US20030108135A1 - Method for synchronization in wireless systems using receive diversity - Google Patents
Method for synchronization in wireless systems using receive diversity Download PDFInfo
- Publication number
- US20030108135A1 US20030108135A1 US10/021,220 US2122001A US2003108135A1 US 20030108135 A1 US20030108135 A1 US 20030108135A1 US 2122001 A US2122001 A US 2122001A US 2003108135 A1 US2003108135 A1 US 2003108135A1
- Authority
- US
- United States
- Prior art keywords
- diversity
- determining
- fourier transform
- output
- code
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/70735—Code identification
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7087—Carrier synchronisation aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/08—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7073—Synchronisation aspects
- H04B1/7083—Cell search, e.g. using a three-step approach
Definitions
- the invention generally relates to the field of wireless signal processing, and more specifically relates to improved synchronization between a mobile terminal and wireless network.
- a mobile terminal such as cellular handset
- the mobile terminal In order for a mobile terminal, such as cellular handset, to establish a connection with a wireless network, the mobile terminal typically needs to synchronize itself to the wireless network.
- handset-network synchronization In a code division multiple access (CDMA) or wideband-CDMA (WCDMA) network, handset-network synchronization generally consists of two steps. The first is referred to as code-synchronization, while the second is referred to as frequency synchronization.
- CDMA code division multiple access
- WCDMA wideband-CDMA
- PN pseudo-random
- the mobile terminal Upon power-up the mobile terminal typically attempts to identify the nearest base station by searching for and identifying the strongest PN code. This process is typically referred to as code-synchronization.
- the mobile terminal typically initiates a frequency synchronization process in which it tries to exactly match its oscillator frequency with that of the identified base-station.
- two oscillators may be set in the factory to oscillate at the same frequency, perfect matching is almost never achieved without the use of a feedback network.
- the base station in a CDMA network broadcasts a PN code.
- r t c b,(tmod N) +n t +I t
- the index t represents the time index
- c b,(tmod N) represents the code number b transmitted at time t
- n t represents the noise component at time t
- I t represents interference from other base stations.
- N is usually predetermined based upon prior knowledge of the length of the synchronization codes.
- r t ⁇ n is the complex sample received by the mobile terminal at time (t ⁇ n).
- c* b,N ⁇ 1 ⁇ n is the complex code transmitted by the base station at time (N ⁇ 1 ⁇ n).
- the operator ‘c*’ denotes the conjugate of ‘c’.
- a typical method illustrated in FIG. 1 for code synchronization compares the output
- Code synchronization is said to be achieved 5 when the matched filter output magnitude 1 exceeds a pre-determined threshold 3 . If the matched filter output magnitude does not exceed a pre-determined threshold, the system continues searching. Exceeding this threshold usually coincides with the maximum output from the matched filter and indicates the presence of the code at the given time offset (i.e., the code starts at t-N+1).
- the threshold may be selected to achieve a desired probability of false alarm (i.e., the probability of detecting the code at a wrong offset).
- the matched filter output magnitude 1 is stored in memory for a set of possible candidates 11 .
- the set of possible candidates 11 consists of different code time offset (i.e., start time of the code) and different code numbers.
- the matched filter output magnitude 1 is stored in a memory and averaged over multiple observations. At the end of the averaging period, the stored value with the largest value is selected 13 , and if the value exceeds 19 , a pre-determined threshold 15 , the code acquisition is said to be achieved 17 . Otherwise the system continues searching 21 . Note that in some cases, the threshold might be set to zero.
- the detected code number and time offset are the candidate associated with the selected stored value. This approach is referred to as maximum selection code acquisition.
- the code acquisition algorithm restarts with a different candidate, otherwise it proceeds to the next step until the last step.
- the code acquisition is said to be achieved.
- An example of a multi-stage code acquisition is the cell search procedure employed in Wideband-CDMA. H. Holma and A Toskala, WCDMA for UTMS, John Wiley and Sons, 2000.
- code acquisition is divided in three stages. Slot boundary candidates are identified in the first stage using the Primary Code Synchronization. Based on the one or more slot boundary candidates identified in the first stage, the second stage identifies frame boundary and code group candidates based on the Secondary Code Synchronization. Finally, the third stage identifies, based on the information provided by the second stage, the Gold code transmitted by a base station using the pilot channel. Once a Gold code is successfully detected in the last stage, code acquisition is said to be achieved.
- FIG. 3 A typical matched filter logic is shown in FIG. 3.
- z ⁇ 1 represents a delay element 25 in a matched filter.
- a delay element 25 is a memory.
- Each delay element contains a sample, r j ⁇ 1 23 , received at a previous time instant.
- FIG. 4 shows the functionality of the correlator in block diagram form. As in FIG. 1, z ⁇ 1 represents a delay element 25 , however, unlike the matched filter, the correlator only utilizes one delay element 25 in an accumulator configuration 35 .
- the incoming sequence r b,t 23 is first multiplied 27 with the sequence c b,N ⁇ 1+t ⁇ T *, 37 where b is the code number, N is the code length, t is the time index, and T is the time where the correlator output is observed (sampled). The result of the multiplication is then accumulated 39 .
- the correlator output differs from that of the matched filter in that the correlator output is only valid after an accumulation of N samples, whereas a matched filter output is valid every sample.
- the correlator has 1/N th the complexity of the matched filter.
- a matched filter is equivalent to N correlators in parallel.
- a “frequency recovery loop” is typically used to drive the frequency difference to zero. Once ⁇ w is driven to zero, so-called coherent detection can take place. In the absence of this (when ⁇ w ⁇ 0), detection can still take place but it is less efficient and is referred to as non-coherent detection.
- matched filters or correlators for acquiring the PN code transmitted from a base station
- the frequency offset between the network and the mobile terminal may increase because of imperfections or variations in the network oscillator, the mobile terminal oscillator, or both.
- a frequency offset interferes with proper code detection by adding a phase rotation between two consecutive symbols. This is referred to throughout as coherence loss. If a sufficient phase is added between two symbols, then PN code synchronization via the matched filter or correlator becomes unreliable.
- N again, represents the number of symbols transmitted in a synchronization code by the base-station b.
- the code synchronization is used to synchronize the mobile terminal's oscillator frequency with the network frequency of the identified base station through a procedure referred to as frequency synchronization.
- the code synchronization provides the code number b transmitted by the wireless network and the time index T corresponding to the first symbol of the transmitted code.
- the partial code correlations are denoted by y k , where k is a new time index after the partial correlators, and are computed over L consecutive received symbols r l .
- One approach to frequency synchronization determines the frequency offset from K consecutive partial code correlations of length L, y k , . . . , y k+K ⁇ 1 .
- the K correlator outputs y k , . . . , y k+K ⁇ 1 are augmented into a P-point vector by appending them with P-K zeros, a P-point Fourier Transform is then taken of the newly formed vector.
- the Fourier Transform output can be averaged over multiple outputs.
- the element of the averaged Fourier Transform output vector with the largest value yields the frequency offset estimate.
- an interpolation can also be performed on the averaged Fourier Transform value.
- DD differential detection scheme
- the frequency offset can be computed from the differential detector (DD) output metric in two ways.
- DD differential detector
- the other approach is to use the DD output metric in a phase locked loop (PLL) as illustrated in FIG. 5.
- the DD output 53 is an indication of the sign and magnitude of the frequency offset.
- a non-linear device 55 might be employed to obtain only the direction of the rotation in order to simplify the implementation.
- the output of the non-linear device may be filtered by a band pass filter 57 to remove the noise and accumulated to provide an estimate of the frequency offset.
- the frequency offset is used to control a Direct Digital Frequency Synthesizer (DDFS) 59 .
- a DDFS 59 produces at its output a sinusoid with a frequency controlled by the input frequency offset value.
- This sinusoid is used to derotate 60 the input signal r j 63 .
- the derotated signal is used as the input to the DD 51 . It can be easily seen that at the beginning, when the frequency offset estimate is not accurate, the DD will detect a frequency offset at its output. This non-zero output then increases/decreases the frequency offset estimate in the accumulator. When the frequency offset estimate is accurate, the DDFS perfectly compensate for the phase rotation due to the frequency output. Then the DD output is equal to zero and the PLL is stabilized (i.e., the accumulator stops increasing/decreasing the frequency offset estimate).
- Diversity is a technique used in wireless communication systems to provide significant performance improvement and has been traditionally applied to improve the quality of data detection in wireless communication systems.
- Diversity exploits the random nature of radio propagation by processing independent copies of the transmitted signal. The different copies of the signal are received through what is typically called diversity branches.
- Different forms of diversity include: space (antenna) diversity; polarization diversity; frequency diversity; and time diversity.
- Diversity reception (combining) methods can be classified into the following categories: selection diversity; switched diversity; maximal ratio combining; and equal gain combining.
- Antenna diversity is one of the most popular forms of diversity used in wireless systems. This form of diversity exploits the fact that signals received by spatially separated antennas (approximately half a wavelength at the mobile terminal) are essentially uncorrelated.
- Polarization diversity exploits the fact that signals received on the horizontal and vertical antenna polarization are essentially uncorrelated.
- Frequency diversity exploits the fact that in a wideband channel, signals received at a frequency separation greater than the coherence bandwidth of the channel are essentially uncorrelated.
- Time diversity exploits the fact that for a time varying channel, signals received at time spacing greater than the coherence time of the channel are essentially uncorrelated.
- a selection diversity receiver employs M parallel diversity branches.
- a high level schematic/logic of a typical receiver using selection diversity 65 is illustrated in FIG. 6.
- FIG. 6 illustrates a typical wireless receiver comprising M parallel diversity branches 67 , each comprising an RF down-converter 69 and a data modulator.
- Each diversity branch receives a time dependent signed S m (t) 73 .
- SNR signal to noise ratio
- a conceptual variation on a selection diversity receiver is a switched diversity receiver.
- a switched diversity receiver employs M diversity branches and a single RF/demodulator chain, rather than the parallel RF/demodulator chains found in the selection diversity receiver.
- the M diversity branches are scanned until the received SNR exceeds a preset threshold, and upon exceeding the threshold, the signal is output to the slicer. If the SNR falls below the threshold level, the scanning process continues.
- FIG. 7 A high level schematic/logic of a typical maximal ratio combining receiver is illustrated in FIG. 7.
- This receiver 85 like the selection diversity receiver, utilizes M parallel diversity branches 67 each comprising an RF downconverter 69 and a data demodulator 71 .
- Each diversity branch receives a time dependent signal S(t) 73 .
- the M diversity branches 67 output to a common slicer 77 .
- the signals 73 from all branches 67 are co-phased 87 and weighted 89 according to their individual SNR (G i coefficients 91 ) before being summed.
- the branch weights are all set to unity, but the signals from each branch are co-phased to provide equal gain combining.
- a preferred embodiment of the invention is a method for synchronizing a mobile terminal to a wireless network using diversity combination to acquire the code transmitted from a base-station and to determine the frequency offset of the transmitted code.
- the mobile terminal preferably comprises M diversity branches.
- Each diversity branch preferably comprises a down-converter section, a selector, a code matched filter or a code correlator, and a Fourier Transform (FT) or Differential Detection (DD) section.
- FT Fourier Transform
- DD Differential Detection
- the output of each of the code matched filter or correlator is combined using a diversity antenna combination method.
- Preferred diversity combination methods for code synchronization include, selection diversity, coherent combination and non-coherent combination.
- this combined output is analyzed to detect the presence of the code and achieve code synchronization.
- the frequency offset of the code transmitted by the base-station is estimated from the signals received on the M diversity branches through a FT or DD section.
- FIG. 1 illustrates the logic of code acquisition based on threshold comparison.
- FIG. 2 illustrates the logic of code acquisition based on maximum selection.
- FIG. 3 shows the logic of a typical matched filter.
- FIG. 4 shows the logic of a typical correlator.
- FIG. 5 illustrates the use of differential detection in a PLL architecture for frequency synchronization.
- FIG. 6 illustrates a high level schematic/logic of a typical receiver using selection diversity.
- FIG. 7 illustrates a high level schematic/logic of a typical diversity receiver using maximal ratio combining.
- FIG. 8 illustrates a preferred logic for synchronization of a diversity receiver to a wireless network.
- FIG. 9 illustrates a preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs selection diversity.
- FIG. 10 illustrates another preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs non-coherent combination.
- FIG. 11 illustrates another preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs non-coherent weighted combination.
- FIG. 12 illustrates another preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs coherent combination.
- FIG. 13 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs selection diversity and a FT Transform to determine the frequency offset of the transmitted code.
- FIG. 14 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs non-coherent combining diversity and a Fourier Transform to determine the frequency offset of the transmitted code.
- FIG. 15 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs non-coherent weighted combining diversity and a Fourier Transform to determine the frequency offset of the transmitted code.
- FIG. 16 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs selection diversity and differential detection to determine the frequency offset of the transmitted code.
- FIG. 17 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs coherent combining diversity and differential detection to determine the frequency offset of the transmitted code.
- FIG. 18 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs coherent weighted combining diversity and differential detection to determine the frequency offset of the transmitted code.
- FIG. 19 compares the average code acquisition time of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna as a function of the geometric factor for a Wideband CDMA channel test case.
- FIG. 20 compares the smallest time value which upper bound 90% of the code acquisition time of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna as a function of the geometric factor for a Wideband CDMA channel test case.
- FIG. 21 illustrates the structure and relationship of the synchronization codes transmitted in a WCDMA network.
- a preferred embodiment of this invention involves a method for synchronizing a diversity mobile terminal to a wireless network.
- a preferred method for synchronizing a diversity mobile terminal to a wireless network employs a diversity receiver with M parallel diversity branches for code synchronization and a diversity receiver with M parallel diversity branches for frequency synchronization.
- Each diversity branch comprises a down-converter, a selector, and the logic for code and frequency synchronization.
- the received signal from the m th (1 ⁇ m ⁇ M) diversity branch is given by s m (t c ), where t c represents the continuous time.
- Theses signals are analog and represent the M different received copies of the transmitted signal received through the use of a diversity reception method.
- the signals s m (t c ) are converted to baseband digital signals r m,t , where t is the discrete time index, in the down-converters.
- FIG. 8 illustrates a preferred logic for synchronizing a diversity mobile terminal to a wireless network.
- a diversity mobile terminal comprising M diversity branches, receives a signal comprising a synchronization code transmitted by a wireless network.
- the received signal is processed 74 in at least two diversity branches using a matched filter, partial matched filter, correlator, partial correlator or the equivalents thereof to determine 78 the synchronization code.
- the received signal is processed 76 in at least two diversity branches to synchronize the frequency 80 of the mobile diversity terminal to the frequency of the wireless network based upon the determination of the synchronization code.
- a preferred method for acquiring a synchronization code employs a selection diversity code synchronization receiver with M parallel diversity branches.
- Each diversity branch comprises at least one filter.
- a filter is a matched filter, partial match filter, code correlator, partial code correlator or the equivalents thereof.
- a filter output, as used herein, is the output of a matched filter, code correlator or the equivalents thereof.
- may be expressed as:
- max 1 ⁇ m ⁇ M ⁇
- ⁇ n 0 N - 1 ⁇ ⁇ r m , t - n ⁇ c b , N - 1 - n * ⁇
- FIG. 9 illustrates a preferred logic for acquiring a code transmitted from a wireless network using a receive diversity mobile terminal employing a selection diversity code synchronization receiver.
- the mobile terminal receives a signal comprising a synchronization code 73 .
- the mobile terminal computes the absolute value of a filter output 105 for each of the M diversity branches 67 .
- other values that scale monotonically with the absolute value of a filter output including the magnitude square (power), the sum of the real and imaginary parts of the filter output, or any other approximation may also be computed.
- a preferred third step 107 the mobile terminal compares the M absolute values computed in the first step and selects which output had the highest instantaneous absolute value, thereby forming a selection diversity output value 109 .
- a preferred fourth step 111 the highest instantaneous output value 109 of the matched filter/correlator is compared against a predetermined threshold 113 . If the highest instantaneous output value exceeds the predetermined threshold value, code synchronization is accomplished. If the instantaneous output value does not exceed the predetermined threshold, code detection continues 117 .
- Another preferred method for acquiring a synchronization code employs a non-coherent combining diversity code synchronization receiver with M parallel diversity branches.
- This preferred method has a variation, which employs a non-coherent weighted combining diversity code synchronization receiver with M parallel diversity branches.
- Each diversity branch comprises at least one filter.
- FIGS. 10 and 11 show a preferred logic for acquiring a code transmitted from a wireless network using a diversity mobile terminal employing non-coherent combination and non-coherent weighted combination, respectively.
- the mobile terminal receives a signal comprising a synchronization code 73 .
- the mobile terminal determining the absolute value of a filter output 105 for each of the M diversity branch 67 .
- other values that scale monotonically with the absolute value of a filter output including the magnitude square (power), the sum of the real and imaginary parts of the filter output, or any other approximation may also be computed.
- the second step further comprises 1) determining, for each of the M diversity branches, 67 an estimate of the relative power p m 121 of each diversity branch 67 relative to the other branches, and 2) weighting 123 the output magnitude 105 for each of the M diversity branches 67 by the relative power 121 of each diversity branch relative 67 to the other branches.
- the weighted/non-weighted output magnitudes 105 , 123 determined in step 1 are combined 125 thereby forming a weighted/non-weighted non-coherent combining diversity output value 127 .
- the weighted/non-weighted non-coherent combining diversity output value 105 , 123 is compared 111 against a predetermined threshold 113 . If this diversity output value 105 , 123 exceeds the predetermined threshold value 113 , code synchronization is accomplished 115 . If this diversity output value 105 , 123 does not exceed the predetermined threshold 113 , code detection continues 117 .
- Another preferred method for acquiring a synchronization code employs a diversity code synchronization receiver with M parallel diversity branches and coherent antenna combination. For code synchronization using coherent antenna combination, it is assumed that a reference signal is available. Each diversity branch generally comprises at least one filter.
- FIG. 12 shows preferred logic for acquiring a code transmitted from a wireless network using a receive diversity mobile terminal employing coherent combination.
- the mobile terminal receives a signal comprising a synchronization code 73 .
- the mobile terminal updates, for each of the M diversity branches 67 , the instantaneous parallel channel estimate 135 of the diversity branch relative to the other branches.
- the filter output 137 is co-phased and weighted 139 by the conjugate of the instantaneous parallel channel estimate 135 of the diversity branch relative to the other branches.
- the co-phased and weighted values from the M diversity branches are combined, thereby forming a coherent combining diversity output value.
- the real part of the coherent combining diversity output value 143 is computed 145 .
- the real part of the coherent combining diversity output value 147 is compared 111 against a predetermined threshold 113 . If this value 147 exceeds the predetermined threshold value 113 , code synchronization is accomplished 115 . If this value 147 does not exceed the predetermined threshold 113 , code detection continues.
- a preferred method for acquiring the frequency offset of the transmitted synchronization code employs a Fourier Transform (FT) selection diversity frequency synchronization receiver with M parallel diversity branches. Each diversity branch generally comprises at least one filter and at least one FT unit.
- FT Fourier Transform
- One method according to the invention employs a correlator for the filter.
- FIG. 13 shows a preferred logic for acquiring the frequency offset of a transmitted code using a Fourier Transform selection diversity frequency synchronization receiver with M diversity branches and wherein each diversity branch comprises a correlator and a FT unit.
- the mobile terminal determines and accumulates K partial code correlations for each diversity branch 67 .
- the mobile terminal fourier transforms the the K partial code correlations in each diversity branch 67 .
- the mobile terminal computes, for each of the M diversity branches 67 , the absolute value of the Fourier Transform results for each of the P elements of the Fourier Transform vector.
- the mobile terminal selects, for each element p of the Fourier Transform magnitude vector 159 , the value from the M diversity branches 67 with the highest instantaneous absolute value 159 , and creates a new selection diversity FT vector
- is averaged over multiple FT blocks.
- the element p with the largest averaged absolute value is selected as the frequency offset estimate from the selection diversity frequency synchronization receiver.
- Another preferred method for acquiring the frequency offset of the transmitted code employs a Fourier Transform (FT) non-coherent diversity frequency synchronization receiver with M parallel diversity branches.
- a variation of this method may employ a Fourier Transform (FT) non-coherent weighted combining diversity frequency synchronization receiver with M parallel diversity branches.
- Each diversity branch generally comprises a filter and a FT unit.
- One method according to the invention employs a correlator for a filter.
- FIGS. 14 and 15 show a preferred logic for acquiring the frequency offset of the transmitted code using a non-weighted (FIG. 14) and weighted (FIG. 15) Fourier Transform non-coherent combining diversity frequency synchronization receiver with M diversity branches and wherein each diversity branch comprises a correlator and a FT unit.
- the mobile terminal determines and accumulates K partial code correlations in each diversity branch.
- the mobile terminal fourier transforms the K partial code correslation in each diversity branch 67 .
- the mobile terminal computes, for each of the M diversity branches 67 , the absolute value of the Fourier Transform results for each of the P elements of the Fourier Transform vector.
- a preferred third step 159 further comprises: 1) computing, for each of the M diversity branches 67 , an estimate of the relative power 161 of the diversity branch relative to the other branches, and 2) weighting 163 each of the M diversity branches by the relative power of each diversity branch relative to the other branches of the absolute value of the Fourier Transform results for each of the P elements of the Fourier Transform vector.
- the mobile terminal combines, for each element p of the Fourier Transform magnitude vector, the values from the M diversity branches obtained in step 1, and creates a new non-coherent combining diversity FT vector
- a preferred fifth step 169 the non-coherent combining diversity FT vector
- the element p with the largest averaged absolute value is selected as the frequency offset estimate used for frequency synchronization.
- Another preferred method for acquiring the frequency offset of the transmitted code employs a Differential Detection (DD) selection diversity frequency synchronization receiver with M parallel diversity branches. Each diversity branch comprises at least one filter and at least one DD unit.
- One method according to the invention employs a correlator for the filter..
- the DD selection diversity frequency acquisition receiver output X(k) may be expressed as:
- ⁇ circumflex over (m) ⁇ ( k ) arg max 1 ⁇ m ⁇ M
- FIG. 16 shows a preferred logic for acquiring the frequency offset of the transmitted code using a diversity mobile terminal employing a Differential Detection (DD) selection diversity frequency synchronization receiver, with M diversity branches and wherein each diversity branch comprises a correlator.
- DD Differential Detection
- the mobile terminal determines y m,k over a range of k values in each diversity branch m.
- the mobile terminal selects the diversity branch with the highest instantaneous absolute value 179 .
- DD output of the selected branch is averaged over multiple DD output s.
- the averaged DD value is used to compute the frequency estimate.
- the DD detection method outlined above may also generally be implemented with a phase locked loop.
- Another preferred method for acquiring the frequency offset of the transmitted code employs a Differential Detection (DD) coherent combining diversity frequency synchronization receiver with M parallel diversity branches.
- An alternative method may employ a weighted coherent combining diversity receiver with M parallel diversity branches.
- Each diversity branch comprises at least one filter and at least one DD unit.
- One method according to the invention employs a correlator for the filter.
- FIGS. 17 and 18 show a preferred logic for acquiring the frequency offset of the transmitted code using diversity mobile terminal employing a Differential Detection (DD) coherent combining diversity frequency synchronization receiver and a Differential Detection (DD) coherent weighted combining diversity frequency synchronization receiver.
- DD Differential Detection
- DD Differential Detection
- y m,k is calculated over a variety of k values in each diversity branch m.
- the mobile terminal In a preferred second step 177 , for each DD output (i.e., for each time index k), the mobile terminal combines the DD output from the M diversity branches 67 .
- a preferred first step comprises: 1) computing, for each of the M diversity branches, an estimate of the relative power of the diversity branch relative to the other branches 193 , and 2) weighting each of the M diversity branches of the DD output by the relative power of each diversity branch relative to the others 195 .
- the combined DD output is input to the averaging block, and average over multiple DD outputs.
- the average DD value is used to compute the frequency estimate.
- Example 1 compares the code synchronization time of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna (prior art method) as a function of G for Wideband CDMA (WCDMA) channel test case II.
- G is defined as the ratio of the received signal intensity and the post-channel interference (i.e., AWGN and inter-cell interference). All the base station transmitter settings are according to the parameters given in UE Radio and Transmission and Reception (FDD), 3GPP TS 25.1010, v 3.4.1.
- this example compares the ability of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna according to the prior art to detect the Gold code transmitted by a base station.
- FIG. 21 illustrates the different codes transmitted from the base station used to achieve code synchronization.
- the cell search is started using the downlink Synchronization Channel (SCH).
- the SCH consists of two sub channels, the Primary and Secondary SCH (P-SCH and S-SCH).
- the P-SCH consists of a modulated code of length 256 chips, denoted c 0 .
- the primary code c 0 is transmitted at the beginning of every slot (2560 chips) from all the base stations in the system.
- the S-SCH code c s i , i 1, . . .
- the 15 sequences form the secondary code c s i taken from a codebook of 64 16-ary codewords. These 64 codewords correspond to 64 code groups used in the WCDMA system. Each code group consists of 8 Gold codes.
- the 64 codewords are also chosen such that they have distinct phase shifts. Therefore, the correct frame boundary and code group can be detected by finding the code c s i transmitted from the base station and its beginning. Finally, a Common Pilot Channel (CPICH) is transmitted from the base station. The CPICH is scrambled using the cell-specific Gold code but no modulation is applied on the channel.
- CPICH Common Pilot Channel
- a four step synchronization procedure is used in this WCDMA example.
- the mobile terminal uses a non-coherent combining diversity code synchronization receiver to detect the primary synchronization code c 0 .
- the detection of the primary synchronization code c 0 indicates the slot boundary.
- the mobile terminal uses the slot boundary detected in the first step, detects the secondary synchronization code c s i transmitted from the base station using a coherent combining code synchronization receiver.
- the detection of the secondary synchronization code c s i indicates the code group used by the base station and the frame boundary.
- the mobile terminal uses a non-coherent combining diversity code synchronization receiver to detect the Gold code transmitted from the base station.
- the mobile terminal synchronizes itself to the wireless network by using the detected Gold code and a FT non-coherent combining diversity frequency synchronization receiver.
- the diversity receiver uses a 256 symbol matched filter in each diversity branch and non-coherent combining is used to obtain the diversity output.
- the diversity output is stored for M consecutive outputs and averaged over N slot repetitions. Then, the receiver selects the maximum value and detects the primary code c 0 , which determines the slot boundary.
- the receiver correlates in each diversity branch the input signal against each of the 64 codes c s i and their 15 circular rotations. Then, the primary code detected in the first step is used as a reference to produce a coherent combining diversity output. The receiver selects the maximum diversity output value out of the 960 candidates, which indicates the secondary code number transmitted and the slot where the code starts (i.e., the frame boundary).
- the receiver correlates in each diversity branch the input samples with the 8 possible Gold codes for R samples. For each of the 8 possible Gold codes, a diversity output is produced using non-coherent combining. The diversity output with the largest value is selected and a “vote” is given to the corresponding code. This process is repeated K consecutive times. At the end, if the largest number of accumulated votes exceeds a pre-determined threshold, code synchronization is achieved; otherwise the entire process is repeated.
- FIGS. 19 and 20 show the results of Example 1 for code synchronization only (i.e., without the frequency synchronization).
- FIG. 19 shows the average acquisition time while FIG. 20 gives the 90% outage acquisition time (that is, 90% of the experiments yield an acquisition time smaller than the indicated value).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
- The invention generally relates to the field of wireless signal processing, and more specifically relates to improved synchronization between a mobile terminal and wireless network.
- In order for a mobile terminal, such as cellular handset, to establish a connection with a wireless network, the mobile terminal typically needs to synchronize itself to the wireless network. In a code division multiple access (CDMA) or wideband-CDMA (WCDMA) network, handset-network synchronization generally consists of two steps. The first is referred to as code-synchronization, while the second is referred to as frequency synchronization.
- In CDMA systems, all base stations utilize the same frequency band, however, they are uniquely identified by the particular pseudo-random (PN) code that they use. Upon power-up the mobile terminal typically attempts to identify the nearest base station by searching for and identifying the strongest PN code. This process is typically referred to as code-synchronization. Next, the mobile terminal typically initiates a frequency synchronization process in which it tries to exactly match its oscillator frequency with that of the identified base-station. However, although two oscillators may be set in the factory to oscillate at the same frequency, perfect matching is almost never achieved without the use of a feedback network.
- Code Synchronization
- The base station in a CDMA network broadcasts a PN code. A PN code may be characterized as sequence of N+1's and −1's. The code is different for each base station. Assume that the code number b transmitted from the bth base station is an N symbols long code cb,n,n=0, . . . ,N−1. Next assume that these symbols when received by the mobile terminal may be denoted as rt=cb,(tmod N)+nt+It, where the index t represents the time index, cb,(tmod N) represents the code number b transmitted at time t, nt represents the noise component at time t, and It represents interference from other base stations. Using the received samples, the mobile terminal must simultaneously search for all the different codes that may be sent from different base stations and identify the first element of the code. This is most commonly achieved using a matched filter or a correlator.
-
-
- A typical method illustrated in FIG. 1 for code synchronization compares the output |yt| of a matched filter or of a correlator to a predetermined
threshold 3. Code synchronization is said to be achieved 5 when the matchedfilter output magnitude 1 exceeds apre-determined threshold 3. If the matched filter output magnitude does not exceed a pre-determined threshold, the system continues searching. Exceeding this threshold usually coincides with the maximum output from the matched filter and indicates the presence of the code at the given time offset (i.e., the code starts at t-N+1). The threshold may be selected to achieve a desired probability of false alarm (i.e., the probability of detecting the code at a wrong offset). - In a low signal to noise ratio environment, the matched filter output rarely reaches the threshold level. Therefore, in a second typical approach illustrated in FIG. 2, the matched
filter output magnitude 1 is stored in memory for a set ofpossible candidates 11. The set ofpossible candidates 11 consists of different code time offset (i.e., start time of the code) and different code numbers. For eachpossible candidate 11, the matchedfilter output magnitude 1 is stored in a memory and averaged over multiple observations. At the end of the averaging period, the stored value with the largest value is selected 13, and if the value exceeds 19, a pre-determined threshold 15, the code acquisition is said to be achieved 17. Otherwise the system continues searching 21. Note that in some cases, the threshold might be set to zero. The detected code number and time offset are the candidate associated with the selected stored value. This approach is referred to as maximum selection code acquisition. - Other variants for code acquisition use multi-dwell and multi stage strategies. See e.g. A. J. Eynon, and T. C. Toer,A Comparison of Mulitple Dwell Cell Testing Strategies in Serial Search Direct Sequence Spread Spectrum Code Acquisition, Proc. of Milcom '95, Vol1, Sand Diego, Calif. pp. 357-361; H. Holma and A Toskala, WCDMA for UTMS, John Wiley and Sons, 2000. These references and all other references herein are hereby incorporated by reference. In a multi-dwell code acquisition approach, the search is done in multiple steps. Generally, each step uses an increasing threshold level and the matched filter output is averaged over a longer period of time before comparison to the threshold. If the averaged value does not exceed the threshold at a given step, the code acquisition algorithm restarts with a different candidate, otherwise it proceeds to the next step until the last step. When the averaged value for the last step exceeds the pre-determined threshold, the code acquisition is said to be achieved.
- An example of a multi-stage code acquisition is the cell search procedure employed in Wideband-CDMA. H. Holma and A Toskala, WCDMA for UTMS, John Wiley and Sons, 2000. In W-CDMA, code acquisition is divided in three stages. Slot boundary candidates are identified in the first stage using the Primary Code Synchronization. Based on the one or more slot boundary candidates identified in the first stage, the second stage identifies frame boundary and code group candidates based on the Secondary Code Synchronization. Finally, the third stage identifies, based on the information provided by the second stage, the Gold code transmitted by a base station using the pilot channel. Once a Gold code is successfully detected in the last stage, code acquisition is said to be achieved.
- A typical matched filter logic is shown in FIG. 3. Using notation common in the art, z−1 represents a
delay element 25 in a matched filter. Adelay element 25 is a memory. Typically there are N−1delay elements 25. Each delay element contains a sample,r j−1 23, received at a previous time instant. In order to better illustrate FIG. 3 andEquation 1, assume that N=10 and t=100. Accordingly, in a first step, when n=0 inEquation 1, rb,100 is multiplied 27 by c*b,9(N−1−n=10−1−0=9) 29. In a second step, when n=1 inEquation 1, rb,99 is multiplied 27 by c*b,8(N−1−n=10−1−1=8). In a third step, the products ofsteps - One problem with the use of matched filters for code detection is that they generally require a large amount of computation. This is particularly limiting when the code length is large. In this case, an alternative approach may employ a correlator code detector. FIG. 4 shows the functionality of the correlator in block diagram form. As in FIG. 1, z−1 represents a
delay element 25, however, unlike the matched filter, the correlator only utilizes onedelay element 25 in anaccumulator configuration 35. Theincoming sequence r b,t 23 is first multiplied 27 with the sequence cb,N−1+t−T*, 37 where b is the code number, N is the code length, t is the time index, and T is the time where the correlator output is observed (sampled). The result of the multiplication is then accumulated 39. Theaccumulator 35 is reset at time t=T−N+ 1 41 and sampled at time t=T 43. -
- ignoring the noise components. This exactly matches the maximum output of the matched filter. However, the correlator output differs from that of the matched filter in that the correlator output is only valid after an accumulation of N samples, whereas a matched filter output is valid every sample. The correlator has 1/Nth the complexity of the matched filter. A matched filter is equivalent to N correlators in parallel.
- Undesirable Effects of Frequency Offset
- The oscillator in a wireless network base-station and the local oscillator in a mobile terminal rarely oscillate at the same frequency. Because of this frequency offset between the base-station and the mobile terminal, the received signal rt at the tth time index (sample) may be represented as: rt=cb,tmodNej
ΔwtT s where Ts represents the sampling interval (time between two consequtive samples), Δw represents the frequency offset, and ejx=cos x+{square root}{square root over (−1)} sin x. A “frequency recovery loop” is typically used to drive the frequency difference to zero. Once Δw is driven to zero, so-called coherent detection can take place. In the absence of this (when Δw≠0), detection can still take place but it is less efficient and is referred to as non-coherent detection. - Code Synchronization in the Presence of Frequency Offset
- One problem affecting the application of matched filters or correlators for acquiring the PN code transmitted from a base station is that as the frequency offset between the base station (network) and mobile terminal increases, the reliability of the code acquisition decreases. The frequency offset between the network and the mobile terminal may increase because of imperfections or variations in the network oscillator, the mobile terminal oscillator, or both. A frequency offset interferes with proper code detection by adding a phase rotation between two consecutive symbols. This is referred to throughout as coherence loss. If a sufficient phase is added between two symbols, then PN code synchronization via the matched filter or correlator becomes unreliable. To illustrate this, assume that the received signal, at time t=aN−1, where a is a positive integer number, may be represented by rt=cb,tmodNejΔwtT s (ignoring noise and interference terms). The matched filter output may then be represented by
- is constant for any b and t. If it is further assumed that Δw=2π/(NTs), then yt=0 and code synchronization is impossible.
- If the coherence loss produces an unacceptable performance, signal processing techniques must be employed to mitigate this effect. One approach is to correct the frequency of the incoming signal rt by multiplying it by e−j
ΔŵtT s. However, since Δw is unknown at the receiver, Δw must be scanned through the range of possible values until the synchronization code is detected. R. L. Peterson, R. E. Ziemer and D. E. Borth, Introduction to Spread Spectrum Communications, Prentice Hall, 1995. This approach increases the search time by a factor F, where F is the number of frequencies scanned. -
-
- which limits the loss due to frequency offset. This approach does not affect the search time, but decreases the processing gain of the detector by a factor S. If a channel estimate is available (in the case of multi-stage acquisition, partial detection can be achieved and be used to provide a reference), it can be used to produce a coherent output. For example, assume the channel estimate for the sth partial matched filter is given by c0 s, then the output magnitude of the matched filter would be given by:
- Frequency Synchronization
- Once the code synchronization has been achieved, it is used to synchronize the mobile terminal's oscillator frequency with the network frequency of the identified base station through a procedure referred to as frequency synchronization. The code synchronization provides the code number b transmitted by the wireless network and the time index T corresponding to the first symbol of the transmitted code.
- The first step to frequency synchronization consists of computing partial code correlations of the input sequence rt=cb,(t−T)modNej
ΔwtT s+nt, where Ts represents the sampling interval (time between two consequtive samples), Δw represents the frequency offset to be determined and η1 represents the noise component at time J. The partial code correlations are denoted by yk, where k is a new time index after the partial correlators, and are computed over L consecutive received symbols rl. The partial code correlations are given by: -
- To obtain better reliability, the Fourier Transform output can be averaged over multiple outputs. The element of the averaged Fourier Transform output vector with the largest value yields the frequency offset estimate. In order to improve the accuracy, an interpolation can also be performed on the averaged Fourier Transform value. Y. E. Wang and T. Ottosson,Cell Search in W-CDMA, IEEE JSAC, Vol.18, No. 8, August 2000, pp 1470-1481.
- Another approach for frequency acquisition employs a differential detection scheme (DD). In this method, a frequency estimate is obtained by multiplying the partial correlation yk+1 with the complex conjugate of the previous partial correlation yk (k is the time index after the correlator). Assuming |ck|2=1, we obtain yk+1y*k≈λejΔwLT s (ignoring the noise term), where λ is a proportionality constant. Since L, and Ts are known constants, this provides a metric from which the frequency offset can be derived.
-
- H. Meyr, M. Moeneclaey, and S. A. Fechtel,Digital Communication Receivers—Synchronization Channel Estimation and Signal Processing, John Wiley & Sons, 1998.
- The other approach is to use the DD output metric in a phase locked loop (PLL) as illustrated in FIG. 5. Id. The DD output53 is an indication of the sign and magnitude of the frequency offset. A
non-linear device 55 might be employed to obtain only the direction of the rotation in order to simplify the implementation. The output of the non-linear device may be filtered by aband pass filter 57 to remove the noise and accumulated to provide an estimate of the frequency offset. The frequency offset is used to control a Direct Digital Frequency Synthesizer (DDFS) 59. ADDFS 59 produces at its output a sinusoid with a frequency controlled by the input frequency offset value. - This sinusoid is used to derotate60 the input signal rj 63. The derotated signal is used as the input to the
DD 51. It can be easily seen that at the beginning, when the frequency offset estimate is not accurate, the DD will detect a frequency offset at its output. This non-zero output then increases/decreases the frequency offset estimate in the accumulator. When the frequency offset estimate is accurate, the DDFS perfectly compensate for the phase rotation due to the frequency output. Then the DD output is equal to zero and the PLL is stabilized (i.e., the accumulator stops increasing/decreasing the frequency offset estimate). - Diversity Methods
- Diversity is a technique used in wireless communication systems to provide significant performance improvement and has been traditionally applied to improve the quality of data detection in wireless communication systems. T. S. Rappaport,Wireless Communications—Principles and Practice, Prentice Hall, 1996. Diversity exploits the random nature of radio propagation by processing independent copies of the transmitted signal. The different copies of the signal are received through what is typically called diversity branches. Different forms of diversity include: space (antenna) diversity; polarization diversity; frequency diversity; and time diversity. Diversity reception (combining) methods can be classified into the following categories: selection diversity; switched diversity; maximal ratio combining; and equal gain combining.
- Antenna diversity is one of the most popular forms of diversity used in wireless systems. This form of diversity exploits the fact that signals received by spatially separated antennas (approximately half a wavelength at the mobile terminal) are essentially uncorrelated. Polarization diversity exploits the fact that signals received on the horizontal and vertical antenna polarization are essentially uncorrelated. Frequency diversity exploits the fact that in a wideband channel, signals received at a frequency separation greater than the coherence bandwidth of the channel are essentially uncorrelated. Time diversity exploits the fact that for a time varying channel, signals received at time spacing greater than the coherence time of the channel are essentially uncorrelated.
- A selection diversity receiver employs M parallel diversity branches. A high level schematic/logic of a typical receiver using
selection diversity 65 is illustrated in FIG. 6. FIG. 6 illustrates a typical wireless receiver comprising Mparallel diversity branches 67, each comprising an RF down-converter 69 and a data modulator. Each diversity branch receives a time dependent signed Sm (t) 73. In a selection diversity receiver the signal of thebranch 67 with the highest instantaneous signal to noise ratio (SNR) selected 75 and input to theslicer 77. - A conceptual variation on a selection diversity receiver is a switched diversity receiver. A switched diversity receiver employs M diversity branches and a single RF/demodulator chain, rather than the parallel RF/demodulator chains found in the selection diversity receiver. In such a receiver, the M diversity branches are scanned until the received SNR exceeds a preset threshold, and upon exceeding the threshold, the signal is output to the slicer. If the SNR falls below the threshold level, the scanning process continues.
- A high level schematic/logic of a typical maximal ratio combining receiver is illustrated in FIG. 7. This receiver85, like the selection diversity receiver, utilizes M
parallel diversity branches 67 each comprising anRF downconverter 69 and adata demodulator 71. Each diversity branch receives a time dependent signal S(t) 73. TheM diversity branches 67 output to acommon slicer 77. However, instead of selecting the signal with the largest SNR as is the case with a selection diversity receiver, in a maximal ratio combining receiver, thesignals 73 from allbranches 67 are co-phased 87 and weighted 89 according to their individual SNR (Gi coefficients 91) before being summed. - In an equal gain combining receiver, instead of implementing a true maximal ratio combination, the branch weights are all set to unity, but the signals from each branch are co-phased to provide equal gain combining.
- A preferred embodiment of the invention is a method for synchronizing a mobile terminal to a wireless network using diversity combination to acquire the code transmitted from a base-station and to determine the frequency offset of the transmitted code. The mobile terminal preferably comprises M diversity branches. Each diversity branch preferably comprises a down-converter section, a selector, a code matched filter or a code correlator, and a Fourier Transform (FT) or Differential Detection (DD) section.
- In a preferred first step according to the methods of the invention, the output of each of the code matched filter or correlator is combined using a diversity antenna combination method. Preferred diversity combination methods for code synchronization include, selection diversity, coherent combination and non-coherent combination. In a preferred second step according to the methods of the invention, this combined output is analyzed to detect the presence of the code and achieve code synchronization. Then, in a preferred third step, the frequency offset of the code transmitted by the base-station is estimated from the signals received on the M diversity branches through a FT or DD section.
- FIG. 1 illustrates the logic of code acquisition based on threshold comparison.
- FIG. 2 illustrates the logic of code acquisition based on maximum selection.
- FIG. 3 shows the logic of a typical matched filter.
- FIG. 4 shows the logic of a typical correlator.
- FIG. 5 illustrates the use of differential detection in a PLL architecture for frequency synchronization.
- FIG. 6 illustrates a high level schematic/logic of a typical receiver using selection diversity.
- FIG. 7 illustrates a high level schematic/logic of a typical diversity receiver using maximal ratio combining.
- FIG. 8 illustrates a preferred logic for synchronization of a diversity receiver to a wireless network.
- FIG. 9 illustrates a preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs selection diversity.
- FIG. 10 illustrates another preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs non-coherent combination.
- FIG. 11 illustrates another preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs non-coherent weighted combination.
- FIG. 12 illustrates another preferred logic for acquiring a code transmitted from a wireless network using a diversity receiver which employs coherent combination.
- FIG. 13 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs selection diversity and a FT Transform to determine the frequency offset of the transmitted code.
- FIG. 14 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs non-coherent combining diversity and a Fourier Transform to determine the frequency offset of the transmitted code.
- FIG. 15 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs non-coherent weighted combining diversity and a Fourier Transform to determine the frequency offset of the transmitted code.
- FIG. 16 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs selection diversity and differential detection to determine the frequency offset of the transmitted code.
- FIG. 17 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs coherent combining diversity and differential detection to determine the frequency offset of the transmitted code.
- FIG. 18 illustrates one preferred method for acquiring frequency synchronization from a code transmitted from a wireless network using a diversity receiver which employs coherent weighted combining diversity and differential detection to determine the frequency offset of the transmitted code.
- FIG. 19 compares the average code acquisition time of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna as a function of the geometric factor for a Wideband CDMA channel test case.
- FIG. 20 compares the smallest time value which upper bound 90% of the code acquisition time of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna as a function of the geometric factor for a Wideband CDMA channel test case.
- FIG. 21 illustrates the structure and relationship of the synchronization codes transmitted in a WCDMA network.
- Preferred Methods for Synchronization
- A preferred embodiment of this invention involves a method for synchronizing a diversity mobile terminal to a wireless network.
- A preferred method for synchronizing a diversity mobile terminal to a wireless network employs a diversity receiver with M parallel diversity branches for code synchronization and a diversity receiver with M parallel diversity branches for frequency synchronization. Each diversity branch comprises a down-converter, a selector, and the logic for code and frequency synchronization.
- Assume that the received signal from the mth (1≦m≦M) diversity branch is given by sm(tc), where tc represents the continuous time. Theses signals are analog and represent the M different received copies of the transmitted signal received through the use of a diversity reception method. The signals sm(tc) are converted to baseband digital signals rm,t, where t is the discrete time index, in the down-converters.
- FIG. 8 illustrates a preferred logic for synchronizing a diversity mobile terminal to a wireless network.
- In a preferred
first step 73, a diversity mobile terminal comprising M diversity branches, receives a signal comprising a synchronization code transmitted by a wireless network. - In a preferred second step, the received signal is processed74 in at least two diversity branches using a matched filter, partial matched filter, correlator, partial correlator or the equivalents thereof to determine 78 the synchronization code.
- In a preferred third step, the received signal is processed76 in at least two diversity branches to synchronize the
frequency 80 of the mobile diversity terminal to the frequency of the wireless network based upon the determination of the synchronization code. - Preferred Methods of Code Synchronization
- A preferred method for acquiring a synchronization code employs a selection diversity code synchronization receiver with M parallel diversity branches. Each diversity branch comprises at least one filter. As used herein, a filter is a matched filter, partial match filter, code correlator, partial code correlator or the equivalents thereof. A filter output, as used herein, is the output of a matched filter, code correlator or the equivalents thereof.
-
- FIG. 9 illustrates a preferred logic for acquiring a code transmitted from a wireless network using a receive diversity mobile terminal employing a selection diversity code synchronization receiver.
- In a preferred first step, the mobile terminal receives a signal comprising a
synchronization code 73. - In a preferred second step, the mobile terminal computes the absolute value of a
filter output 105 for each of theM diversity branches 67. Alternatively, other values that scale monotonically with the absolute value of a filter output including the magnitude square (power), the sum of the real and imaginary parts of the filter output, or any other approximation may also be computed. - In a preferred
third step 107, the mobile terminal compares the M absolute values computed in the first step and selects which output had the highest instantaneous absolute value, thereby forming a selectiondiversity output value 109. - In a preferred
fourth step 111, the highestinstantaneous output value 109 of the matched filter/correlator is compared against apredetermined threshold 113. If the highest instantaneous output value exceeds the predetermined threshold value, code synchronization is accomplished. If the instantaneous output value does not exceed the predetermined threshold, code detection continues 117. - Instead of a threshold comparison method, other methods, well known in the art, including maximum selection, multi-dwell, or multi-stage code acquisition may also be employed to determine whether code determination has been achieved.
- The corresponding methods describing the output of a selection diversity code synchronization receiver comprising a correlator and/or logic for code synchronization in the presence of frequency offset may be developed by one skilled in the art.
- Another preferred method for acquiring a synchronization code employs a non-coherent combining diversity code synchronization receiver with M parallel diversity branches. This preferred method, has a variation, which employs a non-coherent weighted combining diversity code synchronization receiver with M parallel diversity branches. Each diversity branch comprises at least one filter.
-
-
- FIGS. 10 and 11 show a preferred logic for acquiring a code transmitted from a wireless network using a diversity mobile terminal employing non-coherent combination and non-coherent weighted combination, respectively.
- In a preferred first step, the mobile terminal receives a signal comprising a
synchronization code 73. - In a preferred second step, the mobile terminal determining the absolute value of a
filter output 105 for each of theM diversity branch 67. Alternatively, other values that scale monotonically with the absolute value of a filter output including the magnitude square (power), the sum of the real and imaginary parts of the filter output, or any other approximation may also be computed. - In the weighted variation, the second step further comprises 1) determining, for each of the M diversity branches,67 an estimate of the
relative power p m 121 of eachdiversity branch 67 relative to the other branches, and 2)weighting 123 theoutput magnitude 105 for each of theM diversity branches 67 by therelative power 121 of eachdiversity branch relative 67 to the other branches. - In a preferred third step, the weighted/
non-weighted output magnitudes step 1 are combined 125 thereby forming a weighted/non-weighted non-coherent combiningdiversity output value 127. - In a preferred fourth step, the weighted/non-weighted non-coherent combining
diversity output value predetermined threshold 113. If thisdiversity output value predetermined threshold value 113, code synchronization is accomplished 115. If thisdiversity output value predetermined threshold 113, code detection continues 117. - Instead of a threshold comparison method, other methods, well known in the art, including maximum selection, multi-dwell, or multi-stage code acquisition may also be employed to determine whether code determination has been achieved.
- The corresponding methods describing the output of a non-coherent combining diversity code synchronization receiver or the non-coherent weighted combining diversity code synchronization receiver comprising a correlator and/or logic for code synchronization in the presence of frequency offset may be developed by one skilled in the art.
- Another preferred method for acquiring a synchronization code employs a diversity code synchronization receiver with M parallel diversity branches and coherent antenna combination. For code synchronization using coherent antenna combination, it is assumed that a reference signal is available. Each diversity branch generally comprises at least one filter.
-
- FIG. 12 shows preferred logic for acquiring a code transmitted from a wireless network using a receive diversity mobile terminal employing coherent combination.
- In a preferred first step, the mobile terminal receives a signal comprising a
synchronization code 73. - In a preferred second step, the mobile terminal updates, for each of the
M diversity branches 67, the instantaneousparallel channel estimate 135 of the diversity branch relative to the other branches. - In a preferred third step, for each of the
M diversity branches 67, thefilter output 137 is co-phased and weighted 139 by the conjugate of the instantaneousparallel channel estimate 135 of the diversity branch relative to the other branches. - In a preferred fourth step, the co-phased and weighted values from the M diversity branches are combined, thereby forming a coherent combining diversity output value.
- In a preferred fifth step, the real part of the coherent combining
diversity output value 143 is computed 145. - In a preferred sixth step, the real part of the coherent combining diversity output value147 is compared 111 against a
predetermined threshold 113. If this value 147 exceeds thepredetermined threshold value 113, code synchronization is accomplished 115. If this value 147 does not exceed thepredetermined threshold 113, code detection continues. - Instead of a threshold comparison method, other methods, well known in the art, including maximum selection, multi-dwell, or multi-stage code acquisition may also be employed to determine whether code determination has bee achieved.
- Methods describing the output of a coherent combining diversity code synchronization receiver comprising a correlator and/or logic for code synchronization in the presence of frequency offset may be easily developed by one skilled in the art.
- Preferred Methods of Frequency Synchronization
- A preferred method for acquiring the frequency offset of the transmitted synchronization code employs a Fourier Transform (FT) selection diversity frequency synchronization receiver with M parallel diversity branches. Each diversity branch generally comprises at least one filter and at least one FT unit. One method according to the invention, employs a correlator for the filter.
-
- FIG. 13 shows a preferred logic for acquiring the frequency offset of a transmitted code using a Fourier Transform selection diversity frequency synchronization receiver with M diversity branches and wherein each diversity branch comprises a correlator and a FT unit.
- In a preferred first step153 the mobile terminal determines and accumulates K partial code correlations for each
diversity branch 67. In preferredsecond step 157, the mobile terminal fourier transforms the the K partial code correlations in eachdiversity branch 67. In a preferredthird step 159, the mobile terminal computes, for each of theM diversity branches 67, the absolute value of the Fourier Transform results for each of the P elements of the Fourier Transform vector. - In a preferred
fourth step 161, the mobile terminal selects, for each element p of the FourierTransform magnitude vector 159, the value from theM diversity branches 67 with the highest instantaneousabsolute value 159, and creates a new selection diversity FT vector |X(p)|. - In a preferred
fifth step 165, the selection diversity FT vector |X(p)| is averaged over multiple FT blocks. - In a preferred
sixth step 167, the element p with the largest averaged absolute value is selected as the frequency offset estimate from the selection diversity frequency synchronization receiver. - Another preferred method for acquiring the frequency offset of the transmitted code employs a Fourier Transform (FT) non-coherent diversity frequency synchronization receiver with M parallel diversity branches. A variation of this method may employ a Fourier Transform (FT) non-coherent weighted combining diversity frequency synchronization receiver with M parallel diversity branches. Each diversity branch generally comprises a filter and a FT unit. One method according to the invention employs a correlator for a filter.
-
-
- FIGS. 14 and 15 show a preferred logic for acquiring the frequency offset of the transmitted code using a non-weighted (FIG. 14) and weighted (FIG. 15) Fourier Transform non-coherent combining diversity frequency synchronization receiver with M diversity branches and wherein each diversity branch comprises a correlator and a FT unit.
- In a preferred
first step 155, the mobile terminal determines and accumulates K partial code correlations in each diversity branch. In a preferredsecond step 157, the mobile terminal fourier transforms the K partial code correslation in eachdiversity branch 67. In a preferredthird step 159, the mobile terminal computes, for each of theM diversity branches 67, the absolute value of the Fourier Transform results for each of the P elements of the Fourier Transform vector. - In the method employing a weighted non-coherent combining diversity receiver, a preferred
third step 159 further comprises: 1) computing, for each of theM diversity branches 67, an estimate of therelative power 161 of the diversity branch relative to the other branches, and 2) weighting 163 each of the M diversity branches by the relative power of each diversity branch relative to the other branches of the absolute value of the Fourier Transform results for each of the P elements of the Fourier Transform vector. - In a preferred
fourth step 165, the mobile terminal combines, for each element p of the Fourier Transform magnitude vector, the values from the M diversity branches obtained instep 1, and creates a new non-coherent combining diversity FT vector |X(p)|. - In a preferred
fifth step 169, the non-coherent combining diversity FT vector |X(p)| is averaged over multiple FT blocks. - In a preferred
sixth step 171, the element p with the largest averaged absolute value is selected as the frequency offset estimate used for frequency synchronization. - Another preferred method for acquiring the frequency offset of the transmitted code employs a Differential Detection (DD) selection diversity frequency synchronization receiver with M parallel diversity branches. Each diversity branch comprises at least one filter and at least one DD unit. One method according to the invention employs a correlator for the filter..
- Assume that the partial code correlation of length L for the mth diversity branch is given by ym,k, where k is the correlator output time index. Accordingly, the DD selection diversity frequency acquisition receiver output X(k) may be expressed as:
- {circumflex over (m)}(k)=arg max1≦m≦M |y m,k y* m,k−1|
- X(k)=y {circumflex over (m)}(k),k y* {circumflex over (m)}(k),k−1
Equation 14 - FIG. 16 shows a preferred logic for acquiring the frequency offset of the transmitted code using a diversity mobile terminal employing a Differential Detection (DD) selection diversity frequency synchronization receiver, with M diversity branches and wherein each diversity branch comprises a correlator.
- In a preferred
first step 177, the mobile terminal determines ym,k over a range of k values in each diversity branch m. - In a preferred
second step 181, for each DD output (i.e., for each time index k), the mobile terminal selects the diversity branch with the highest instantaneousabsolute value 179. - In a preferred
third step 181, DD output of the selected branch is averaged over multiple DD output s. - In a preferred fourth step,183, the averaged DD value is used to compute the frequency estimate.
- The DD detection method outlined above may also generally be implemented with a phase locked loop.
- Another preferred method for acquiring the frequency offset of the transmitted code employs a Differential Detection (DD) coherent combining diversity frequency synchronization receiver with M parallel diversity branches. An alternative method may employ a weighted coherent combining diversity receiver with M parallel diversity branches. Each diversity branch comprises at least one filter and at least one DD unit. One method according to the invention employs a correlator for the filter.
-
-
- FIGS. 17 and 18 show a preferred logic for acquiring the frequency offset of the transmitted code using diversity mobile terminal employing a Differential Detection (DD) coherent combining diversity frequency synchronization receiver and a Differential Detection (DD) coherent weighted combining diversity frequency synchronization receiver.
- In a preferred
first step 155, ym,k, is calculated over a variety of k values in each diversity branch m. - In a preferred
second step 177, for each DD output (i.e., for each time index k), the mobile terminal combines the DD output from theM diversity branches 67. - In the method employing a weighted coherent combining diversity receiver, a preferred first step comprises: 1) computing, for each of the M diversity branches, an estimate of the relative power of the diversity branch relative to the
other branches 193, and 2) weighting each of the M diversity branches of the DD output by the relative power of each diversity branch relative to theothers 195. - In a preferred
third step 183, the combined DD output is input to the averaging block, and average over multiple DD outputs. In a preferredfourth step 171, the average DD value is used to compute the frequency estimate. - Methods describing a DD coherent combining diversity frequency synchronization receiver or a DD coherent weighted combining diversity frequency synchronization receiver using a PLL may be generally developed by one skilled in the art.
- Advantages to the Preferred Methods of the Invention Relative to Current Methodologies
- Example 1 compares the code synchronization time of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna (prior art method) as a function of G for Wideband CDMA (WCDMA) channel test case II. UE Radio and Transmission and Reception (FDD), 3GPP TS 25.1010, v 3.4.1. G is defined as the ratio of the received signal intensity and the post-channel interference (i.e., AWGN and inter-cell interference). All the base station transmitter settings are according to the parameters given in UE Radio and Transmission and Reception (FDD), 3GPP TS 25.1010, v 3.4.1. In particular, this example compares the ability of a mobile terminal employing the diversity synchronization methods according to the invention and a mobile terminal employing a single antenna according to the prior art to detect the Gold code transmitted by a base station.
- In a WCDMA system, the mobile terminal must find the base station frame boundary at the chip level, and the cell-specific Gold code. FIG. 21 illustrates the different codes transmitted from the base station used to achieve code synchronization. The cell search is started using the downlink Synchronization Channel (SCH). The SCH consists of two sub channels, the Primary and Secondary SCH (P-SCH and S-SCH). The P-SCH consists of a modulated code of
length 256 chips, denoted c0. The primary code c0 is transmitted at the beginning of every slot (2560 chips) from all the base stations in the system. The S-SCH code cs i, i=1, . . . ,64, consists of 15 modulated sequences cs i,k, i=1 , . . . ,64, and k=1, . . . ,15, oflength 256 chips. The S-SCR secondary code cs i starts at the beginning of the frame and is repeatedly transmitted every frame. There are 16 different S-SCH sequences cs i,k, i=1, . . . ,64 and k=1, . . . ,15. The 15 sequences form the secondary code cs i taken from a codebook of 64 16-ary codewords. These 64 codewords correspond to 64 code groups used in the WCDMA system. Each code group consists of 8 Gold codes. The 64 codewords are also chosen such that they have distinct phase shifts. Therefore, the correct frame boundary and code group can be detected by finding the code cs i transmitted from the base station and its beginning. Finally, a Common Pilot Channel (CPICH) is transmitted from the base station. The CPICH is scrambled using the cell-specific Gold code but no modulation is applied on the channel. - A four step synchronization procedure is used in this WCDMA example. In the first step, the mobile terminal uses a non-coherent combining diversity code synchronization receiver to detect the primary synchronization code c0. The detection of the primary synchronization code c0 indicates the slot boundary. In the second step, using the slot boundary detected in the first step, the mobile terminal detects the secondary synchronization code cs i transmitted from the base station using a coherent combining code synchronization receiver. The detection of the secondary synchronization code cs i indicates the code group used by the base station and the frame boundary. In the third step, using the frame boundary and code group information obtained in the second step, the mobile terminal uses a non-coherent combining diversity code synchronization receiver to detect the Gold code transmitted from the base station. In the fourth step, the mobile terminal synchronizes itself to the wireless network by using the detected Gold code and a FT non-coherent combining diversity frequency synchronization receiver.
- In greater detail, in the first step, the diversity receiver uses a 256 symbol matched filter in each diversity branch and non-coherent combining is used to obtain the diversity output. The diversity output is stored for M consecutive outputs and averaged over N slot repetitions. Then, the receiver selects the maximum value and detects the primary code c0, which determines the slot boundary.
- In the second step, the receiver correlates in each diversity branch the input signal against each of the 64 codes cs i and their 15 circular rotations. Then, the primary code detected in the first step is used as a reference to produce a coherent combining diversity output. The receiver selects the maximum diversity output value out of the 960 candidates, which indicates the secondary code number transmitted and the slot where the code starts (i.e., the frame boundary).
- In the third step, the receiver correlates in each diversity branch the input samples with the 8 possible Gold codes for R samples. For each of the 8 possible Gold codes, a diversity output is produced using non-coherent combining. The diversity output with the largest value is selected and a “vote” is given to the corresponding code. This process is repeated K consecutive times. At the end, if the largest number of accumulated votes exceeds a pre-determined threshold, code synchronization is achieved; otherwise the entire process is repeated.
- FIGS. 19 and 20 show the results of Example 1 for code synchronization only (i.e., without the frequency synchronization). FIG. 19 shows the average acquisition time while FIG. 20 gives the 90% outage acquisition time (that is, 90% of the experiments yield an acquisition time smaller than the indicated value). For the case when the mobile terminal is between two base stations (i.e., G=O dB), the average and 90% outage waiting time for a mobile terminal to detect the gold code is decreased by 50% using the methods according to the invention relative to the current state-of-the-art methods.
- Although the invention has been described with reference to preferred embodiments and specific examples, it will be readily appreciated by those skilled in the art that many modifications and adaptations of the invention are possible without deviating from the spirit and scope of the invention. Thus, it is to be clearly understood that this description is made only by way of example and not as a limitation on the scope of the invention as claimed below.
Claims (24)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/021,220 US7173992B2 (en) | 2001-12-11 | 2001-12-11 | Method for synchronization in wireless systems using receive diversity |
PCT/US2002/039335 WO2003050971A1 (en) | 2001-12-11 | 2002-12-10 | A method for synchronization in wireless systems using receive diversity |
AU2002353091A AU2002353091A1 (en) | 2001-12-11 | 2002-12-10 | A method for synchronization in wireless systems using receive diversity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/021,220 US7173992B2 (en) | 2001-12-11 | 2001-12-11 | Method for synchronization in wireless systems using receive diversity |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030108135A1 true US20030108135A1 (en) | 2003-06-12 |
US7173992B2 US7173992B2 (en) | 2007-02-06 |
Family
ID=21803025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/021,220 Expired - Lifetime US7173992B2 (en) | 2001-12-11 | 2001-12-11 | Method for synchronization in wireless systems using receive diversity |
Country Status (3)
Country | Link |
---|---|
US (1) | US7173992B2 (en) |
AU (1) | AU2002353091A1 (en) |
WO (1) | WO2003050971A1 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004025854A1 (en) * | 2002-09-12 | 2004-03-25 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US20040248541A1 (en) * | 2003-06-03 | 2004-12-09 | Jung-Keun Park | Apparatus and method for performing channel estimations using non-linear filter |
US20050084112A1 (en) * | 1999-07-07 | 2005-04-21 | Samsung Electronics Co., Ltd. | Apparatus and method for generating scrambling code in UMTS mobile communication system |
US20050105595A1 (en) * | 2003-11-17 | 2005-05-19 | Martin Frederick L. | Communication device |
US20050254525A1 (en) * | 2002-09-05 | 2005-11-17 | Harry Diamond | System and method for optimizing terrestrial signal acquisition in a communication system |
US20060093080A1 (en) * | 2002-12-09 | 2006-05-04 | Koninklijkle Phillips Electronics Nv | Diversity receiver having cross coupled channel parameter estimation |
US20060140155A1 (en) * | 2004-12-29 | 2006-06-29 | Pantech Co., Ltd. And Sktelecom Co., Ltd. | Method and apparatus for acquiring code group in asynchronous wideband code division multiple access system using receiver diversity |
US20070099652A1 (en) * | 2003-05-28 | 2007-05-03 | Bengt Lindoff | Cell search scheduling in a wireless cellular communication network |
US20070140203A1 (en) * | 2003-08-04 | 2007-06-21 | Da Tang Mobile Communciations Equipment Co., Ltd. | Method and device for estimating carrier frequency offset of subscriber terminal |
US20090034482A1 (en) * | 2007-08-01 | 2009-02-05 | Broadcom Corporation | Cell search operations using Multibranch PSYNC detection module |
US20100304744A1 (en) * | 2009-05-29 | 2010-12-02 | Qualcomm Incorporated | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes |
US8761261B1 (en) | 2008-07-29 | 2014-06-24 | Marvell International Ltd. | Encoding using motion vectors |
US8817771B1 (en) * | 2010-07-16 | 2014-08-26 | Marvell International Ltd. | Method and apparatus for detecting a boundary of a data frame in a communication network |
US8897393B1 (en) | 2007-10-16 | 2014-11-25 | Marvell International Ltd. | Protected codebook selection at receiver for transmit beamforming |
US8902726B1 (en) | 2008-08-18 | 2014-12-02 | Marvell International Ltd. | Frame synchronization techniques |
US8902994B1 (en) | 2008-07-29 | 2014-12-02 | Marvell International Ltd. | Deblocking filtering |
US8908754B1 (en) | 2007-11-14 | 2014-12-09 | Marvell International Ltd. | Decision feedback equalization for signals having unequally distributed patterns |
US8942312B1 (en) | 2009-04-29 | 2015-01-27 | Marvell International Ltd. | WCDMA modulation |
US8953661B1 (en) | 2008-03-18 | 2015-02-10 | Marvell International Ltd. | Wireless device communication in the 60 GHz band |
US8989784B2 (en) * | 2012-11-29 | 2015-03-24 | Intel Mobile Communications GmbH | Radio communication devices and methods for controlling a radio communication device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100950906B1 (en) * | 2003-02-05 | 2010-04-05 | 인터디지탈 테크날러지 코포레이션 | Initial cell search in wireless communication systems |
KR100649678B1 (en) * | 2005-07-15 | 2006-11-27 | 삼성전기주식회사 | Multiple differential demodulator using weighting value |
US7885319B2 (en) | 2007-08-01 | 2011-02-08 | Broadcom Corporation | Multiple branch PSYNC detection module |
US8022866B2 (en) * | 2008-09-17 | 2011-09-20 | Broadcom Corporation | Method and system for doppler estimation |
US8625704B1 (en) | 2008-09-25 | 2014-01-07 | Aquantia Corporation | Rejecting RF interference in communication systems |
US8442099B1 (en) | 2008-09-25 | 2013-05-14 | Aquantia Corporation | Crosstalk cancellation for a common-mode channel |
US9912375B1 (en) | 2008-09-25 | 2018-03-06 | Aquantia Corp. | Cancellation of alien interference in communication systems |
WO2011102610A2 (en) | 2010-02-19 | 2011-08-25 | 삼성전자주식회사 | Timing synchronization method and apparatus in a wireless communication system |
US9118469B2 (en) | 2010-05-28 | 2015-08-25 | Aquantia Corp. | Reducing electromagnetic interference in a received signal |
US8724678B2 (en) | 2010-05-28 | 2014-05-13 | Aquantia Corporation | Electromagnetic interference reduction in wireline applications using differential signal compensation |
US8891595B1 (en) | 2010-05-28 | 2014-11-18 | Aquantia Corp. | Electromagnetic interference reduction in wireline applications using differential signal compensation |
US8792597B2 (en) | 2010-06-18 | 2014-07-29 | Aquantia Corporation | Reducing electromagnetic interference in a receive signal with an analog correction signal |
US8861663B1 (en) * | 2011-12-01 | 2014-10-14 | Aquantia Corporation | Correlated noise canceller for high-speed ethernet receivers |
US8929468B1 (en) | 2012-06-14 | 2015-01-06 | Aquantia Corp. | Common-mode detection with magnetic bypass |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031193A (en) * | 1989-11-13 | 1991-07-09 | Motorola, Inc. | Method and apparatus for diversity reception of time-dispersed signals |
US5321850A (en) * | 1991-10-09 | 1994-06-14 | Telefonaktiebolaget L M Ericsson | Diversity radio receiver automatic frequency control |
US5790588A (en) * | 1995-06-07 | 1998-08-04 | Ntt Mobile Communications Network, Inc. | Spread spectrum transmitter and receiver employing composite spreading codes |
US6347234B1 (en) * | 1997-09-15 | 2002-02-12 | Adaptive Telecom, Inc. | Practical space-time radio method for CDMA communication capacity enhancement |
US6356605B1 (en) * | 1998-10-07 | 2002-03-12 | Texas Instruments Incorporated | Frame synchronization in space time block coded transmit antenna diversity for WCDMA |
US20030026348A1 (en) * | 2001-06-07 | 2003-02-06 | National University Of Singapore | Wireless communication apparatus and method |
US20030076875A1 (en) * | 2001-03-14 | 2003-04-24 | Oates John H. | Hardware and software for performing computations in a short-code spread-spectrum communications system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3418981B2 (en) | 2000-02-16 | 2003-06-23 | 日本電気株式会社 | Spread spectrum communication synchronization acquisition circuit |
-
2001
- 2001-12-11 US US10/021,220 patent/US7173992B2/en not_active Expired - Lifetime
-
2002
- 2002-12-10 AU AU2002353091A patent/AU2002353091A1/en not_active Abandoned
- 2002-12-10 WO PCT/US2002/039335 patent/WO2003050971A1/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031193A (en) * | 1989-11-13 | 1991-07-09 | Motorola, Inc. | Method and apparatus for diversity reception of time-dispersed signals |
US5321850A (en) * | 1991-10-09 | 1994-06-14 | Telefonaktiebolaget L M Ericsson | Diversity radio receiver automatic frequency control |
US5790588A (en) * | 1995-06-07 | 1998-08-04 | Ntt Mobile Communications Network, Inc. | Spread spectrum transmitter and receiver employing composite spreading codes |
US6347234B1 (en) * | 1997-09-15 | 2002-02-12 | Adaptive Telecom, Inc. | Practical space-time radio method for CDMA communication capacity enhancement |
US6356605B1 (en) * | 1998-10-07 | 2002-03-12 | Texas Instruments Incorporated | Frame synchronization in space time block coded transmit antenna diversity for WCDMA |
US20030076875A1 (en) * | 2001-03-14 | 2003-04-24 | Oates John H. | Hardware and software for performing computations in a short-code spread-spectrum communications system |
US20030026348A1 (en) * | 2001-06-07 | 2003-02-06 | National University Of Singapore | Wireless communication apparatus and method |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050084112A1 (en) * | 1999-07-07 | 2005-04-21 | Samsung Electronics Co., Ltd. | Apparatus and method for generating scrambling code in UMTS mobile communication system |
US7536014B2 (en) * | 1999-07-07 | 2009-05-19 | Samsung Electronics Co., Ltd. | Apparatus and method for generating scrambling code in UMTS mobile communication system |
US20050254525A1 (en) * | 2002-09-05 | 2005-11-17 | Harry Diamond | System and method for optimizing terrestrial signal acquisition in a communication system |
US7095757B2 (en) * | 2002-09-05 | 2006-08-22 | Delphi Technologies, Inc. | System and method for optimizing terrestrial signal acquisition in a communication system |
US7415084B2 (en) | 2002-09-12 | 2008-08-19 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US20040125788A1 (en) * | 2002-09-12 | 2004-07-01 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
WO2004025854A1 (en) * | 2002-09-12 | 2004-03-25 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US20100020751A1 (en) * | 2002-09-12 | 2010-01-28 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US7609785B2 (en) | 2002-09-12 | 2009-10-27 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US8249133B2 (en) | 2002-09-12 | 2012-08-21 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US20080310374A1 (en) * | 2002-09-12 | 2008-12-18 | Interdigital Technology Corporation | Mitigation of interference in cell search by wireless transmit and receive units |
US8588350B2 (en) * | 2002-12-09 | 2013-11-19 | Koninklijke Philips N.V. | Diversity receiver having cross coupled channel parameter estimation |
US20060093080A1 (en) * | 2002-12-09 | 2006-05-04 | Koninklijkle Phillips Electronics Nv | Diversity receiver having cross coupled channel parameter estimation |
US20070099652A1 (en) * | 2003-05-28 | 2007-05-03 | Bengt Lindoff | Cell search scheduling in a wireless cellular communication network |
US7990901B2 (en) * | 2003-05-28 | 2011-08-02 | Telefonaktiebolaget Lm Ericsson (Publ) | Cell search scheduling in a wireless cellular communication network |
US7181185B2 (en) * | 2003-06-03 | 2007-02-20 | Pantech Co., Ltd. | Apparatus and method for performing channel estimations using non-linear filter |
US20040248541A1 (en) * | 2003-06-03 | 2004-12-09 | Jung-Keun Park | Apparatus and method for performing channel estimations using non-linear filter |
US20070140203A1 (en) * | 2003-08-04 | 2007-06-21 | Da Tang Mobile Communciations Equipment Co., Ltd. | Method and device for estimating carrier frequency offset of subscriber terminal |
US7672277B2 (en) * | 2003-08-04 | 2010-03-02 | Datang Mobile Communications Co. Ltd. | Method and device for estimating carrier frequency offset of subscriber terminal |
US7295638B2 (en) * | 2003-11-17 | 2007-11-13 | Motorola, Inc. | Communication device |
US20050105595A1 (en) * | 2003-11-17 | 2005-05-19 | Martin Frederick L. | Communication device |
US7876731B2 (en) * | 2004-12-29 | 2011-01-25 | Pantech Co., Ltd. | Method and apparatus for acquiring code group in asynchronous wideband code division multiple access system using receiver diversity |
US20060140155A1 (en) * | 2004-12-29 | 2006-06-29 | Pantech Co., Ltd. And Sktelecom Co., Ltd. | Method and apparatus for acquiring code group in asynchronous wideband code division multiple access system using receiver diversity |
US7835327B2 (en) * | 2007-08-01 | 2010-11-16 | Broadcom Corporation | Multiple antenna servicing by multibranch PSYNC detection module |
US7885237B2 (en) * | 2007-08-01 | 2011-02-08 | Broadcom Corporation | Cell search operations using multibranch PSYNC detection module |
US7894404B2 (en) * | 2007-08-01 | 2011-02-22 | Broadcom Corporation | Generation of quality metrics using multibranch PSYNC detection module |
US20090034490A1 (en) * | 2007-08-01 | 2009-02-05 | Broadcom Corporation | Generation of Quality Metrics using Multibranch PSYNC detection module |
US20090034501A1 (en) * | 2007-08-01 | 2009-02-05 | Broadcom Corporation | Multiple Antenna Servicing by Multibranch PSYNC detection module |
US20090034482A1 (en) * | 2007-08-01 | 2009-02-05 | Broadcom Corporation | Cell search operations using Multibranch PSYNC detection module |
US8897393B1 (en) | 2007-10-16 | 2014-11-25 | Marvell International Ltd. | Protected codebook selection at receiver for transmit beamforming |
US8908754B1 (en) | 2007-11-14 | 2014-12-09 | Marvell International Ltd. | Decision feedback equalization for signals having unequally distributed patterns |
US8953661B1 (en) | 2008-03-18 | 2015-02-10 | Marvell International Ltd. | Wireless device communication in the 60 GHz band |
US8902994B1 (en) | 2008-07-29 | 2014-12-02 | Marvell International Ltd. | Deblocking filtering |
US8761261B1 (en) | 2008-07-29 | 2014-06-24 | Marvell International Ltd. | Encoding using motion vectors |
US8902726B1 (en) | 2008-08-18 | 2014-12-02 | Marvell International Ltd. | Frame synchronization techniques |
US8942312B1 (en) | 2009-04-29 | 2015-01-27 | Marvell International Ltd. | WCDMA modulation |
CN102449928A (en) * | 2009-05-29 | 2012-05-09 | 高通股份有限公司 | Method and apparatus for performing a search in multiple receive diversity (RXD) search modes |
KR101450295B1 (en) * | 2009-05-29 | 2014-10-22 | 퀄컴 인코포레이티드 | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes |
KR101367338B1 (en) | 2009-05-29 | 2014-02-28 | 퀄컴 인코포레이티드 | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes |
JP2013243686A (en) * | 2009-05-29 | 2013-12-05 | Qualcomm Inc | Method and apparatus for conducting searches with multiple receive diversity (rxd) search modes |
JP2012528544A (en) * | 2009-05-29 | 2012-11-12 | クゥアルコム・インコーポレイテッド | Method and apparatus for performing a search using multiple receive diversity (RXD) search modes |
US20100304744A1 (en) * | 2009-05-29 | 2010-12-02 | Qualcomm Incorporated | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes |
WO2010138829A3 (en) * | 2009-05-29 | 2011-03-10 | Qualcomm Incorporated | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes |
JP2015201866A (en) * | 2009-05-29 | 2015-11-12 | クゥアルコム・インコーポレイテッドQualcomm Incorporated | Method and apparatus for performing searches with multiple receive diversity (rxd) search modes |
CN102449928B (en) * | 2009-05-29 | 2016-01-06 | 高通股份有限公司 | For performing the method and apparatus of search with multiple receive diversity (RXD) search pattern |
US8817771B1 (en) * | 2010-07-16 | 2014-08-26 | Marvell International Ltd. | Method and apparatus for detecting a boundary of a data frame in a communication network |
US8989784B2 (en) * | 2012-11-29 | 2015-03-24 | Intel Mobile Communications GmbH | Radio communication devices and methods for controlling a radio communication device |
Also Published As
Publication number | Publication date |
---|---|
AU2002353091A1 (en) | 2003-06-23 |
US7173992B2 (en) | 2007-02-06 |
WO2003050971A1 (en) | 2003-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7173992B2 (en) | Method for synchronization in wireless systems using receive diversity | |
US6888880B2 (en) | Apparatus for searching for a cell and method of acquiring code unique to each cell in an asynchronous wideband DS/CDMA receiver | |
US6005889A (en) | Pseudo-random noise detector for signals having a carrier frequency offset | |
US7110782B2 (en) | Cell search synchronization | |
US7865158B2 (en) | Method and apparatus for automatically correcting receiver oscillator frequency | |
JP2005505966A (en) | Automatic frequency correction method and apparatus for TDD mode of 3G wireless communication | |
GB2354678A (en) | CDMA receiver capable of estimating frequency offset from complex pilot symbols | |
US6735242B1 (en) | Time tracking loop for pilot aided direct sequence spread spectrum systems | |
US7689185B2 (en) | Apparatus and method for estimating initial frequency offset in an asynchronous mobile communication system | |
KR20000062521A (en) | Mobile communication system having mobile stations and a base station | |
WO2000030271A1 (en) | Synchronization method and apparatus employing partial sequence correlation | |
US6674792B1 (en) | Demodulation of receiver with simple structure | |
US20030016646A1 (en) | Channel estimating apparatus and channel estimating method | |
KR100393647B1 (en) | Spectrum spread communication synchronization establishing method and apparatus using frequency offset and receiver with the same | |
US20070177691A1 (en) | Device For Detecting A Frequency Offset | |
US7266093B2 (en) | Method and arrangement for automatic frequency correction | |
US6954483B2 (en) | Method and device for synchronizing mobile radio receivers in a mobile radio system | |
JP3417024B2 (en) | Pilot signal detection circuit | |
De Gaudenzi et al. | A frequency error resistant blind interference-mitigating CDMA detector | |
JP2001313593A (en) | Synchronism detector and synchronism detecting method, and wireless signal receiver and wireless signal receiving method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INNOV-ICS, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FRIGON, JEAN-FRANCOIS;REEL/FRAME:012727/0685 Effective date: 20020315 |
|
AS | Assignment |
Owner name: INNOVICS WIRELESS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INNOV-ICS;REEL/FRAME:013338/0860 Effective date: 20020910 |
|
AS | Assignment |
Owner name: SASKEN COMMUNICATION TECHNOLOGIES LIMITED, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INNOVICS WIRELESS, INC.;REEL/FRAME:015396/0603 Effective date: 20031010 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SASKEN COMMUNICATION TECHNOLOGIES LIMITED, INDIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR LISTED ON THE RECORDATION COVER SHEET PREVIOUSLY RECORDED ON REEL 015396 FRAME 0603;ASSIGNOR:UECKER & ASSOICATES, INC.;REEL/FRAME:022990/0775 Effective date: 20031010 Owner name: UECKER & ASSOICATES, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INNOVICS WIRELESS, INC.;REEL/FRAME:022990/0726 Effective date: 20030805 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R2551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: TIMUR GROUP II L.L.C., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SASKEN COMMUNICATION TECHNOLOGIES LIMITED;REEL/FRAME:023774/0841 Effective date: 20090422 |
|
AS | Assignment |
Owner name: INNOVICS WIRELESS, INC.,CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:INNOVICS CORP.;REEL/FRAME:024219/0015 Effective date: 20020509 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420 Effective date: 20120215 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: NYTELL SOFTWARE LLC, DELAWARE Free format text: MERGER;ASSIGNOR:TIMUR GROUP II L.L.C.;REEL/FRAME:037474/0975 Effective date: 20150826 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553) Year of fee payment: 12 |