added and input to the microcontroller device. However, the actual configuration of the adaptive defrost timer control module 10 is not limiting of the invention.
  • Within the microcontroller of the adaptive defrost timer control, logic to coordinate the control of the [0037] evaporator fan 34 is added. Such control logic is illustrated in FIG. 2. This control logic inputs the freezer thermostat 18 status and the fresh food thermostat 16 status to control the energization of the evaporator fan 34. An optional time delay 44 is illustrated that delays the processing of the signal from the fresh food compartment thermostat 16 a time sufficient to ensure that the baffle or damper between the freezer and the fresh food compartment is open before energizing the evaporator fan 34. This further increases the energy efficiency of the system by not running the evaporator fan until it can actually affect the temperature of the fresh food compartment. This delay preferably does not delay the turn off of the evaporator fan when the thermostat 16 no longer requires cooling. By using a logical OR function 36, the output energization signal 42 will be generated whenever either of these two inputs 16, 18 signal that cooling is required. Further, the output energization signal 42 will be generated when both of these two inputs 16, 18 signal that cooling is required.
  • The control logic also takes into consideration the defrost cycle on [0038] status signal 40 to prevent the generation of the energization signal 42 through a NAND function 38. That is, even if one or both of the thermostats 16, 18 require cooling, if the system is in the defrost cycle as indicated by a logical 1 on line 40, the output 42 is held to a logical 0 thereby preventing operation of the evaporator fan 34. Similarly, if the evaporator fan 34 is energized because, e.g., the fresh food thermostat 16 requires cooling, entrance into the defrost mode, which is calculated independent of the fresh food compartment requirements, will immediately de-energize the evaporator fan. Once the defrost cycle is complete, line 40 goes to a logical 0 and NAND gate 38 will output signal 42 to allow the evaporator fan to be energized if either or both of the thermostats 16, 18 still requires cooling.
  • All of the references cited herein, including patents, patent applications, and publications, are hereby incorporated in their entireties by reference. [0039]
  • The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled. [0040]

Claims (15)

What is claimed is:
1. An evaporator fan control system for a multi-compartment refrigerator having a damper controlling an opening between compartments to allow cooling from a first compartment to be transferred to a second compartment, comprising:
a first thermostat positioned to sense temperature in the first compartment;
a second thermostat positioned to sense temperature in the second compartment;
an adaptive defrost timer control module operably coupled to the first and the second thermostat to determine when each compartment requires cooling, the adaptive defrost timer control module providing an energization output to an evaporator fan; and
wherein the adaptive defrost timer control module energizes the evaporator fan when the second thermostat indicates that the second compartment requires cooling.
2. The system of claim 1, wherein the adaptive defrost timer control module energizes the evaporator fan when the first thermostat indicates that the first compartment requires cooling.
3. The system of claim 2, wherein the adaptive defrost timer control module prevents energization of the evaporator fan when the adaptive defrost timer control enters a defrost cycle regardless of a status of the first and the second thermostats.
4. The system of claim 1, wherein the multi-compartment refrigerator includes a damper that controls a flow of air between the first and the second compartments and that opens when the second thermostat indicates that the second compartment requires cooling, wherein the adaptive defrost timer control module further includes a time delay between indication from the second thermostat that the second compartment requires cooling and energization of the evaporator fan of a duration sufficient to allow the damper to open.
5. The system of claim 4, wherein the time delay does not operate when the second thermostat indicates that the second compartment no longer requires cooling, thereby allowing the adaptive defrost timer control to immediately de-energize the evaporator fan.
6. An evaporator fan control system for a refrigerator having a freezer compartment and a fresh food compartment, cooling of the fresh food compartment being controlled via a damper regulating an opening between the freezer compartment and the fresh food compartment, comprising:
an adaptive defrost timer control module having an output coupled to the evaporator fan for turning the evaporator fan on and off;
a thermostat positioned to sense a temperature of the fresh food compartment, the thermostat providing an input to the adaptive defrost timer control module indicating when the fresh food compartment requires cooling; and
wherein the adaptive defrost timer control module turns the evaporator fan on when the thermostat indicates that the fresh food compartment requires cooling.
7. The system of claim 6, wherein the adaptive defrost timer control module turns the evaporator fan off when in a defrost cycle regardless of an indication from the thermostat that the fresh food compartment requires cooling.
8. The system of claim 7, further comprising a second thermostat positioned to sense a temperature of the freezer compartment, the second thermostat providing an input to the adaptive defrost timer control module indicating when the freezer compartment requires cooling, and wherein the adaptive defrost timer control module turns the evaporator fan on when the second thermostat indicates that the freezer compartment requires cooling.
9. The system of claim 8, wherein the adaptive defrost timer control module turns the evaporator fan off when in the defrost cycle regardless of an indication from the second thermostat that the freezer compartment requires cooling.
10. The system of claim 9, wherein the adaptive defrost timer control module turns the evaporator fan off when neither the thermostat indicates that the fresh food compartment requires cooling, nor the second thermostat indicates that the freezer compartment requires cooling.
11. The system of claim 6, wherein the adaptive defrost timer control module delays turning the evaporator fan on for a period of time after the thermostat indicates that the fresh food compartment requires cooling to allow the damper to open between the freezer and the fresh food compartment.
12. The system of claim 11, wherein the adaptive defrost timer control module does not delay turning the evaporator fan off after the thermostat indicates that the fresh food compartment no longer requires cooling.
13. An evaporator fan control system for use in a frost free multi-compartment refrigerator having a freezer compartment that is cooled by a compressor and an evaporator fan, and a fresh food compartment that is cooled by operation of the evaporator fan to blow air from the freezer compartment into the fresh food compartment through a damper controlled opening between the freezer compartment and the fresh food compartment, each compartment having installed therein a thermostat, the refrigerator further including a defrost heater to effectuate frost free operation, the system comprising an adaptive defrost timer control module having control inputs for sensing the thermostat in the fresh food compartment and the thermostat in the freezer compartment, and control outputs for energizing the evaporator fan, the compressor, and the defrost heater in accordance with programmed logic contained within the adaptive defrost timer control, the programmed logic including a logical OR gate having an input indicating that the thermostat installed in the fresh food compartment requires cooling and an input indicating that the thermostat installed in the freezer compartment requires cooling and an output, and a logical NAND gate having an input from the output of the logical OR gate and an inverted input indicating that the refrigerator is in a defrost cycle and an output, the adaptive defrost timer control module energizing the evaporator fan upon generation of a logical 1 at the output of the logical NAND gate.
14. The system of claim 13, wherein the programmed logic includes a time delay on the input of the logical OR gate indicating that the thermostat installed in the fresh food compartment requires cooling, the time delay being of a period sufficient to allow the damper to open.
15. The system of claim 14, wherein the time delay does not operate when the input of the logical OR gate indicates that the thermostat installed in the fresh food compartment no longer requires cooling.
US10/087,453 2002-03-01 2002-03-01 Evaporator fan control system for a multi-compartment refrigerator Expired - Fee Related US6622503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/087,453 US6622503B1 (en) 2002-03-01 2002-03-01 Evaporator fan control system for a multi-compartment refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/087,453 US6622503B1 (en) 2002-03-01 2002-03-01 Evaporator fan control system for a multi-compartment refrigerator

Publications (2)

Publication Number Publication Date
US20030163999A1 true US20030163999A1 (en) 2003-09-04
US6622503B1 US6622503B1 (en) 2003-09-23

Family

ID=27803901

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/087,453 Expired - Fee Related US6622503B1 (en) 2002-03-01 2002-03-01 Evaporator fan control system for a multi-compartment refrigerator

Country Status (1)

Country Link
US (1) US6622503B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110100033A1 (en) * 2009-10-30 2011-05-05 Mestek, Inc. Air control module
US20120031127A1 (en) * 2010-08-09 2012-02-09 Kim Brian S Defrost Fan Control Device
US20130098076A1 (en) * 2011-10-19 2013-04-25 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having dual evaporator
US20150047380A1 (en) * 2013-08-14 2015-02-19 Jung-Shen Liao Refrigerating machine having tube-cooled evaporator & air-cooled evaporator
CN104930791A (en) * 2014-03-21 2015-09-23 青月村燊股份有限公司 Multifunctional refrigerating machine
US9285153B2 (en) 2011-10-19 2016-03-15 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having passive sublimation defrost of evaporator
US9310121B2 (en) 2011-10-19 2016-04-12 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having sacrificial evaporator
EP3851775A1 (en) * 2020-01-17 2021-07-21 Carrier Corporation Method of defrosting a freezer cabinet
CN113790571A (en) * 2021-09-06 2021-12-14 珠海格力电器股份有限公司 Fan control method of heat exchanger, refrigeration equipment and computer readable storage medium

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817195B2 (en) * 2002-03-29 2004-11-16 General Electric Company Reduced energy refrigerator defrost method and apparatus
US6865905B2 (en) * 2003-03-11 2005-03-15 General Electric Company Refrigerator methods and apparatus
US7237395B2 (en) * 2003-12-22 2007-07-03 General Electric Company Methods and apparatus for controlling refrigerators
US7152415B2 (en) * 2004-03-18 2006-12-26 Carrier Commercial Refrigeration, Inc. Refrigerated compartment with controller to place refrigeration system in sleep-mode
US20060130513A1 (en) * 2004-12-22 2006-06-22 Samsung Electronics Co., Ltd. Refrigerator
KR101095554B1 (en) * 2004-12-30 2011-12-19 삼성전자주식회사 Method for control operating of refrigerator
US7716937B2 (en) * 2005-03-17 2010-05-18 Electrolux Home Products, Inc. Electronic refrigeration control system including a variable speed compressor
US20060218950A1 (en) * 2005-03-31 2006-10-05 Robertshaw Controls Company Damper door control from adaptive defrost control
CN100520245C (en) * 2005-03-31 2009-07-29 罗伯特绍控制器公司 Damper door control from adaptive defrost control
US20070054103A1 (en) * 2005-09-07 2007-03-08 General Electric Company Methods and apparatus for forming a composite protection layer
US8418481B2 (en) * 2007-12-20 2013-04-16 E I Du Pont De Nemours And Company Secondary loop cooling system having a bypass and a method for bypassing a reservoir in the system
US8365541B2 (en) * 2010-11-04 2013-02-05 General Electric Company Method and apparatus using evaporator fan power requirements to determine defrost cycle for a refrigerator appliance
US9046094B2 (en) 2012-08-24 2015-06-02 Whirlpool Corporation Refrigerator with energy consumption optimization using adaptive fan delay
US9964345B2 (en) 2013-12-26 2018-05-08 Emerson Electric Co. Heat pump controller with user-selectable defrost modes and reversing valve energizing modes
US9412328B2 (en) 2013-12-26 2016-08-09 Emerson Electric Co. HVAC controls or controllers including alphanumeric displays
KR102496303B1 (en) * 2017-06-12 2023-02-07 엘지전자 주식회사 Refrigerator and method for controlling the same
US11493260B1 (en) 2018-05-31 2022-11-08 Thermo Fisher Scientific (Asheville) Llc Freezers and operating methods using adaptive defrost

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812642A (en) 1955-08-09 1957-11-12 Gen Motors Corp Refrigerating apparatus
US2997857A (en) 1958-09-04 1961-08-29 Gen Motors Corp Refrigerating apparatus
US3005321A (en) 1959-08-25 1961-10-24 Philco Corp Multiple temperature refrigerator
US4459519A (en) * 1974-06-24 1984-07-10 General Electric Company Electronically commutated motor systems and control therefor
US4151723A (en) * 1977-07-15 1979-05-01 Emhart Industries, Inc. Refrigeration system control method and apparatus
US4282720A (en) 1979-08-29 1981-08-11 General Electric Co. Refrigerator air baffle control
US4481785A (en) * 1982-07-28 1984-11-13 Whirlpool Corporation Adaptive defrost control system for a refrigerator
US4528821A (en) * 1982-07-28 1985-07-16 Whirlpool Corporation Adaptive demand defrost control for a refrigerator
US4689965A (en) * 1985-12-27 1987-09-01 Whirlpool Corporation Adaptive defrost control for a refrigerator
US4732010A (en) 1986-06-03 1988-03-22 Whirlpool Corporation Power switch and baffle assembly having unidirectional drive motor for a refrigerator
US4688393A (en) 1986-06-03 1987-08-25 Whirlpool Corporation Power switch and baffle assembly for a refrigerator
US4821528A (en) 1986-12-22 1989-04-18 Whirlpool Corporation Fault tolerant control for a refrigerator
US4741170A (en) 1986-12-22 1988-05-03 Whirlpool Corporation Fault tolerant control for a refrigerator
US4819442A (en) 1988-02-24 1989-04-11 Robertshaw Controls Company Refrigerator system, control device therefor and methods of making and operating the same
US4903501A (en) 1988-06-22 1990-02-27 Whirlpool Corporation Refrigerator air control heated baffle
US4924680A (en) 1988-07-18 1990-05-15 Whirlpool Corporation Refrigerator temperature responsive air outlet baffle
US4920758A (en) 1988-07-18 1990-05-01 Whirlpool Corporation Refrigerator temperature responsive air outlet baffle
US5220806A (en) 1989-01-03 1993-06-22 General Electric Company Apparatus for controlling a dual evaporator, dual fan refrigerator with independent temperature controls
US5201888A (en) 1991-11-14 1993-04-13 White Consolidated Industries, Inc. Temperature control system for refrigerator/freezer combinations
US5255530A (en) 1992-11-09 1993-10-26 Whirlpool Corporation System of two zone refrigerator temperature control
US5363669A (en) * 1992-11-18 1994-11-15 Whirlpool Corporation Defrost cycle controller
KR0129507B1 (en) 1993-08-09 1998-04-08 김광호 Tamper control method of a refrigerator
US5355686A (en) 1993-08-11 1994-10-18 Micro Weiss Electronics, Inc. Dual temperature control of refrigerator-freezer
US5460009A (en) 1994-01-11 1995-10-24 York International Corporation Refrigeration system and method
US5711159A (en) 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system
US5490394A (en) 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
US5477699A (en) 1994-11-21 1995-12-26 Whirlpool Corporation Evaporator fan control for a refrigerator
US5490395A (en) 1994-11-21 1996-02-13 Whirlpool Corporation Air baffle for a refrigerator
US5765382A (en) * 1996-08-29 1998-06-16 Texas Instruments Incorporated Adaptive defrost system
US5896749A (en) 1997-12-04 1999-04-27 France/Scott Fetzer Company Active damper circuit
US5992166A (en) 1998-01-22 1999-11-30 General Electric Company Motorized damper for refrigerator
US5996361A (en) 1998-04-27 1999-12-07 General Electric Company Refrigeration system
US6668568B2 (en) * 2001-01-05 2003-12-30 General Electric Company Flexible sealed system and fan control algorithm

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017156B2 (en) * 2009-10-30 2015-04-28 Mestek, Inc. Air control module
US20130095745A1 (en) * 2009-10-30 2013-04-18 Farhad Davledzarov Air control module
US20110100033A1 (en) * 2009-10-30 2011-05-05 Mestek, Inc. Air control module
US9310093B2 (en) * 2009-10-30 2016-04-12 Mestek, Inc. Air control module
US20120031127A1 (en) * 2010-08-09 2012-02-09 Kim Brian S Defrost Fan Control Device
US20130098076A1 (en) * 2011-10-19 2013-04-25 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having dual evaporator
US9285153B2 (en) 2011-10-19 2016-03-15 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having passive sublimation defrost of evaporator
US9310121B2 (en) 2011-10-19 2016-04-12 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having sacrificial evaporator
US20150047380A1 (en) * 2013-08-14 2015-02-19 Jung-Shen Liao Refrigerating machine having tube-cooled evaporator & air-cooled evaporator
US9328952B2 (en) * 2013-08-14 2016-05-03 Jung-Shen Liao Refrigerating machine having tube-cooled evaporator and air-cooled evaporator
CN104930791A (en) * 2014-03-21 2015-09-23 青月村燊股份有限公司 Multifunctional refrigerating machine
EP3851775A1 (en) * 2020-01-17 2021-07-21 Carrier Corporation Method of defrosting a freezer cabinet
CN113790571A (en) * 2021-09-06 2021-12-14 珠海格力电器股份有限公司 Fan control method of heat exchanger, refrigeration equipment and computer readable storage medium
CN113790571B (en) * 2021-09-06 2022-05-20 珠海格力电器股份有限公司 Fan control method of heat exchanger, refrigeration equipment and computer readable storage medium

Also Published As

Publication number Publication date
US6622503B1 (en) 2003-09-23

Similar Documents

Publication Publication Date Title
US6622503B1 (en) Evaporator fan control system for a multi-compartment refrigerator
US6837060B2 (en) Adaptive defrost control device and method
CA1295844C (en) Method for minimizing off cycle losses of a refrigeration system during a cooling mode of operation and an apparatus using the method
US5375428A (en) Control algorithm for dual temperature evaporator system
KR19990066854A (en) Control method of air conditioner and its control device
EP3660426B1 (en) Refrigerator and method of controlling same
KR102617277B1 (en) Refrigerator and method for controlling the same
JP3658529B2 (en) Temperature control device
KR20010037545A (en) Controll method of defrost period for refrigerator and defrost device therefor
JPH11257719A (en) Method of controlling air conditioner, and its device
JP3886190B2 (en) vending machine
WO2006104936A2 (en) Damper door control from adaptive defrost control
KR20050038293A (en) A valve control method of refrigerator
KR102589265B1 (en) Refrigerator and method for controlling the same
JP2644852B2 (en) Defrost control device for refrigerators, etc.
JP3192729B2 (en) refrigerator
JPH0989435A (en) Refrigerator
KR0141729B1 (en) Freezer Freezer Temperature Controller
JPH04257646A (en) Defrosting control method for air conditioner
JPH0533887Y2 (en)
CN113819709A (en) System control method, device, refrigerator, computer equipment and storage medium
KR20040045940A (en) The defrosting method of a refrigerator
JPH0244173A (en) Refrigerator
JPS5926223B2 (en) air conditioner
JPH03233279A (en) Device for controlling defrosting

Legal Events

Date Code Title Description
AS Assignment

Owner name: RANCO INCORPORATED OF DELAWARE, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BENNETT, WILLIAM B.;REIER, JAMES T.;REEL/FRAME:012932/0117

Effective date: 20020515

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT, NEW YORK

Free format text: GRANT OF A SECURITY INTEREST - PATENTS;ASSIGNORS:FOX US BIDCO CORP.;ROBERTSHAW CONTROLS COMPANY;REEL/FRAME:033713/0234

Effective date: 20140618

Owner name: CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGEN

Free format text: GRANT OF A SECURITY INTEREST - PATENTS;ASSIGNORS:FOX US BIDCO CORP.;ROBERTSHAW CONTROLS COMPANY;REEL/FRAME:033713/0234

Effective date: 20140618

AS Assignment

Owner name: FOX US BIDCO CORP., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RANCO INCORPORATED OF DELAWARE;REEL/FRAME:033726/0079

Effective date: 20140618

AS Assignment

Owner name: CERBERUS BUSINESS FINANCE, LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:FOX US BIDCO CORP.;ROBERTSHAW CONTROLS COMPANY;REEL/FRAME:033766/0705

Effective date: 20140618

AS Assignment

Owner name: ROBERTSHAW US HOLDING CORP., ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:FOX US BIDCO CORP.;REEL/FRAME:033780/0880

Effective date: 20140619

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150923

AS Assignment

Owner name: SUN BSI FINANCE, LLC, FLORIDA

Free format text: SECURITY INTEREST;ASSIGNORS:ROBERTSHAW US HOLDING CORP;ROBERTSHAW CONTROLS COMPANY;REEL/FRAME:039186/0671

Effective date: 20160616

AS Assignment

Owner name: BURNER SYSTEMS INTERNATIONAL, INC., TENNESSEE

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 039186/0671;ASSIGNOR:SUN BSI FINANCE, LLC;REEL/FRAME:039937/0766

Effective date: 20160829

Owner name: ROBERTSHAW CONTROLS COMPANY, ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 039186/0671;ASSIGNOR:SUN BSI FINANCE, LLC;REEL/FRAME:039937/0766

Effective date: 20160829

Owner name: ROBERTSHAW US HOLDING CORP., ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 039186/0671;ASSIGNOR:SUN BSI FINANCE, LLC;REEL/FRAME:039937/0766

Effective date: 20160829

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:043527/0974

Effective date: 20170810

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: FIRST LIEN SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:043527/0974

Effective date: 20170810

AS Assignment

Owner name: GOLDMAN SACHS LENDING PARTNERS LLC, AS ADMINISTRATIVE AGENT, NEW YORK

Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:043539/0407

Effective date: 20170810

Owner name: GOLDMAN SACHS LENDING PARTNERS LLC, AS ADMINISTRAT

Free format text: SECOND LIEN SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:043539/0407

Effective date: 20170810

AS Assignment

Owner name: ROBERTSHAW US HOLDING CORP. (F/K/A FOX US BIDCO CORP.), ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033713/0234;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:044648/0583

Effective date: 20170810

Owner name: ROBERTSHAW US HOLDING CORP. (F/K/A FOX US BIDCO CO

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033766/0705;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:044444/0867

Effective date: 20170810

Owner name: ROBERTSHAW CONTROLS COMPANY, ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033766/0705;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:044444/0867

Effective date: 20170810

Owner name: ROBERTSHAW CONTROLS COMPANY, ILLINOIS

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033713/0234;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:044648/0583

Effective date: 20170810

Owner name: ROBERTSHAW US HOLDING CORP. (F/K/A FOX US BIDCO CO

Free format text: RELEASE OF SECURITY INTEREST RECORDED AT REEL/FRAME 033713/0234;ASSIGNOR:CERBERUS BUSINESS FINANCE, LLC;REEL/FRAME:044648/0583

Effective date: 20170810

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT, NEW YORK

Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:045474/0351

Effective date: 20180228

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIVE AGENT AND COLLATERAL AGENT, NEW YORK

Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:045474/0370

Effective date: 20180228

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIV

Free format text: FIRST LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:045474/0351

Effective date: 20180228

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS ADMINISTRATIV

Free format text: SECOND LIEN PATENT SECURITY AGREEMENT;ASSIGNORS:ROBERTSHAW US HOLDING CORP.;ROBERTSHAW CONTROLS COMPANY;BURNER SYSTEMS INTERNATIONAL, INC.;REEL/FRAME:045474/0370

Effective date: 20180228

AS Assignment

Owner name: ROBERTSHAW CONTROLS COMPANY, ILLINOIS

Free format text: RELEASE OF 2ND LIEN SECURITY INTEREST;ASSIGNOR:GOLDMAN SACHS LENDING PARTNERS LLC;REEL/FRAME:045474/0617

Effective date: 20180228

Owner name: BURNER SYSTEMS INTERNATIONAL, INC., ILLINOIS

Free format text: RELEASE OF 2ND LIEN SECURITY INTEREST;ASSIGNOR:GOLDMAN SACHS LENDING PARTNERS LLC;REEL/FRAME:045474/0617

Effective date: 20180228

Owner name: ROBERTSHAW US HOLDING CORP., ILLINOIS

Free format text: RELEASE OF 2ND LIEN SECURITY INTEREST;ASSIGNOR:GOLDMAN SACHS LENDING PARTNERS LLC;REEL/FRAME:045474/0617

Effective date: 20180228

Owner name: ROBERTSHAW US HOLDING CORP., ILLINOIS

Free format text: RELEASE OF 1ST LIEN SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:045475/0156

Effective date: 20180228

Owner name: ROBERTSHAW CONTROLS COMPANY, ILLINOIS

Free format text: RELEASE OF 1ST LIEN SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:045475/0156

Effective date: 20180228

Owner name: BURNER SYSTEMS INTERNATIONAL, INC., ILLINOIS

Free format text: RELEASE OF 1ST LIEN SECURITY INTEREST;ASSIGNOR:JPMORGAN CHASE BANK, N.A.;REEL/FRAME:045475/0156

Effective date: 20180228

AS Assignment

Owner name: ACQUIOM AGENCY SERVICES LLC, COLORADO

Free format text: OMNIBUS ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS RECORDED AT REEL 045474/FRAME 0370;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:063632/0594

Effective date: 20230509

Owner name: ACQUIOM AGENCY SERVICES LLC, COLORADO

Free format text: OMNIBUS ASSIGNMENT OF INTELLECTUAL PROPERTY SECURITY AGREEMENTS RECORDED AT REEL 045474/FRAME 0351;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:063632/0570

Effective date: 20230509