US20030121677A1 - Work control system - Google Patents

Work control system Download PDF

Info

Publication number
US20030121677A1
US20030121677A1 US10/328,926 US32892602A US2003121677A1 US 20030121677 A1 US20030121677 A1 US 20030121677A1 US 32892602 A US32892602 A US 32892602A US 2003121677 A1 US2003121677 A1 US 2003121677A1
Authority
US
United States
Prior art keywords
signals
power tools
work
work progress
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/328,926
Inventor
Masahiro Watanabe
Goushi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makita Corp
Original Assignee
Makita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makita Corp filed Critical Makita Corp
Assigned to MAKITA CORPORATION reassignment MAKITA CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ISHIKAWA, GOUSHI, WATANABE, MASAHIRO
Publication of US20030121677A1 publication Critical patent/US20030121677A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers

Definitions

  • the present invention relates to work control system to control work progress of a plurality of power tools, e.g., such as a management of the number of screws to be tightened in screw tightening operation by means of a plurality of impact drivers.
  • Japanese Laid-Open Patent Publication No. 6-312381 discloses a work control system for controlling work progress by receiving signals relating to the work progress generated by and transmitted from the respective power tools.
  • the known work control system receives the signals to control specific operation of power tools.
  • one power tool transmits a work control signal, while another power tool also transmits a work control signal.
  • the receiver of the work controller may possibly receive the work control signals from the both power tools at the same time. If the receiver receives the both signals at the same time, the both signals may interfere with each other and the work controller may be in difficulty to properly determine the work progress of each of the power tools.
  • a work control system may include a plurality of power tools and detecting device.
  • Each of the power tools may transmit signals relating to the work progress.
  • the detecting device may detect the work progress of each of the power tools by receiving and detecting the signals transmitted from the respective power tools.
  • the signals relating to the work progress may be transmitted from each power tool several times. Preferably, the transmission intervals may vary among the power tools in order to prevent the signals from being confused.
  • FIG. 1 is a diagram showing a work control system according to the representative embodiment of the present teachings.
  • FIG. 2 is a partly broken-apart side view of an impact driver used within the work control system of the representative embodiment.
  • FIG. 3 is a system block diagram showing the impact driver used within the work control system of the representative embodiment.
  • FIG. 4 is a system block diagram showing a work control mechanism that is used in the work control system of the embodiment.
  • FIG. 5 is a flow chart showing a procedure to transmit a tightening completion signal within the impact driver.
  • FIG. 6 is a flow chart showing a procedure of the work control device that receives the tightening completion signal.
  • FIG. 7 shows transmission of tightening completion signals generated within the power tool A of the representative embodiment.
  • FIG. 8 shows transmission of tightening completion signals generated within the power tool B of the representative embodiment.
  • FIG. 9 shows transmission of tightening completion signals generated within the power tool C of the representative embodiment.
  • FIG. 10 shows an example of transmission of tightening completion signals generated within the power tool A.
  • FIG. 11 shows an example of transmission of tightening completion signals generated within the power tool B.
  • FIG. 12 shows an example of transmission of tightening completion signals generated within the power tool C.
  • a representative work control system to utilize power tools may be constructed.
  • the system may include a plurality of power tools and a detecting device.
  • the detecting device may receive signals in relation to work progress of the power tools.
  • the signals may be transmitted from the respective power tools so that the detecting device may detect the work progress of each power tool.
  • Each power tool may transmit signals several times and transmission intervals of the signals vary among the power tools. In other words, the time intervals in transmitting signals are different in relation to the respective power tools.
  • the detecting device receives signals relating to the work progress from power tools at the same time, the signals are subsequently transmitted from each power tool at the intervals that vary among the power tools.
  • the second signals can be transmitted from each power tool at different timing because the transmission intervals of the signals vary among the power tools.
  • the “plurality of power tools” may include a plurality of power tools of different kinds as well as of the same kind.
  • the “power tools” may include various tools, whether portable or fixed, or whether battery-type or not, such as drills, drivers, wrenches and saws.
  • the “signals relating to the work progress” may include information regarding the various works performed by the power tool. For example, work completion information of whether the associated power tool has completed a specific operation or not, information of the number of screws that have been tightened, and information of the value of torque to tighten the screw may preferably define the signals relating to the work progress.
  • the transmission intervals of the signals may be set in advance at values that vary among the power tools.
  • the transmission intervals may be randomly selected at each time so that the transmission intervals vary among the power tools.
  • the work progress may preferably be identified by the combination of the plurality of signals. That means that each of the signals may define information regarding the work progress when each signal is combined together.
  • the plurality of signals may preferably be transmitted at time intervals that are set at values varying among the power tools. As a result, the signals transmitted from respective power tools may be prevented from being detected by the detecting device at the same time and thus, interference between the signals can be avoided.
  • FIG. 1 is a diagram showing a work control system 101 according to a representative embodiment of the present invention.
  • the work control system 101 may have a group of power tools 111 including a plurality of power tools A, B, C (designated by 111 A, 111 B and 111 C in FIG. 1), and a work control device 151 .
  • Each of the power tools A, B, C includes a controller 115 and a transmitting section 113 .
  • the work control device 151 includes receivers 155 A, 155 B and 155 C and a work controller 153 .
  • the receivers 155 A, 155 B and 155 C correspond to the respective transmitting sections 113 of the power tools 111 A, 111 B and 111 C.
  • Each of the receivers 155 A, 155 B and 155 C has a receiving section 156 a and an outputting section 156 b .
  • Each of the receivers 155 A, 155 B and 155 C receives a screw tightening completion signal transmitted from each of the power tools 111 A, 111 B and 111 C.
  • Each of the receivers 155 A, 155 B and 155 C detects and distinguishes as to whether the received screw tightening completion signals are corresponding to the signals that should be generated and transmitted from the associated one of the power tools 111 A, 111 B and 111 C.
  • the receiver When the receiver identifies the signal as one from the corresponding power tool, the receiver outputs work controller 153 a detecting signal of tightening completion of the corresponding power tool 111 A, 111 B or 111 C by means of the outputting section 156 b .
  • the receivers 155 A, 155 B and 155 C are coupled to the work controller 153 via the respective outputting sections 156 b .
  • the work controller 153 performs work controlling based on the screw tightening completion signal outputted from the receivers 155 A, 155 B and 155 C associated with the power tools 111 A, 111 B and 111 C respectively.
  • the signals may be transmitted in a wireless manner from the transmitting sections 113 of the power tools 111 A, 111 B and 111 C to the receiving sections 156 a of the respective receivers 155 A, 155 B and 155 C.
  • any other devices such as a cable, that connects the outputting sections 156 b to the work controller 153 , may preferably be utilized for outputting signals from the receivers 155 A, 155 B and 155 C to the work controller 153 .
  • Receivers 155 A, 155 B and 155 C (and/or the work control device 151 ) within the present embodiment may correspond to the features of “detecting device” according to the present teachings.
  • FIG. 2 shows one of the exemplary construction of the power tools 111 A, 111 B and 111 C that pertain to the power tool group 111 .
  • a screw tightening impact driver 112 is used as any one of the power tools 111 A, 111 b and 111 C.
  • Inpact driver 112 includes a motor housing 112 A and a hand grip 112 B.
  • a motor 125 (not directly shown), a speed reducing mechanism that mainly includes a planetary gear 127 , a spindle 129 , a hammer 141 , an anvil 143 and a tool mounting chuck 131 are disposed within the motor housing 112 A.
  • a driver bit 132 is coupled to the tool mounting chuck 131 .
  • the hammer 141 can move relative to the spindle 129 in its axial direction and is biased toward the anvil 143 by means of a spring 145 .
  • the rotational movement of the motor 125 is transmitted to the spindle 129 while being decelerated by the speed reducing mechanism 126 .
  • the rotational movement of the spindle 129 is continuously transmitted to the hammer 141 and anvil 143 , so that the screw tightening operation is continuously performed with the driver bit 132 .
  • the hammer 141 receives a larger force via balls 147 and thus moves backward against the force of the spring 145 and idly rotates. Thereafter, the hammer 141 collides with the anvil 143 by the biasing force of the spring 145 and thus generates high tightening torque.
  • a trigger switch 123 for starting the motor 125 is provided on the upper end portion of the hand grip 112 B, and a battery 133 is detachably mounted onto the lower end portion of the grip 112 B.
  • the transmitting section 113 which will now be explained in more detail below, is disposed within the hand grip 112 B.
  • FIG. 3 shows a system block diagram of the impact driver 112 .
  • a controller (microcomputer) 115 may integrally include a CPU 117 , a ROM 121 , a RAM 122 and an I/O port 119 .
  • Controller 115 is powered by the battery 133 via a power circuit 134 .
  • Transmitting section 113 , screw tightening completion detecting section 114 , driving circuit 124 and trigger switch 123 are coupled to the controller 115 .
  • the motor 125 is connected to and controlled by the driving circuit 124 and drives output-shaft sided members comprising the spindle 129 and driver bit 132 by means of the battery 133 .
  • the controller 115 controls the motor 125 and output-shaft sided members (the spindle 129 and the driver bit 132 ) via the driving circuit 124 .
  • the controller 115 receives detection signals outputted from the screw tightening completion detecting section 114 .
  • the transmitting section 113 transmits a tightening completion signal, which will be explained in more detail below.
  • FIG. 4 is a system block diagram of the work control device 151 according to the representative embodiment.
  • the work control device 151 comprises a work controller 153 , a receiver 155 and an indicator 157 .
  • the work controller 153 includes CPU 161 , ROM 165 , RAM 167 and I/O port 163 .
  • the receiver 155 and the indicator 157 are connected to the work controller 153 via the I/O port 163 .
  • FIG. 5 is a flow chart showing procedure for completing a screw tightening operation by utilizing the impact driver 112 as shown in FIG. 2.
  • This procedure is represented by a work controlling program and stored within the ROM 121 (see FIG. 3).
  • the ROM 121 is provided in each of the power tools 111 A, 111 B and 111 C.
  • step S 1 of the procedure it is determined as to whether the screw tightening operation has been completed. Specifically, it is determined by means of the screw tightening completion detecting section 114 (see FIG. 3) as to whether the torque applied onto the driver bit 132 shown in FIG. 2 has exceeded a predetermined reference range.
  • step S 2 is executed.
  • step S 1 will be repeated until it is determined that the torque has exceeded the predetermined reference range.
  • step S 2 a timer is reset in order to selectively determine the transmitting intervals in transmitting a screw tightening completion signal two or more times. Then in step S 3 , a transmitting permission signal is outputted to the transmitting section 113 . In step S 4 , a screw tightening completion signal is transmitted from the transmitting section 113 based upon the transmitting permission signal outputted to the transmitting section 113 . Further, in step S 5 , the timer starts based on the outputted transmitting permission signal. In step S 6 , it is determined whether a predetermined time interval has elapsed. This predetermined time interval corresponds to the time interval between the transmission of the first screw tightening completion signal and the transmission of the second screw tightening completion signal.
  • step S 6 it is determined as to whether the predetermined time interval has elapsed since the timer was started in step S 5 and the first screw tightening completion signal was transmitted. In other words, it is determined within step S 6 as to when the second screw tightening completion signal should be transmitted after the first screw tightening completion signal is transmitted. Specifically, in step S 6 , it is determined as to whether the predetermined time interval has elapsed. When it is determined that the predetermined time interval has not elapsed yet (when it is determined as “No” in step S 6 ), step S 6 will be repeated until it is determined that the predetermined time interval has elapsed. When it is determined that the predetermined time interval has elapsed (when it is determined as “Yes” in step S 6 ), as it is shown within step S 7 , the second screw tightening completion signal is transmitted. As the result the procedural steps will be completed.
  • FIGS. 7, 8 and 9 show examples of screw tightening completion signals generated in the power tools 111 A, 111 B and 111 C, respectively.
  • the screw tightening completion signals will be explained with reference to FIG. 7 as a representative example.
  • the controller 115 shown in FIG. 3 outputs a transmitting permission signal to the transmitting section 113 via the I/O port 119 , a tightening completion signal 173 A is transmitted from the transmitting section 113 based upon the outputted transmitting permission signal.
  • the transmitting section 113 may transmit the signal 173 A in a wireless manner.
  • a NOT circuit (not particularly shown) is used as a logic circuit and by utilizing this circuit, it is determined that a transmitting permission signal has been outputted when the output value to the microcomputer output port is detected to be zero. As the result of such detection and determination, a tightening completion signal 173 A is outputted. After a lapse of a predetermined time interval of t1 seconds since the first transmitting permission signal was outputted, the second transmitting permission signal is outputted. Based upon the second transmitting permission signal, the second screw tightening completion signal 173 A is transmitted to the outside from the transmitting section 113 in a wireless manner Specifically, in the power tool 111 A, the screw tightening completion signal 173 A is transmitted twice at a transmission interval of t1 seconds.
  • each of the screw tightening completion signals may preferably include information for identifying the associated power tool and information for managing and controlling the work performed by the respective power tool such as the number of screws which have been tightened by the impact driver.
  • the screw tightening completion signal may preferably be defined by 8 bits data.
  • the screw tightening completion signals may be represented by 8 bits data such as “10000010” (“#82H” in hexadecimal notation) for the power tool 111 A and “01111101” (“#7DH” in hexadecimal notation) for the power tool 111 B.
  • the screw tightening completion signals 173 B and 173 C as shown in FIGS. 8 and 9 are outputted to the transmitting section 113 in a similar manner to the signal 173 A as shown in FIG. 7.
  • the screw tightening completion signals 173 B and 173 C are adopted and arranged to be different from the signal 173 A as shown in FIG. 7 with respect to the transmission intervals. While the signal 173 A has a transmission interval of t1 seconds, the signal 173 B and 173 C may have different transmission intervals of t2 seconds and of t3 seconds, respectively.
  • the screw tightening completion signals 173 B and 173 C are transmitted twice at a transmission interval of t2 seconds and of t3 seconds, respectively.
  • the transmission intervals t1, t2, t3 in the power tools 111 A, 111 B, 111 C are arranged to be “t1 ⁇ t2 ⁇ t3”.
  • the screw tightening completion signals 173 A, 173 B, 173 C are designed to have transmission intervals different from each other.
  • any of the receivers 155 A, 155 B and 155 C may possibly receive screw tightening completion signals for the respective power tools 111 A, 111 B and 111 C at the same time. In such case, the signals received at the same time may possibly interfere with each other.
  • the timing of transmitting the second screw tightening completion signals 173 A, 173 B and 173 C will respectively be transmitted at different intervals of t1, t2 and t3 seconds, respectively.
  • respective receiver 155 A, 155 B and 155 C will receive the second screw tightening completion signals at different timing.
  • the tightening completion signals may not interfere with each other due to such different intervals in transmitting the second screw tightening signals.
  • FIG. 6 Work completion procedure in each of the receivers 155 A, 155 B and 155 C is shown in FIG. 6 as a flow chart. Because the procedure performed in each of the receivers 155 A, 155 B and 155 C is substantially identical, only the procedure performed in the receiver 155 A (corresponded to the power tool 111 A) is illustrated in FIG. 6 as a representative example.
  • step S 2 it is determined as to whether the received signal is transmitted from the power tool 111 A. This determination is made by reference to the tool identification information included within the data forming the screw tightening completion signals.
  • step S 2 When it is determined in step S 2 that the received signal is from the power tool 111 A, subsequently in step S 3 , the receiver 155 A outputs a signal of the screw tightening completion of the power tool 111 A via the outputting section 156 b (see FIG. 1).
  • the work controller 153 when the screw tightening completion signal is outputted from the outputting section 156 b , the work controller 153 as shown in FIG. 1 is operated such that a screw tightening completion counter which is associated with the power tool 111 A is counted up. Then, the work controller 153 performs other controlling operations, such as updating the work management data in the indicator 157 (see FIG. 4).
  • FIG. 6 shows the work completion procedure within the receiver 155 A that is associated with the power tool 111 A, the same procedure is also performed within the receivers 155 B and 155 C which are associated with the power tools 111 B and 111 C, respectively.
  • one of the receivers 155 A, 155 B and 155 C may possibly receive, at the same time, two (or three) of the tightening completion signals of the respective power tools 111 A, 111 B 111 C.
  • the receiver 155 A receives the screw tightening completion signals “10000010” for the power tool 111 A and “01111101” for the power tool 111 B at the same time, such signals interfere with each other. As the result, a confusion of the signals may take place and incorrect signal such as “11111111” (“#FFH” in hexadecimal notation) will be generated.
  • the receiver 155 A cannot identify the received signal (interfered signal) in the process routine as shown in FIG. 6. Therefore, in step S 2 , the receiver 155 A determines that the received signal is not a screw tightening completion signal of the power tool 111 A, so that the procedure will be returned to step S 1 .
  • the respective screw tightening completion signals of the power tools 111 A, 111 B and 111 C are arranged to have transmission intervals different from each other.
  • the signals can be identified in the second reception of the screw tightening completion signals, because the second screw tightening completion signals are transmitted at the predetermined transmission intervals (of t1, t2 or t3 seconds) and received by the receiver 155 A in the timings that vary among the power tools 111 A, 111 B and 111 C.
  • screw tightening completion signals are designed to be transmitted several times from the plurality of power tools 111 A, 111 B and 111 C at the transmission intervals that vary among the power tools 111 A, 111 B and 111 C. Therefore, even if any of the receivers 155 A, 155 B and 155 C receives screw tightening completion signals for the plurality of power tools at the same time and thus such signals interfere with each other, such receiver will receive the next screw tightening completion signals in the timings that vary among the power tools 111 A, 111 B and 111 C. Thus, it is made possible to positively identify and ascertain the work progress for each of the power tools 111 A, 111 B and 111 C.
  • FIGS. 10, 11 and 12 show examples of screw tightening completion signals generated in the power tools 111 A, 111 B and 111 C, respectively.
  • 10 milliseconds of delay time corresponds to the time required for preparation before the screw tightening completion signal is actually transmitted in step S 7 when it is determined that the predetermined time interval has elapsed (when it is determined as “Yes”) in step S 6 of the screw tightening completion signal transmitting process routine as shown in FIG. 5.
  • the similar process is also performed with respect to the screw tightening completion signals generated in the power tools 111 B and 111 C, which are shown in FIGS. 11 and 12, respectively.
  • the power tool 111 B has 220 milliseconds of a transmission interval between the first and the second tightening completion signals 173 B as shown in FIG. 11.
  • the power tool 111 C has 320 milliseconds of a transmission interval between the first and the second tightening completion signals 173 C as shown in FIG. 12.
  • Signals other than a screw tightening completion signal may be utilized as a signal relating to the work progress.
  • a wrench or impact wrench is used as a power tool
  • information on the tightening torque may be utilized. Further, it may be designed such that the signal is transmitted three or more times.
  • the respective transmission intervals t1, t2, t3 in the power tools 111 A, 111 B, 111 C may be stored in the ROM 165 as a fixed value, or alternatively, they may be programmed in the CPU 161 at random based on random numbers. Even in such random setting, the provability of the transmission intervals of the power tools to be coincident with each other can be kept at quite low percentage. Therefore, practically, the possibility of interference can be minimized. Further, considering the provability of the randomly programmed transmission intervals of the power tools being coincident with each other, which can not be kept zero, it may preferably be arranged to transmit the tightening completion signals three or more times and by programming the transmission intervals at random. Thus, the risk of the coincident of the signals can be minimized.

Abstract

It is an object of the invention to provide work control system that can prevent an interference of the transmitting signals of the power tools in relation to the work progress. A representative work control system according to the present teachings may include a plurality of power tools and detecting device. Each of the power tools may transmit signals relating to the work progress. The detecting device may detect the work progress of each of the power tools by receiving and detecting the signals transmitted from the respective power tools. The signals relating to the work progress may be transmitted from each power tool several times. Preferably, the transmission intervals may vary among the power tools in order to prevent the signals from being confused.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to work control system to control work progress of a plurality of power tools, e.g., such as a management of the number of screws to be tightened in screw tightening operation by means of a plurality of impact drivers. [0002]
  • 2. Description of the Related Art [0003]
  • Japanese Laid-Open Patent Publication No. 6-312381 discloses a work control system for controlling work progress by receiving signals relating to the work progress generated by and transmitted from the respective power tools. The known work control system receives the signals to control specific operation of power tools. When this work control system is applied to an operation using a plurality of power tools, one power tool transmits a work control signal, while another power tool also transmits a work control signal. In such a case, the receiver of the work controller may possibly receive the work control signals from the both power tools at the same time. If the receiver receives the both signals at the same time, the both signals may interfere with each other and the work controller may be in difficulty to properly determine the work progress of each of the power tools. [0004]
  • SUMMARY OF THE INVENTION
  • It is, accordingly, an object of the present teachings to provide work control system that can prevent an interference of the transmitting signals of the power tools in relation to the work progress. [0005]
  • A work control system according to the present teachings may include a plurality of power tools and detecting device. Each of the power tools may transmit signals relating to the work progress. The detecting device may detect the work progress of each of the power tools by receiving and detecting the signals transmitted from the respective power tools. The signals relating to the work progress may be transmitted from each power tool several times. Preferably, the transmission intervals may vary among the power tools in order to prevent the signals from being confused. [0006]
  • Other objects, features and advantages of the present invention will be readily understood after reading the following detailed description together with the accompanying drawings and the claims.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing a work control system according to the representative embodiment of the present teachings. [0008]
  • FIG. 2 is a partly broken-apart side view of an impact driver used within the work control system of the representative embodiment. [0009]
  • FIG. 3 is a system block diagram showing the impact driver used within the work control system of the representative embodiment. [0010]
  • FIG. 4 is a system block diagram showing a work control mechanism that is used in the work control system of the embodiment. [0011]
  • FIG. 5 is a flow chart showing a procedure to transmit a tightening completion signal within the impact driver. [0012]
  • FIG. 6 is a flow chart showing a procedure of the work control device that receives the tightening completion signal. [0013]
  • FIG. 7 shows transmission of tightening completion signals generated within the power tool A of the representative embodiment. [0014]
  • FIG. 8 shows transmission of tightening completion signals generated within the power tool B of the representative embodiment. [0015]
  • FIG. 9 shows transmission of tightening completion signals generated within the power tool C of the representative embodiment. [0016]
  • FIG. 10 shows an example of transmission of tightening completion signals generated within the power tool A. [0017]
  • FIG. 11 shows an example of transmission of tightening completion signals generated within the power tool B. [0018]
  • FIG. 12 shows an example of transmission of tightening completion signals generated within the power tool C.[0019]
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to one aspect of the present teachings, a representative work control system to utilize power tools may be constructed. The system may include a plurality of power tools and a detecting device. The detecting device may receive signals in relation to work progress of the power tools. The signals may be transmitted from the respective power tools so that the detecting device may detect the work progress of each power tool. Each power tool may transmit signals several times and transmission intervals of the signals vary among the power tools. In other words, the time intervals in transmitting signals are different in relation to the respective power tools. [0020]
  • As a result, even if the detecting device receives signals relating to the work progress from power tools at the same time, the signals are subsequently transmitted from each power tool at the intervals that vary among the power tools. In other words, even if the detecting device receives the first signals from the plurality of power tools at the same time and even if any interference may be caused among the signals due to such receipt of the signals at the same time, the second signals can be transmitted from each power tool at different timing because the transmission intervals of the signals vary among the power tools. Thus, it is made possible to positively identify and control the work progress of each of the power tools without causing interference due to simultaneous reception of the signals. [0021]
  • The “plurality of power tools” may include a plurality of power tools of different kinds as well as of the same kind. The “power tools” may include various tools, whether portable or fixed, or whether battery-type or not, such as drills, drivers, wrenches and saws. Further, the “signals relating to the work progress” may include information regarding the various works performed by the power tool. For example, work completion information of whether the associated power tool has completed a specific operation or not, information of the number of screws that have been tightened, and information of the value of torque to tighten the screw may preferably define the signals relating to the work progress. As for “transmitting a signal relating to the work progress several times at intervals that vary among the power tools”, the transmission intervals of the signals may be set in advance at values that vary among the power tools. Alternatively, the transmission intervals may be randomly selected at each time so that the transmission intervals vary among the power tools. [0022]
  • As another aspect of the present teachings, within the representative work control system, the work progress may preferably be identified by the combination of the plurality of signals. That means that each of the signals may define information regarding the work progress when each signal is combined together. In such case, the plurality of signals may preferably be transmitted at time intervals that are set at values varying among the power tools. As a result, the signals transmitted from respective power tools may be prevented from being detected by the detecting device at the same time and thus, interference between the signals can be avoided. [0023]
  • Each of the additional features and method steps disclosed above and below may be utilized separately or in conjunction with other features and method steps to provide improved work control systems and method for controlling such work control system and devices utilized therein. Representative examples of the present invention, which examples utilized many of these additional features and method steps in conjunction, will now be described in detail with reference to the drawings. This detailed description is merely intended to teach a person skilled in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Only the claims define the scope of the claimed invention. Therefore, combinations of features and steps disclosed within the following detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe some representative examples of the invention, which detailed description will now be given with reference to the accompanying drawings. [0024]
  • FIG. 1 is a diagram showing a [0025] work control system 101 according to a representative embodiment of the present invention. In general, the work control system 101 may have a group of power tools 111 including a plurality of power tools A, B, C (designated by 111A, 111B and 111C in FIG. 1), and a work control device 151. Each of the power tools A, B, C includes a controller 115 and a transmitting section 113. The work control device 151 includes receivers 155A, 155B and 155C and a work controller 153. The receivers 155A, 155B and 155C correspond to the respective transmitting sections 113 of the power tools 111A, 111B and 111C. Each of the receivers 155A, 155B and 155C has a receiving section 156 a and an outputting section 156 b. Each of the receivers 155A, 155B and 155C receives a screw tightening completion signal transmitted from each of the power tools 111A, 111B and 111C. Each of the receivers 155A, 155B and 155C detects and distinguishes as to whether the received screw tightening completion signals are corresponding to the signals that should be generated and transmitted from the associated one of the power tools 111A, 111B and 111C. When the receiver identifies the signal as one from the corresponding power tool, the receiver outputs work controller 153 a detecting signal of tightening completion of the corresponding power tool 111A, 111B or 111C by means of the outputting section 156 b. The receivers 155A, 155B and 155C are coupled to the work controller 153 via the respective outputting sections 156 b. The work controller 153 performs work controlling based on the screw tightening completion signal outputted from the receivers 155A, 155B and 155C associated with the power tools 111A, 111B and 111C respectively. Within the representative embodiment, the signals may be transmitted in a wireless manner from the transmitting sections 113 of the power tools 111A, 111B and 111C to the receiving sections 156 a of the respective receivers 155A, 155B and 155C. Otherwise, any other devices such as a cable, that connects the outputting sections 156 b to the work controller 153, may preferably be utilized for outputting signals from the receivers 155A, 155B and 155C to the work controller 153. Receivers 155A, 155B and 155C (and/or the work control device 151) within the present embodiment may correspond to the features of “detecting device” according to the present teachings.
  • FIG. 2 shows one of the exemplary construction of the [0026] power tools 111A, 111B and 111C that pertain to the power tool group 111. A screw tightening impact driver 112 is used as any one of the power tools 111A, 111 b and 111C. Inpact driver 112 includes a motor housing 112A and a hand grip 112B. A motor 125 (not directly shown), a speed reducing mechanism that mainly includes a planetary gear 127, a spindle 129, a hammer 141, an anvil 143 and a tool mounting chuck 131 are disposed within the motor housing 112A. A driver bit 132 is coupled to the tool mounting chuck 131. The hammer 141 can move relative to the spindle 129 in its axial direction and is biased toward the anvil 143 by means of a spring 145.
  • The rotational movement of the [0027] motor 125 is transmitted to the spindle 129 while being decelerated by the speed reducing mechanism 126. When the screw tightening operation is performed with lower torque by using the driver bit 132, the rotational movement of the spindle 129 is continuously transmitted to the hammer 141 and anvil 143, so that the screw tightening operation is continuously performed with the driver bit 132. While, when larger torque is applied in the screw tightening operation, the hammer 141 receives a larger force via balls 147 and thus moves backward against the force of the spring 145 and idly rotates. Thereafter, the hammer 141 collides with the anvil 143 by the biasing force of the spring 145 and thus generates high tightening torque.
  • A [0028] trigger switch 123 for starting the motor 125 is provided on the upper end portion of the hand grip 112B, and a battery 133 is detachably mounted onto the lower end portion of the grip 112B. The transmitting section 113, which will now be explained in more detail below, is disposed within the hand grip 112B.
  • FIG. 3 shows a system block diagram of the [0029] impact driver 112. A controller (microcomputer) 115 may integrally include a CPU 117, a ROM 121, a RAM 122 and an I/O port 119. Controller 115 is powered by the battery 133 via a power circuit 134. Transmitting section 113, screw tightening completion detecting section 114, driving circuit 124 and trigger switch 123 are coupled to the controller 115. The motor 125 is connected to and controlled by the driving circuit 124 and drives output-shaft sided members comprising the spindle 129 and driver bit 132 by means of the battery 133. When user of the impact driver 112 operates the trigger switch 123, the controller 115 controls the motor 125 and output-shaft sided members (the spindle 129 and the driver bit 132) via the driving circuit 124. During the driving of the motor 125 via the driving circuit 124, the controller 115 receives detection signals outputted from the screw tightening completion detecting section 114. When completion of the screw tightening operation is detected by means of the detection signal of the screw tightening completion detecting section 114, the transmitting section 113 transmits a tightening completion signal, which will be explained in more detail below.
  • FIG. 4 is a system block diagram of the [0030] work control device 151 according to the representative embodiment. The work control device 151 comprises a work controller 153, a receiver 155 and an indicator 157. The work controller 153 includes CPU 161, ROM 165, RAM 167 and I/O port 163. The receiver 155 and the indicator 157 are connected to the work controller 153 via the I/O port 163.
  • FIG. 5 is a flow chart showing procedure for completing a screw tightening operation by utilizing the [0031] impact driver 112 as shown in FIG. 2. This procedure is represented by a work controlling program and stored within the ROM 121 (see FIG. 3). The ROM 121 is provided in each of the power tools 111A, 111B and 111C. In step S1 of the procedure, it is determined as to whether the screw tightening operation has been completed. Specifically, it is determined by means of the screw tightening completion detecting section 114 (see FIG. 3) as to whether the torque applied onto the driver bit 132 shown in FIG. 2 has exceeded a predetermined reference range. When it is determined that the torque has exceeded the predetermined reference range, the screw tightening operation is determined to have been completed and thus, step S2 is executed. When the torque is determined as not exceed the predetermined reference range, step S1 will be repeated until it is determined that the torque has exceeded the predetermined reference range.
  • In step S[0032] 2, a timer is reset in order to selectively determine the transmitting intervals in transmitting a screw tightening completion signal two or more times. Then in step S3, a transmitting permission signal is outputted to the transmitting section 113. In step S4, a screw tightening completion signal is transmitted from the transmitting section 113 based upon the transmitting permission signal outputted to the transmitting section 113. Further, in step S5, the timer starts based on the outputted transmitting permission signal. In step S6, it is determined whether a predetermined time interval has elapsed. This predetermined time interval corresponds to the time interval between the transmission of the first screw tightening completion signal and the transmission of the second screw tightening completion signal. In step S6, it is determined as to whether the predetermined time interval has elapsed since the timer was started in step S5 and the first screw tightening completion signal was transmitted. In other words, it is determined within step S6 as to when the second screw tightening completion signal should be transmitted after the first screw tightening completion signal is transmitted. Specifically, in step S6, it is determined as to whether the predetermined time interval has elapsed. When it is determined that the predetermined time interval has not elapsed yet (when it is determined as “No” in step S6), step S6 will be repeated until it is determined that the predetermined time interval has elapsed. When it is determined that the predetermined time interval has elapsed (when it is determined as “Yes” in step S6), as it is shown within step S7, the second screw tightening completion signal is transmitted. As the result the procedural steps will be completed.
  • FIGS. 7, 8 and [0033] 9 show examples of screw tightening completion signals generated in the power tools 111A, 111B and 111C, respectively. The screw tightening completion signals will be explained with reference to FIG. 7 as a representative example. When the controller 115 shown in FIG. 3 outputs a transmitting permission signal to the transmitting section 113 via the I/O port 119, a tightening completion signal 173A is transmitted from the transmitting section 113 based upon the outputted transmitting permission signal. The transmitting section 113 may transmit the signal 173A in a wireless manner. In this representative embodiment, a NOT circuit (not particularly shown) is used as a logic circuit and by utilizing this circuit, it is determined that a transmitting permission signal has been outputted when the output value to the microcomputer output port is detected to be zero. As the result of such detection and determination, a tightening completion signal 173A is outputted. After a lapse of a predetermined time interval of t1 seconds since the first transmitting permission signal was outputted, the second transmitting permission signal is outputted. Based upon the second transmitting permission signal, the second screw tightening completion signal 173A is transmitted to the outside from the transmitting section 113 in a wireless manner Specifically, in the power tool 111A, the screw tightening completion signal 173A is transmitted twice at a transmission interval of t1 seconds.
  • Although it is not particularly illustrated in the drawings, each of the screw tightening completion signals (the first and the second screw tightening completion signals) may preferably include information for identifying the associated power tool and information for managing and controlling the work performed by the respective power tool such as the number of screws which have been tightened by the impact driver. The screw tightening completion signal may preferably be defined by 8 bits data. For example, the screw tightening completion signals may be represented by 8 bits data such as “10000010” (“#82H” in hexadecimal notation) for the [0034] power tool 111A and “01111101” (“#7DH” in hexadecimal notation) for the power tool 111B.
  • With respect to the [0035] power tools 111B and 111C as well, the screw tightening completion signals 173B and 173C as shown in FIGS. 8 and 9 are outputted to the transmitting section 113 in a similar manner to the signal 173A as shown in FIG. 7. According to the representative embodiment, the screw tightening completion signals 173B and 173C are adopted and arranged to be different from the signal 173A as shown in FIG. 7 with respect to the transmission intervals. While the signal 173A has a transmission interval of t1 seconds, the signal 173B and 173C may have different transmission intervals of t2 seconds and of t3 seconds, respectively. Specifically, in the power tools 111B and 111C, the screw tightening completion signals 173B and 173C are transmitted twice at a transmission interval of t2 seconds and of t3 seconds, respectively.
  • In this representative embodiment, the transmission intervals t1, t2, t3 in the [0036] power tools 111A, 111B, 111C are arranged to be “t1<t2 <t3”. In other others, the screw tightening completion signals 173A, 173B, 173C are designed to have transmission intervals different from each other. In this connection, when the first screw tightening completion signal is transmitted, any of the receivers 155A, 155B and 155C may possibly receive screw tightening completion signals for the respective power tools 111A, 111B and 111C at the same time. In such case, the signals received at the same time may possibly interfere with each other. However, according to the representative embodiment, because the timing of transmitting the second screw tightening completion signals 173A, 173B and 173C will respectively be transmitted at different intervals of t1, t2 and t3 seconds, respectively. Thus, respective receiver 155A, 155B and 155C will receive the second screw tightening completion signals at different timing. As a result, the tightening completion signals may not interfere with each other due to such different intervals in transmitting the second screw tightening signals.
  • Work completion procedure in each of the [0037] receivers 155A, 155B and 155C is shown in FIG. 6 as a flow chart. Because the procedure performed in each of the receivers 155A, 155B and 155C is substantially identical, only the procedure performed in the receiver 155A (corresponded to the power tool 111A) is illustrated in FIG. 6 as a representative example. In step S1 of the procedure as shown in FIG. 6, it is determined as to whether the receiver 155A has received a screw tightening completion signal for any of the power tools 111A, 111B and 111C. Step S1 will be repeated until the screw tightening completion signal is received. When it is determined in step S1 that the receiver 155A has received the screw tightening completion signal, subsequently in step S2, it is determined as to whether the received signal is transmitted from the power tool 111A. This determination is made by reference to the tool identification information included within the data forming the screw tightening completion signals.
  • When it is determined in step S[0038] 2 that the received signal is from the power tool 111A, subsequently in step S3, the receiver 155A outputs a signal of the screw tightening completion of the power tool 111A via the outputting section 156 b (see FIG. 1).
  • Although it is not particularly illustrated in the drawings, when the screw tightening completion signal is outputted from the [0039] outputting section 156 b, the work controller 153 as shown in FIG. 1 is operated such that a screw tightening completion counter which is associated with the power tool 111A is counted up. Then, the work controller 153 performs other controlling operations, such as updating the work management data in the indicator 157 (see FIG. 4).
  • While FIG. 6 shows the work completion procedure within the [0040] receiver 155A that is associated with the power tool 111A, the same procedure is also performed within the receivers 155B and 155C which are associated with the power tools 111B and 111C, respectively.
  • In the above-mentioned work control system [0041] 100, one of the receivers 155A, 155B and 155C may possibly receive, at the same time, two (or three) of the tightening completion signals of the respective power tools 111A, 111B 111C. For example, when the receiver 155A receives the screw tightening completion signals “10000010” for the power tool 111A and “01111101” for the power tool 111B at the same time, such signals interfere with each other. As the result, a confusion of the signals may take place and incorrect signal such as “11111111” (“#FFH” in hexadecimal notation) will be generated.
  • In such a case, the [0042] receiver 155A cannot identify the received signal (interfered signal) in the process routine as shown in FIG. 6. Therefore, in step S2, the receiver 155A determines that the received signal is not a screw tightening completion signal of the power tool 111A, so that the procedure will be returned to step S1. However, as mentioned above, the respective screw tightening completion signals of the power tools 111A, 111B and 111C are arranged to have transmission intervals different from each other. As the result, even if interference occurs in the first reception of screw tightening completion signals, the signals can be identified in the second reception of the screw tightening completion signals, because the second screw tightening completion signals are transmitted at the predetermined transmission intervals (of t1, t2 or t3 seconds) and received by the receiver 155A in the timings that vary among the power tools 111A, 111B and 111C.
  • Specifically, in this embodiment, screw tightening completion signals are designed to be transmitted several times from the plurality of [0043] power tools 111A, 111B and 111C at the transmission intervals that vary among the power tools 111A, 111B and 111C. Therefore, even if any of the receivers 155A, 155B and 155C receives screw tightening completion signals for the plurality of power tools at the same time and thus such signals interfere with each other, such receiver will receive the next screw tightening completion signals in the timings that vary among the power tools 111A, 111B and 111C. Thus, it is made possible to positively identify and ascertain the work progress for each of the power tools 111A, 111B and 111C.
  • FIGS. 10, 11 and [0044] 12 show examples of screw tightening completion signals generated in the power tools 111A, 111B and 111C, respectively.
  • In FIG. 10, when the first [0045] transmitting permission signal 171A is outputted, two tightening completion signals 173A are outputted consecutively after a lapse of 30 milliseconds. Specifically, the tightening completion signal 173A is transmitted twice in a row after a lapse of 10 milliseconds of specified delay time following a lapse of 20 milliseconds of waiting time after the transmitting permission signal has been outputted. Further, the second transmitting permission signal is outputted 120 milliseconds after the first transmitting permission signal is outputted. Based upon the second transmitting permission signal, the second tightening completion signal is transmitted twice in a row. In this case, 10 milliseconds of delay time corresponds to the time required for preparation before the screw tightening completion signal is actually transmitted in step S7 when it is determined that the predetermined time interval has elapsed (when it is determined as “Yes”) in step S6 of the screw tightening completion signal transmitting process routine as shown in FIG. 5.
  • The similar process is also performed with respect to the screw tightening completion signals generated in the [0046] power tools 111B and 111C, which are shown in FIGS. 11 and 12, respectively. However, the power tool 111B has 220 milliseconds of a transmission interval between the first and the second tightening completion signals 173B as shown in FIG. 11. The power tool 111C has 320 milliseconds of a transmission interval between the first and the second tightening completion signals 173C as shown in FIG. 12. Therefore, even if, in the first transmission of screw tightening completion signals, screw tightening completion signals for the plurality of power tools are received at the same time and thus such signals interfere with each other, screw tightening completion signals of any of the power tools are transmitted at the second transmission in the timings that vary among the power tools. Thus, it is made possible to achieve positive work control without causing interference of the signals.
  • Signals other than a screw tightening completion signal may be utilized as a signal relating to the work progress. For example, when a wrench or impact wrench is used as a power tool, in addition to the tool identification information, information on the tightening torque may be utilized. Further, it may be designed such that the signal is transmitted three or more times. [0047]
  • Moreover, the respective transmission intervals t1, t2, t3 in the [0048] power tools 111A, 111B, 111C may be stored in the ROM 165 as a fixed value, or alternatively, they may be programmed in the CPU 161 at random based on random numbers. Even in such random setting, the provability of the transmission intervals of the power tools to be coincident with each other can be kept at quite low percentage. Therefore, practically, the possibility of interference can be minimized. Further, considering the provability of the randomly programmed transmission intervals of the power tools being coincident with each other, which can not be kept zero, it may preferably be arranged to transmit the tightening completion signals three or more times and by programming the transmission intervals at random. Thus, the risk of the coincident of the signals can be minimized.

Claims (25)

We claim:
1. A work control system to utilize power tools, comprising:
a plurality of power tools and
a detecting device that receives signals in relation to work progress of the power tools transmitted from the respective power tools thereby detecting the work progress of each power tool, wherein each power tool transmits the signals several times and transmission intervals of the signals vary among the power tools.
2. The work control system as defined in claim 1, wherein each signal includes information at least to identify the power tools.
3. The work control system as defined in claim 1, wherein the work progress signals include information to identify the power tools and the work progress signals are transmitted several times at intervals that are set at values varying among the power tools so as to prevent the work progress signals from being detected by the detecting device at the same time.
4. The work control system as defined in claim 1, wherein the work progress signals include information to identify the power tools and the work progress signals are transmitted at several times at random intervals so as to prevent the work progress signals from being detected by the detecting device at the same time.
5. The work control system as defined in claim 4, wherein the work progress signals are transmitted at least three times at random intervals.
6. The work control system as defined in claim 1, wherein the work progress can be identified by the combination of the plurality of signals, the plurality of signals is transmitted at time intervals that are set at values varying among the power tools so as to prevent the signals from being detected by the detecting device at the same time.
7. The work control system as defined in claim 1, wherein each of the power tools performs same function.
8. The work control system as defined in claim 1, wherein at least one of the power tools performs function that is different from other power tools.
9. The work control system as defined in claim 1, wherein the work progress signal includes at least any one of the information of the completion of predetermined work, number of tightened screws and value of torque to tighten the screw.
10. A method of controlling work performed by utilizing power tools, comprising the steps of:
transmitting signals relating to work progress of the power tools from each of the power tools during the operation, wherein the work progress signals are transmitted from each of the power tools at several times and transmission intervals of the work progress signals vary among the power tools and
detecting the work progress of each of the power tools.
11. Method as defined in claim 10, wherein each signal includes information at least to identify the power tools.
12. Method as defined in claim 10, wherein the work progress signals include information to identify the power tools and the work progress signals are transmitted several times at intervals that are set at values varying among the power tools so as to prevent the work progress signals from being detected by the detecting device at the same time.
13. Method as defined in claim 10, wherein the work progress signals include information to identify the power tools are the work progress signals are transmitted several times at random intervals so as to prevent the work progress signals from being detected by the detecting device at the same time.
14. Method as defined in claim 13, wherein the work progress signals are transmitted at least three times at random intervals.
15. Method as defined in claim 10, wherein the work progress can be identified by the combination of the plurality of signals, the signals are transmitted at time intervals that are set at values varying among the power tools so as to prevent the signals from being detected by the detecting device at the same time.
16. A power tool designed to transmit signals several times in relation to work progress performed by the power tool, wherein the signals are transmitted at random intervals.
17. A work control system to utilize power tools, comprising:
a plurality of power tools and
means for detecting signals in relation to work progress of the power tools transmitted from the respective power tools, wherein each power tool transmits signals several times and transmission intervals of said signals vary among the power tools.
18. The work control system as defined in claim 17, wherein each signal includes information at least to identify the power tools.
19. The work control system as defined in claim 17, wherein the work progress signals include information to identify the power tools and the work progress signals are transmitted several times at intervals that are set at values varying among the power tools so as to prevent the work progress signals from being received at the same time by the detecting means.
20. The work control system as defined in claim 17, wherein the work progress signals include information to identify the power tools and the work progress signals are transmitted at several times at random intervals so as to prevent the work progress signals from being received at the same time by the detecting means.
21. The work control system as defined in claim 20, wherein the work progress signals are transmitted at least three times at random intervals.
22. The work control system as defined in claim 17, wherein the work progress can be identified by the combination of the plurality of signals, the plurality of signals is transmitted at time intervals that are set at values varying among the power tools so as to prevent the signals from being received at the same time by the detecting means.
23. The work control system as defined in claim 17, wherein each of the power tools performs same function.
24. The work control system as defined in claim 17, wherein at least one of the power tools performs function that is different from other power tools.
25. The work control system as defined in claim 17, wherein the work progress signal includes at least any one of the information of the completion of predetermined work, number of tightened screws and value of torque to tighten the screw.
US10/328,926 2001-12-23 2002-12-23 Work control system Abandoned US20030121677A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-403123 2001-12-23
JP2001403123A JP2003195921A (en) 2001-12-26 2001-12-26 Power tool, and management system and method of work by power tool

Publications (1)

Publication Number Publication Date
US20030121677A1 true US20030121677A1 (en) 2003-07-03

Family

ID=19190414

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/328,926 Abandoned US20030121677A1 (en) 2001-12-23 2002-12-23 Work control system

Country Status (3)

Country Link
US (1) US20030121677A1 (en)
JP (1) JP2003195921A (en)
DE (1) DE10261510A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080173139A1 (en) * 2006-08-31 2008-07-24 Matsushita Electric Works Ltd. Power tool
US20090138116A1 (en) * 2008-05-16 2009-05-28 Xerox Corporation System for reliable collaborative assembly and maintenance of complex systems
US20100175902A1 (en) * 2009-01-09 2010-07-15 Robert Bosch Gmbh Method for adjusting an electric power tool
US20110073343A1 (en) * 2009-09-25 2011-03-31 Panasonic Electric Works Power Tools Co., Ltd. Electric power tool
US20110220381A1 (en) * 2010-03-09 2011-09-15 Friese Andreas Electrical appliance, in particular hand-held power tool
US20120168189A1 (en) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Rechargeable Battery-Operated Screwing System with a Reduced Volume of Radio-Transmitted Data
US20120168188A1 (en) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Portable Tool and Method for Carrying Out Work Operations with Said Tool
US9193055B2 (en) 2012-04-13 2015-11-24 Black & Decker Inc. Electronic clutch for power tool
US9756402B2 (en) 2015-05-04 2017-09-05 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US9900967B2 (en) 2015-10-30 2018-02-20 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US10131043B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
US10272550B2 (en) 2016-02-25 2019-04-30 Milwaukee Electric Tool Corporation Power tool including an output position sensor
US10295990B2 (en) 2015-05-18 2019-05-21 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US10339496B2 (en) 2015-06-15 2019-07-02 Milwaukee Electric Tool Corporation Power tool communication system
US10345797B2 (en) 2015-09-18 2019-07-09 Milwaukee Electric Tool Corporation Power tool operation recording and playback
US10380883B2 (en) 2015-06-16 2019-08-13 Milwaukee Electric Tool Corporation Power tool profile sharing and permissions
US10562116B2 (en) 2016-02-03 2020-02-18 Milwaukee Electric Tool Corporation System and methods for configuring a reciprocating saw
US10603770B2 (en) 2015-05-04 2020-03-31 Milwaukee Electric Tool Corporation Adaptive impact blow detection
US10618151B2 (en) 2015-06-15 2020-04-14 Milwaukee Electric Tool Corporation Hydraulic crimper tool
US10646982B2 (en) 2015-12-17 2020-05-12 Milwaukee Electric Tool Corporation System and method for configuring a power tool with an impact mechanism
USD887806S1 (en) 2018-04-03 2020-06-23 Milwaukee Electric Tool Corporation Jigsaw
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
US10850380B2 (en) 2015-06-02 2020-12-01 Milwaukee Electric Tool Corporation Multi-speed power tool with electronic clutch
US10882166B2 (en) * 2015-10-15 2021-01-05 Atlas Copco Industrial Technique Ab Pulse tool
US11014224B2 (en) 2016-01-05 2021-05-25 Milwaukee Electric Tool Corporation Vibration reduction system and method for power tools
US11014176B2 (en) 2018-04-03 2021-05-25 Milwaukee Electric Tool Corporation Jigsaw
CN113500566A (en) * 2021-08-20 2021-10-15 姜玉刚 Knocking hammer used in narrow space
US20210323125A1 (en) * 2018-09-05 2021-10-21 Panasonic Intellectual Property Management Co., Ltd. Electronic power tool and electric power tool system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020427A1 (en) * 2004-04-27 2005-11-24 Robert Bosch Gmbh Power tool with controls for setting operating parameters
WO2007043127A1 (en) * 2005-10-03 2007-04-19 Nicki Try System Co., Ltd. Screw tightening work management system
JP5374300B2 (en) * 2009-09-25 2013-12-25 パナソニック株式会社 Electric tool
JP5520095B2 (en) * 2010-03-16 2014-06-11 パナソニック株式会社 Wireless system
JP6664090B2 (en) * 2015-09-30 2020-03-13 パナソニックIpマネジメント株式会社 Work management system and management device
JP6933529B2 (en) * 2017-08-29 2021-09-08 三菱電線工業株式会社 Tool unit and radio wave absorber used for it
JP7108936B2 (en) * 2020-01-27 2022-07-29 パナソニックIpマネジメント株式会社 Work management system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882305A (en) * 1974-01-15 1975-05-06 Kearney & Trecker Corp Diagnostic communication system for computer controlled machine tools
US4081037A (en) * 1976-02-02 1978-03-28 Thor Power Tool Company Control system for a multiple spindle machine
US5117919A (en) * 1989-09-11 1992-06-02 The Rotor Tool Company Torque control system and method
US5229931A (en) * 1988-09-21 1993-07-20 Honda Giken Kogyo Kabushiki Kaisha Nut runner control system and method of monitoring nut runners
US5787002A (en) * 1994-03-29 1998-07-28 Mazda Motor Corporation Control system for production facilities
US6311786B1 (en) * 1998-12-03 2001-11-06 Chicago Pneumatic Tool Company Process of determining torque output and controlling power impact tools using impulse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3882305A (en) * 1974-01-15 1975-05-06 Kearney & Trecker Corp Diagnostic communication system for computer controlled machine tools
US4081037A (en) * 1976-02-02 1978-03-28 Thor Power Tool Company Control system for a multiple spindle machine
US5229931A (en) * 1988-09-21 1993-07-20 Honda Giken Kogyo Kabushiki Kaisha Nut runner control system and method of monitoring nut runners
US5117919A (en) * 1989-09-11 1992-06-02 The Rotor Tool Company Torque control system and method
US5787002A (en) * 1994-03-29 1998-07-28 Mazda Motor Corporation Control system for production facilities
US6311786B1 (en) * 1998-12-03 2001-11-06 Chicago Pneumatic Tool Company Process of determining torque output and controlling power impact tools using impulse

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1894678A3 (en) * 2006-08-31 2009-06-24 Panasonic Electric Works Co., Ltd. Power tool
US7703330B2 (en) 2006-08-31 2010-04-27 Matsushita Electric Works, Ltd. Power tool
US20080173139A1 (en) * 2006-08-31 2008-07-24 Matsushita Electric Works Ltd. Power tool
US20090138116A1 (en) * 2008-05-16 2009-05-28 Xerox Corporation System for reliable collaborative assembly and maintenance of complex systems
US7787981B2 (en) * 2008-05-16 2010-08-31 Xerox Corporation System for reliable collaborative assembly and maintenance of complex systems
US20100175902A1 (en) * 2009-01-09 2010-07-15 Robert Bosch Gmbh Method for adjusting an electric power tool
US20110073343A1 (en) * 2009-09-25 2011-03-31 Panasonic Electric Works Power Tools Co., Ltd. Electric power tool
US20110220381A1 (en) * 2010-03-09 2011-09-15 Friese Andreas Electrical appliance, in particular hand-held power tool
US20120168189A1 (en) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Rechargeable Battery-Operated Screwing System with a Reduced Volume of Radio-Transmitted Data
US20120168188A1 (en) * 2010-12-29 2012-07-05 Robert Bosch Gmbh Portable Tool and Method for Carrying Out Work Operations with Said Tool
US10220500B2 (en) 2012-04-13 2019-03-05 Black & Decker Inc. Electronic clutch for power tool
US9193055B2 (en) 2012-04-13 2015-11-24 Black & Decker Inc. Electronic clutch for power tool
US10569398B2 (en) 2013-10-21 2020-02-25 Milwaukee Electric Tool Corporation Adaptor for power tool devices
US11738426B2 (en) 2013-10-21 2023-08-29 Milwaukee Electric Tool Corporation Power tool communication system
US10967489B2 (en) 2013-10-21 2021-04-06 Milwaukee Electric Tool Corporation Power tool communication system
US10131043B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
US10131042B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
US10213908B2 (en) 2013-10-21 2019-02-26 Milwaukee Electric Tool Corporation Adapter for power tool devices
US11541521B2 (en) 2013-10-21 2023-01-03 Milwaukee Electric Tool Corporation Power tool communication system
US10516920B2 (en) 2015-05-04 2019-12-24 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US9756402B2 (en) 2015-05-04 2017-09-05 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US10136198B2 (en) 2015-05-04 2018-11-20 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US10735833B2 (en) 2015-05-04 2020-08-04 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US11871167B2 (en) 2015-05-04 2024-01-09 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US10277964B2 (en) 2015-05-04 2019-04-30 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US10603770B2 (en) 2015-05-04 2020-03-31 Milwaukee Electric Tool Corporation Adaptive impact blow detection
US11483633B2 (en) 2015-05-04 2022-10-25 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US11919129B2 (en) 2015-05-04 2024-03-05 Milwaukee Electric Tool Corporation Adaptive impact blow detection
US11485000B2 (en) 2015-05-04 2022-11-01 Milwaukee Electric Tool Corporation Adaptive impact blow detection
US9888300B2 (en) 2015-05-04 2018-02-06 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US10979786B2 (en) 2015-05-04 2021-04-13 Milwaukee Electric Tool Corporation Power tool and method for wireless communication
US11599093B2 (en) 2015-05-18 2023-03-07 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US11886168B2 (en) 2015-05-18 2024-01-30 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US11256234B2 (en) 2015-05-18 2022-02-22 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US10838407B2 (en) 2015-05-18 2020-11-17 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US10976726B2 (en) 2015-05-18 2021-04-13 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US10295990B2 (en) 2015-05-18 2019-05-21 Milwaukee Electric Tool Corporation User interface for tool configuration and data capture
US10850380B2 (en) 2015-06-02 2020-12-01 Milwaukee Electric Tool Corporation Multi-speed power tool with electronic clutch
US11685028B2 (en) 2015-06-15 2023-06-27 Milwaukee Electric Tool Corporation Hydraulic crimper tool
US10618151B2 (en) 2015-06-15 2020-04-14 Milwaukee Electric Tool Corporation Hydraulic crimper tool
US11810063B2 (en) 2015-06-15 2023-11-07 Milwaukee Electric Tool Corporation Power tool communication system
US10339496B2 (en) 2015-06-15 2019-07-02 Milwaukee Electric Tool Corporation Power tool communication system
US10977610B2 (en) 2015-06-15 2021-04-13 Milwaukee Electric Tool Corporation Power tool communication system
US11423768B2 (en) 2015-06-16 2022-08-23 Milwaukee Electric Tool Corporation Power tool profile sharing and permissions
US10380883B2 (en) 2015-06-16 2019-08-13 Milwaukee Electric Tool Corporation Power tool profile sharing and permissions
US11565393B2 (en) 2015-09-18 2023-01-31 Milwaukee Electric Tool Corporation Power tool operation recording and playback
US11909548B2 (en) 2015-09-18 2024-02-20 Milwaukee Electric Tool Corporation Power tool operation recording and playback
US10556330B2 (en) 2015-09-18 2020-02-11 Milwaukee Electric Tool Corporation Power tool operation recording and playback
US11084147B2 (en) 2015-09-18 2021-08-10 Milwaukee Electric Tool Corporation Power tool operation recording and playback
US10345797B2 (en) 2015-09-18 2019-07-09 Milwaukee Electric Tool Corporation Power tool operation recording and playback
US10882166B2 (en) * 2015-10-15 2021-01-05 Atlas Copco Industrial Technique Ab Pulse tool
US11064596B2 (en) 2015-10-30 2021-07-13 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US10349498B2 (en) 2015-10-30 2019-07-09 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US10595384B2 (en) 2015-10-30 2020-03-17 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US10433405B2 (en) 2015-10-30 2019-10-01 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US11583990B2 (en) 2015-10-30 2023-02-21 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US9900967B2 (en) 2015-10-30 2018-02-20 Milwaukee Electric Tool Corporation Remote light control, configuration, and monitoring
US10646982B2 (en) 2015-12-17 2020-05-12 Milwaukee Electric Tool Corporation System and method for configuring a power tool with an impact mechanism
US11691256B2 (en) 2015-12-17 2023-07-04 Milwaukee Electric Tool Corporation System and method for configuring a power tool with an impact mechanism
US11014224B2 (en) 2016-01-05 2021-05-25 Milwaukee Electric Tool Corporation Vibration reduction system and method for power tools
US10562116B2 (en) 2016-02-03 2020-02-18 Milwaukee Electric Tool Corporation System and methods for configuring a reciprocating saw
US11433466B2 (en) 2016-02-03 2022-09-06 Milwaukee Electric Tool Corporation System and methods for configuring a reciprocating saw
US11484999B2 (en) 2016-02-25 2022-11-01 Milwaukee Electric Tool Corporation Power tool including an output position sensor
US10583545B2 (en) 2016-02-25 2020-03-10 Milwaukee Electric Tool Corporation Power tool including an output position sensor
US11813722B2 (en) 2016-02-25 2023-11-14 Milwaukee Electric Tool Corporation Power tool including an output position sensor
US10272550B2 (en) 2016-02-25 2019-04-30 Milwaukee Electric Tool Corporation Power tool including an output position sensor
US10835972B2 (en) 2018-03-16 2020-11-17 Milwaukee Electric Tool Corporation Blade clamp for power tool
USD887806S1 (en) 2018-04-03 2020-06-23 Milwaukee Electric Tool Corporation Jigsaw
US11813682B2 (en) 2018-04-03 2023-11-14 Milwaukee Electric Tool Corporation Jigsaw
US11014176B2 (en) 2018-04-03 2021-05-25 Milwaukee Electric Tool Corporation Jigsaw
US20210323125A1 (en) * 2018-09-05 2021-10-21 Panasonic Intellectual Property Management Co., Ltd. Electronic power tool and electric power tool system
CN113500566A (en) * 2021-08-20 2021-10-15 姜玉刚 Knocking hammer used in narrow space

Also Published As

Publication number Publication date
DE10261510A1 (en) 2003-07-17
JP2003195921A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
US20030121677A1 (en) Work control system
EP2263833B1 (en) Power tool with a torque limiter using only rotational angle detecting means
US6598684B2 (en) Impact power tools
US7334648B2 (en) Rotary impact power tool
EP1510299B1 (en) Electric tool with a plurality of operation modes
JP4720765B2 (en) Electric tool control system
US6687567B2 (en) Power tools
JP3944239B2 (en) Portable power tool
US8161613B2 (en) Method and device for producing screw connections
US9233458B2 (en) Installation method for an expansion anchor and impact screwdriver for installing an expansion anchor
JP4859583B2 (en) Tightening tool
US20020033267A1 (en) Electrical hand-held power tool with a torque control
US20180099391A1 (en) Electric power tool, and method of detecting twisted-motion of main body of electric power tool and detecting load on output shaft of electric power tool
US20110114346A1 (en) Power Tools
EP3578301B1 (en) Impact rotary tool
US20190381648A1 (en) Power tool with tapping mode
JP2008213068A (en) Power tool and its management system
JP5215906B2 (en) Wireless communication system for tools
JP4936462B2 (en) Tightening tool
JP4196421B2 (en) Installation tool tightening torque control device
JPH09155755A (en) Rotational striking tool
JP2003251573A (en) Impact rotary tool
JP2005262365A (en) Work confirming system
KR102591307B1 (en) Power tools
US20230286118A1 (en) Machine and method for running a machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAKITA CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WATANABE, MASAHIRO;ISHIKAWA, GOUSHI;REEL/FRAME:013816/0110

Effective date: 20021206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION