US20030163114A1 - Retrograde cannula having manually retractable sealing member - Google Patents

Retrograde cannula having manually retractable sealing member Download PDF

Info

Publication number
US20030163114A1
US20030163114A1 US10/082,074 US8207402A US2003163114A1 US 20030163114 A1 US20030163114 A1 US 20030163114A1 US 8207402 A US8207402 A US 8207402A US 2003163114 A1 US2003163114 A1 US 2003163114A1
Authority
US
United States
Prior art keywords
sealing member
body
cannula
inner body
inner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/082,074
Inventor
Arthur Gershowitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Cardiovascular Systems Corp
Original Assignee
Terumo Cardiovascular Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Cardiovascular Systems Corp filed Critical Terumo Cardiovascular Systems Corp
Priority to US10/082,074 priority Critical patent/US20030163114A1/en
Assigned to TERUMO CARDIOVASCULAR SYSTEMS CORPORATION reassignment TERUMO CARDIOVASCULAR SYSTEMS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GERSHOWITZ, ARTHUR D.
Publication of US20030163114A1 publication Critical patent/US20030163114A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0004Catheters; Hollow probes having two or more concentrically arranged tubes for forming a concentric catheter system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1052Balloon catheters with special features or adapted for special applications for temporarily occluding a vessel for isolating a sector

Abstract

A retrograde cannula includes coaxial inner and outer bodies, wherein a least of the portion of the inner body is axially slidable within the outer body. The inner body forms an infusion lumen for conducting CPG. A sealing member is mounted adjacent a distal end of the outer body and is expandable into sealing relationship with a wall of a patient's heart. The sealing member includes proximal and distal ends that are moved away from one another to collapse the sealing member in response to axial sliding of the inner body within the outer body to reduce a profile of the cannula, and thereby facilitate movement of the cannula through a patient's body.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to retrograde cannulas, and in particular to retrograde cannulas used in the delivery of cardioplegia and having automatically expandable sealing members. [0001]
  • Retrograde cannulas are commonly employed during certain cardiac surgical procedures, in order to deliver cardioplegia into coronary veins to effect cardiac arrest by depolarizing cell membranes. [0002]
  • In order to occlude the coronary sinus, the distal end of the cannula includes a sealing member such as an expandible balloon adapted to seal against a wall of the coronary sinus. Balloons may be of the manual-inflating or auto-inflating type. In the auto-inflating type (also referred to as self-inflating), the balloon is in fluid communication with the CPG being delivered to the blood stream and is inflated thereby. [0003]
  • In manual-inflating cannulas, fluid for inflating the balloon is added or withdrawn by means of a syringe. When the balloon of a manual-inflating cannula is deflated, it is common for the balloon to retract snugly against the cannula body when not inflated, whereby the cannula has a reduced profile to facilitate insertion and removal into the body. [0004]
  • In contrast, auto-inflate retrograde catheters typically include a balloon having a relatively permanent shape which varies little between the inflated and deflated states. The inflation of the balloon mainly serves to make the balloon more rigid or turgid, i.e., more less pliant. Thus, the profile of the cannula is not appreciably reduced when the balloon is deflated. This can lead to problems when attempting to insert the cannula into a patient's vessel. [0005]
  • It has previously been proposed in U.S. Pat. No. 5,197,952 to stretch a cannula prior to insertion thereof into a patient. That involves the fixing of a plug within the infusion lumen in the area of the balloon. The plug forms a barrier against which a stylet can be pushed in order to stretch the cannula. The balloon is provided with a fluid inlet disposed proximally of the plug and a fluid outlet disposed distally of the plug, in order to enable fluid (e.g., CPG) to flow through the balloon (and around the plug) after the cannula has been installed. It will be appreciated that the need to install a plug complicates the manufacture and use of the cannula. [0006]
  • It would be desirable to provide an auto-inflate cannula with the ability to significantly reduce its profile and thereby facilitate insertion and removal of the cannula. It would be advantageous to accomplish this without the need to provide a barrier within the cannula body and/or without having to provide an appreciable restriction to the flow of infusion liquid. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a retrograde cannula for delivering fluid to a patient's vessel. The cannula comprises a body arrangement which defines a longitudinal axis. The body arrangement includes coaxial inner and outer bodies. At least a portion of the inner body is axially slidable within the outer body. The inner body forms an infusion lumen extending between proximal and distal ends of the inner body for conducting fluid. The infusion lumen includes an outlet adjacent the distal end of the inner body for discharging the fluid. The cannula also includes a sealing member disposed on the body arrangement adjacent a distal end of the outer body. The sealing member is expandable into sealing relationship with the vessel. The sealing member includes proximal and distal ends that are moved away from one other to collapse the sealing member in response to axial sliding of the inner body within the outer body to reduce a profile of the cannula. [0008]
  • The present invention also relates to a method of inserting the retrograde cannula into a vessel of a patient's body. The method comprises the steps of: [0009]
  • A) axially sliding the inner body within the outer body in a first direction to move the proximal and distal ends of the sealing member in opposite directions for collapsing the sealing member to a smaller profile; [0010]
  • B) inserting the reduced-profile cannula into the vessel; and [0011]
  • C) axially sliding the inner body within the outer body in a second direction to move the proximal and distal ends of the sealing member toward one another for permitting the sealing member to extend outwardly.[0012]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The objects and advantages of the invention will become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawings in which like numerals designate like elements and in which: [0013]
  • FIG. 1 is a longitudinal sectional view taken through a cannula according to a first embodiment of the invention, with a sealing element thereof in a non-collapsed state. [0014]
  • FIG. 2 is a view similar to FIG. 1 with the sealing member in a collapsed state. [0015]
  • FIG. 3 is a fragmentary side elevational view of a portion of the cannula depicted in FIG. 1, with the sealing element removed. [0016]
  • FIG. 4 is a sectional view taken along the line [0017] 4-4 in FIG. 3.
  • FIG. 5 is a fragmentary view of a proximal portion of the cannula depicting a mechanism for holding inner and outer bodies of the cannula in selected positions. [0018]
  • FIG. 6 is a longitudinal sectional view taken through a cannula according to a second embodiment of the invention, with a sealing element thereof in a non-collapsed state. [0019]
  • FIG. 7 is a view similar to FIG. 6 with the sealing member in a collapsed state. [0020]
  • FIG. 8 is a longitudinal sectional view taken through a cannula according to a third embodiment of the invention, with a sealing element thereof in a non-collapsed state. [0021]
  • FIG. 9 is a view similar to FIG. 8 with the sealing member in a collapsed state.[0022]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • Depicted in FIGS. [0023] 1-5 is a first preferred embodiment of an auto-inflate retrograde cannula 10 according to the present invention. The cannula 10 comprises an outer body 12 and a coaxial inner body 14. The outer and inner bodies are formed of a plastic material suitable for insertion into a human body, such as PVC, urethane, or silicone for example. The outer body 12 is of cylindrical configuration except for a ribbed portion 16 disposed adjacent a distal end 18 of the outer body. The ribbed portion is of generally bulbous shape and includes slits 20 of any suitable number extending generally in the longitudinal direction of the cannula (see FIG. 3). The slits 20 cause longitudinal ribs 22 to be formed in the ribbed portion that are separated from one another by the slits 20. Each rib 22 is supported solely at longitudinally spaced ends thereof and is of curved shape such that the outer surface 24 thereof is convex, and the inner surface 26 is concave.
  • The inner body [0024] 14 is of cylindrical shape and includes an infusion lumen 28 and a pressure monitoring lumen 30 adjacent thereto. The infusion lumen 28 serves to conduct fluid to the patient's vessel, e.g. to conduct cardioplegia to the heart, and the pressure monitoring lumen 30 enables pressure to be monitored at the distal end of the cannula. Thus, the proximal end of the cannula can be connected to a conventional pressure indicating device (not shown).
  • The lumens [0025] 28, 30 extend from the distal end to the proximal end of the cannula and are open at their distal ends 28 a, 30 a.
  • A distal portion [0026] 32 of the inner body 14 is affixed to a distal portion 34 of the outer portion, which distal portions 32, 34 are defined as being disposed distally of the ribbed portion 16. The rest of the inner body 14 is slidable relative to the outer body. Thus, by sliding the inner body 14 forwardly while holding the outer body 12 stationary, the ribs 22 can be collapsed, or flattened out, as shown in FIG. 2, to reduce the profile (i.e., to reduce the maximum cross-sectional size) of the cannula.
  • Affixed to the outer body is an expandable sealing member [0027] 40 in the form of a balloon which encompasses the ribbed portion 16. The balloon 40 includes distal and proximal edges 42, 44 affixed to the outer body 12 adjacent respective sides of the ribbed portion 16.
  • The inner body [0028] 14 includes inflation holes 46 which communicate the infusion lumen 28 with the balloon interior. Thus, when fluid, such as cardioplegia, is conducted through the infusion lumen 28 and discharged through one or more outlets at the distal end 28 a, the fluid also inflates the balloon, whereby the balloon is inflated, i.e., becomes turgid.
  • In operation of the FIG. 1-[0029] 5 embodiment, the cannula is inserted into the body in the low-profile shape shown in FIG. 2, i.e., with the inner body 14 having been slid forwardly relative to the outer body 12 to collapse, i.e., generally flatten, the ribs 22 and the balloon 40 to a smaller profile. The term “collapse” as used herein does not require a complete collapsing of the ribs, and the balloon, but rather is intended to be broad enough to include a partial collapse. Once the cannula has been inserted into a vessel of the body, e.g. the coronary sinus, the inner body 14 is slid rearwardly, whereby the ribs 22 assume the enlarged profile state of FIG. 1. Preferably in this state, the ribs are able to bear against a wall of the coronary sinus with the non-inflated balloon sandwiched therebetween.
  • When fluid, such as cardioplegia, is delivered through the infusion lumen [0030] 28, the cardioplegia flows through the inflation holes 46 to inflate and stiffen the balloon 40 against the wall of the coronary sinus to seal off any areas not previously sealed. The cardioplegia is thus able to enter the heart vessel.
  • After an initial charge of cardioplegia has been delivered the flow is halted. Thereupon, the balloon becomes deflated, but the distal end of the cannula remains deployed in the coronary sinus, because the ribs [0031] 22 continue to be pressured against a wall of the coronary sinus. Thus, when a subsequent charge of cardioplegia is delivered through the infusion lumen, the distal end of the catheter is still deployed in a desired position.
  • To remove the cannula from the body, the inner body [0032] 14 is slid forwardly to deform (flatten) the ribs 22 and the balloon for reducing the profile of the cannula.
  • It may be desirable to provide means for holding the inner body [0033] 14 in its various longitudinal positions, which can be done in any of numerous ways. For example, as shown in FIG. 5, the outer body 12 can be provided with a slot 41 having a plurality of notches 43 a, 43 b, 43 c, the number of notches corresponding to respective positions of the inner body 14 relative to the outer body 12, as desired.
  • The inner body [0034] 14 includes a pin 48 received in the slot. Once the inner body 14 is moved axially to a desired position, it can be rotated to position the pin in a respective notch to retain the inner body in position.
  • Another embodiment of the invention is depicted in FIGS. 6 and 7. In That embodiment, a cannula [0035] 50 includes outer and inner bodies 52, 54, with the entire body slidable longitudinally without being relative to the outer body, i.e., no part of the inner body 54 is fixed to the outer body 52. The inner body 54 includes an infusion lumen 56 and a pressure lumen 58. A balloon 60 has a distal end 62 attached to the inner body 54 and a proximal end 64 attached to the outer body 52. Inflation holes 64 are formed in the inner body 54 to communicate the infusion lumen 56 with the interior of the balloon 60.
  • Similarly to the earlier-described embodiment, the balloon [0036] 60 can be flattened to reduce the profile of the cannula by sliding the inner body 54 forwardly relative to the outer body 52, as shown in FIG. 7.
  • The cannula [0037] 50 is inserted and removed relative to a patient's body with the inner body 54 slid forwardly relative to the outer body 52, i.e., with the cannula in a reduced-profile state (see FIG. 7). Cardioplegia is delivered after the distal end of, the cannula has been inserted into the coronary sinus and the inner body 54 has been slid rearwardly. Thus, the balloon 60 is able to be inflated into firm contact with the wall of the coronary sinus by the cardioplegia being delivered.
  • It will be appreciated that the embodiment according to FIGS. 6 and 7 enables the profile of the cannula to be reduced, like the embodiment according to FIGS. [0038] 1-4. If desired, a pin-and-slot arrangement 41, 48 similar to that of FIG. 5 can be employed in order to retain the inner and outer bodies 54, 52 in their relative longitudinal positions.
  • A third embodiment of the invention is depicted in FIGS. 8 and 9. Depicted therein is a cannula [0039] 70 having outer and inner bodies 72, 74. The inner body 74 is longitudinally slidable relative to the outer body 72, and no part of the inner body 74 is fixed to the outer body. The inner body 74 includes a infusion lumen 76 and a pressure lumen 78. Attached to a distal end of the outer body 72 is the proximal end of a flexible (preferably elastic) expandable sealing member 80 which is not in the form of an inflatable balloon, but rather has a permanent relaxed (normal) shape shown in FIG. 8. The sealing member includes holes 82 adjacent a distal end for discharging cardioplegia, as will be explained. When inserting or removing the cannula 70 relative to a patient's body, the profile of the cannula is reduced by longitudinally extending the inner body 74 forwardly relative to the outer body 72 and into contact with the sealing member 80 to longitudinally extend and collapse the sealing member 80 as shown in FIG. 9. During installation into the patient's body, once the sealing member has reached the desired location in the coronary sinus, the inner body 74 is retracted (i.e., moved to the right in FIGS. 8-9), to return the sealing member 80 to its normal (i.e., expanded) shape and into sealing relationship with the wall of the coronary sinus. Cardioplegia can then be conducted through the infusion lumen 76 and into the sealing member. The cardioplegia exits the sealing member through the holes 82 formed in the sealing member.
  • It will be appreciated that due to the presence of the holes [0040] 82 in the sealing member, the pressurized cardioplegia does not function to inflate the sealing member 80. Rather, the sealing member 80 remains in expanded sealing relationship with the wall of the coronary sinus whenever the inner body 74 is retracted away from the sealing member.
  • Advantageously, it is possibly to administer an antegrade cardioplegia through an antegrade cannula (not shown) with the sealing member [0041] 80 of the retrograde cannula disposed in sealing relationship with the wall of the coronary sinus. In that regard, the outer body 72 is provided with holes 90 that are normally blocked by the inner body 74. However, by retracting the inner body (i.e., to the right in FIGS. 8-9) sufficiently for to expose the holes 90, wherein the distal end of the inner body travels to the right of the holes 90, the holes will be exposed, so that the antegrade cardioplegia can flow through the retrograde cannula from left-to-right by entering the sealing member 80 via its holes 82, and then flowing through the outer body 72 and finally exiting through the holes 90.
  • It will be appreciated that the present invention provides a retrograde cannula whose profile can be appreciably reduced in order to facilitate the insertion and removal of the cannula, without having to install a plug within the infusion lumen. [0042]
  • Although the present invention has been described in connection with a preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without departing from the spirit and scope of the invention as defined in the appended claims. [0043]

Claims (14)

What is claimed is:
1. A retrograde cannula for delivering fluid to a patient's vessel, the cannula comprising:
a body arrangement defining a longitudinal axis and including coaxial inner and outer bodies, at least a portion of the inner body being axially slidable within the outer body, the inner body forming an infusion lumen extending between proximal and distal ends of the inner body for conducting fluid, the infusion lumen including at least one outlet adjacent the distal end of the inner body thereof for discharging the fluid; and
a sealing member disposed on the body arrangement adjacent a distal end of the outer body and being expandible into sealing relationship with the vessel, the sealing member including proximal and distal ends that are moved away from another to collapse the sealing member in response to axial sliding of the inner body within the outer body to reduce a profile of the cannula.
2. The cannula according to claim 1 wherein the proximal end of the sealing member is connected to the outer body, the distal end of the sealing member arranged to be displaced forwardly by the inner body in response to axial sliding of the inner body within the outer body.
3. The cannula according to claim 2 wherein the distal end of the sealing member is affixed to the inner body.
4. The cannula according to claim 3 wherein the sealing member comprises an inflatable balloon, the inner body including communication passages for communicating the infusion lumen with the interior of the balloon.
5. The cannula according to claim 2 wherein the outer body includes a bulbous portion defined by convexly projecting ribs spaced circumferentially apart; the sealing member arranged to surround the bulbous portion; the proximal and distal ends of the sealing member affixed to the outer body with the enlargement disposed between the proximal and distal ends of the sealing member; a distal portion of the inner body affixed to a distal portion of the outer body at a location distally of the bulbous portion; the ribs being collapsible to a smaller profile in response to axial sliding of the inner body and simultaneous axial displacement of the distal portion of the outer body.
6. The cannula according to claim 5 wherein the sealing member comprises an inflatable balloon, the infusion lumen communicating with an interior of the balloon through spaces formed between adjacent ribs.
7. The cannula according to claim 2 wherein the sealing member is elastic and normally assumes an expanded state; an interior of the sealing member communicating with the infusion lumen for receiving fluid therefrom; the sealing member including holes for discharging fluid received from the infusion lumen; the inner body being engageable with the distal end of the sealing member in response to axial sliding of the inner body within the outer body to collapse the sealing member to a smaller profile.
8. The cannula according to claim 1 further including holding means for holding the inner and outer bodies in selected longitudinal relationship.
9. The cannula according to claim 8 wherein the holding means comprises a pin-and-slot connection between the inner and outer bodies, the slot including notches for receiving the pin.
10. A method of inserting a retrograde cannula into a vessel of a patient's body, the cannula comprising a body arrangement including coaxial inner and outer bodies, the inner body being axially slidable within the outer body, the inner body forming an infusion lumen extending between proximal and distal ends of the inner body for conducting pressurized fluid, the inner body including an outlet adjacent the distal end thereof for discharging the fluid, and a sealing member disposed on the body arrangement adjacent a distal end of the outer body and being expandible into sealing relationship with the vessel, the sealing member having proximal and distal ends that are moved away from one another to collapse the sealing member in response to axial sliding of the inner body within the outer body to reduce a profile of the cannula, the method comprising the steps of:
A) axially sliding the inner body within the outer body in a first direction to move the proximal and distal ends of the sealing member away from one another for collapsing the sealing member to a smaller profile;
B) inserting the reduced-profile cannula into the vessel; and
C) axially sliding the inner body within the outer body in a second direction to move the proximal and distal ends of the sealing member toward one another for permitting the sealing member to expand outwardly.
11. The method according to claim 10 wherein the proximal end of the sealing member is affixed to the outer body, the distal portion of the sealing member being affixed to the inner body, wherein axially forward sliding of the inner body moves the distal end of the balloon forwardly relative to the proximal end thereof.
12. The method according to claim 11 wherein the sealing member comprises an inflatable balloon, and further comprising the step of conducting fluid through the infusion lumen for inflating the balloon subsequent to step C.
13. The method according to claim 10 wherein the outer body includes a collapsible bulbous portion disposed axially between the proximal and distal ends of the sealing member; the inner and outer bodies being affixed together at a location distally of the bulbous portion; wherein step A comprises displacing distal portions of the inner and outer bodies together relative to a proximal portion of the outer body for collapsing the bulbous portion.
14. The method according to claim 10 wherein the proximal end of the sealing member is affixed to the outer body, step A comprising moving the inner body into contact with a distal end of the sealing member to collapse the sealing member.
US10/082,074 2002-02-26 2002-02-26 Retrograde cannula having manually retractable sealing member Abandoned US20030163114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/082,074 US20030163114A1 (en) 2002-02-26 2002-02-26 Retrograde cannula having manually retractable sealing member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/082,074 US20030163114A1 (en) 2002-02-26 2002-02-26 Retrograde cannula having manually retractable sealing member
US10/826,250 US6918888B2 (en) 2002-02-26 2004-04-19 Retrograde cannula having manually retractable sealing member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/826,250 Continuation US6918888B2 (en) 2002-02-26 2004-04-19 Retrograde cannula having manually retractable sealing member

Publications (1)

Publication Number Publication Date
US20030163114A1 true US20030163114A1 (en) 2003-08-28

Family

ID=27753028

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/082,074 Abandoned US20030163114A1 (en) 2002-02-26 2002-02-26 Retrograde cannula having manually retractable sealing member
US10/826,250 Expired - Fee Related US6918888B2 (en) 2002-02-26 2004-04-19 Retrograde cannula having manually retractable sealing member

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/826,250 Expired - Fee Related US6918888B2 (en) 2002-02-26 2004-04-19 Retrograde cannula having manually retractable sealing member

Country Status (1)

Country Link
US (2) US20030163114A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065555A1 (en) * 2003-12-23 2005-07-21 Boston Scientific Limited Catheter with distal occlusion
US20080085670A1 (en) * 2006-08-31 2008-04-10 Mpsc, Inc. Meat processing
US20110263976A1 (en) * 2008-07-18 2011-10-27 Hassan Ali H Methods and Devices for Endovascular Introduction of an Agent
US20120130394A1 (en) * 2010-03-31 2012-05-24 Lee Keun Young Amnion insertion device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050256508A1 (en) * 2002-05-07 2005-11-17 Cardiac Pacemakers, Inc. Guide catheter system having relative markings
US20050256503A1 (en) * 2002-05-07 2005-11-17 Cardiac Pacemakers, Inc. Tapered catheter delivery system
US20070078386A1 (en) * 2005-08-30 2007-04-05 Cytyc Corporation Movable anchoring catheter
US9283314B2 (en) * 2005-09-21 2016-03-15 Abiomed, Inc. Cannula systems
WO2008027375A2 (en) * 2006-08-31 2008-03-06 Cook Incorporated Rotationally actuated fixation mechanism
US8376992B2 (en) * 2008-07-29 2013-02-19 Olympus Medical Systems Corp. Balloon catheter and sheath fabrication method
US9211234B2 (en) 2010-09-27 2015-12-15 Avent, Inc. Configurable percutaneous endoscopic gastrostomy tube
US9808282B2 (en) * 2015-06-04 2017-11-07 Medos International Sarl Surgical cannula system and method of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397699A (en) * 1966-05-05 1968-08-20 Gerald C. Kohl Retaining catheter having resiliently biased wing flanges
US3634924A (en) * 1970-04-20 1972-01-18 American Hospital Supply Corp Method of making multilumen balloon catheter
US4043338A (en) * 1973-04-30 1977-08-23 Ortho Pharmaceutical Corporation Pharmaceutical formulation applicator device
US4885003A (en) * 1988-07-25 1989-12-05 Cordis Corporation Double mesh balloon catheter device
US4997419A (en) * 1989-06-01 1991-03-05 Edward Weck Incoporated Laparoscopy cannula
US5443449A (en) * 1991-03-01 1995-08-22 Applied Medical Resources Corporation Cholangiography catheter
US6102891A (en) * 1998-01-16 2000-08-15 Cordis Corporation Balloon catheter with valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397699A (en) * 1966-05-05 1968-08-20 Gerald C. Kohl Retaining catheter having resiliently biased wing flanges
US3634924A (en) * 1970-04-20 1972-01-18 American Hospital Supply Corp Method of making multilumen balloon catheter
US4043338A (en) * 1973-04-30 1977-08-23 Ortho Pharmaceutical Corporation Pharmaceutical formulation applicator device
US4885003A (en) * 1988-07-25 1989-12-05 Cordis Corporation Double mesh balloon catheter device
US4997419A (en) * 1989-06-01 1991-03-05 Edward Weck Incoporated Laparoscopy cannula
US5443449A (en) * 1991-03-01 1995-08-22 Applied Medical Resources Corporation Cholangiography catheter
US6102891A (en) * 1998-01-16 2000-08-15 Cordis Corporation Balloon catheter with valve

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065555A1 (en) * 2003-12-23 2005-07-21 Boston Scientific Limited Catheter with distal occlusion
US9232948B2 (en) 2003-12-23 2016-01-12 Stryker Corporation Catheter with distal occlusion apparatus
US20080085670A1 (en) * 2006-08-31 2008-04-10 Mpsc, Inc. Meat processing
US7666074B2 (en) 2006-08-31 2010-02-23 Mpsc, Inc. Meat processing
US8157624B2 (en) 2006-08-31 2012-04-17 Mpsc, Inc. Meat processing
US8298049B2 (en) 2006-08-31 2012-10-30 Mpsc, Inc. Meat processing
US20100144258A1 (en) * 2006-08-31 2010-06-10 Mpsc, Inc. Meat processing
US20110263976A1 (en) * 2008-07-18 2011-10-27 Hassan Ali H Methods and Devices for Endovascular Introduction of an Agent
US20120130394A1 (en) * 2010-03-31 2012-05-24 Lee Keun Young Amnion insertion device
US9028506B2 (en) * 2010-03-31 2015-05-12 Keun Young LEE Amnion insertion device

Also Published As

Publication number Publication date
US6918888B2 (en) 2005-07-19
US20040199111A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
US3547126A (en) Catheter
EP1480709B1 (en) Balloon catheter for creating a longitudinal channel in a lesion and method
US6951555B1 (en) Catheter having integral expandable/collapsible lumen
EP0419291B1 (en) Valvuloplasty catheter with balloon which remains stable during inflation
JP3131444B2 (en) Apparatus for advancing an object through a body cavity
CA2261341C (en) Six-pleated catheter balloon and device for forming same
US5620418A (en) Retrograde coronary sinus catheter
US5704913A (en) Dilation catheter and method of treatment therewith
EP0981387B1 (en) Balloon catheter apparatus
EP0417189B1 (en) Balloon dilation catheter
US4585000A (en) Expandable device for treating intravascular stenosis
EP0465417B1 (en) Direct vision prostate balloon catheter
ES2330655T3 (en) cutting balloon and procedure.
ES2324915T3 (en) Catheter Proximal protection unfolding balloon plunger.
US5342305A (en) Variable distention angioplasty balloon assembly
EP0057205B1 (en) Calibrating dilatation catheter
US5366472A (en) Dilatation balloon within an elastic sleeve
EP0341988B1 (en) Prostate balloon dilator
US7662163B2 (en) Stiffened balloon apparatus with increased flexibility
US5695498A (en) Stent implantation system
US7713193B2 (en) Expandable percutaneous sheath
US2919697A (en) Catheters
US5160321A (en) Balloon catheters
US3895637A (en) Self propelled conduit traversing device
US20020111672A1 (en) Deformable scaffolding multicellular stent

Legal Events

Date Code Title Description
AS Assignment

Owner name: TERUMO CARDIOVASCULAR SYSTEMS CORPORATION, MICHIGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GERSHOWITZ, ARTHUR D.;REEL/FRAME:012645/0299

Effective date: 20020220

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION