US20030158664A1 - Method of increasing location accuracy in an inertial navigational device - Google Patents

Method of increasing location accuracy in an inertial navigational device Download PDF

Info

Publication number
US20030158664A1
US20030158664A1 US10/078,796 US7879602A US2003158664A1 US 20030158664 A1 US20030158664 A1 US 20030158664A1 US 7879602 A US7879602 A US 7879602A US 2003158664 A1 US2003158664 A1 US 2003158664A1
Authority
US
United States
Prior art keywords
data
location
real
navigational device
inertial navigational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/078,796
Other versions
US6615136B1 (en
Inventor
Charles Swope
Daniel Tealdi
Patrick Koskan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/078,796 priority Critical patent/US6615136B1/en
Assigned to MOTOROLA, INC. reassignment MOTOROLA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOSKAN, PATRICK DOUGLAS, SWOPE, CHARLES B., TEALDI, DANIEL A.
Publication of US20030158664A1 publication Critical patent/US20030158664A1/en
Application granted granted Critical
Publication of US6615136B1 publication Critical patent/US6615136B1/en
Assigned to MOTOROLA SOLUTIONS, INC. reassignment MOTOROLA SOLUTIONS, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MOTOROLA, INC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Definitions

  • the present invention relates generally to a method if increase location accuracy in an inertial navigation device.
  • a traditional inertial navigation system in its embodiment utilizes accelerometers, gyroscopes, and support electronics, such as a processor, in order to translate sensor data into motional changes. These changes are then translated to position based on an initial referenced position and the integration or differentiation of said motion. As time progresses, the errors associated with the accelerometers and gyroscopes increase to a point where the translation to position is outside of the required positional resolution, thus rendering the unit ineffective or lost.
  • the INS device is updated manually by resetting the INS device using a known fixed position or by returning back to the original reference position. The user manually resets the INS unit and positional errors are cleared until said error occurs again requiring another reset.
  • the INS device is updating an alternate location-finding unit, such as a global positioning system (“GPS”).
  • GPS global positioning system
  • the attached GPS is providing data to a communication link sending back Latitude and Longitude information.
  • the INS device is utilized when the GPS position is no longer available due to occulting of the satellites.
  • the INS device is utilized to provide updates to the last known position and errors are accumulated at a rate of 2% to 5% of the distance traveled.
  • the INS device is only used for updating the embedded GPS unit's location. Once a GPS signal is re-captured, the INS device is not used.
  • INS devices utilize output voltages representing the second derivative of position to integrate and determine relative changes in motion. These are applied to the last known position update and a new one is generated with some small error. As time progresses, the errors are accumulated and the computed position is no longer usable by the INS user. A known location or position is required in order to correct for the errors.
  • Traditional systems utilize GPS, or cycle through a fixed reference point to correct those errors.
  • FIG. 1 illustrates a block diagram of the portable inertial navigation system (“PINS”) architecture in accordance with the preferred embodiment of the present invention
  • FIG. 2 illustrates a block diagram of a PINS device in accordance with the preferred embodiment of the present invention
  • FIG. 3 illustrates a block diagram of a host in accordance with the preferred embodiment of the present invention
  • FIG. 4 illustrates a software components diagram for the host process in accordance with the preferred embodiment of the present invention.
  • FIG. 5 illustrates the preferred embodiment of the invention illustrating a clear delineation between the inertial navigation system sensor and the host process platform.
  • the present invention increases location accuracy in a Portable Inertial Navigation System (“PINS”).
  • PINS performs stand-alone tracking in areas where a Global Positioning System (“GPS”), or other similar location technologies, can no longer provide location updates to the user or infrastructure.
  • GPS Global Positioning System
  • a user can carry a PINS device so that gestures (i.e., body movements) are translated into position or location.
  • PINS utilizes internal three-axis gyroscopes and accelerometers (and other technology) to capture the motion of the user and translates it into positional changes through algorithmic processing.
  • the processing can occur in the PINS device, the host or base computer, or any combination of both.
  • RF radio frequency
  • the PINS technology is coupled with traditional communication devices (e.g., two-way radios) to provide a link to the host.
  • the host tracks the location of the PINS device by correlating motion history against a dimensional rendering of a structure or building.
  • traditional communication devices e.g., two-way radios
  • the host tracks the location of the PINS device by correlating motion history against a dimensional rendering of a structure or building.
  • the following details the architectural designs for the two primary components in the PINS architecture: the PINS device 100 and the host 104 ; these two components are connected via an over-the-air radio channel 102 as illustrated in FIG. 1.
  • the PINS device 100 is responsible for taking measurements of motion-related data (e.g., acceleration, rotation, direction), and translating this data into motion commands through sensor signal processing.
  • the motion-related data is then transmitted to the host that identifies the location of the PINS device to those requiring resource tracking.
  • the PINS device 100 also referred to as an inertial measurement unit (“IMU”), receives an initialization function (e.g., GPS) to provide an initial position for the PINS device that allows it to utilize its relative metrics and convert them into an error correction (e.g., a location update).
  • an initialization function e.g., GPS
  • a GPS provides the initial location to the PINS device in the preferred embodiment, it is not necessary. Since PINS utilizes a communication infrastructure, a simple voice position update, or the like, will suffice as the initialization function.
  • the PINS device 100 consists of a host of sensors and required processing power to pre-process the raw data from the inertial sensors.
  • sensors There are several different sensors that can be used in an IMU. Theses sensors include, but are not limited to, accelerometers, gyroscopes, compass, pressure, and temperature.
  • the PINS device 100 is responsible for gathering the necessary data to determine location. Measuring the several degrees of freedom of an object to arrive to the desired location information usually does this.
  • An object has six degrees of freedom in space; three of them determine the position, while the other three determine the altitude of the object.
  • the three linear axes determine the position: x, y, and z; the three rotational axes determine the altitude: theta (pitch), psi (yaw), and phi (roll).
  • the PINS device 100 is responsible for measuring these variables that are necessary to track an object in three dimensions. These six axes are usually measured indirectly through their first or second moments. For example, theta, psi, and phi are derived through the measurement of their first moment or angular velocity rather than angular position; x, y, and z are usually measured through their second moment or linear acceleration rather than linear position. Thus, the PINS device 100 relies on the motion of the object in order to determine its position.
  • the PINS device 100 can be designed to output at least one type of data, such as sensor data, motion commands, position location, and/or the like.
  • the radio channel 102 is responsible for sending the output data of the PINS device 100 over-the-air to the host 104 , typically residing at the base or dispatcher station. This communication is bi-directional, meaning that not only is data for the PINS device 100 sent to the host 104 , but the host 104 also must be able to send correction data/messages back to the PINS device 100 for error correction(s).
  • the host 104 is responsible for receiving the over-the-air data packets from the PINS device 100 ; this data is logged and formatted for processing by the host 104 .
  • the data collected can now be augmented with other location data, if available, such as RF triangulation 108 or a GPS fix 109 , in order to get a better estimate of the actual location of the PINS user.
  • the estimated location can be further corrected by using a verification process; this process may involve correlation with dimensional building structure information 105 , reference gestures information 106 , dispatcher update using voice query information with the user 107 , and/or the like.
  • the location correction coefficient is determined, it is sent back to the PINS device 100 via the radio channel 102 for error corrections and user visualization if applicable (such as a heads-up display).
  • This data enables the PINS device 100 to correct itself to drift errors, and also serve as an indication to the user of where the host/system considers him to be.
  • the location management software handles the data and can keeps track of the location of several different PINS devices.
  • the host 104 is responsible for archiving, displaying, and distributing this location data back to the PINS device 100 .
  • Remote client units using various wireless networks, can also receive the location data.
  • the PINS device 100 is initialized with a known reference location (such as that provided by a GPS, a voice command, or the like).
  • the PINS device 100 gathers sensor data and calculates motion commands and position location from the sensor data.
  • the PINS device 100 sends the motion commands and position locations to the host 104 .
  • the host 104 uses the position location of the PINS device and further correlates the received location and received motion commands with other available non-location data (such as, but not limited to, verbal communication from the user, structural dimensions, reference gestures, sensor metrics, and/or the like) in order to enhance the resolution of the reported location by calculating any ⁇ coefficients.
  • the host 104 sends the ⁇ coefficients to the PINS device 100 .
  • the PINS device 100 re-initializes its current location based on the ⁇ processing of coefficients and further makes necessary modifications to the process of calculating subsequent motion commands and position locations.
  • the PINS device 100 is updated such that no GPS or external fixed or manual reference is necessary at the PINS device to reduce or eliminate accumulated position errors. This is accomplished by the host 104 receiving or having access to information other than the data received from the PINS device 100 , such as dimensions of the structure where the PIS device 100 is being used and/or reference gestures. The host 104 identifies key update locations that are unique enough for establishing a reference location (such as stairs, elevators, and hallways). As the PINS user moves, the updated motion commands provide the host 104 with a probable location of the user. Again, as time progresses, the PINS device 100 accumulates errors when gathering data and creating motion commands.
  • the host 104 eventually will detect the occurrence of one of the reference locations and infer where the PINS user is located; once the error is detected and corrected, it is sent to the PINS device 100 for ⁇ correction. Hence, the accuracy can be improved without any intervention from the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

A method of increasing location accuracy in an inertial navigational device (100) is described herein. The navigational device (100) generates real-time data to depict its location. The data comprises at least one of sensor data, motion data, and location data. The navigational device (100) transmits the real-time data to a second device (104) in a real-time fashion. The navigational device (100) receives an update message from the second device (104), based on a comparison of the real-time data generated by the navigational device (100) against a second set of data. The navigational device (100) adjusts its depicted location based on the update message in order to increase the location accuracy of the navigational device (100). Alternatively, the navigational device (100), absent the second device (104), can compare the real-time data generated against the second set of data internally and adjust its depicted location accordingly.

Description

    REFERENCE TO RELATED APPLICATION
  • The present application is related to the following U.S. application commonly owned together with this application by Motorola, Inc.: Ser. No. ______, filed Feb. 19, 2002, titled “Device For Use With A Portable Inertial Navigation System (PINS) and Method For Processing PINS Signals” by Swope et al. (attorney docket no. CM03613J).[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to a method if increase location accuracy in an inertial navigation device. [0002]
  • BACKGROUND OF THE INVENTION
  • A traditional inertial navigation system (“INS”) in its embodiment utilizes accelerometers, gyroscopes, and support electronics, such as a processor, in order to translate sensor data into motional changes. These changes are then translated to position based on an initial referenced position and the integration or differentiation of said motion. As time progresses, the errors associated with the accelerometers and gyroscopes increase to a point where the translation to position is outside of the required positional resolution, thus rendering the unit ineffective or lost. [0003]
  • In one INS embodiment, the INS device is updated manually by resetting the INS device using a known fixed position or by returning back to the original reference position. The user manually resets the INS unit and positional errors are cleared until said error occurs again requiring another reset. [0004]
  • In another embodiment the INS device is updating an alternate location-finding unit, such as a global positioning system (“GPS”). In this configuration, the attached GPS is providing data to a communication link sending back Latitude and Longitude information. The INS device is utilized when the GPS position is no longer available due to occulting of the satellites. The INS device is utilized to provide updates to the last known position and errors are accumulated at a rate of 2% to 5% of the distance traveled. The INS device is only used for updating the embedded GPS unit's location. Once a GPS signal is re-captured, the INS device is not used. [0005]
  • Traditionally, INS devices utilize output voltages representing the second derivative of position to integrate and determine relative changes in motion. These are applied to the last known position update and a new one is generated with some small error. As time progresses, the errors are accumulated and the computed position is no longer usable by the INS user. A known location or position is required in order to correct for the errors. Traditional systems utilize GPS, or cycle through a fixed reference point to correct those errors. [0006]
  • Thus, there exists a need for a system that reduces error accumulation and performs stand-alone tracking in areas where GPS (or other similar location technologies) can no longer provide location updates to the user or infrastructure.[0007]
  • BRIEF DESCRIPTION OF THE FIGURES
  • A preferred embodiment of the invention is now described, by way of example only, with reference to the accompanying figures in which: [0008]
  • FIG. 1 illustrates a block diagram of the portable inertial navigation system (“PINS”) architecture in accordance with the preferred embodiment of the present invention; [0009]
  • FIG. 2 illustrates a block diagram of a PINS device in accordance with the preferred embodiment of the present invention; [0010]
  • FIG. 3 illustrates a block diagram of a host in accordance with the preferred embodiment of the present invention; [0011]
  • FIG. 4 illustrates a software components diagram for the host process in accordance with the preferred embodiment of the present invention; and [0012]
  • FIG. 5 illustrates the preferred embodiment of the invention illustrating a clear delineation between the inertial navigation system sensor and the host process platform.[0013]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention increases location accuracy in a Portable Inertial Navigation System (“PINS”). A PINS performs stand-alone tracking in areas where a Global Positioning System (“GPS”), or other similar location technologies, can no longer provide location updates to the user or infrastructure. Ideally, a user can carry a PINS device so that gestures (i.e., body movements) are translated into position or location. Preferably, PINS utilizes internal three-axis gyroscopes and accelerometers (and other technology) to capture the motion of the user and translates it into positional changes through algorithmic processing. The processing can occur in the PINS device, the host or base computer, or any combination of both. Thus, the present invention maintains a high level of positional accuracy for users as they traverse through areas where traditional radio frequency (“RF”) triangulation is not possible, such as an indoor structure, heavy foliage, urban canyons, etc. [0014]
  • In accordance with the present invention, the PINS technology is coupled with traditional communication devices (e.g., two-way radios) to provide a link to the host. The host then tracks the location of the PINS device by correlating motion history against a dimensional rendering of a structure or building. In order to accommodate this task, the following details the architectural designs for the two primary components in the PINS architecture: the [0015] PINS device 100 and the host 104; these two components are connected via an over-the-air radio channel 102 as illustrated in FIG. 1.
  • As illustrated in FIG. 2, the [0016] PINS device 100 is responsible for taking measurements of motion-related data (e.g., acceleration, rotation, direction), and translating this data into motion commands through sensor signal processing. The motion-related data is then transmitted to the host that identifies the location of the PINS device to those requiring resource tracking.
  • In the preferred embodiment, the [0017] PINS device 100, also referred to as an inertial measurement unit (“IMU”), receives an initialization function (e.g., GPS) to provide an initial position for the PINS device that allows it to utilize its relative metrics and convert them into an error correction (e.g., a location update). Although a GPS provides the initial location to the PINS device in the preferred embodiment, it is not necessary. Since PINS utilizes a communication infrastructure, a simple voice position update, or the like, will suffice as the initialization function.
  • The [0018] PINS device 100 consists of a host of sensors and required processing power to pre-process the raw data from the inertial sensors. There are several different sensors that can be used in an IMU. Theses sensors include, but are not limited to, accelerometers, gyroscopes, compass, pressure, and temperature.
  • The [0019] PINS device 100 is responsible for gathering the necessary data to determine location. Measuring the several degrees of freedom of an object to arrive to the desired location information usually does this. An object has six degrees of freedom in space; three of them determine the position, while the other three determine the altitude of the object. The three linear axes determine the position: x, y, and z; the three rotational axes determine the altitude: theta (pitch), psi (yaw), and phi (roll).
  • The [0020] PINS device 100 is responsible for measuring these variables that are necessary to track an object in three dimensions. These six axes are usually measured indirectly through their first or second moments. For example, theta, psi, and phi are derived through the measurement of their first moment or angular velocity rather than angular position; x, y, and z are usually measured through their second moment or linear acceleration rather than linear position. Thus, the PINS device 100 relies on the motion of the object in order to determine its position.
  • The [0021] PINS device 100 can be designed to output at least one type of data, such as sensor data, motion commands, position location, and/or the like. The radio channel 102 is responsible for sending the output data of the PINS device 100 over-the-air to the host 104, typically residing at the base or dispatcher station. This communication is bi-directional, meaning that not only is data for the PINS device 100 sent to the host 104, but the host 104 also must be able to send correction data/messages back to the PINS device 100 for error correction(s).
  • As illustrated in FIGS. 3 and 4, the [0022] host 104 is responsible for receiving the over-the-air data packets from the PINS device 100; this data is logged and formatted for processing by the host 104. The data collected can now be augmented with other location data, if available, such as RF triangulation 108 or a GPS fix 109, in order to get a better estimate of the actual location of the PINS user. The estimated location can be further corrected by using a verification process; this process may involve correlation with dimensional building structure information 105, reference gestures information 106, dispatcher update using voice query information with the user 107, and/or the like.
  • Once the data has been processed and the location correction coefficient is determined, it is sent back to the [0023] PINS device 100 via the radio channel 102 for error corrections and user visualization if applicable (such as a heads-up display). This data enables the PINS device 100 to correct itself to drift errors, and also serve as an indication to the user of where the host/system considers him to be. On the host side, the location management software handles the data and can keeps track of the location of several different PINS devices. The host 104 is responsible for archiving, displaying, and distributing this location data back to the PINS device 100. Remote client units, using various wireless networks, can also receive the location data.
  • The following is a process operational flow of how a [0024] PINS device 100 could be used in the field. First, the PINS device 100 is initialized with a known reference location (such as that provided by a GPS, a voice command, or the like). Next, the PINS device 100 gathers sensor data and calculates motion commands and position location from the sensor data. The PINS device 100 sends the motion commands and position locations to the host 104. The host 104 uses the position location of the PINS device and further correlates the received location and received motion commands with other available non-location data (such as, but not limited to, verbal communication from the user, structural dimensions, reference gestures, sensor metrics, and/or the like) in order to enhance the resolution of the reported location by calculating any −coefficients. In the preferred embodiment, once the −coefficients are calculated, the host 104 sends the −coefficients to the PINS device 100. Upon receipt, the PINS device 100 re-initializes its current location based on the −processing of coefficients and further makes necessary modifications to the process of calculating subsequent motion commands and position locations.
  • It should be noted that in the preferred embodiment of the present invention, the [0025] PINS device 100 is updated such that no GPS or external fixed or manual reference is necessary at the PINS device to reduce or eliminate accumulated position errors. This is accomplished by the host 104 receiving or having access to information other than the data received from the PINS device 100, such as dimensions of the structure where the PIS device 100 is being used and/or reference gestures. The host 104 identifies key update locations that are unique enough for establishing a reference location (such as stairs, elevators, and hallways). As the PINS user moves, the updated motion commands provide the host 104 with a probable location of the user. Again, as time progresses, the PINS device 100 accumulates errors when gathering data and creating motion commands. The host 104, however, eventually will detect the occurrence of one of the reference locations and infer where the PINS user is located; once the error is detected and corrected, it is sent to the PINS device 100 for −correction. Hence, the accuracy can be improved without any intervention from the user.
  • While the invention has been described in conjunction with specific embodiments thereof, additional advantages and modifications will readily occur to those skilled in the art. The invention, in its broader aspects, is therefore not limited to the specific details, representative apparatus, and illustrative examples shown and described. Various alterations, modifications and variations will be apparent to those skilled in the art in light of the foregoing description. Thus, it should be understood that the invention is not limited by the foregoing description, but embraces all such alterations, modifications and variations in accordance with the spirit and scope of the appended claims. [0026]

Claims (16)

We claim:
1. A method of increasing location accuracy in an inertial navigational device comprising the steps of:
generating real-time data to depict a location of the inertial navigational device, wherein the data comprises at least one of sensor data, motion data, and location data;
transmitting the real-time data generated by the inertial navigational device in a real-time fashion to a second device;
receiving an update message from the second device, wherein the update message is compiled based on a comparison of the real-time data generated by the inertial navigational device against a second set of data; and
adjusting the depicted location of the inertial navigational device based on the update message in order to increase the location accuracy of the inertial navigational device.
2. The method of claim 1 wherein the second set of data is collected off-line.
3. The method of claim 1 wherein the second set of data is based on output from a positioning system.
4. The method of claim 1 wherein the second set of data is a collection of gestures that was collected in a given sequence and stored in a database that reflects movements in a structure.
5. The method of claim 4 wherein the given sequence of the collection of gestures is either simulated, emulated, or actual gesture sequences that reflect movement in the structure.
6. The method of claim 1 wherein the second set of data is a dimensional model of a given structure.
7. The method of claim 6 further comprising the steps of:
displaying the dimensional model of the given structure on a graphical user interface associated with the inertial navigational device; and
displaying an indicator of the depicted location of the inertial navigational device in relation to the dimensional model.
8. A method of increasing location accuracy in an inertial navigational device comprising the steps of:
generating real-time data to depict a location of the inertial navigational device, wherein the real-time data comprises at least one of sensor data, motion data, and location data;
comparing the real-time data against a second set of data; and
in response to the step of comparing, adjusting the depicted location of the inertial navigational device in order to increase location accuracy of the inertial navigational device.
9. The method of claim 8 wherein the second set of data is collected off-line.
10. The method of claim 8 further comprising the step of retrieving the second set of data from a database.
11. The method of claim 8 further comprising the step of receiving the second set of data from a positioning system in a real-time fashion.
12. The method of claim 8 further comprising the step of, after the step of adjusting, transmitting the depicted location of the inertial navigational device to a second device.
13. The method of claim 8 wherein the second set of a data is a dimensional model of a structure where the inertial navigational device is located, and further comprising the step of displaying the dimensional model of the structure to a graphical user interface associated with the inertial navigational device.
14. The method of claim 8 wherein the second set of data is a collection of gestures that was collected in a given sequence that reflects movements in a structure.
15. A device comprising a processor, which when in operation, causes the device to perform the following functions:
generate real-time data to depict a location of the inertial navigational device, wherein the real-time data comprises at least one of sensor data, motion data, and location data;
compare the real-time data against a second set of data; and
in response to the function of comparing, adjust the depicted location of the inertial navigational device in order to increase location accuracy of the inertial navigational device.
16. A device comprising at least a transmitter, a receiver and a processor, which when in operation, causes the device to perform the following functions:
generate real-time data to depict a location of the apparatus, wherein the data comprises at least one of sensor data, motion data, and location data;
transmit the real-time data generated by the apparatus in a real-time fashion to a second device;
receive an update message from the second device, wherein the update message is compiled based on a comparison of the real-time data generated by the apparatus against a second set of data; and
adjust the depicted location of the apparatus based on the update message in order to increase the location accuracy of the apparatus.
US10/078,796 2002-02-19 2002-02-19 Method of increasing location accuracy in an inertial navigational device Expired - Lifetime US6615136B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/078,796 US6615136B1 (en) 2002-02-19 2002-02-19 Method of increasing location accuracy in an inertial navigational device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/078,796 US6615136B1 (en) 2002-02-19 2002-02-19 Method of increasing location accuracy in an inertial navigational device

Publications (2)

Publication Number Publication Date
US20030158664A1 true US20030158664A1 (en) 2003-08-21
US6615136B1 US6615136B1 (en) 2003-09-02

Family

ID=27732906

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/078,796 Expired - Lifetime US6615136B1 (en) 2002-02-19 2002-02-19 Method of increasing location accuracy in an inertial navigational device

Country Status (1)

Country Link
US (1) US6615136B1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070239813A1 (en) * 2006-04-11 2007-10-11 Motorola, Inc. Method and system of utilizing a context vector and method and system of utilizing a context vector and database for location applications
WO2008030213A2 (en) * 2005-07-05 2008-03-13 Containertrac, Inc. Automatic past error corrections for location and inventory tracking
US20080077326A1 (en) * 2006-05-31 2008-03-27 Funk Benjamin E Method and System for Locating and Monitoring First Responders
US20080291042A1 (en) * 2007-05-23 2008-11-27 Honeywell International Inc. Inertial measurement unit localization technique for sensor networks
US20090043504A1 (en) * 2007-05-31 2009-02-12 Amrit Bandyopadhyay System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US20100174487A1 (en) * 2004-10-26 2010-07-08 Honeywell International Inc. Telephone or other portable device with inertial sensor
US9395190B1 (en) 2007-05-31 2016-07-19 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US10352707B2 (en) 2013-03-14 2019-07-16 Trx Systems, Inc. Collaborative creation of indoor maps
US11156464B2 (en) 2013-03-14 2021-10-26 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US11268818B2 (en) 2013-03-14 2022-03-08 Trx Systems, Inc. Crowd sourced mapping with robust structural features

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US7707039B2 (en) 2004-02-15 2010-04-27 Exbiblio B.V. Automatic modification of web pages
US8442331B2 (en) 2004-02-15 2013-05-14 Google Inc. Capturing text from rendered documents using supplemental information
US7812860B2 (en) 2004-04-01 2010-10-12 Exbiblio B.V. Handheld device for capturing text from both a document printed on paper and a document displayed on a dynamic display device
US10635723B2 (en) 2004-02-15 2020-04-28 Google Llc Search engines and systems with handheld document data capture devices
US20050219223A1 (en) * 2004-03-31 2005-10-06 Kotzin Michael D Method and apparatus for determining the context of a device
US20050219228A1 (en) * 2004-03-31 2005-10-06 Motorola, Inc. Intuitive user interface and method
US7990556B2 (en) 2004-12-03 2011-08-02 Google Inc. Association of a portable scanner with input/output and storage devices
US20060098900A1 (en) 2004-09-27 2006-05-11 King Martin T Secure data gathering from rendered documents
US9116890B2 (en) 2004-04-01 2015-08-25 Google Inc. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US9143638B2 (en) 2004-04-01 2015-09-22 Google Inc. Data capture from rendered documents using handheld device
US20060081714A1 (en) 2004-08-23 2006-04-20 King Martin T Portable scanning device
US8146156B2 (en) 2004-04-01 2012-03-27 Google Inc. Archive of text captures from rendered documents
US8081849B2 (en) 2004-12-03 2011-12-20 Google Inc. Portable scanning and memory device
US7894670B2 (en) 2004-04-01 2011-02-22 Exbiblio B.V. Triggering actions in response to optically or acoustically capturing keywords from a rendered document
US9008447B2 (en) 2004-04-01 2015-04-14 Google Inc. Method and system for character recognition
US8713418B2 (en) 2004-04-12 2014-04-29 Google Inc. Adding value to a rendered document
US8874504B2 (en) 2004-12-03 2014-10-28 Google Inc. Processing techniques for visual capture data from a rendered document
US8620083B2 (en) 2004-12-03 2013-12-31 Google Inc. Method and system for character recognition
US8489624B2 (en) 2004-05-17 2013-07-16 Google, Inc. Processing techniques for text capture from a rendered document
US7106189B2 (en) * 2004-04-29 2006-09-12 Tracetech Incorporated Tracking system and methods thereof
US8346620B2 (en) 2004-07-19 2013-01-01 Google Inc. Automatic modification of web pages
US8296058B2 (en) * 2005-12-22 2012-10-23 Motorola Solutions, Inc. Method and apparatus of obtaining improved location accuracy using magnetic field mapping
US20070156337A1 (en) * 2005-12-30 2007-07-05 Mamdouh Yanni Systems, methods and apparatuses for continuous in-vehicle and pedestrian navigation
US7646336B2 (en) * 2006-03-24 2010-01-12 Containertrac, Inc. Automated asset positioning for location and inventory tracking using multiple positioning techniques
EP2067119A2 (en) 2006-09-08 2009-06-10 Exbiblio B.V. Optical scanners, such as hand-held optical scanners
WO2010096193A2 (en) 2009-02-18 2010-08-26 Exbiblio B.V. Identifying a document by performing spectral analysis on the contents of the document
US8447066B2 (en) 2009-03-12 2013-05-21 Google Inc. Performing actions based on capturing information from rendered documents, such as documents under copyright
WO2010105246A2 (en) 2009-03-12 2010-09-16 Exbiblio B.V. Accessing resources based on capturing information from a rendered document
US9081799B2 (en) 2009-12-04 2015-07-14 Google Inc. Using gestalt information to identify locations in printed information
US9323784B2 (en) 2009-12-09 2016-04-26 Google Inc. Image search using text-based elements within the contents of images
RU2610260C2 (en) 2015-03-20 2017-02-08 Общество С Ограниченной Ответственностью "Яндекс" Method and server for identifying the geographic location of an electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5663734A (en) 1995-10-09 1997-09-02 Precision Tracking, Inc. GPS receiver and method for processing GPS signals
US6622090B2 (en) * 2000-09-26 2003-09-16 American Gnc Corporation Enhanced inertial measurement unit/global positioning system mapping and navigation process
US6427122B1 (en) * 2000-12-23 2002-07-30 American Gnc Corporation Positioning and data integrating method and system thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100174487A1 (en) * 2004-10-26 2010-07-08 Honeywell International Inc. Telephone or other portable device with inertial sensor
US20110171946A1 (en) * 2004-10-26 2011-07-14 Honeywell International Inc. Mobile telephone with inertial sensor
US8112226B2 (en) * 2004-10-26 2012-02-07 Honeywell International Inc. Telephone or other portable device with inertial sensor
WO2008030213A2 (en) * 2005-07-05 2008-03-13 Containertrac, Inc. Automatic past error corrections for location and inventory tracking
WO2008030213A3 (en) * 2005-07-05 2008-07-03 Containertrac Inc Automatic past error corrections for location and inventory tracking
JP2009501344A (en) * 2005-07-05 2009-01-15 コンテナートラック インコーポレイテッド Automatic past error correction for location and inventory tracking
US20070239813A1 (en) * 2006-04-11 2007-10-11 Motorola, Inc. Method and system of utilizing a context vector and method and system of utilizing a context vector and database for location applications
US8320932B2 (en) * 2006-04-11 2012-11-27 Motorola Solutions, Inc. Method and system of utilizing a context vector and method and system of utilizing a context vector and database for location applications
US8706414B2 (en) 2006-05-31 2014-04-22 Trx Systems, Inc. Method and system for locating and monitoring first responders
US20080077326A1 (en) * 2006-05-31 2008-03-27 Funk Benjamin E Method and System for Locating and Monitoring First Responders
US8688375B2 (en) 2006-05-31 2014-04-01 Trx Systems, Inc. Method and system for locating and monitoring first responders
US20080291042A1 (en) * 2007-05-23 2008-11-27 Honeywell International Inc. Inertial measurement unit localization technique for sensor networks
US20090043504A1 (en) * 2007-05-31 2009-02-12 Amrit Bandyopadhyay System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US9395190B1 (en) 2007-05-31 2016-07-19 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US9448072B2 (en) 2007-05-31 2016-09-20 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US8712686B2 (en) 2007-08-06 2014-04-29 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US8965688B2 (en) 2007-08-06 2015-02-24 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US9008962B2 (en) 2007-08-06 2015-04-14 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US9046373B2 (en) 2007-08-06 2015-06-02 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US10852145B2 (en) 2012-06-12 2020-12-01 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US11359921B2 (en) 2012-06-12 2022-06-14 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US10352707B2 (en) 2013-03-14 2019-07-16 Trx Systems, Inc. Collaborative creation of indoor maps
US11156464B2 (en) 2013-03-14 2021-10-26 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US11199412B2 (en) 2013-03-14 2021-12-14 Trx Systems, Inc. Collaborative creation of indoor maps
US11268818B2 (en) 2013-03-14 2022-03-08 Trx Systems, Inc. Crowd sourced mapping with robust structural features

Also Published As

Publication number Publication date
US6615136B1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US6615136B1 (en) Method of increasing location accuracy in an inertial navigational device
US6577953B1 (en) Device for use with a portable inertial navigation system (PINS) and method for processing PINS signals
US6801159B2 (en) Device for use with a portable inertial navigation system (“PINS”) and method for transitioning between location technologies
US8296058B2 (en) Method and apparatus of obtaining improved location accuracy using magnetic field mapping
US10082583B2 (en) Method and apparatus for real-time positioning and navigation of a moving platform
US20070282565A1 (en) Object locating in restricted environments using personal navigation
EP3361948B1 (en) Integration of inertial tracking and position aiding for motion capture
US11035915B2 (en) Method and system for magnetic fingerprinting
US20080077326A1 (en) Method and System for Locating and Monitoring First Responders
WO2011063153A2 (en) Position determination using a wireless signal
WO2016057979A1 (en) Opportunistic calibration of a barometer in a mobile device
CN107014375B (en) Indoor positioning system and method with ultra-low deployment
US10132915B2 (en) System and method for integrated navigation with wireless dynamic online models
US20210239848A1 (en) System and method for validating gnss location input
WO2018072279A1 (en) Positioning method and mobile device
KR20130116151A (en) Method of estimating location of pedestrian using step length estimation model parameter and apparatus for the same
US20030179134A1 (en) Device for use with a portable inertial navigation system ("PINS") and methods for transitioning between location technologies
CN117232506A (en) Military mobile equipment positioning system under complex battlefield environment
CN116907484A (en) Emergency rescue personnel co-location method based on autonomous navigation and ZigBee constraint
CN114812554A (en) Multi-source fusion robot indoor absolute positioning method based on filtering
US10830906B2 (en) Method of adaptive weighting adjustment positioning
US10469982B2 (en) System and method for enhanced integrated navigation with wireless angle of arrival
WO2016138405A1 (en) Opportunistic calibration of a barometer in a mobile device
US20240300528A1 (en) Systems and methods for estimating a state for positioning autonomous vehicles transitioning between different environments
CN114501312A (en) Indoor positioning method and system integrating WIFI and PDR positioning technologies

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOTOROLA, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SWOPE, CHARLES B.;TEALDI, DANIEL A.;KOSKAN, PATRICK DOUGLAS;REEL/FRAME:012617/0670

Effective date: 20020215

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: MOTOROLA SOLUTIONS, INC., ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:MOTOROLA, INC;REEL/FRAME:026081/0001

Effective date: 20110104

FPAY Fee payment

Year of fee payment: 12