US20030083521A1 - Histone deacetylase inhibitors - Google Patents

Histone deacetylase inhibitors Download PDF

Info

Publication number
US20030083521A1
US20030083521A1 US10/307,321 US30732102A US2003083521A1 US 20030083521 A1 US20030083521 A1 US 20030083521A1 US 30732102 A US30732102 A US 30732102A US 2003083521 A1 US2003083521 A1 US 2003083521A1
Authority
US
United States
Prior art keywords
compound
alkyl
alkoxy
hydrogen
phenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/307,321
Inventor
Hsuan-Yin Lan-Hargest
Robert Kaufman
Norbert Wiech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Circagen Pharmaceutical LLC
Errant Gene Therapeutics LLC
Original Assignee
Circagen Pharmaceutical LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Circagen Pharmaceutical LLC filed Critical Circagen Pharmaceutical LLC
Priority to US10/307,321 priority Critical patent/US20030083521A1/en
Publication of US20030083521A1 publication Critical patent/US20030083521A1/en
Priority to US10/715,377 priority patent/US7314953B2/en
Assigned to ERRANT GENE THERAPEUTICS, LLC reassignment ERRANT GENE THERAPEUTICS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEACON LABORATORIES, INC.
Assigned to ERRANT GENE THERAPEUTICS, LLC reassignment ERRANT GENE THERAPEUTICS, LLC CHANGE ASSIGNEE ADDRESS REEL/FRAME 015327/0839 Assignors: ERRANT GENE THERAPEUTICS, LLC
Priority to US12/003,511 priority patent/US9486421B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C57/42Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/06Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/52Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen
    • C07C57/58Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings
    • C07C57/60Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings having unsaturation outside the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals

Definitions

  • This invention relates to enzyme inhibitors, and more particularly to histone deacetylase inhibitors.
  • DNA in the nucleus of the cell exists as a hierarchy of compacted chromatin structures.
  • the basic repeating unit in chromatin is the nucleosome.
  • the nucleosome consists of a histone octomer of proteins in the nucleus of the cell around which DNA is twice wrapped.
  • the orderly packaging of DNA in the nucleus plays an important role in the functional aspects of gene regulation.
  • Covalent modifications of the histones have a key role in altering chromatin higher order structure and function and ultimately gene expression.
  • the covalent modification of histones occurs by enzymatically mediated processes, such as acetylation.
  • HDAC histone deacetylase
  • acetylation of histone-DNA activates transcription of DNA's message, an enhancement of gene expression.
  • Histone deacetylase can reverse the process and can serve to repress gene expression. See, for example Grunstein, Nature 389, 349-352 (1997); Pazin et al., Cell 89, 325-328 (1997): Wade et al., Trends Biochem. Sci. 22, 128-132 (1997); and Wolffe, Science 272, 371-372 (1996).
  • Histone deacetylase is a metallo-enzyme with zinc at the active site.
  • Compounds having a zinc-binding moiety such as, for example, a hydroxamic acid group, can inhibit histone deacetylase.
  • Histone deacetylase inhibition can repress gene expression, including expression of genes related to tumor suppression. Accordingly, inhibition of histone deacetylase can provide an alternate route for treating cancer, hematological disorders, e.g., hemoglobinopathies, and genetic related metabolic disorders, e.g., cystic fibrosis and adrenoleukodystrophy.
  • hydroxamic acid-containing compounds have a structure of formula (I):
  • A is a cyclic moiety selected from the group consisting of C 3-14 cycloalkyl, 3-14 membered heterocycloalkyl, C 4-14 cycloalkenyl, 3-14 membered heterocycloalkenyl (e.g., C 3-8 cycloalkyl, 3-8 membered heterocycloalkyl, C 4-8 cycloalkenyl, 3-8 membered heterocycloalkenyl), monocyclic aryl, or monocyclic heteroaryl.
  • Each of these cyclic moieties is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylcarbonylamino, aminocarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl.
  • Each of X 1 and X 2 independently, is O or S.
  • Y 1 is —CH 2 —, —O—, —S—, —N(R a )—, —N(R a )—C(O)—O—, —O—C(O)—N(R a )—, —N(R a )—C(O) (O)—N (R b )—,—O—, —S—, —C(O)—O—, —O—C(O)—O—, or a bond wherein each of R a and R b , independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl.
  • Y 2 is —CH 2 —, —O—, —S—, —N(R c )—, —N(R c )—C(O)—O—, —O—C(O)—N(R c )—, —N(R c )—C(O)—N(R d )—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—wherein each of R c and R d , independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl.
  • L is (1) a saturated straight C 1-12 hydrocarbon chain substituted with C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, halo, carboxyl, amino, nitro, cyano, C 3-6 cycloalkyl, 3-6 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C 1-4 alkylcarbonyloxy, C 1-4 alkyloxycarbonyl, C 1-4 alkylcarbonyl, formyl, C 1-4 alkylcarbonylamino, or C 1-4 aminocarbonyl, or at least two hydroxyl; and further optionally interrupted by —O—, —N(R e )—, —N(R e )C(O), —O—C(O)—N(R e )—, —N(R e )—C(O)—N(R f )—, —O—C(O)—,
  • R 1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group
  • R 2 is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group.
  • hydroxamic acid-containing compounds have a structure of formula (I), supra.
  • A is a cyclic moiety selected from the group consisting of monocyclic aryl or monocyclic heteroaryl. Each of the cyclic moieties is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino.
  • Each of X 1 and X 2 independently, is O or S.
  • Y 1 is —CH 2 —, —O—, —S—, —N(R a )—, —N(R a )—C(O)—O—, —O—C(O)—N (R a )—, —N(R a )—C(O)—N(R b )—, —O—C(O)—, —C(O)—O—, —O—C(O)—O—, or a bond, where each of R a and R b , independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl.
  • Y 2 is —CH 2 —, —O—, —S—, —N(R c )—, —N(R c )—C(O)—O—, —O—C(O)—N (R c )—, —N(R c )—C(O)—N(R d )—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—; each of R c and R d , independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl.
  • L is (1) a saturated straight C 3-10 hydrocarbon chain substituted with C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, or amino, and further optionally interrupted by —O— or —N(R e )—, where R e is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; or L is (2) an unsaturated straight C 4-10 hydrocarbon chain containing at least two double bonds, at least one triple bond, or at least one double bond and one triple bond; said unsaturated hydrocarbon chain being optionally substituted with C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, or amino, and further optionally interrupted by —O— or —N(R f )—, where R f is hydrogen, alkyl, hydroxylalkyl, or haloalkyl.
  • R 1 and R 2 independently, is hydrogen, alkyl, hydroxylalky
  • R 1 is hydrogen
  • R 2 is hydrogen
  • X 1 is O
  • X 2 is O
  • Y 1 is —CH 2 —, —O—, —N(R a )—, or a bond
  • Y 2 is —CH 2 —, —O—, or —N(R c )—.
  • L can be a saturated straight C 4-10 hydrocarbon chain, or C 5-8 hydrocarbon chain (e.g., a saturated straight C 5 hydrocarbon chain, a saturated straight C 6 hydrocarbon chain, or a saturated straight C 7 hydrocarbon chain), substituted with C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, or amino, and further optionally interrupted by —O— or —N(R c )—.
  • C 5-8 hydrocarbon chain e.g., a saturated straight C 5 hydrocarbon chain, a saturated straight C 6 hydrocarbon chain, or a saturated straight C 7 hydrocarbon chain
  • L is an unsaturated straight C 4-10 hydrocarbon chain, or an unsaturated straight C 4-8 hydrocarbon chain, containing 2-5 double bonds, or 1-2 double bonds and 1-2 triple bonds, optionally substituted with C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, or C 1-4 alkoxy, and further being optionally interrupted by —O— or —N(R g )—.
  • L can be —(CH ⁇ CH) m — where m is 2 or 3 or L can be —C ⁇ C—(CH ⁇ CH) n — where n is 1 or 2.
  • A can be phenyl, furyl, thienyl, pyrrolyl, or pyridyl or A can be phenyl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino.
  • hydroxamic acid-containing compounds have a structure of formula (II):
  • A is a cyclic moiety selected from the group consisting of monocyclic aryl or monocyclic heteroaryl. Each of the cyclic moieties is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino.
  • Each of Xand X 2 is O or S.
  • Each of R 1 and R 2 independently, is hydrogen, alkyl, hydroxylalkyl, or haloalkyl.
  • Each of R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is hydrogen, C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, hydroxyl, halo, hydroxylC 1-4 alkyl, haloC 1-4 alkyl, or amino, and each of a, b, c, d, e, and f, independently, is 0 or 1. Note that at least one of b, c, d, and e cannot be zero. In certain embodiments, a is 0, f is 0, or the total number of b, c, d, and e is 3 or 4.
  • each of R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 is hydrogen, C 1-4 alkyl, C 1-4 alkoxy, hydroxyl, hydroxylC 1-4 alkyl, or amino.
  • Each of R 5 , R 6 , R 7 , and R 8 independently can be hydrogen, C 1-4 alkyl, C 1-4 alkoxy, hydroxyl, hydroxylC 1-4 alkyl, or amino
  • Each of R 3 , R 4 , R 9 and R 10 independently, can be hydrogen.
  • hydroxamic acid-containing compounds have the structure of formula (I), supra.
  • A is a saturated branched C 3-14 hydrocarbon chain or an unsaturated branched C 3-14 hydrocarbon chain optionally interrupted by —O—, —S—, —N(R a )—, —C(O)—, —N(R a )—C(O)—, —C(O)—N(R a )—, —N(R a )—SO 2 —, —SO 2 —N(R a )—, —N(R a )—C(O)—O—, —O—C(O)—N(R a )—, —N(R a )—C(O)—N(R b )—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—, where each of R a and R b , independently,
  • Each of the saturated and the unsaturated branched hydrocarbon chain is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylcarbonylamino, aminocarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl.
  • Each of X 1 and X 2 is O or S.
  • Each of Y 1 and Y 2 is —CH 2 —, —O—, —N(R c )—, —N(R c )—C(O)—O—, —O—C(O)—N(R c )—, —N(R c ) 13 C(O)—N(R d )—, —O—C(O)—, —C (O)—O—, —O—C(O)—O—, or a bond, where each of R c and R d , independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl.
  • L is a saturated straight C 3-12 hydrocarbon or an unsaturated straight C 4-12 hydrocarbon chain, said hydrocarbon chain being optionally substituted with C 1-4 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, C 1-4 alkoxy, hydroxyl, halo, carboxyl, amino, nitro, cyano, C 3-6 cycloalkyl, 3-6 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C 1-4 alkylcarbonyloxy, C 1-4 alkyloxycarbonyl, C 1-4 alkylcarbonyl, formyl, C 1-4 alkylcarbonylamino, or C 1-4 aminocarbonyl; and further optionally interrupted by —O—, —N(R e )—, —N(R e )—C(O)—O—, —O—C(O)—N(R e ), —N(R e )—C(O)—N(
  • R 1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group
  • R 2 is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group.
  • hydroxamic acid-containing compound of the present invention benzylthioglycoloylhydroxamic acid, N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid, 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid, 5-(2-furyl)-2,4-pentadienoylhydroxamic acid, N-methyl-6-phenyl-3,5-hexadienoylhydr
  • a salt of any of the compounds of the invention can be prepared.
  • a pharmaceutically acceptable salt can be formed when an amino-containing compound of this invention reacts with an inorganic or organic acid.
  • Some examples of such an acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, p-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid.
  • Examples of pharmaceutically acceptable salts thus formed include sulfate, pyrosulfate bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, and maleate.
  • a compound of this invention may also form a pharmaceutically acceptable salt when a compound of this invention having an acid moiety reacts with an inorganic or organic base.
  • Such salts include those derived from inorganic or organic bases, e.g., alkali metal salts such as sodium, potassium, or lithium salts; alkaline earth metal salts such as calcium or magnesium salts; or ammonium salts or salts of organic bases such as morpholine, piperidine, pyridine, dimethylamine, or diethylamine salts.
  • alkali metal salts such as sodium, potassium, or lithium salts
  • alkaline earth metal salts such as calcium or magnesium salts
  • ammonium salts or salts of organic bases such as morpholine, piperidine, pyridine, dimethylamine, or diethylamine salts.
  • a compound of the invention can contain chiral carbon atoms. In other words, it may have optical isomers or diastereoisomers.
  • Alkyl is a straight or branched hydrocarbon chain containing 1 to 10 (preferably, 1 to 6; more preferably 1 to 4) carbon atoms.
  • alkyl include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-methylhexyl, and 3-ethyloctyl.
  • alkenyl and alkynyl refer to a straight or branched hydrocarbon chain containing 2 to 10 carbon atoms and one or more (preferably, 1-4 or more preferably 1-2) double or triple bonds, respectively.
  • alkenyl and alkynyl are allyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-butynyl, 2-pentynyl, and 2-hexynyl.
  • Cycloalkyl is a monocyclic, bicyclic or tricyclic alkyl group containing 3 to 14 carbon atoms. Some examples of cycloalkyl are cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, and norbornyl. Heterocycloalkyl is a cycloalkyl group containing at least one heteroatom (e.g., 1-3) such as nitrogen, oxygen, or sulfur. The nitrogen or sulfur may optionally be oxidized and the nitrogen may optionally be quaternized.
  • heteroatom e.g., 1-3
  • heterocycloalkyl examples include piperidinyl, piperazinyl, tetrahydropyranyl, tetrahydrofuryl, and morpholinyl.
  • Cycloalkenyl is a cycloalkyl group containing at least one (e.g., 1-3) double bond. Examples of such a group include cyclopentenyl, 1,4-cyclohexa-di-enyl, cycloheptenyl, and cyclooctenyl groups.
  • heterocycloalkenyl is a cycloalkenyl group containing at least one heteroatom selected from the group of oxygen, nitrogen or sulfur.
  • Aryl is an aromatic group containing a 5-14 ring and can contain fused rings, which may be saturated, unsaturated, or aromatic.
  • Examples of an aryl group include phenyl, naphthyl, biphenyl, phenanthryl, and anthracyl. If the aryl is specified as “monocyclic aryl,” if refers to an aromatic group containing only a single ring, i.e., not a fused ring.
  • Heteroaryl is aryl containing at least one (e.g., 1-3) heteroatom such as nitrogen, oxygen, or sulfur and can contain fused rings.
  • heteroaryl are pyridyl, furanyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl, and benzthiazolyl.
  • the cyclic moiety can be a fused ring formed from two or more of the just-mentioned groups.
  • a cyclic moiety having fused rings include fluorenyl, dihydro-dibenzoazepine, dibenzocycloheptenyl, 7H-pyrazino[2,3-c]carbazole, or 9,10-dihydro-9,10-[2]buteno-anthracene.
  • Amino protecting groups and hydroxy protecting groups are well-known to those in the art.
  • the species of protecting group is not critical, provided that it is stable to the conditions of any subsequent reaction(s) on other positions of the compound and can be removed without adversely affecting the remainder of the molecule.
  • a protecting group may be substituted for another after substantive synthetic transformations are complete.
  • Examples of an amino protecting group include, but not limited to, carbamates such as 2,2,2-trichloroethylcarbamate or tertbutylcarbamate.
  • hydroxyl protecting group examples include, but not limited to, ethers such as methyl, t-butyl, benzyl, p-methoxybenzyl, p-nitrobenzyl, allyl, trityl, methoxymethyl, 2-methoxypropyl, methoxyethoxymethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrothiopyranyl, and trialkylsilyl ethers such as trimethylsilyl ether, triethylsilyl ether, dimethylarylsilyl ether, trisopropylsilyl ether and t-butyldimethylsilyl ether; esters such as benzoyl, acetyl, phenylacetyl, formyl, mono-, di-, and trihaloacetyl such as chloroacetyl, dichloroacetyl, trichloroacetyl, trifluor
  • an amino group can be unsubstituted (i.e., —NH 2 ), mono-substituted (i.e., —NHR), or di-substituted (i.e., —NR 2 ). It can be substituted with groups (R) such as alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl.
  • Halo refers to fluoro, chloro, bromo, or iodo.
  • Inhibition of a histone deacetylase in a cell is determined by measuring the level of acetylated histones in the treated cells and measuring the level of acetylated histones in untreated cells and comparing the levels. If the level of histone acetylation in the treated cells increases relative to the untreated cells, histone deacetylase has been inhibited.
  • disorders or physiological conditions may be mediated by hyperactive histone deacetylase activity.
  • a disorder or physiological condition that is mediated by histone deacetylase refers to a disorder or condition wherein histone deacetylase plays a role in triggering the onset thereof.
  • disorders or conditions include, but not limited to, cancer, hemoglobinopathies (e.g., thalassemia or sickle cell anemia), cystic fibrosis, protozoan infection, adrenoleukodystrophy, alpha-1 anti-trypsin, retrovirus gene vector reactivation, wound healing, hair growth, peroxisome biogenesis disorder, and adrenoleukodystrophy.
  • a carboxylic acid-containing compound of the present invention can be prepared by any known methods in the art.
  • a compound of the invention having an unsaturated hydrocarbon chain between A and —C( ⁇ X 1 )— can be prepared according to the following scheme:
  • L′ is a saturated or unsaturated hydrocarbon linker between A and —CH ⁇ CH— in a compound of the invention, and A and X 1 has the same meaning as defined above.
  • a and X 1 has the same meaning as defined above. See Coutrot et al., Syn. Comm. 133-134 (1978). Briefly, butyllithium was added to an appropriate amount of anhydrous tetrahydrofuran (THF) at a very low temperature (e.g., ⁇ 65° C.). A second solution having diethylphosphonoacetic acid in anhydrous THF was added dropwise to the stirred butyllithium solution at the same low temperature.
  • THF tetrahydrofuran
  • the resulting solution is stirred at the same temperature for an additional 30-45 minutes which is followed by the addition of a solution containing an aromatic acrylaldehyde in anhydrous THF over 1-2 hours.
  • the reaction mixture is then warmed to room temperature and stirred overnight. It is then acidified (e.g., with HCl) which allows the organic phase to be separated.
  • the organic phase is then dried, concentrated, and purified (e.g., by recrystallization) to form an unsaturated carboxylic acid-containing intermediate.
  • a carboxylic acid-containing compound can be prepared by reacting an acid ester of the formula A—L′—C( ⁇ O)—O-lower alkyl with a Grignard reagent (e.g., methyl magnesium iodide) and a phosphorus oxychloride to form a corresponding aldehyde, which can be further oxidized (e.g., by reacting with silver nitrate and aqueous NaOH) to form an unsaturated carboxylic acid-containing intermediate.
  • a Grignard reagent e.g., methyl magnesium iodide
  • a phosphorus oxychloride e.g., phosphorus oxychloride
  • carboxylic acid-containing compounds e.g., those containing a linker with multiple double bonds or triple bonds
  • Other types of carboxylic acid-containing compounds can be prepared according to published procedures such as those described in Parameswara et al., Synthesis, 815-818 (1980) and Denny et al., J. Org. Chem., 27, 3404 (1962).
  • Carboxylic acid-containing compounds described above can then be converted to hydroxamic acid-containing compounds according to the following scheme:
  • Triethylamine (TEA) is added to a cooled (e.g., 0-5° C.) anhydrous THF solution containing the carboxylic acid.
  • Isobutyl chloroformate is then added to the solution having carboxylic acid, which is followed by the addition of hydroxylamine hydrochloride and TEA. After acidification, the solution was filtered to collect the desired hydroxamic acid-containing compounds.
  • An N-substituted hydroxamic acid can be prepared in a similar manner as described above.
  • a corresponding carboxylic acid A—L′—C( ⁇ O)—OH can be converted to an acid chloride by reacting with oxalyl chloride (in appropriate solvents such as methylene chloride and dimethylformamide), which in turn, can be converted to a desired N-substituted hydroxamic acid by reacting the acid chloride with an N-substituted hydroxylamine hydrochloride (e.g., CH 3 NHOH.HCl) in an alkaline medium (e.g., 40% NaOH (aq)) at a low temperature (e.g., 0-5° C.).
  • the desired N-substituted hydroxamic acid can be collected after acidifying the reaction mixture after the reaction has completed (e.g., in 2-3 hours).
  • the procedure starts with a corresponding aldehyde-containing compound (e.g., A—L′—C( ⁇ O)—H), which is allowed to react with a pyruvic acid in a basic condition (KOH/methanol) at a low temperature (e.g., 0-5° C.). Desired products (in the form of a potassium salt) are formed upon warming of the reaction mixture to room temperature.
  • a corresponding aldehyde-containing compound e.g., A—L′—C( ⁇ O)—H
  • KOH/methanol basic condition
  • Desired products in the form of a potassium salt
  • linker L′ contains an amino substituent
  • it can be first protected by a suitable amino protecting group such as trifluoroacetyl or tert-butoxycarbonyl prior to being treated with reagents such as butyllithium. See, e.g., T. W. Greene, supra, for other suitable protecting groups.
  • a compound produced by the methods shown above can be purified by flash column chromatography, preparative high performance liquid chromatography, or crystallization.
  • a pharmaceutical composition can be used to inhibit histone deacetylase in cells and can be used to treat disorders associated with abnormal histone deacetylase activity.
  • these disorders are cancers (e.g., leukemia, lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, prostate cancer, and breast cancer), hematological disorders (e.g., hemoglobinopathies, thalassemia, and sickle cell anemia) and genetic related metabolic disorders (e.g., cystic fibrosis, peroxisome biogenesis disorder, alpha-1 anti-trypsin, and adrenoleukodystrophy).
  • the compounds of this invention can also stimulate hematopoietic cells ex vivo, ameliorating protozoal parasitic infection, accelerate wound healing, and protecting hair follicles.
  • An effective amount is defined as the amount which is required to confer a therapeutic effect on the treated patient, and is typically determined based on age, surface area, weight, and condition of the patient. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich et al., Cancer Chemother. Rep. 50, 219 (1966). Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardley, N.Y., 537 (1970). An effective amount of a compound described herein can range from about 1 mg/kg to about 300 mg/kg.
  • Effective doses will also vary, as recognized by those skilled in the art, dependant on route of administration, excipient usage, and the possibility of co-usage, pre-treatment, or post-treatment, with other therapeutic treatments including use of other chemotherapeutic agents and radiation therapy.
  • Other chemotherapeutic agents that can be co-administered include, but not limited to, paclitaxel and its derivatives (e.g., taxotere), doxorubicin, L-asparaginase, dacarbazine, amascrine, procarbazine, hexamethylmelamine, mitoxantrone, and gemicitabine.
  • the pharmaceutical composition may be administered via the parenteral route, including orally, topically, subcutaneously, intraperitoneally, intramuscularly, and intravenously.
  • parenteral dosage forms include aqueous solutions of the active agent, in a isotonic saline, 5% glucose or other well-known pharmaceutically acceptable excipient.
  • Solubilizing agents such as cyclodextrins, or other solubilizing agents well-known to those familiar with the art, can be utilized as pharmaceutical excipients for delivery of the therapeutic compounds. Because some of the compounds described herein can have limited water solubility, a solubilizing agent can be included in the composition to improve the solubility of the compound.
  • the compounds can be solubilized in polyethoxylated castor oil (Cremophor EL®) and may further contain other solvents, e.g., ethanol.
  • compounds described herein can also be entrapped in liposomes that may contain tumor-directing agents (e.g., monoclonal antibodies having affinity towards tumor cells).
  • a compound described herein can be formulated into dosage forms for other routes of administration utilizing conventional methods.
  • it can be formulated in a capsule, a gel seal, or a tablet for oral administration.
  • Capsules may contain any standard pharmaceutically acceptable materials such as gelatin or cellulose.
  • Tablets may be formulated in accordance with conventional procedures by compressing mixtures of a compound described herein with a solid carrier and a lubricant. Examples of solid carriers include starch and sugar bentonite.
  • Compounds of this invention can also be administered in a form of a hard shell tablet or a capsule containing a binder, e.g., lactose or mannitol, a conventional filler, and a tableting agent.
  • the activities of a compound described herein can be evaluated by methods known in the art, e.g., MTT (3-[4,5-dimehtythiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, clonogenic assay, ATP assay, or Extreme Drug Resistance (EDR) assay.
  • MTT 3-[4,5-dimehtythiazol-2-yl]-2,5-diphenyltetrazolium bromide
  • clonogenic assay e.g., clonogenic assay, ATP assay, or Extreme Drug Resistance (EDR) assay.
  • EDR Extreme Drug Resistance
  • the EDR assay in particular, is useful for evaluating the antitumor and antiproliferative activity of a compound of this invention (see Example 28 below). Cells are treated for four days with compound of the invention.
  • Both untreated and treated cells are pulsed with tritiated thymidine for 24 hours. Radioactivity of each type of cells is then measured and compared. The results are then plotted to generate drug response curves, which allow IC 50 values (the concentration of a compound required to inhibit 50% of the population of the treated cells) to be determined.
  • the histone acetylation activity of a compound described herein can be evaluated in an assay using mouse erythroleukemia cells. Studies are performed with the DS19 mouse erythroleukemia cells maintained in RPMI 1640 medium with 25 mM HEPES buffer and 5% fetal calf serum. The cells are incubated at 37° C.
  • Histones are isolated from cells after incubation for periods of 2 and 24 hours.
  • the cells are centrifuged for 5 minutes at 2000 rpm in the Sorvall SS34 rotor and washed once with phosphate buffered saline.
  • the pellets are suspended in 10 ml lysis buffer (10 mM Tris, 50 mM sodium bisulfite, 1% Triton X-100, 10 mM magnesium chloride, 8.6% sucrose, pH 6.5) and homogenized with six strokes of a Teflon pestle.
  • the solution is centrifuged and the pellet washed once with 5 ml of the lysis buffer and once with 5 ml 10 mM Tris, 13 mM EDTA, pH 7.4.
  • the pellets are extracted with 2 ⁇ 1 mL 0.25N HCl. Histones are precipitated from the combined extracts by the addition of 20 mL acetone and refrigeration overnight. The histones are pelleted by centrifuging at 5000 rpm for 20 minutes in the Sorvall SS34 rotor. The pellets are washed once with 5 mL acetone and protein concentration are quantitated by the Bradford procedure.
  • the most rapidly migrating protein band is the unacetylated H4 histone followed by bands with 1, 2, 3 and 4 acetyl groups which can be quantitated by densitometry.
  • the procedure for densitometry involves digital recording using the Alpha Imager 2000, enlargement of the image using the PHOTOSHOP program (Adobe Corp.) on a MACINTOSH computer (Apple Corp.), creation of a hard copy using a laser printer and densitometry by reflectance using the Shimadzu CS9000U densitometer.
  • the percentage of H4 histone in the various acetylated states is expressed as a percentage of the total H4 histone.
  • concentration of a compound of the invention required to decrease the unacetylated H4 histone by 50% i.e., EC 50
  • concentration of a compound of the invention required to decrease the unacetylated H4 histone by 50% can then be determined from data obtained using different concentrations of test compounds.
  • Histone deacetylase inhibitory activity can be measured based on procedures described by Hoffmann et al., Nucleic Acids Res., 27, 2057-2058 (1999). See Example 30 below. Briefly, the assay starts with incubating the isolated histone deacetylase enzyme with a compound of the invention, followed by the addition of a fluorescent-labeled lysine substrate (contains an amino group at the side chain which is available for acetylation). HPLC is used to monitor the labeled substrate. The range of activity of each test compound is preliminarily determined using results obtained from HPLC analyses. IC 50 values can then be determined from HPLC results using different concentrations of compounds of this invention. All assays are duplicated or triplicated for accuracy. The histone deacetylase inhibitory activity can be compared with the increased activity of acetylated histone for confirmation.
  • Compounds of this invention are also evaluated for effects on treating X-linked adrenoleukodystrophy (X-ALD), a peroxisomal disorder with impaired very long-chain fatty acid (VLCFA) metabolism.
  • X-ALD X-linked adrenoleukodystrophy
  • VLCFA very long-chain fatty acid
  • cell lines derived from human primary fibroblasts and (EBV-transformed lymphocytes) derived from X-ALD patients grown on RPMI are employed. Tissue culture cells are grown in the presence or absence of test compounds.
  • VLCFA measurements total lipids are extracted, converted to methyl esters, purified by TLC and subjected to capillary GC analysis as described in Moser et al., Technique in Diagnostic Biochemical Genetics: A Laboratory Manual (ed.
  • C24:0 ⁇ -oxidation activity of lyophoclastoid cells are determined by measuring their capacity to degrade [1- 14 C]-C24:0 fatty acid to water-soluble products as described in Watkins et al., Arch. Biochem. Biophys. 289, 329-336 (1991).
  • the statistical significance of measured biochemical differences between untreated and treated X-ALD cells can be determined by a two-tailed Student's t-test. See Example 31 below.
  • CFTR cystic fibrosis
  • CFTR As CFTR exits the ER and matures through the Golgi stacks, its glycosylation is modified until it achieves a terminal mature glycosylation, affording it a molecular weight of around 170 kDa (Band C). Thus, the extent to which CFTR exits the ER and traverses the Golgi to reach the plasma membrane may be reflected in the ratio of Band B to Band C protein.
  • CFTR is immunoprecipitated from control cells, and cells exposed to test compounds. Both wt CFTR and ⁇ F508 CFTR expressing cells are tested. Following lysis, CFTR are immunoprecipitated using various CFTR antibodies.
  • Immunoprecipitates are then subjected to in vitro phosphorylation using radioactive ATP and exogenous protein kinase A. Samples are subsequently solubilized and resolved by SDS-PAGE. Gels are then dried and subject to autoradiography and phosphor image analysis for quantitation of Bands B and C are determined on a BioRad personal fix image station. See Example 32 below.
  • compounds of this invention can be used to treat homozygous ⁇ thalassemia, a disease in which there is inadequate production of ⁇ globin leading to severe anemia. See Collins et al., Blood, 85(1), 43-49 (1995).
  • compounds of the present invention are evaluated for their use as antiprotozoal or antiparasitic agents.
  • the evaluation can be conducted using parasite cultures (e.g., Asexual P. falciparum ). See Trager, W. & Jensen, J. B., Science 193, 673-675 (1976).
  • Test compounds of the invention are dissolved in dimethyl sulfoxide (DMSO) and added to wells of a flat-bottomed 96-well microtitre plate containing human serum. Parasite cultures are then added to the wells, whereas control wells only contain parasite cultures. After at least one invasion cycle, and addition of labeled hypoxanthine monohydrochloride, the level of incorporation of labeled hypoxanthine is detected.
  • IC 50 values can be calculated from data using a non-linear regression analysis.
  • Butyllithium (135 mL of 2.5 N solution) was added to 600 mL of anhydrous tetrahydrofuran (THF) at ⁇ 65° C.
  • THF anhydrous tetrahydrofuran
  • the resulting solution was stirred at ⁇ 65° C. for an additional 30 minutes and then a solution of ⁇ -methyl-trans-cinnamaldehyde (23.2 g) in 100 mL of anhydrous THF was added to the reaction at ⁇ 65° C. over a period of 70 minutes.
  • the reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight.
  • the reaction was then acidified with 5% hydrochloric acid (125 mL) to a pH of 2.8.
  • the aqueous layer was extracted with 100 mL of ether twice and with 100 mL of ethyl acetate once.
  • the combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum.
  • the crude material was dissolved in 100 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 25.8 g of the desired 4-methyl-5-phenyl-2,4-pentadienoic acid.
  • Butyllithium (50 mL of 2.5 N solution) was added to 250 mL of anhydrous tetrahydrofuran (THF) at ⁇ 65° C.
  • the resulting solution was stirred at ⁇ 65° C. for an additional 40 minutes and then a solution of ⁇ -chloro-cinnamaldehyde (10.0 g) in 60 mL of anhydrous THF was added to the reaction at ⁇ 65° C. over a period of 95 minutes.
  • the reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight.
  • the reaction was then acidified with 5% hydrochloric acid (48 mL) to a pH of 3.9.
  • the aqueous layer was extracted with 50 mL of ether twice and with 50 mL of ethyl acetate once.
  • the combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum.
  • the crude material was dissolved in 30 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 9.2 g of the desired 4-chloro-5-phenyl-2,4-pentadienoic acid.
  • Butyllithium (16 mL of 2.5 N solution) was added to 75 mL of anhydrous tetrahydrofuran (THF) at ⁇ 65° C.
  • THF anhydrous tetrahydrofuran
  • the resulting solution was stirred at ⁇ 65° C. for an additional 30 minutes and then a solution of phenylpropargyl aldehyde (2.5 g) in 20 mL of anhydrous THF was added to the reaction at ⁇ 65° C. over a period of 20 minutes.
  • Butyllithium (24 mL of 2.5 N solution) was added to 120 mL of anhydrous tetrahydrofuran (THF) at ⁇ 65° C.
  • THF anhydrous tetrahydrofuran
  • the resulting solution was stirred at ⁇ 65° C. for an additional 30 minutes and then a solution of p-dimethylaminocinnamaldehyde (5.0 g) in 80 mL of anhydrous THF was added to the reaction at ⁇ 65° C. over a period of 30 minutes.
  • Butyllithium 70 mL of 2.5 N solution was added to 350 mL of anhydrous tetrahydrofuran (THF) at ⁇ 65° C.
  • THF anhydrous tetrahydrofuran
  • the resulting solution was stirred at ⁇ 65° C. for an additional 30 minutes and then a solution of trans-3-(2-furyl)acrolein (10.0 g) in 85 mL of anhydrous THF was added to the reaction at ⁇ 65° C. over a period of 2 hours.
  • the reaction was allowed to warm to room temperature and stirred overnight.
  • the reaction was then acidified with 5% hydrochloric acid (85 mL) to a pH of 3.5 followed by addition of 30 mL of water.
  • the aqueous layer was extracted with 50 mL of ether twice and with 50 mL of ethyl acetate once.
  • the combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to give an oil.
  • the crude oil was dissolved in 45 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 9.2 g of the desired 5-(2-furyl)-2,4-pentadienoic acid.
  • Triphenylphosphine (178.7 g) and 3-chloropropionic acid (73.9 g) were mixed in a 1-liter 3-neck round bottom flask equipped with a mechanical stirrer, reflux condenser with a nitrogen inlet and a thermocouple. The mixture was heated to 145° C. under nitrogen and stirred for 2 hours. The reaction was then cooled to 70° C. Ethanol (550 mL) was added and the mixture was refluxed at 80° C. until complete dissolution. The solution was cooled to room temperature and ether (900 mL) was added. The mixture was placed in the freezer overnight. The solids were collected by filtration and dried under vacuum to afford 217 g of 3-(triphenylphosphonium)propionic acid chloride as a white solid which was used in the next step without further purification.
  • the aqueous solution was acidified with 12 N hydrochloric acid (135 mL) to a pH of 1 and extracted with ethyl acetate (1.6 liters) twice.
  • the combined organic layers was washed with water (1000 mL) three times, dried over anhydrous sodium sulfate and concentrated under vacuum to afford a yellow oil.
  • the crude oil was dissolved in 125 mL of methylene chloride and chromatographed on a Biotage 75L silica gel column and eluted with methylene chloride:ether (9:1). The fractions containing the desired product were combined and the solvents were removed under vacuum to afford 10.38 g of 6-phenyl-3,5-hexadienoic acid.
  • Butyllithium (12.8 mL of 2.5 N solution) was added to 65 mL of anhydrous tetrahydrofuran (THF) at ⁇ 65° C.
  • the resulting solution was stirred at ⁇ 65° C. for an additional 30 minutes and then a solution of 5-phenyl-2,4-pentadienal (2.4 g) in 15 mL of anhydrous THF was added to the reaction at ⁇ 65° C.
  • the reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight.
  • the aqueous layer was extracted with ethyl acetate (280 mL) twice, acidified with 12 N hydrochloric acid (24 mL) to a pH of 1, extracted again with ethyl acetate (280 mL) twice.
  • the combined organic layers were washed with water (500 mL) twice, dried over anhydrous sodium sulfate and concentrated under vacuum to give an oil.
  • the oily crude product was chromatographed on a Biotage 40M silica gel column and eluted with methylene chloride:ethyl acetate (95:5).
  • Triethylamine (TEA, 17.6 mL) was added to a cooled (0-5° C.) solution of trans-cinnamic acid (15.0 g) in 200 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (16.4 mL). The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (17.6 g) was added followed by dropwise addition of 35 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA Triethylamine
  • Triethylamine (TEA, 29 mL) was added to a cooled (0-5° C.) solution of 5-phenyl-2,4-pentadienoic acid (29.0 g) in 300 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (27.0 mL). The reaction mixture was stirred for 15 minutes and hydroxylamine hydrochloride (28.92 g) was added followed by dropwise addition of 58 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA Triethylamine
  • Triethylamine (TEA, 1.8 mL) was added to a cooled (0-5° C.) solution of 3-methyl-5-phenyl-2,4-pentadienoic acid (2.0 g) in 20 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (1.7 mL) over a period of 15 minutes. The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (1.85 g) was added followed by dropwise addition of 3.7 mL of TEA over a period of 35 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA 3-methyl-5-phenyl-2,4-pentadienoic acid
  • Triethylamine (TEA, 6.5 mL) was added to a cooled (0-5° C.) solution of 4-methyl-5-phenyl-2,4-pentadienoic acid (7.0 g) in 75 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (6.0 mL) over a period of 60 minutes. The reaction mixture was stirred for 15 minutes and hydroxylamine hydrochloride (6.5 g) was added followed by dropwise addition of 13 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA 4-methyl-5-phenyl-2,4-pentadienoic acid
  • Triethylamine (TEA, 2.5 mL) was added to a cooled (0-5° C.) solution of 4-chloro-5-phenyl-2,4-pentadienoic acid (3.0 g) in 30 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (2.3 mL) over a period of 15 minutes. The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (2.5 g) was added followed by dropwise addition of 5.0 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA 4-chloro-5-phenyl-2,4-pentadienoic acid
  • Triethylamine (TEA, 1.1 mL) was added to a cooled (0-5° C.) solution of 5-phenyl-2-ene-4-pentynoic acid (1.1 g) in 13 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (1.0 mL). The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (1.1 g) was added followed by dropwise addition of 2.2 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA Triethylamine
  • Triethylamine (TEA, 0.8 mL) was added to a cooled (0-5° C.) solution of 5-(p-dimethylaminophenyl)-2,4-pentadienoic acid (1.0 g) in 10 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (0.7 mL). The reaction mixture was stirred for 60 minutes and hydroxylamine hydrochloride (0.8 g) was added followed by dropwise addition of 1.6 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with 15 mL of water.
  • Triethylamine (TEA, 2.1 mL) was added to a cooled (0-5° C.) solution of 5-(2-furyl)-2,4-pentadienoic acid (2.0 g) in 15 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformnate (2.0 mL) over a period of 30 minutes. The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (2.15 g) was added followed by dropwise addition of 4.2 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA Triethylamine
  • Triethylamine (TEA, 1.75 mL) was added to a cooled (0-5° C.) solution of 6-phenyl-3,5-hexadienoic acid (2.0 g) in 30 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (1.62 mL) over a period of 15 minutes. The reaction mixture was stirred for 15 minutes and hydroxylamine hydrochloride (1.74 g) was added followed by dropwise addition of 3.5 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA Triethylamine
  • 6-Phenyl-3,5-hexadienoic acid (1 g) was dissolved in 10 mL of tetrahydrofuran (THF) and treated with 0.9 g of 1,1′-carbonyldiimidazole. The reaction was stirred for 30 minutes.
  • N-methylhydroxylamine hydrochloride (0.44 g) was neutralized with 0.29 g of sodium methoxide in 10 mL of THF and 5 mL of methanol and then filtered to remove the sodium chloride. N-methylhydroxylamine was then added to the reaction mixture and stirred overnight. The resulting mixture was partitioned between 25 mL of water and 50 mL of ethyl acetate.
  • the ethyl acetate layer was washed with 25 mL each of 5% hydrochloric acid, saturated sodium bicarbonate and brine, dried over sodium sulfate and concentrated under vacuum to afford 0.9 g of a viscous yellow oil.
  • the crude product was chromatographed on a Biotage 40S silica gel column and eluted with ethyl acetate:hexane (1:1). The fractions containing the desired product were combined and the solvent was removed under vacuum to yield 0.17 g of N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid.
  • Triethylamine (TEA, 24.1 mL) was added to a cooled (0-5° C.) solution of 7-phenyl-2,4,6-heptatrienoic acid (27.8 g) in 280 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (22.5 mL) over a period of 75 minutes. The reaction mixture was stirred for 40 minutes and hydroxylamine hydrochloride (24.2 g) was added followed by dropwise addition of 48 mL of TEA over a period of 70 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight.
  • TEA Triethylamine
  • the PC3 cell line was maintained in RPMI supplemented with 10% fetal calf serum and antibiotics. Cells were suspended in 0.12% soft agar in complete medium and plated (2,000 cells per well) in different drug concentrations onto a 0.4% agarose underlayer in 24-well plates. Plating calls on agarose underlayers supports the proliferation only of the transformed cells, ensuring that the growth signal stems from the malignant component of the tumor.
  • IC 50 values of the test compounds of the invention range from approximately 1 ⁇ M to approximately 2000 ⁇ M.
  • the model used in this assay was mouse erythroleukemia cells. Specifically, the level of acetylation of H4 histones in these erythroleukemia cells was monitored. H4 histones was chosen as the target due to the ease of resolution of the variably acetylated histones. Inhibition of histone deacetylase leads to increased (hyper)acetylation of histones. Activities on histone deacetylase were examined to confirm the results of this assay. See Example 30 below.
  • Histones were isolated from cells after incubation for 2 or 24 hours. The cells were centrifuged for 5 minutes at 2,000 rpm in the Sorvall SS34 rotor and washed once with phosphate buffered saline. The pellets were suspended in 5 mL lysis buffer (10 mM Tris, 50 mM sodium bisulfite, 1%Triton X-100, 10 mM magnesium chloride, 8.6% sucrose, pH 6.5) and homogenized with six strokes of a teflon pestle. The homogenizing tubes were rinsed with 5 mL lysis buffer.
  • the combined solutions were centrifuged and the pellets were washed once with 5 mL of the lysis buffer and once with 5 mL 10 mM Tris, 13 mM EDTA, pH 7.4.
  • the pellets were extracted with 2 ⁇ 1 mL 0.25N HCl.
  • Histones were precipitated from the combined extracts by the addition of 20 mL acetone and refrigeration overnight.
  • the histones were pelleted by centrifuging at 5,000 rpm for 20 minutes in the Sorvall SS34 rotor. The pellets were washed once with 5 mL acetone and protein concentration was quantitated by the Bradford procedure.
  • Densitometry was measured through digital recording using the Alpha Imager 2000. Enlargement of the image was done using PHOTOSHOP (Adobe Corp.) on a MACINTOSH (Apple Corp.) computer. After creating a hard copy of the gel by using a laser printer, a Shimadzu CS9OOOU densitometer was used to measure densitometry by reflectance. The percentage of H4 histone in the various acetylated states was expressed as a percentage of the total H4 histone.
  • test compounds of the invention showed EC 50 values in micromolar concentration range.
  • the assay was performed in a final total volume of 120 ⁇ L consisting of 100 ⁇ L of 15 mM tris-HCl buffer at pH 7.9 and 0.25 mM EDTA, 10 mM NaCl, 10% glycerol, 10 mM mercaptoethanol and the enzyme.
  • the assay was initiated upon the addition of 10 ⁇ l of a test compound followed by the addition of a fluorescent-labeled lysine substrate to each assay tube in an ice bath for 15 minutes. The tubes were transferred to a water bath at 37° C. for an additional 90 minutes.
  • Test compounds of the invention showed potent inhibition of histone deacetylase, having IC 50 values in the low micromolar concentration range (e.g., two test compounds showed IC 50 values of 1.7 ⁇ M and 1.8 ⁇ M).
  • tissue culture cells were grown in the presence or absence of test compounds, collected from tissue culture flasks using trypsin, washed twice with PBS and subjected to biochemical analysis.
  • VLCFA measurements was conducted by extracting total amount of lipids, converted the lipids to methyl ester, purified by TLC, and subjected to capillary CC analysis as described in Moser et al., Technique in Diagnostic Biochemical Genetics: A Laboratory Manual (ed. A., H.F. ) 177-191 (Wiley-Liss, New York, 1991).
  • Duplicate assays were set up independently and were assayed on different days.
  • C24:0 ⁇ -oxidation activity of lymphoblastoid cells was determined by measuring their capacity to degrade [1- 14 C]-C24:0 fatty acid to water-soluble products as described in Watkins et al., Arch. Biochem. Biophys. 289, 329-336 (1991).
  • the statistical significance of measured biochemical differences between untreated and treated X-ALD cells can be determined by a two-tailed Student's t-test.
  • CFTR is initially synthesized as a nascent polypeptide chain in the rough ER, with a molecular weight of around 120 kDa (Band A). It rapidly receives a core glycosylation in the ER, giving it a molecular weight of around 140 kDa (Band B). As CFTR exits the ER and matures through the Golgi stacks, its glycosylation is modified until it achieves a terminal mature glycosylation, affording it a molecular weight of around 170 kDa (Band C).
  • CFTR is immunoprecipitated from control cells, and cells exposed to test compounds. Both wt CFTR and ⁇ F508 CFTR expressing cells are tested. Following lysis, CFTR are immunoprecipitated using various CFTR antibodies. Immunoprecipitates are then subjected to in vitro phosphorylation using radioactive ATP and exogenous protein kinase A. Samples are subsequently solubilized and resolved by SDS-PAGE. Gels are then dried and subject to autoradiography and phosphor image analysis for quantitation of Bands B and C are determined on a BioRad personal fix image station.
  • Test compounds of the invention were administered to three groups of 10 mice at 100, 300, and 1,000 mg/kg.
  • An additional group received vehicle (20% hydroxypropyl- ⁇ -cyclodextrin aqueous solution) at 10 mL/kg.
  • Mortality/morbidity checks were made twice daily. Clinical observations were recorded predose and /or postdose on Day 1, and daily thereafter through Day 8. Body weights were recorded on the day of dosing (Day 1) and on Day 8. Mice were euthanized by CO 2 asphyxiation and necropsied on Day 8 or upon death.

Abstract

Compounds having a zinc-binding moiety, such as, for example, a hydroxamic acid group, can inhibit histone deacetylase. Histone deacetylase inhibition can repress gene expression, including expression of genes related to tumor suppression. Inhibition of histone deacetylase can lead to the histone deacetylase-mediated transcriptional repression of tumor suppressor genes. For example, inhibition of histone deacetylase can provide an alternate route for treating cancer, hematological disorders, such as hematopoiesis, and genetic related metabolic disorders, such as, cystic fibrosis and adrenoleukodystrophy.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of and claims priority to U.S. application Ser. No. 09/812,944, filed on Mar. 27, 2001, which is incorporated by reference in its entirety.[0001]
  • TECHNICAL FIELD
  • This invention relates to enzyme inhibitors, and more particularly to histone deacetylase inhibitors. [0002]
  • BACKGROUND
  • DNA in the nucleus of the cell exists as a hierarchy of compacted chromatin structures. The basic repeating unit in chromatin is the nucleosome. The nucleosome consists of a histone octomer of proteins in the nucleus of the cell around which DNA is twice wrapped. The orderly packaging of DNA in the nucleus plays an important role in the functional aspects of gene regulation. Covalent modifications of the histones have a key role in altering chromatin higher order structure and function and ultimately gene expression. The covalent modification of histones occurs by enzymatically mediated processes, such as acetylation. [0003]
  • Regulation of gene expression through the inhibition of the nuclear enzyme histone deacetylase (HDAC) is one of several possible regulatory mechanisms whereby chromatin activity can be affected. The dynamic homeostasis of the nuclear acetylation of histones can be regulated by the opposing activity of the enzymes histone acetyl transferase (HAT) and histone deacetylase (HDAC). Transcriptionally silent chromatin can be characterized by nucleosomes with low levels of acetylated histones. Acetylation of histones reduces its positive charge, thereby expanding the structure of the nucleosome and facilitating the interaction of transcription factors to the DNA. Removal the acetyl group restores the positive charge condensing the structure of the nucleosome. Acetylation of histone-DNA activates transcription of DNA's message, an enhancement of gene expression. Histone deacetylase can reverse the process and can serve to repress gene expression. See, for example Grunstein, [0004] Nature 389, 349-352 (1997); Pazin et al., Cell 89, 325-328 (1997): Wade et al., Trends Biochem. Sci. 22, 128-132 (1997); and Wolffe, Science 272, 371-372 (1996).
  • SUMMARY
  • Histone deacetylase is a metallo-enzyme with zinc at the active site. Compounds having a zinc-binding moiety, such as, for example, a hydroxamic acid group, can inhibit histone deacetylase. Histone deacetylase inhibition can repress gene expression, including expression of genes related to tumor suppression. Accordingly, inhibition of histone deacetylase can provide an alternate route for treating cancer, hematological disorders, e.g., hemoglobinopathies, and genetic related metabolic disorders, e.g., cystic fibrosis and adrenoleukodystrophy. [0005]
  • In one aspect, hydroxamic acid-containing compounds have a structure of formula (I): [0006]
    Figure US20030083521A1-20030501-C00001
  • A is a cyclic moiety selected from the group consisting of C[0007] 3-14 cycloalkyl, 3-14 membered heterocycloalkyl, C4-14 cycloalkenyl, 3-14 membered heterocycloalkenyl (e.g., C3-8 cycloalkyl, 3-8 membered heterocycloalkyl, C4-8 cycloalkenyl, 3-8 membered heterocycloalkenyl), monocyclic aryl, or monocyclic heteroaryl. Each of these cyclic moieties is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylcarbonylamino, aminocarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl. Each of X1 and X2, independently, is O or S. Y1 is —CH2—, —O—, —S—, —N(Ra)—, —N(Ra)—C(O)—O—, —O—C(O)—N(Ra)—, —N(Ra)—C(O) (O)—N (Rb)—,—O—, —S—, —C(O)—O—, —O—C(O)—O—, or a bond wherein each of Ra and Rb, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. Y2 is —CH2—, —O—, —S—, —N(Rc)—, —N(Rc)—C(O)—O—, —O—C(O)—N(Rc)—, —N(Rc)—C(O)—N(Rd)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—wherein each of Rc and Rd, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. L is (1) a saturated straight C1-12 hydrocarbon chain substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, halo, carboxyl, amino, nitro, cyano, C3-6 cycloalkyl, 3-6 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C1-4 alkylcarbonyloxy, C1-4 alkyloxycarbonyl, C1-4 alkylcarbonyl, formyl, C1-4 alkylcarbonylamino, or C1-4 aminocarbonyl, or at least two hydroxyl; and further optionally interrupted by —O—, —N(Re)—, —N(Re)C(O), —O—C(O)—N(Re)—, —N(Re)—C(O)—N(Rf)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—wherein each of Re and Rf, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl; or L is (2) an unsaturated straight C4-12 hydrocarbon chain containing at least two double bonds, at least one triple bond, or at least one double bond and one triple bond, where the unsaturated hydrocarbon chain is optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, hydroxyl, halo, carboxyl, amino, nitro, cyano, C3-6 cycloalkyl, 3-6 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C1-4 alkylcarbonyloxy, C1-4 alkyloxycarbonyl, C1-4 alkylcarbonyl, formnyl, C1-4 alkylcarbonylamino, or C1-4 aminocarbonyl; and further being optionally interrupted by —O—, —N(Rg)—, —N(Rg)—C(O)—O—, —O—C(O)—N(Rg)—, —N(Rg)C(O)—N(Rh)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O— wherein each of Rg and Rh, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. R1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; and R2 is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group.
  • In another aspect, hydroxamic acid-containing compounds have a structure of formula (I), supra. A is a cyclic moiety selected from the group consisting of monocyclic aryl or monocyclic heteroaryl. Each of the cyclic moieties is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino. Each of X[0008] 1 and X2, independently, is O or S. Y1 is —CH2—, —O—, —S—, —N(Ra)—, —N(Ra)—C(O)—O—, —O—C(O)—N (Ra)—, —N(Ra)—C(O)—N(Rb)—, —O—C(O)—, —C(O)—O—, —O—C(O)—O—, or a bond, where each of Ra and Rb, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. Y2 is —CH2—, —O—, —S—, —N(Rc)—, —N(Rc)—C(O)—O—, —O—C(O)—N (Rc)—, —N(Rc)—C(O)—N(Rd)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—; each of Rc and Rd, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. L is (1) a saturated straight C3-10 hydrocarbon chain substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, or amino, and further optionally interrupted by —O— or —N(Re)—, where Re is hydrogen, alkyl, hydroxylalkyl, or haloalkyl; or L is (2) an unsaturated straight C4-10 hydrocarbon chain containing at least two double bonds, at least one triple bond, or at least one double bond and one triple bond; said unsaturated hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, or amino, and further optionally interrupted by —O— or —N(Rf)—, where Rf is hydrogen, alkyl, hydroxylalkyl, or haloalkyl. Each of R1 and R2, independently, is hydrogen, alkyl, hydroxylalkyl, or haloalkyl.
  • In certain embodiments, R[0009] 1 is hydrogen, R2 is hydrogen, X1 is O, X2 is O, or Y1 is —CH2—, —O—, —N(Ra)—, or a bond, and Y2 is —CH2—, —O—, or —N(Rc)—. L can be a saturated straight C4-10 hydrocarbon chain, or C5-8 hydrocarbon chain (e.g., a saturated straight C5 hydrocarbon chain, a saturated straight C6 hydrocarbon chain, or a saturated straight C7 hydrocarbon chain), substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, or amino, and further optionally interrupted by —O— or —N(Rc)—. In other embodiments, L is an unsaturated straight C4-10 hydrocarbon chain, or an unsaturated straight C4-8 hydrocarbon chain, containing 2-5 double bonds, or 1-2 double bonds and 1-2 triple bonds, optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4alkoxy, and further being optionally interrupted by —O— or —N(Rg)—. In certain embodiments, L can be —(CH═CH)m— where m is 2 or 3 or L can be —C≡C—(CH═CH)n— where n is 1 or 2. A can be phenyl, furyl, thienyl, pyrrolyl, or pyridyl or A can be phenyl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino.
  • In a further aspect, hydroxamic acid-containing compounds have a structure of formula (II): [0010]
    Figure US20030083521A1-20030501-C00002
  • A is a cyclic moiety selected from the group consisting of monocyclic aryl or monocyclic heteroaryl. Each of the cyclic moieties is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino. Each of Xand X[0011] 2, independently, is O or S. Each of R1 and R2, independently, is hydrogen, alkyl, hydroxylalkyl, or haloalkyl. Each of R3, R4, R5, R6, R7, R8, R9 and R10, independently, is hydrogen, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, hydroxyl, halo, hydroxylC1-4 alkyl, haloC1-4 alkyl, or amino, and each of a, b, c, d, e, and f, independently, is 0 or 1. Note that at least one of b, c, d, and e cannot be zero. In certain embodiments, a is 0, f is 0, or the total number of b, c, d, and e is 3 or 4. In other embodiments, each of R3, R4, R5, R6, R7, R8, R9 and R10, independently, is hydrogen, C1-4 alkyl, C1-4 alkoxy, hydroxyl, hydroxylC1-4 alkyl, or amino. Each of R5, R6, R7, and R8, independently can be hydrogen, C1-4 alkyl, C1-4 alkoxy, hydroxyl, hydroxylC1-4 alkyl, or amino, Each of R3, R4, R9 and R10, independently, can be hydrogen.
  • In another aspect hydroxamic acid-containing compounds have the structure of formula (I), supra. A is a saturated branched C[0012] 3-14 hydrocarbon chain or an unsaturated branched C3-14 hydrocarbon chain optionally interrupted by —O—, —S—, —N(Ra)—, —C(O)—, —N(Ra)—C(O)—, —C(O)—N(Ra)—, —N(Ra)—SO2—, —SO2—N(Ra)—, —N(Ra)—C(O)—O—, —O—C(O)—N(Ra)—, —N(Ra)—C(O)—N(Rb)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—, where each of Ra and Rb, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. Each of the saturated and the unsaturated branched hydrocarbon chain is optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylcarbonylamino, aminocarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl. Each of X1 and X2, independently, is O or S. Each of Y1 and Y2, independently, is —CH2—, —O—, —N(Rc)—, —N(Rc)—C(O)—O—, —O—C(O)—N(Rc)—, —N(Rc)13 C(O)—N(Rd)—, —O—C(O)—, —C (O)—O—, —O—C(O)—O—, or a bond, where each of Rc and Rd, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. L is a saturated straight C3-12 hydrocarbon or an unsaturated straight C4-12 hydrocarbon chain, said hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, hydroxyl, halo, carboxyl, amino, nitro, cyano, C3-6 cycloalkyl, 3-6 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C1-4 alkylcarbonyloxy, C1-4 alkyloxycarbonyl, C1-4 alkylcarbonyl, formyl, C1-4 alkylcarbonylamino, or C1-4 aminocarbonyl; and further optionally interrupted by —O—, —N(Re)—, —N(Re)—C(O)—O—, —O—C(O)—N(Re), —N(Re)—C(O)—N(Rf)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—, where each of Re and Rf, independently, is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl. R1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; and R2 is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group.
  • Set forth below are some examples of a hydroxamic acid-containing compound of the present invention: benzylthioglycoloylhydroxamic acid, N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid, 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid, 5-phenyl-2-en-4-yn-pentanoylhydroxamic acid, 5-(2-furyl)-2,4-pentadienoylhydroxamic acid, N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid, and 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid. [0013]
  • A salt of any of the compounds of the invention can be prepared. For example, a pharmaceutically acceptable salt can be formed when an amino-containing compound of this invention reacts with an inorganic or organic acid. Some examples of such an acid include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, phosphoric acid, p-bromophenylsulfonic acid, carbonic acid, succinic acid, citric acid, benzoic acid, and acetic acid. Examples of pharmaceutically acceptable salts thus formed include sulfate, pyrosulfate bisulfate, sulfite, bisulfite, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, and maleate. A compound of this invention may also form a pharmaceutically acceptable salt when a compound of this invention having an acid moiety reacts with an inorganic or organic base. Such salts include those derived from inorganic or organic bases, e.g., alkali metal salts such as sodium, potassium, or lithium salts; alkaline earth metal salts such as calcium or magnesium salts; or ammonium salts or salts of organic bases such as morpholine, piperidine, pyridine, dimethylamine, or diethylamine salts. [0014]
  • It should be recognized that a compound of the invention can contain chiral carbon atoms. In other words, it may have optical isomers or diastereoisomers. [0015]
  • Alkyl is a straight or branched hydrocarbon chain containing 1 to 10 (preferably, 1 to 6; more preferably 1 to 4) carbon atoms. Examples of alkyl include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-methylhexyl, and 3-ethyloctyl. [0016]
  • The terms “alkenyl” and “alkynyl” refer to a straight or branched hydrocarbon chain containing 2 to 10 carbon atoms and one or more (preferably, 1-4 or more preferably 1-2) double or triple bonds, respectively. Some examples of alkenyl and alkynyl are allyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-butynyl, 2-pentynyl, and 2-hexynyl. [0017]
  • Cycloalkyl is a monocyclic, bicyclic or tricyclic alkyl group containing 3 to 14 carbon atoms. Some examples of cycloalkyl are cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, and norbornyl. Heterocycloalkyl is a cycloalkyl group containing at least one heteroatom (e.g., 1-3) such as nitrogen, oxygen, or sulfur. The nitrogen or sulfur may optionally be oxidized and the nitrogen may optionally be quaternized. Examples of heterocycloalkyl include piperidinyl, piperazinyl, tetrahydropyranyl, tetrahydrofuryl, and morpholinyl. Cycloalkenyl is a cycloalkyl group containing at least one (e.g., 1-3) double bond. Examples of such a group include cyclopentenyl, 1,4-cyclohexa-di-enyl, cycloheptenyl, and cyclooctenyl groups. By the same token, heterocycloalkenyl is a cycloalkenyl group containing at least one heteroatom selected from the group of oxygen, nitrogen or sulfur. [0018]
  • Aryl is an aromatic group containing a 5-14 ring and can contain fused rings, which may be saturated, unsaturated, or aromatic. Examples of an aryl group include phenyl, naphthyl, biphenyl, phenanthryl, and anthracyl. If the aryl is specified as “monocyclic aryl,” if refers to an aromatic group containing only a single ring, i.e., not a fused ring. [0019]
  • Heteroaryl is aryl containing at least one (e.g., 1-3) heteroatom such as nitrogen, oxygen, or sulfur and can contain fused rings. Some examples of heteroaryl are pyridyl, furanyl, pyrrolyl, thienyl, thiazolyl, oxazolyl, imidazolyl, indolyl, benzofuranyl, and benzthiazolyl. [0020]
  • The cyclic moiety can be a fused ring formed from two or more of the just-mentioned groups. Examples of a cyclic moiety having fused rings include fluorenyl, dihydro-dibenzoazepine, dibenzocycloheptenyl, 7H-pyrazino[2,3-c]carbazole, or 9,10-dihydro-9,10-[2]buteno-anthracene. [0021]
  • Amino protecting groups and hydroxy protecting groups are well-known to those in the art. In general, the species of protecting group is not critical, provided that it is stable to the conditions of any subsequent reaction(s) on other positions of the compound and can be removed without adversely affecting the remainder of the molecule. In addition, a protecting group may be substituted for another after substantive synthetic transformations are complete. Examples of an amino protecting group include, but not limited to, carbamates such as 2,2,2-trichloroethylcarbamate or tertbutylcarbamate. Examples of a hydroxyl protecting group include, but not limited to, ethers such as methyl, t-butyl, benzyl, p-methoxybenzyl, p-nitrobenzyl, allyl, trityl, methoxymethyl, 2-methoxypropyl, methoxyethoxymethyl, ethoxyethyl, tetrahydropyranyl, tetrahydrothiopyranyl, and trialkylsilyl ethers such as trimethylsilyl ether, triethylsilyl ether, dimethylarylsilyl ether, trisopropylsilyl ether and t-butyldimethylsilyl ether; esters such as benzoyl, acetyl, phenylacetyl, formyl, mono-, di-, and trihaloacetyl such as chloroacetyl, dichloroacetyl, trichloroacetyl, trifluoroacetyl; and carbonates including but not limited to alkyl carbonates having from one to six carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl; isobutyl, and n-pentyl; alkyl carbonates having from one to six carbon atoms and substituted with one or more halogen atoms such as 2,2,2-trichloroethoxymethyl and 2,2,2-trichloro-ethyl; alkenyl carbonates having from two to six carbon atoms such as vinyl and allyl; cycloalkyl carbonates having from three to six carbon atoms such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl; and phenyl or benzyl carbonates optionally substituted on the ring with one or more C[0022] 1-6 alkoxy, or nitro. Other protecting groups and reaction conditions can be found in T. W. Greene, Protective Groups in Organic Synthesis, (3rd, 1999, John Wiley & Sons, New York, N.Y.).
  • Note that an amino group can be unsubstituted (i.e., —NH[0023] 2), mono-substituted (i.e., —NHR), or di-substituted (i.e., —NR2). It can be substituted with groups (R) such as alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, aralkyl, or heteroaralkyl. Halo refers to fluoro, chloro, bromo, or iodo.
  • Inhibition of a histone deacetylase in a cell is determined by measuring the level of acetylated histones in the treated cells and measuring the level of acetylated histones in untreated cells and comparing the levels. If the level of histone acetylation in the treated cells increases relative to the untreated cells, histone deacetylase has been inhibited. [0024]
  • Some disorders or physiological conditions may be mediated by hyperactive histone deacetylase activity. A disorder or physiological condition that is mediated by histone deacetylase refers to a disorder or condition wherein histone deacetylase plays a role in triggering the onset thereof. Examples of such disorders or conditions include, but not limited to, cancer, hemoglobinopathies (e.g., thalassemia or sickle cell anemia), cystic fibrosis, protozoan infection, adrenoleukodystrophy, alpha-1 anti-trypsin, retrovirus gene vector reactivation, wound healing, hair growth, peroxisome biogenesis disorder, and adrenoleukodystrophy. [0025]
  • Other features or advantages will be apparent from the following detailed description of several embodiments, and also from the appended claims. [0026]
  • DETAILED DESCRIPTION
  • A carboxylic acid-containing compound of the present invention can be prepared by any known methods in the art. For example, a compound of the invention having an unsaturated hydrocarbon chain between A and —C(═X[0027] 1)— can be prepared according to the following scheme:
    Figure US20030083521A1-20030501-C00003
  • where L′ is a saturated or unsaturated hydrocarbon linker between A and —CH═CH— in a compound of the invention, and A and X[0028] 1 has the same meaning as defined above. See Coutrot et al., Syn. Comm. 133-134 (1978). Briefly, butyllithium was added to an appropriate amount of anhydrous tetrahydrofuran (THF) at a very low temperature (e.g., −65° C.). A second solution having diethylphosphonoacetic acid in anhydrous THF was added dropwise to the stirred butyllithium solution at the same low temperature. The resulting solution is stirred at the same temperature for an additional 30-45 minutes which is followed by the addition of a solution containing an aromatic acrylaldehyde in anhydrous THF over 1-2 hours. The reaction mixture is then warmed to room temperature and stirred overnight. It is then acidified (e.g., with HCl) which allows the organic phase to be separated. The organic phase is then dried, concentrated, and purified (e.g., by recrystallization) to form an unsaturated carboxylic acid-containing intermediate.
  • Alternatively, a carboxylic acid-containing compound can be prepared by reacting an acid ester of the formula A—L′—C(═O)—O-lower alkyl with a Grignard reagent (e.g., methyl magnesium iodide) and a phosphorus oxychloride to form a corresponding aldehyde, which can be further oxidized (e.g., by reacting with silver nitrate and aqueous NaOH) to form an unsaturated carboxylic acid-containing intermediate. [0029]
  • Other types of carboxylic acid-containing compounds (e.g., those containing a linker with multiple double bonds or triple bonds) can be prepared according to published procedures such as those described in Parameswara et al., [0030] Synthesis, 815-818 (1980) and Denny et al., J. Org. Chem., 27, 3404 (1962).
  • Carboxylic acid-containing compounds described above can then be converted to hydroxamic acid-containing compounds according to the following scheme: [0031]
    Figure US20030083521A1-20030501-C00004
  • Triethylamine (TEA) is added to a cooled (e.g., 0-5° C.) anhydrous THF solution containing the carboxylic acid. Isobutyl chloroformate is then added to the solution having carboxylic acid, which is followed by the addition of hydroxylamine hydrochloride and TEA. After acidification, the solution was filtered to collect the desired hydroxamic acid-containing compounds. [0032]
  • An N-substituted hydroxamic acid can be prepared in a similar manner as described above. A corresponding carboxylic acid A—L′—C(═O)—OH can be converted to an acid chloride by reacting with oxalyl chloride (in appropriate solvents such as methylene chloride and dimethylformamide), which in turn, can be converted to a desired N-substituted hydroxamic acid by reacting the acid chloride with an N-substituted hydroxylamine hydrochloride (e.g., CH[0033] 3NHOH.HCl) in an alkaline medium (e.g., 40% NaOH (aq)) at a low temperature (e.g., 0-5° C.). The desired N-substituted hydroxamic acid can be collected after acidifying the reaction mixture after the reaction has completed (e.g., in 2-3 hours).
  • As to compounds of the invention wherein X[0034] 1 is S, they can be prepared according to procedures described in Sandler, S. R. and Karo, W., Organic Functional Group Preparations, Volume III (Academic Press, 1972) at pages 436-437. For preparation of compounds of the invention wherein X2 is —N(Rc)OH— and X1 is S, see procedures described in U.S. Pat. Nos. 5,112,846; 5,075,330 and 4,981,865.
  • Compounds of the invention containing an α-keto acid moiety (e.g., when X[0035] 1 is oxygen and X2 is —C(═O)—OM or A—L′—C(═O)—C(═O)OM, where A and L′ have been defined above and M can be hydrogen, lower alkyl or a cation such as K+), these compounds can be prepared by procedures based on that described in Schummer et al., Tetrahedron, 43, 9019 (1991). Briefly, the procedure starts with a corresponding aldehyde-containing compound (e.g., A—L′—C(═O)—H), which is allowed to react with a pyruvic acid in a basic condition (KOH/methanol) at a low temperature (e.g., 0-5° C.). Desired products (in the form of a potassium salt) are formed upon warming of the reaction mixture to room temperature.
  • The compounds described above, as well as their (thio)hydroxamic acid or α-keto acid counterparts, can possess histone deacetylase inhibitory properties. [0036]
  • Note that appropriate protecting groups may be needed to avoid forming side products during the preparation of a compound of the invention. For example, if the linker L′ contains an amino substituent, it can be first protected by a suitable amino protecting group such as trifluoroacetyl or tert-butoxycarbonyl prior to being treated with reagents such as butyllithium. See, e.g., T. W. Greene, supra, for other suitable protecting groups. [0037]
  • A compound produced by the methods shown above can be purified by flash column chromatography, preparative high performance liquid chromatography, or crystallization. [0038]
  • A pharmaceutical composition can be used to inhibit histone deacetylase in cells and can be used to treat disorders associated with abnormal histone deacetylase activity. Some examples of these disorders are cancers (e.g., leukemia, lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, cervical cancer, renal cancer, prostate cancer, and breast cancer), hematological disorders (e.g., hemoglobinopathies, thalassemia, and sickle cell anemia) and genetic related metabolic disorders (e.g., cystic fibrosis, peroxisome biogenesis disorder, alpha-1 anti-trypsin, and adrenoleukodystrophy). The compounds of this invention can also stimulate hematopoietic cells ex vivo, ameliorating protozoal parasitic infection, accelerate wound healing, and protecting hair follicles. [0039]
  • An effective amount is defined as the amount which is required to confer a therapeutic effect on the treated patient, and is typically determined based on age, surface area, weight, and condition of the patient. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich et al., [0040] Cancer Chemother. Rep. 50, 219 (1966). Body surface area may be approximately determined from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardley, N.Y., 537 (1970). An effective amount of a compound described herein can range from about 1 mg/kg to about 300 mg/kg. Effective doses will also vary, as recognized by those skilled in the art, dependant on route of administration, excipient usage, and the possibility of co-usage, pre-treatment, or post-treatment, with other therapeutic treatments including use of other chemotherapeutic agents and radiation therapy. Other chemotherapeutic agents that can be co-administered (either simultaneously or sequentially) include, but not limited to, paclitaxel and its derivatives (e.g., taxotere), doxorubicin, L-asparaginase, dacarbazine, amascrine, procarbazine, hexamethylmelamine, mitoxantrone, and gemicitabine.
  • The pharmaceutical composition may be administered via the parenteral route, including orally, topically, subcutaneously, intraperitoneally, intramuscularly, and intravenously. Examples of parenteral dosage forms include aqueous solutions of the active agent, in a isotonic saline, 5% glucose or other well-known pharmaceutically acceptable excipient. Solubilizing agents such as cyclodextrins, or other solubilizing agents well-known to those familiar with the art, can be utilized as pharmaceutical excipients for delivery of the therapeutic compounds. Because some of the compounds described herein can have limited water solubility, a solubilizing agent can be included in the composition to improve the solubility of the compound. For example, the compounds can be solubilized in polyethoxylated castor oil (Cremophor EL®) and may further contain other solvents, e.g., ethanol. Furthermore, compounds described herein can also be entrapped in liposomes that may contain tumor-directing agents (e.g., monoclonal antibodies having affinity towards tumor cells). [0041]
  • A compound described herein can be formulated into dosage forms for other routes of administration utilizing conventional methods. For example, it can be formulated in a capsule, a gel seal, or a tablet for oral administration. Capsules may contain any standard pharmaceutically acceptable materials such as gelatin or cellulose. Tablets may be formulated in accordance with conventional procedures by compressing mixtures of a compound described herein with a solid carrier and a lubricant. Examples of solid carriers include starch and sugar bentonite. Compounds of this invention can also be administered in a form of a hard shell tablet or a capsule containing a binder, e.g., lactose or mannitol, a conventional filler, and a tableting agent. [0042]
  • The activities of a compound described herein can be evaluated by methods known in the art, e.g., MTT (3-[4,5-dimehtythiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, clonogenic assay, ATP assay, or Extreme Drug Resistance (EDR) assay. See Freuhauf, J. P. and Manetta, A., [0043] Chemosensitivity Testing in Gynecologic Malignancies and Breast Cancer 19, 39-52 (1994). The EDR assay, in particular, is useful for evaluating the antitumor and antiproliferative activity of a compound of this invention (see Example 28 below). Cells are treated for four days with compound of the invention. Both untreated and treated cells are pulsed with tritiated thymidine for 24 hours. Radioactivity of each type of cells is then measured and compared. The results are then plotted to generate drug response curves, which allow IC50 values (the concentration of a compound required to inhibit 50% of the population of the treated cells) to be determined.
  • The histone acetylation activity of a compound described herein can be evaluated in an assay using mouse erythroleukemia cells. Studies are performed with the DS19 mouse erythroleukemia cells maintained in RPMI 1640 medium with 25 mM HEPES buffer and 5% fetal calf serum. The cells are incubated at 37° C. [0044]
  • Histones are isolated from cells after incubation for periods of 2 and 24 hours. The cells are centrifuged for 5 minutes at 2000 rpm in the Sorvall SS34 rotor and washed once with phosphate buffered saline. The pellets are suspended in 10 ml lysis buffer (10 mM Tris, 50 mM sodium bisulfite, 1% Triton X-100, 10 mM magnesium chloride, 8.6% sucrose, pH 6.5) and homogenized with six strokes of a Teflon pestle. The solution is centrifuged and the pellet washed once with 5 ml of the lysis buffer and once with 5 ml 10 mM Tris, 13 mM EDTA, pH 7.4. The pellets are extracted with 2×1 mL 0.25N HCl. Histones are precipitated from the combined extracts by the addition of 20 mL acetone and refrigeration overnight. The histones are pelleted by centrifuging at 5000 rpm for 20 minutes in the Sorvall SS34 rotor. The pellets are washed once with 5 mL acetone and protein concentration are quantitated by the Bradford procedure. [0045]
  • Separation of acetylated histones is usually performed with an acetic acid-urea polyacrylamide gel electrophoresis procedure. Resolution of acetylated H4 histones is achieved with 6,25N urea and no detergent as originally described by Panyim and Chalkley, [0046] Arch. Biochem. Biophys. 130, 337-346 (1969). 25 μg total histones are applied to a slab gel which is run at 20 ma. The run is continued for a further two hours after the Pyronon Y tracking dye has run off the gel. The gel is stained with Coomassie Blue R. The most rapidly migrating protein band is the unacetylated H4 histone followed by bands with 1, 2, 3 and 4 acetyl groups which can be quantitated by densitometry. The procedure for densitometry involves digital recording using the Alpha Imager 2000, enlargement of the image using the PHOTOSHOP program (Adobe Corp.) on a MACINTOSH computer (Apple Corp.), creation of a hard copy using a laser printer and densitometry by reflectance using the Shimadzu CS9000U densitometer. The percentage of H4 histone in the various acetylated states is expressed as a percentage of the total H4 histone.
  • The concentration of a compound of the invention required to decrease the unacetylated H4 histone by 50% (i.e., EC[0047] 50) can then be determined from data obtained using different concentrations of test compounds.
  • Histone deacetylase inhibitory activity can be measured based on procedures described by Hoffmann et al., [0048] Nucleic Acids Res., 27, 2057-2058 (1999). See Example 30 below. Briefly, the assay starts with incubating the isolated histone deacetylase enzyme with a compound of the invention, followed by the addition of a fluorescent-labeled lysine substrate (contains an amino group at the side chain which is available for acetylation). HPLC is used to monitor the labeled substrate. The range of activity of each test compound is preliminarily determined using results obtained from HPLC analyses. IC50 values can then be determined from HPLC results using different concentrations of compounds of this invention. All assays are duplicated or triplicated for accuracy. The histone deacetylase inhibitory activity can be compared with the increased activity of acetylated histone for confirmation.
  • Compounds of this invention are also evaluated for effects on treating X-linked adrenoleukodystrophy (X-ALD), a peroxisomal disorder with impaired very long-chain fatty acid (VLCFA) metabolism. In such an assay, cell lines derived from human primary fibroblasts and (EBV-transformed lymphocytes) derived from X-ALD patients grown on RPMI are employed. Tissue culture cells are grown in the presence or absence of test compounds. For VLCFA measurements, total lipids are extracted, converted to methyl esters, purified by TLC and subjected to capillary GC analysis as described in Moser et al., [0049] Technique in Diagnostic Biochemical Genetics: A Laboratory Manual (ed. A., H.F.) 177-191 (Wiley-Liss, New York, 1991). C24:0 β-oxidation activity of lyophoclastoid cells are determined by measuring their capacity to degrade [1-14C]-C24:0 fatty acid to water-soluble products as described in Watkins et al., Arch. Biochem. Biophys. 289, 329-336 (1991). The statistical significance of measured biochemical differences between untreated and treated X-ALD cells can be determined by a two-tailed Student's t-test. See Example 31 below.
  • Further, compounds of the present invention are evaluated for their effects in treating cystic fibrosis (CF). Since the initial defect in the majority of cases of CF is the inability of mutant CF protein (CFTR) to fold properly and exit the ER, compounds of the invention are tested to evaluate their efficacy in increasing the trafficking of the CF protein out of the ER and its maturation through the Golgi. During its biosynthesis, CFTR is initially synthesized as a nascent polypeptide chain in the rough ER, with a molecular weight of around 120 kDa (Band A). It rapidly receives a core glycosylation in the ER, giving it a molecular weight of around 140 kDa (Band B). As CFTR exits the ER and matures through the Golgi stacks, its glycosylation is modified until it achieves a terminal mature glycosylation, affording it a molecular weight of around 170 kDa (Band C). Thus, the extent to which CFTR exits the ER and traverses the Golgi to reach the plasma membrane may be reflected in the ratio of Band B to Band C protein. CFTR is immunoprecipitated from control cells, and cells exposed to test compounds. Both wt CFTR and ΔF508 CFTR expressing cells are tested. Following lysis, CFTR are immunoprecipitated using various CFTR antibodies. Immunoprecipitates are then subjected to in vitro phosphorylation using radioactive ATP and exogenous protein kinase A. Samples are subsequently solubilized and resolved by SDS-PAGE. Gels are then dried and subject to autoradiography and phosphor image analysis for quantitation of Bands B and C are determined on a BioRad personal fix image station. See Example 32 below. [0050]
  • Furthermore, compounds of this invention can be used to treat homozygous β thalassemia, a disease in which there is inadequate production of β globin leading to severe anemia. See Collins et al., [0051] Blood, 85(1), 43-49 (1995).
  • Still further, compounds of the present invention are evaluated for their use as antiprotozoal or antiparasitic agents. The evaluation can be conducted using parasite cultures (e.g., Asexual [0052] P. falciparum). See Trager, W. & Jensen, J. B., Science 193, 673-675 (1976). Test compounds of the invention are dissolved in dimethyl sulfoxide (DMSO) and added to wells of a flat-bottomed 96-well microtitre plate containing human serum. Parasite cultures are then added to the wells, whereas control wells only contain parasite cultures. After at least one invasion cycle, and addition of labeled hypoxanthine monohydrochloride, the level of incorporation of labeled hypoxanthine is detected. IC50 values can be calculated from data using a non-linear regression analysis.
  • The toxicity of a compound described herein is evaluated when a compound of the invention is administered by single intraperitoneal dose to test mice. See Example 33 below. After administration of a predetermined dose to three groups of test mice and untreated controls, mortality/morbidity checks are made daily. Body weight and gross necropsy findings are also monitored. For reference, see Gad, S. C. (ed.), [0053] Safety Assessment for Pharmaceuticals (Van Nostrand Reinhold, New York, 1995).
  • Without further elaboration, it is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent. The following specific examples, which described syntheses, screening, and biological testing of various compounds of this invention, are therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. All publications recited herein, including patents, are hereby incorporated by reference in their entirety.[0054]
  • EXAMPLE 1 Synthesis of 3-methyl-5-phenyl-2,4-pentadienoic acid
  • To a cooled (−10 to −5° C.) 165 mL of 3 M solution of methyl magnesium iodide in ether was added dropwise a solution of ethyl trans-cinnamate (25.0 g) in 200 mL of anhydrous ether. The reaction was warmed to room temperature and stirred overnight. The mixture was then heated up to 33° C. under reflux for two hours and cooled to 0° C. A white solid was formed during cooling and water (105 mL) was gradually added to dissolve the white precipitate followed by an additional 245 mL of saturated aqueous ammonium chloride solution. The mixture was then stirred until the solids were completely dissolved and extracted with 100 mL of ether three times. The combined extract was washed with 100 mL of water, dried over anhydrous sodium sulfate and filtered. The solvent was evaporated to give 22.1 g of the desired 4-phenyl-2-methyl-3-buten-2-ol as an oil which was used in the next step without further purification. [0055] 1H NMR (CDCl3, 300 MHz), δ(ppm) 7.41 (m, 5H), 6.58 (d, 1H), 6.34 (d, 1H), 1.41 (broad s, 6H).
  • Dimethylformamide (DMF, anhydrous, 25 mL) was cooled to 0-5° C. and phosphorus oxychloride (16.4 mL) was added dropwise over a period of an hour. The resulting solution was added dropwise to a cooled (0-5° C.) solution of 4-phenyl-2-methyl-3-buten-2-ol (0.14 mol) in 60 mL of anhydrous DMF over a period of an hour. The reaction mixture was then warmed to room temperature, gradually heated up to 80° C., stirred at 80° C. for three hours and cooled to 0-5° C. To the cooled reaction solution was added dropwise a solution of sodium acetate (80 g) in deionized water (190 mL) over a period of two hours. The mixture was then reheated to 80° C., stirred at 80° C. for an additional 10 minutes, cooled down to room temperature and extracted with ether (300 mL) twice. The combined extract was washed with water (200 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuum to yield 16.7 g of the desired 3-methyl-5-phenyl-2,4-pentadienal as a liquid which was used in the next step without further purification. [0056]
  • To a stirred solution of 3-methyl-5-phenyl-2,4-pentadienal (16.5 g) in ethanol (330 mL) was added dropwise a solution of silver nitrate (19.28 g) in water (160 mL) followed by dropwise addition of an aqueous sodium hydroxide (25 g, 80 mL) solution. The resulting mixture was allowed to stir for an additional five hours and then filtered. The solid was washed with ethanol. The combined filtrate was concentrated in vacuum. The residue was dissolved in water (200 mL). The aqueous solution was extracted with ether (300 mL) twice and acidified with 6 N hydrochloric acid (74 mL). The solid formed was filtered and recrystallized from methanol (40 mL) to yield 2.65 g of the desired 3-methyl-5-phenyl-2,4-pentadienoic acid. [0057] 1H NMR (acetone-d6, 300 MHz), δ(ppm) 7.60 (d, 2H), 7.35 (m, 3H), 7.06 (m, 2H), 6.02 (broad s, 1H), 2.50 (s, 3H).
  • EXAMPLE 2 Synthesis of 4-methyl-5-phenyl-2,4-pentadienoic acid
  • Butyllithium (135 mL of 2.5 N solution) was added to 600 mL of anhydrous tetrahydrofuran (THF) at −65° C. A solution of diethylphosphonoacetic acid (30.5 g) in 220 mL of anhydrous THF was added dropwise to the stirred solution at −65° C. over a period of 60 minutes. The resulting solution was stirred at −65° C. for an additional 30 minutes and then a solution of α-methyl-trans-cinnamaldehyde (23.2 g) in 100 mL of anhydrous THF was added to the reaction at −65° C. over a period of 70 minutes. The reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight. The reaction was then acidified with 5% hydrochloric acid (125 mL) to a pH of 2.8. The aqueous layer was extracted with 100 mL of ether twice and with 100 mL of ethyl acetate once. The combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. The crude material was dissolved in 100 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 25.8 g of the desired 4-methyl-5-phenyl-2,4-pentadienoic acid. [0058] 1H NMR (acetone-d6, 300 MHz), δ(ppm) 7.53 (d, 1H), 7.43 (m, 4H), 7.37 (dd, 1H), 6.97 (broad s, 1H), 6.02 (d, 1H), 2.07 (s, 3H).
  • EXAMPLE 3 Synthesis of 4-chloro-5-phenyl-2,4-pentadienoic acid
  • Butyllithium (50 mL of 2.5 N solution) was added to 250 mL of anhydrous tetrahydrofuran (THF) at −65° C. A solution of diethylphosphonoacetic acid (11.4 g) in 90 mL of anhydrous THF was added dropwise to the stirred solution at −65° C. The resulting solution was stirred at −65° C. for an additional 40 minutes and then a solution of α-chloro-cinnamaldehyde (10.0 g) in 60 mL of anhydrous THF was added to the reaction at −65° C. over a period of 95 minutes. The reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight. The reaction was then acidified with 5% hydrochloric acid (48 mL) to a pH of 3.9. The aqueous layer was extracted with 50 mL of ether twice and with 50 mL of ethyl acetate once. The combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. The crude material was dissolved in 30 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 9.2 g of the desired 4-chloro-5-phenyl-2,4-pentadienoic acid. [0059] 1H NMR (acetone-d6, 300 MHz), δ(ppm) 7.86 (d, 2H), 7.60 (d, 1H), 7.45 (m, 3H), 7.36 (broad s, 1H), 6.32 (d, 1H).
  • EXAMPLE 4 Synthesis of 5-phenyl-2-ene-4-pentynoic acid
  • Butyllithium (16 mL of 2.5 N solution) was added to 75 mL of anhydrous tetrahydrofuran (THF) at −65° C. A solution of diethylphosphonoacetic acid (3.6 g) in 25 mL of anhydrous THF was added dropwise to the stirred solution at −65° C. over a period of 15 minutes. The resulting solution was stirred at −65° C. for an additional 30 minutes and then a solution of phenylpropargyl aldehyde (2.5 g) in 20 mL of anhydrous THF was added to the reaction at −65° C. over a period of 20 minutes. The reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight. The reaction was then acidified with 6 N hydrochloric acid (5 mL) to a pH of 1.0. The aqueous layer was extracted with 75 mL of ethyl acetate three times. The combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. The crude material was recrystallized with chloroform:ether (90:10) and then refrigerated overnight. The crystals were filtered and dried under vacuum to afford 1.1 g of the desired 5-phenyl-2-ene-4-pentynoic acid. [0060] 1H NMR (acetone-d6, 300 MHz), δ(ppm) 7.50 (m, 5H), 6.98 (d, 1H), 6.35 (d, 1H).
  • EXAMPLE 5 Synthesis of 5-(p-dimethylaminophenyl)-2,4-pentadienoic acid
  • Butyllithium (24 mL of 2.5 N solution) was added to 120 mL of anhydrous tetrahydrofuran (THF) at −65° C. A solution of diethylphosphonoacetic acid (5.5 g) in 45 mL of anhydrous THF was added dropwise to the stirred solution at −65° C. over a period of one hour. The resulting solution was stirred at −65° C. for an additional 30 minutes and then a solution of p-dimethylaminocinnamaldehyde (5.0 g) in 80 mL of anhydrous THF was added to the reaction at −65° C. over a period of 30 minutes. The reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight. The reaction was then quenched with 400 mL of water and extracted with 300 mL of ethyl acetate three times. The aqueous layer was acidified with 5% hydrochloric acid (11 mL) to a pH of 6.1. The solid formed was filtered, washed with 75 mL of water and dried to yield 3.83 g of the desired 5-(p-dimethylaminophenyl)-2,4-pentadienoic acid. [0061] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.34 (m, 3H), 6.82 (m, 2H), 6.70 (d, 2H), 5.84 (d, 1H), 2.94 (s, 6H).
  • EXAMPLE 6 Synthesis of 5-(2-furyl)-2,4-pentadienoic acid
  • Butyllithium (70 mL of 2.5 N solution) was added to 350 mL of anhydrous tetrahydrofuran (THF) at −65° C. A solution of diethylphosphonoacetic acid (15.9 g) in 130 mL of anhydrous THF was added dropwise to the stirred solution at −65° C. over a period of 75 minutes. The resulting solution was stirred at −65° C. for an additional 30 minutes and then a solution of trans-3-(2-furyl)acrolein (10.0 g) in 85 mL of anhydrous THF was added to the reaction at −65° C. over a period of 2 hours. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then acidified with 5% hydrochloric acid (85 mL) to a pH of 3.5 followed by addition of 30 mL of water. The aqueous layer was extracted with 50 mL of ether twice and with 50 mL of ethyl acetate once. The combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to give an oil. The crude oil was dissolved in 45 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 9.2 g of the desired 5-(2-furyl)-2,4-pentadienoic acid. [0062] 1H NMR (acetone-d6, 300 MHz), δ(ppm) 7.64 (broad s, 1H), 7.42 (m, 1H), 6.86 (m, 2H), 6.58 (m, 2H), 6.05 (d, 1H).
  • EXAMPLE 7 Synthesis of 6-phenyl-3,5-hexadienoic acid
  • Triphenylphosphine (178.7 g) and 3-chloropropionic acid (73.9 g) were mixed in a 1-liter 3-neck round bottom flask equipped with a mechanical stirrer, reflux condenser with a nitrogen inlet and a thermocouple. The mixture was heated to 145° C. under nitrogen and stirred for 2 hours. The reaction was then cooled to 70° C. Ethanol (550 mL) was added and the mixture was refluxed at 80° C. until complete dissolution. The solution was cooled to room temperature and ether (900 mL) was added. The mixture was placed in the freezer overnight. The solids were collected by filtration and dried under vacuum to afford 217 g of 3-(triphenylphosphonium)propionic acid chloride as a white solid which was used in the next step without further purification. [0063]
  • Sodium hydride (12.97 g) in an oven dried 5-liter 3-neck round bottom flask equipped with a mechanical stirrer and a thermocouple was cooled to 0-5° C. in an ice bath. A solution of 3-(triphenylphosphonium)propionic acid chloride (100.0 g) and trans-cinnamaldehyde (34 mL) in 400 mL each of anhydrous dimethyl sulfoxide and tetrahydrofuran was added over a period of 3 hours. The reaction was then allowed to warm to room temperature and stirred overnight. The reaction mixture was cooled to 0-5° C. in an ice bath and water (1.6 liters) was added dropwise. The aqueous solution was acidified with 12 N hydrochloric acid (135 mL) to a pH of 1 and extracted with ethyl acetate (1.6 liters) twice. The combined organic layers was washed with water (1000 mL) three times, dried over anhydrous sodium sulfate and concentrated under vacuum to afford a yellow oil. The crude oil was dissolved in 125 mL of methylene chloride and chromatographed on a Biotage 75L silica gel column and eluted with methylene chloride:ether (9:1). The fractions containing the desired product were combined and the solvents were removed under vacuum to afford 10.38 g of 6-phenyl-3,5-hexadienoic acid. [0064] 1H NMR (CDCl3, 300 MHz), δ(ppm) 7.33 (m, 5H), 6.80 (m, 1H), 6.53 (d, 1H), 6.34 (m, 1H), 5.89 (m, 1H), 3.25 (d, 2H).
  • EXAMPLE 8 Synthesis of 7-phenyl-2,4,6-heptatrienoic acid
  • To a cooled (0-55° C.) 927 mL of 1 M solution of phenyl magnesium bromide in tetrahydofuran was added dropwise a solution of crotonaldehyde (65.0 g) in 130 mL of anhydrous ether over a period of 2 hours and 45 minutes. The reaction was stirred for an additional 45 minutes and then warmed to room temperature. After four more hours of stirring, saturated ammonium chloride aqueous solution (750 mL) was added to the reaction. The mixture was extracted with 750 mL of ether twice. The combined extract was dried over anhydrous potassium carbonate and filtered. The solvent was evaporated to give 135.88 g (99.9%) of the desired 1-phenyl-2-buten-1-ol as an oil which was used in the next step without further purification. [0065]
  • 1-Phenyl-2-buten-1-ol (135.88 g) was dissolved in 2300 mL of dioxane and treated with 2750 mL of dilute hydrochloric acid (2.3 mL of concentrated hydrochloric acid in 2750 mL of water) at room temperature. The mixture was stirred overnight and then poured into 4333 mL of ether and neutralized with 2265 mL of saturated aqueous sodium bicarbonate. The aqueous phase was extracted with 1970 mL of ether. The combined extract was dried over anhydrous potassium carbonate. Evaporation of the solvent followed by Kugelrohr distillation at 30° C. for 30 minutes afforded 131.73 g (96.8%) of the desired 4-phenyl-3-buten-2-ol as an oil which was used in the next step without further purification. [0066]
  • Dimethylformamide (DMF, anhydrous, 14 mL) was cooled to 0-5° C. and phosphorus oxychloride (8.2 mL) was added dropwise over a period of 40 minutes. The resulting solution was added dropwise to a cooled (0-5° C.) solution of 4-phenyl-3-buten-2-ol (10 g) in 32 mL of anhydrous DMF over a period of an hour. The reaction mixture was warmed to room temperature over a 35-minute period and then gradually heated up to 80° C. over a period of 45 minutes. The reaction was stirred at 80° C. for three hours and then cooled to 0-5° C. To the cooled reaction solution was added dropwise a solution of sodium acetate (40 g) in deionized water (100 mL) over a period of one hour. The mixture was then reheated to 80° C., stirred at 80° C. for an additional 10 minutes, cooled down to room temperature and extracted with ether (100 mL) twice. The combined extract was washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to yield 8.78 g of the desired 5-phenyl-2,4-pentadienal as a liquid which was used in the next step without further purification. [0067] 1H NMR (CDCl3, 300 MHz), δ(ppm) 7.51 (m, 2H), 7.37 (m, 3H), 7.26 (m, 1H), 7.01 (m, 2H), 6.26 (m, 1H).
  • Butyllithium (12.8 mL of 2.5 N solution) was added to 65 mL of anhydrous tetrahydrofuran (THF) at −65° C. A solution of diethylphosphonoacetic acid (2.92 g) in 25 mL of anhydrous THF was added dropwise to the stirred solution at −65° C. The resulting solution was stirred at −65° C. for an additional 30 minutes and then a solution of 5-phenyl-2,4-pentadienal (2.4 g) in 15 mL of anhydrous THF was added to the reaction at −65° C. The reaction was stirred for one hour, allowed to warm to room temperature and then stirred overnight. To the reaction was added 30 mL of water, acidified with 5% hydrochloric acid (14 mL) to a pH of 4.7 and then added an additional 20 mL of water. The aqueous layer was extracted with 10 mL of ether twice and with 10 mL of ethyl acetate once. The combined organic extract was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. The crude material was dissolved in 50 mL of hot methanol and then refrigerated overnight. The crystals formed were filtered and dried under vacuum to afford 2.4 g of the desired 7-phenyl-2,4,6-heptatrienoic acid. [0068] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.52 (m, 2H), 7.33 (m, 4H), 7.06 (m, 1H), 6.86 (m, 2H), 6.58 (m, 1H), 5.95 (d, 1H).
  • EXAMPLE 9 Synthesis of 8-phenyl-3,5,7-octatrienoic acid
  • A solution of 5-phenyl-2,4-pentadienal (15 g) and 3-(triphenylphosphonium)-propionic acid chloride (35.2 g) in 140 mL each of anhydrous tetrahydrofuran and anhydrous dimethyl sulfoxide was added dropwise to sodium hydride (4.6 g) at 0-5° C. under nitrogen over a period of four hours. The reaction was allowed to warm to room temperature and stirred overnight. The reaction mixture was cooled to 0-5° C. and water (280 mL) was added dropwise over a period of 30 minutes. The aqueous layer was extracted with ethyl acetate (280 mL) twice, acidified with 12 N hydrochloric acid (24 mL) to a pH of 1, extracted again with ethyl acetate (280 mL) twice. The combined organic layers were washed with water (500 mL) twice, dried over anhydrous sodium sulfate and concentrated under vacuum to give an oil. The oily crude product was chromatographed on a Biotage 40M silica gel column and eluted with methylene chloride:ethyl acetate (95:5). The fractions containing the desired product were combined and the solvents were removed under vacuum to afford 0.7 g of 8-phenyl-3,5,7-octatrienoic acid. [0069] 1H NMR (acetone-d6, 300 MHz), δ(ppm) 7.46 (m, 2H), 7.26 (m, 3H), 6.95 (m, 1H), 6.60 (d, 1H), 6.34 (m, 3H), 5.87 (m, 1H), 3.17 (d, 2H)
  • EXAMPLE 10 Synthesis of potassium 2-oxo-6-phenyl-3,5-hexadienoate
  • A solution of trans-cinnamaldehyde (26.43 g) and pyruvic acid (11.9 mL) in 10 mL of methanol was stirred and chilled to 0-5° C. in an ice bath. To the chilled solution was added 35 mL of potassium hydroxide (16.83 g in 50 mL of methanol) over a period of 20 minutes. The remaining methanolic potassium hydroxide was added rapidly and the ice bath was removed. The solution changed from a yellow to a dark orange and the precipitate was formed. The reaction mixture was chilled in the refrigerator overnight and the solid was collected by filtration, washed with 50 mL of methanol three times, 50 mL of ether and then air dried to afford 29.3 g of the desired 2-oxo-6-phenyl-3,5-hexadienoate as a yellow solid (61.0%). [0070] 1H NMR (DMSO-d6/D2O, 300 MHz), δ(ppm) 7.48 (d, 2H), 7.28 (m, 4H), 7.12 (d, 2H), 6.27 (d, 1H).
  • EXAMPLE 11 Synthesis of potassium 2-oxo-8-phenyl-3,5,7-octatrienoate
  • To a cooled (0-55° C.) 927 mL of 1 M solution of phenyl magnesium bromide in tetrahydofuran was added dropwise a solution of crotonaldehyde (65.0 g) in 130 mL of anhydrous ether over a period of 2 hours and 45 minutes. The reaction was stirred for an additional 45 minutes and then warmed to room temperature. After four more hours of stirring, saturated ammonium chloride aqueous solution (750 mL) was added to the reaction. The mixture was extracted with 750 mL of ether twice. The combined extract was dried over anhydrous potassium carbonate and filtered. The solvent was evaporated to give 135.88 g (99.9%) of the desired 1-phenyl-2-buten-1-ol as an oil which was used in the next step without further purification. [0071]
  • 1-Phenyl-2-buten-1-ol (135.88 g) was dissolved in 2300 mL of dioxane and treated with 2750 mL of dilute hydrochloric acid (2.3 mL of concentrated hydrochloric acid in 2750 mL of water) at room temperature. The mixture was stirred overnight and then poured into 4333 mL of ether and neutralized with 2265 mL of saturated sodium bicarbonate. The aqueous phase was extracted with 1970 mL of ether. The combined extract was dried over anhydrous potassium carbonate. Evaporation of the solvent followed by Kugelrohr distillation at 30° C. for 30 minutes afforded 131.73 g (96.8%) of the desired 4-phenyl-3-buten-2-ol as an oil which was used in the next step without further purification. [0072]
  • Dimethylformamide (DMF, anhydrous, 14 mL) was cooled to 0-5° C. and phosphorus oxychloride (8.2 mL) was added dropwise over a period of 40 minutes. The resulting solution was added dropwise to a cooled (0-5° C.) solution of 4-phenyl-3-buten-2-ol (10 g) in 32 mL of anhydrous DMF over a period of an hour. The reaction mixture was warmed to room temperature over a 35-minute period and then gradually heated up to 80° C. over a period of 45 minutes. The reaction was stirred at 80° C. for three hours and then cooled to 0-5° C. To the cooled reaction solution was added dropwise a solution of sodium acetate (40 g) in deionized water (100 mL) over a period of one hour. The mixture was then reheated to 80° C., stirred at 80° C. for an additional 10 minutes, cooled down to room temperature and extracted with ether (100 mL) twice. The combined extract was washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to yield 8.78 g of the desired 5-phenyl-2,4-pentadienal as a liquid which was used in the next step without further purification. [0073] 1H NMR (CDCl3, 300 MHz), δ(ppm) 7.51 (m, 2H), 7.37 (m, 3H), 7.26 (m, 1H), 7.01 (m, 2H), 6.26 (m, 1H).
  • A solution of 5-phenyl-2,4-pentadienal (6.70 g) and pyruvic acid (3.0 mL) in 5 mL of methanol was stirred and chilled to 0-5° C. in an ice bath. To the chilled solution was added a solution of 35 mL of potassium hydroxide (3.5 g) in 10 mL of methanol dropwise over a period of 30 minutes. The remaining methanolic potassium hydroxide was added rapidly and the ice bath was removed. The reaction was allowed to warm to room temperature and stirred for another hour. The flask was then refrigerated overnight. The solid was collected by filtration, washed with 15 mL of methanol three times, 15 mL of ether and then air dried to afford 6.69 g of potassium 2-oxo-8-phenyl-3,5,7-octatrienoate as a yellow solid. [0074] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.52 (d, 2H), 7.32 (m, 3H), 7.10 (m, 2H), 6.83 (dd, 2H), 6.57 (dd, 1H), 6.13 (d, 1H).
  • EXAMPLE 12 Synthesis of cinnamoylhydroxamic acid
  • Triethylamine (TEA, 17.6 mL) was added to a cooled (0-5° C.) solution of trans-cinnamic acid (15.0 g) in 200 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (16.4 mL). The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (17.6 g) was added followed by dropwise addition of 35 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with 250 mL of 1% (by weight) citric acid solution and 50 mL of 5% (by weight) citric acid solution and then extracted with 200 mL of methylene chloride twice and 200 mL of ether once. The solvents were removed under vacuum. The residue was triturated with 125 mL of water, filtered, washed with 25 mL of water and dried under vacuum to give a tan solid. The crude product was chromatographed on a Biotage 75S column and eluted with methylene chloride:acetonitrile (80:20). The fractions containing the desired product were combined and the solvent was removed under vacuum to yield 4.1 g of cinnamoylhydroxamic acid. [0075] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.48 (m, 6H), 6.49 (d, 1H).
  • EXAMPLE 13 Synthesis of N-methyl-cinnamoylhydroxamic acid
  • A solution of cinnamoyl chloride (5 g) in 50 mL of methylene chloride was added dropwise to a solution of N-methylhydroxylamine hydrochloride (5 g) and 12 mL of 40% sodium hydroxide in 50 mL of water cooled to 0-5° C. The reaction mixture was stirred for two hours. The aqueous layer was acidified with concentrated hydrochloric acid. The precipitate was collected by filtration and dried under vacuum to afford 2.8 g of the desired N-methyl-cinnamoylhydroxamic acid as a white solid. [0076] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.66 (d, 2H), 7.53 (d, 1H), 7.42 (m, 3H), 7.26 (d, 1H), 3.22 (s, 3H).
  • EXAMPLE 14 Synthesis of 5-phenyl-2,4-pentadienoylhydroxamic acid
  • Triethylamine (TEA, 29 mL) was added to a cooled (0-5° C.) solution of 5-phenyl-2,4-pentadienoic acid (29.0 g) in 300 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (27.0 mL). The reaction mixture was stirred for 15 minutes and hydroxylamine hydrochloride (28.92 g) was added followed by dropwise addition of 58 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then poured into 450 mL of a 1% (by weight) solution of citric acid and then extracted with 200 mL of methylene chloride twice and 500 mL of ether once. The solvents were removed under vacuum to give an oil. The crude oil was crystallized with 200 mL of hot acetonitrile to give a tan solid. The tan solid was recrystallized from 60 mL of hot acetonitrile to afford 12.5 g of the desired 5-phenyl-2,4-pentadienoylhydroxamic acid. [0077] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.56 (d, 2H), 7.31 (m, 4H), 7.03 (m, 2H), 6.05 (s, 1H).
  • EXAMPLE 15 Synthesis of N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid
  • 5-Phenyl-2,4-pentadienoic acid (6 g) and oxalyl chloride (6.1 mL) were dissolved in 50 mL of methylene chloride and 0.2 mL of dimethylformamide was added. The reaction was stirred for three hours, concentrated under vacuum and then co-evaporated with 100 mL of chloroform to remove oxalyl chloride. The crude 5-phenyl-2,4-pentadienoic acid chloride was used in the next step without further purification. [0078]
  • 5-Phenyl-2,4-pentadienoic acid chloride was dissolved in 50 mL of methylene chloride and added to a solution of 13.8 mL of 40% sodium hydroxide in 50 mL of water at 0-5° C. The resulting solution was stirred for two hours and then acidified to a pH of 4 with concentrated hydrochloric acid. The precipitate was collected by filtration and dried under vacuum to afford 4.2 g of N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid. [0079] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.57 (d, 2H), 7.35 (m, 4H), 7.19 (m, 1H), 6.99 (d, 1H), 6.82 (d, 1H), 3.21 (s, 3H).
  • EXAMPLE 16 Synthesis of 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid
  • Triethylamine (TEA, 1.8 mL) was added to a cooled (0-5° C.) solution of 3-methyl-5-phenyl-2,4-pentadienoic acid (2.0 g) in 20 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (1.7 mL) over a period of 15 minutes. The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (1.85 g) was added followed by dropwise addition of 3.7 mL of TEA over a period of 35 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. To the stirred reaction mixture at room temperature was added 20 mL of a 1% (by weight) solution of citric acid followed by 75 mL of water. The mixture was stirred for 30 minutes and then filtered. The filtered cake was washed with 30 mL of water and dried in vacuum to afford 1.49 g of the desired 3-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid in 69% yield. [0080] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.55 (d, 2H), 7.30 (m, 3H), 6.89 (broad s, 2H), 5.83 (s, 1H), 2.38 (s, 3H).
  • EXAMPLE 17 Synthesis of 4-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid
  • Triethylamine (TEA, 6.5 mL) was added to a cooled (0-5° C.) solution of 4-methyl-5-phenyl-2,4-pentadienoic acid (7.0 g) in 75 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (6.0 mL) over a period of 60 minutes. The reaction mixture was stirred for 15 minutes and hydroxylamine hydrochloride (6.5 g) was added followed by dropwise addition of 13 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. To the stirred reaction mixture at room temperature was added 130 mL of a 1% (by weight) solution of citric acid followed by 50 mL of water. The mixture was stirred for 30 minutes and then filtered. The filtered cake was recrystallized from hot acetonitrile to afford 4.4 g of the desired 4-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid. [0081] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.37 (m, 6H), 6.91 (s, 1H), 6.02 (d, 1H), 1.99 (s, 3H).
  • EXAMPLE 18 Synthesis of 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid
  • Triethylamine (TEA, 2.5 mL) was added to a cooled (0-5° C.) solution of 4-chloro-5-phenyl-2,4-pentadienoic acid (3.0 g) in 30 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (2.3 mL) over a period of 15 minutes. The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (2.5 g) was added followed by dropwise addition of 5.0 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then quenched with 30 mL of a 1% (by weight) solution of citric acid followed by 115 mL of water. The mixture was stirred for 30 minutes and then filtered. The filtered cake was washed with 100 mL of water and dried under vacuum. The crude material was recrystallized from 20 mL of hot acetonitrile twice to yield 1.46 g of the desired 4-chloro-5-phenyl-2,4-pentadienoylhydroxamic acid as a solid. [0082] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.75 (d, 2H), 7.40 (m, 5H), 6.31 (d, 1H).
  • EXAMPLE 19 Synthesis of 5-phenyl-2-ene-4-pentynoylhydroxamic acid
  • Triethylamine (TEA, 1.1 mL) was added to a cooled (0-5° C.) solution of 5-phenyl-2-ene-4-pentynoic acid (1.1 g) in 13 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (1.0 mL). The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (1.1 g) was added followed by dropwise addition of 2.2 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with 15 mL of a 1% (by weight) solution of citric acid and extracted with 30 mL of methylene chloride twice. The combined organic layer was dried over anhydrous sodium sulfate. The solvents were removed under vacuum to give an oil which in turn was triturated with 10 mL of chloroform. The solid was collected by filtration to yield 0.63 g of the desired 5-phenyl-2-ene-4-pentynoylhydroxamic acid as a white powder. [0083] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.48 (m, 5H), 6.76 (d, 1H), 6.35 (d, 1H).
  • EXAMPLE 20 Synthesis of 5-(p-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid
  • Triethylamine (TEA, 0.8 mL) was added to a cooled (0-5° C.) solution of 5-(p-dimethylaminophenyl)-2,4-pentadienoic acid (1.0 g) in 10 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (0.7 mL). The reaction mixture was stirred for 60 minutes and hydroxylamine hydrochloride (0.8 g) was added followed by dropwise addition of 1.6 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was quenched with 15 mL of water. The solid was filtered and dried under vacuum to yield 0.75 g of the desired 5-(p-dimethylaminophenyl)-2,4-pentadienoylhydroxamic acid. [0084] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.33 (m, 3H), 6.86 (m, 2H), 6.70 (d, 2H), 5.84 (d, 1H), 2.99 (s, 6H).
  • EXAMPLE 21 Synthesis of 5-(2-furyl)-2,4-pentadienoylhydroxamic acid
  • Triethylamine (TEA, 2.1 mL) was added to a cooled (0-5° C.) solution of 5-(2-furyl)-2,4-pentadienoic acid (2.0 g) in 15 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformnate (2.0 mL) over a period of 30 minutes. The reaction mixture was stirred for 30 minutes and hydroxylamine hydrochloride (2.15 g) was added followed by dropwise addition of 4.2 mL of TEA over a period of 60 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. To the stirred reaction mixture at room temperature was added 12 mL of a 1% (by weight) solution of citric acid followed by 46 mL of water. The mixture was stirred for 30 minutes and then filtered. The filtered cake was washed with 30 mL of water and dried in vacuum to afford 1.3 g of the desired 5-(2-furyl)-2,4-pentadienoylhydroxamic acid. [0085] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.73 (broad s, 1H), 7.22 (m, 1H), 6.71 (m, 4H), 6.01 (d, 1H).
  • EXAMPLE 22 Synthesis of 6-phenyl-3,5-hexadienoylhydroxamic acid
  • Triethylamine (TEA, 1.75 mL) was added to a cooled (0-5° C.) solution of 6-phenyl-3,5-hexadienoic acid (2.0 g) in 30 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (1.62 mL) over a period of 15 minutes. The reaction mixture was stirred for 15 minutes and hydroxylamine hydrochloride (1.74 g) was added followed by dropwise addition of 3.5 mL of TEA at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. The reaction was then poured into 20 mL of 1% (by weight) aqueous citric acid solution and extracted with 20 mL of methylene chloride twice and ether once. The combined organic layer was dried over anhydrous sodium sulfate and concentrated under vacuum to give a dark red oil. The crude oil was crystallized with 10 mL of hot acetonitrile. The solid was collected by filtration and then purified on a Biotage 40S silica gel column using methylene chloride:ether (95:5) as an eluent. The fractions containing the desired product were combined and the solvent was removed to give 40 mg of 6-phenyl-3,5-hexadienoylhydroxamic acid as a tan solid (2.1%). [0086] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.34 (m, 5H), 6.91 (m, 1H), 6.55 (d, 1H), 6.30 (m, 1H), 5.89 (m, 1H), 3.36 (d, 2H).
  • EXAMPLE 23 Synthesis of N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid
  • 6-Phenyl-3,5-hexadienoic acid (1 g) was dissolved in 10 mL of tetrahydrofuran (THF) and treated with 0.9 g of 1,1′-carbonyldiimidazole. The reaction was stirred for 30 minutes. N-methylhydroxylamine hydrochloride (0.44 g) was neutralized with 0.29 g of sodium methoxide in 10 mL of THF and 5 mL of methanol and then filtered to remove the sodium chloride. N-methylhydroxylamine was then added to the reaction mixture and stirred overnight. The resulting mixture was partitioned between 25 mL of water and 50 mL of ethyl acetate. The ethyl acetate layer was washed with 25 mL each of 5% hydrochloric acid, saturated sodium bicarbonate and brine, dried over sodium sulfate and concentrated under vacuum to afford 0.9 g of a viscous yellow oil. The crude product was chromatographed on a Biotage 40S silica gel column and eluted with ethyl acetate:hexane (1:1). The fractions containing the desired product were combined and the solvent was removed under vacuum to yield 0.17 g of N-methyl-6-phenyl-3,5-hexadienoylhydroxamic acid. [0087] 1H NMR (CDCl3, 300 MHz), δ(ppm) 7.38 (m, 5H), 6.80 (m, 1H), 6.60 (m, 1H), 6.35 (m, 1H), 5.89 (m, 1H), 3.24 (m, 2H), 2.92 (s, 3H).
  • EXAMPLE 24 Synthesis of 7-phenyl-2,4,6-heptatrienoylhydroxamic acid
  • Triethylamine (TEA, 24.1 mL) was added to a cooled (0-5° C.) solution of 7-phenyl-2,4,6-heptatrienoic acid (27.8 g) in 280 mL of anhydrous dimethylformamide. To this solution was added dropwise isobutyl chloroformate (22.5 mL) over a period of 75 minutes. The reaction mixture was stirred for 40 minutes and hydroxylamine hydrochloride (24.2 g) was added followed by dropwise addition of 48 mL of TEA over a period of 70 minutes at 0-5° C. The reaction was allowed to warm to room temperature and stirred overnight. To the stirred reaction mixture at room temperature was added 280 mL of a 1% (by weight) solution of citric acid followed by 1050 mL of water. The mixture was stirred for 30 minutes and then filtered. The filtered cake was washed with water (200 mL) and dried under vacuum to afford 20.5 g of the desired 7-phenyl-2,4,6-heptatrienoylhydroxamic acid. [0088] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.48 (m, 2H), 7.32 (m, 2H), 7.19 (m, 2H), 7.01 (m, 1H), 6.51 (m, 1H), 5.93 (d, 1H).
  • EXAMPLE 25 Synthesis of 4-cyclohexylbutyroylhydroxamic acid
  • To a solution of hydroxylamine hydrochloride (7.3 g) in 50 mL of methanol was added 24 mL of sodium methoxide (25% wt.) dropwise at room temperature over a period of 45 minutes. To this solution was added methyl 4-cyclohexylbutyrate in 50 mL of methanol at room temperature followed by 12 mL of sodium methoxide (25% wt.) dropwise over a period of 60 minutes. The resulting mixture was stirred at room temperature overnight. The reaction was then poured into 120 mL of water and acidified to a pH of 4 with 45 mL of glacial acetic acid. Methanol was removed under vacuum. The solid formed was filtered and dried over phosphorus pentoxide to afford 8.53 g of the desired 4-cyclohexylbutyroylhydroxamic acid. [0089] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 3.38 (m, 2H), 1.91 (t, 2H), 1.68 (m, 4H), 1.50 (m, 2H), 1.16 (m, 5H), 0.84 (m, 2H).
  • EXAMPLE 26 Synthesis of S-benzylthioglycoloylhydroxamic acid
  • S-benzylthioglycolic acid (12.0 g) was dissolved in 250 mL of methanol and sparged with hydrogen chloride gas at room temperature for 20 minutes. The solvent was then removed under vacuum. Methyl S-benzylthioglycolate obtained was used in the next step without further purification. [0090]
  • To a solution of hydroxylamine hydrochloride (9.2 g) in 60 mL of methanol was added 30 mL of sodium methoxide (25% wt.) dropwise at room temperature over a period of 30 minutes. To this solution was added methyl S-benzylthioglycolate in 50 mL of methanol at room temperature followed by 15 mL of sodium methoxide (25% wt.) dropwise over a period of 60 minutes. The resulting mixture was stirred at room temperature overnight. The reaction was then poured into 150 mL of water and acidified to a pH of 4 with 55 mL of glacial acetic acid. Methanol was removed under vacuum. The solid formed was filtered and dried over phosphorus pentoxide to afford 8.57 g of the desired S-benzylthioglycoloylhydroxamic acid. [0091] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.29 (m, 5H), 3.84 (s, 2H), 2.93 (s, 2H).
  • EXAMPLE 27 Synthesis of 5-phenylpentanoloylhydroxamic acid
  • 5-Phenylpentanoic acid (10.0 g) was dissolved in 250 mL of methanol and sparged with hydrogen chloride gas at room temperature for 15 minutes. The solvent was then removed under vacuum. Methyl 5-phenylpentanoate obtained was used in the next step without further purification. [0092]
  • To a solution of hydroxylamine hydrochloride (7.8 g) in 50 mL of methanol was added 26 mL of sodium methoxide (25% wt.) dropwise at room temperature over a period of 45 minutes. To this solution was added methyl 5-phenylpentanoate in 50 mL of methanol at room temperature followed by 15 mL of sodium methoxide (25% wt.) dropwise over a period of 60 minutes. The resulting mixture was stirred at room temperature overnight. The reaction was then poured into 150 mL of water and acidified to a pH of 4 with 40 mL of glacial acetic acid. The solvents were removed under vacuum to give a yellow oil. The yellow oil was placed on a Biotage 40M silica gel column and eluted with methylene chloride:ethanol (95:5). The fractions containing the desired product as indicated by the NMR were combined. The solvents were removed under vacuum to afford 8.30 g of the desired 5-phenylpentanoylhydroxamic acid. [0093] 1H NMR (DMSO-d6, 300 MHz), δ(ppm) 7.22 (m, 5H), 3.42 (s, 3H), 2.55 (t, 2H), 1.98 (t, 2H), 1.52 (m, 4H).
  • EXAMPLE 28 In vitro Efficacy Studies—Extreme Drug Resistance (EDR) Assay
  • The PC3 cell line was maintained in RPMI supplemented with 10% fetal calf serum and antibiotics. Cells were suspended in 0.12% soft agar in complete medium and plated (2,000 cells per well) in different drug concentrations onto a 0.4% agarose underlayer in 24-well plates. Plating calls on agarose underlayers supports the proliferation only of the transformed cells, ensuring that the growth signal stems from the malignant component of the tumor. [0094]
  • All compounds were dissolved were dissolved in DMSO to 200× stock solutions. Stock solutions were diluted to 20× working solutions using the tissue culture medium, serially diluted and added to the 24-well plates. The initial range of concentrations was 1 micromolar to 200 micromolar. This concentration range was extended in the case of N-methyl-5-phenyl-2,4-pentadienoylhydroxamic acid to 10 μM -500 μM and in the case of tricostatin A to 0.001 μM to 0.3 μM. No significant changes in pH of the culture medium were observed under the above conditions. Diluent control wells contained PC3 cells treated with DMSO, at the dilutions used for appropriate drug treatment. All experimental points were represented by two separate wells (duplicates). Four wells containing tumor cells that were not treated with drugs served as negative controls in each experiment. [0095]
  • Cells were incubated with drugs under standard culture conditions for 5 days. Cultures were pulsed with tritiated thymidine ([0096] 3H-TdR, New Life Science Products, Boston, Mass.) at 5 μCi per well for the last 48 hours of the culture period. Cell culture plates were then heated to 90° C. to liquefy the agarose, and cells were harvested onto glass fiber filters, which were then placed into counting vials containing liquid scintillation fluid. The radioactivity trapped on the filters was counted with a Beckman scintillation counter. The fraction of surviving cells was determined by comparing 3H-TdR incorporation in treated (experimental points) and untreated (negative control) wells. Microsoft Excel was used to organize the raw data on EDR experiments, and the SigmaPlot program was utilized to generate drug response curves. All drug response curves were as approximated as sigmoidal equations (characteristic for typical drug response curves) to fit the data. IC50 values were determined using the approximated sigmoidal curves and expressed as mM.
  • IC[0097] 50 values of the test compounds of the invention range from approximately 1 μM to approximately 2000 μM.
  • EXAMPLE 29 Histone (Hyper)Acetylation Assay
  • The model used in this assay was mouse erythroleukemia cells. Specifically, the level of acetylation of H4 histones in these erythroleukemia cells was monitored. H4 histones was chosen as the target due to the ease of resolution of the variably acetylated histones. Inhibition of histone deacetylase leads to increased (hyper)acetylation of histones. Activities on histone deacetylase were examined to confirm the results of this assay. See Example 30 below. [0098]
  • Studies were performed with the DS19 mouse erythroleukemia cells maintained in RPMI 1640 medium with 25 mM HEPES buffer and 5% fetal calf serum. The cells were incubated at 37° C. In studies on proliferation, cell density was determined at 24 hour intervals using a hemacytometer. [0099]
  • Histone Isolation
  • Histones were isolated from cells after incubation for 2 or 24 hours. The cells were centrifuged for 5 minutes at 2,000 rpm in the Sorvall SS34 rotor and washed once with phosphate buffered saline. The pellets were suspended in 5 mL lysis buffer (10 mM Tris, 50 mM sodium bisulfite, 1%Triton X-100, 10 mM magnesium chloride, 8.6% sucrose, pH 6.5) and homogenized with six strokes of a teflon pestle. The homogenizing tubes were rinsed with 5 mL lysis buffer. The combined solutions were centrifuged and the pellets were washed once with 5 mL of the lysis buffer and once with 5 mL 10 mM Tris, 13 mM EDTA, pH 7.4. The pellets were extracted with 2×1 mL 0.25N HCl. Histones were precipitated from the combined extracts by the addition of 20 mL acetone and refrigeration overnight. The histones were pelleted by centrifuging at 5,000 rpm for 20 minutes in the Sorvall SS34 rotor. The pellets were washed once with 5 mL acetone and protein concentration was quantitated by the Bradford procedure. [0100]
  • Polyacrylamide Gel Electrophoresis
  • Separation of acetylated histones was performed with an acetic acid-urea polyacrylamide gel electrophoresis procedure as originally described by Panyim and Chalkley, [0101] Arch. Biochem. Biophys. 130, 337-346 (1969). 25 μg histones were applied to a slab gel which was run at 20 ma. The run was continued for a further two hours after the Pyronin Y tracking dye had run off the gel. The gel was stained with Coomassie Blue R. The most rapidly migrating protein band is the unacetylated H4 histone followed by bands with 1,2,3 and 4 acetyl groups which were quantitated by densitometry.
  • Densitometry
  • Densitometry was measured through digital recording using the Alpha Imager 2000. Enlargement of the image was done using PHOTOSHOP (Adobe Corp.) on a MACINTOSH (Apple Corp.) computer. After creating a hard copy of the gel by using a laser printer, a Shimadzu CS9OOOU densitometer was used to measure densitometry by reflectance. The percentage of H4 histone in the various acetylated states was expressed as a percentage of the total H4 histone. [0102]
  • Results
  • Many of the test compounds of the invention showed EC[0103] 50 values in micromolar concentration range.
  • EXAMPLE 30 Histone Deacetylation Assay
  • The determination of the inhibition of histone deacetylase by compounds of the invention was based upon the procedure described by Hoffmann et al., [0104] Nucleic Acids Res. 27, 2057-2058 (1999). The histone deacetylase was isolated from rat liver as previously described in Kolle, D. et al. Methods: A Companion to Methods in Enzmology 15: 323-331 (1998). Compounds were initially dissolved in either ethanol or in DMSO to provide a working stock solution. The synthetic substrate used in the assay is N-(4-methyl-7-coumarinyl)-N-α(tert-butyloxy-carbonyl)-N-Ω-acetyllysineamide (MAL).
  • The assay was performed in a final total volume of 120 μL consisting of 100 μL of 15 mM tris-HCl buffer at pH 7.9 and 0.25 mM EDTA, 10 mM NaCl, 10% glycerol, 10 mM mercaptoethanol and the enzyme. The assay was initiated upon the addition of 10 μl of a test compound followed by the addition of a fluorescent-labeled lysine substrate to each assay tube in an ice bath for 15 minutes. The tubes were transferred to a water bath at 37° C. for an additional 90 minutes. [0105]
  • An initial assay was performed to determine the range of activity of each test compound. The determination of IC[0106] 50 values was made from the results of five dilutions in range according to the expected potency for each test compound. Each assay was duplicated or triplicated.
  • Test compounds of the invention showed potent inhibition of histone deacetylase, having IC[0107] 50 values in the low micromolar concentration range (e.g., two test compounds showed IC50 values of 1.7 μM and 1.8 μM).
  • EXAMPLE 31 X-ALD Screening Assay Cell Cultures and Drug Treatment
  • Cell lines derived from X-ALD human patients were grown in RPMI supplemented with fetal calf serum (10%), penicillin (100 U/mL), streptomycin (100 U/mL) and glutamine (2 mM). On day 0, cells were divided into two separate tissue culture flasks, and test compounds (2.5-250 μM final concentration, diluted from a 0.5 M stock solution in PBS, pH 7.6) was added to one flask. Cells in the second flask were grown in the absence of test compounds for the same length of time and served as controls. The media were changed every 3-4 days. [0108]
  • Biochemical Measurements
  • As described above, tissue culture cells were grown in the presence or absence of test compounds, collected from tissue culture flasks using trypsin, washed twice with PBS and subjected to biochemical analysis. VLCFA measurements was conducted by extracting total amount of lipids, converted the lipids to methyl ester, purified by TLC, and subjected to capillary CC analysis as described in Moser et al., [0109] Technique in Diagnostic Biochemical Genetics: A Laboratory Manual (ed. A., H.F.) 177-191 (Wiley-Liss, New York, 1991). Duplicate assays were set up independently and were assayed on different days. C24:0 β-oxidation activity of lymphoblastoid cells was determined by measuring their capacity to degrade [1-14C]-C24:0 fatty acid to water-soluble products as described in Watkins et al., Arch. Biochem. Biophys. 289, 329-336 (1991). The statistical significance of measured biochemical differences between untreated and treated X-ALD cells can be determined by a two-tailed Student's t-test.
  • Compounds of the invention were found to decrease the cellular content of the VLCFA by approximately 60 percent in the X-ALD cells. [0110]
  • EXAMPLE 32 Cystic Fibrosis Screening Assay
  • As described above, during its biosynthesis, CFTR is initially synthesized as a nascent polypeptide chain in the rough ER, with a molecular weight of around 120 kDa (Band A). It rapidly receives a core glycosylation in the ER, giving it a molecular weight of around 140 kDa (Band B). As CFTR exits the ER and matures through the Golgi stacks, its glycosylation is modified until it achieves a terminal mature glycosylation, affording it a molecular weight of around 170 kDa (Band C). The extent to which CFTR exits the ER and traverses the Golgi to reach the plasma membrane may be reflected in the ratio of Band B to Band C protein. CFTR is immunoprecipitated from control cells, and cells exposed to test compounds. Both wt CFTR and ΔF508 CFTR expressing cells are tested. Following lysis, CFTR are immunoprecipitated using various CFTR antibodies. Immunoprecipitates are then subjected to in vitro phosphorylation using radioactive ATP and exogenous protein kinase A. Samples are subsequently solubilized and resolved by SDS-PAGE. Gels are then dried and subject to autoradiography and phosphor image analysis for quantitation of Bands B and C are determined on a BioRad personal fix image station. [0111]
  • Cell Culture
  • Chinese hamster ovary (CHO) cells stably expressing both wt and ΔF508 CFTR were used in these assays. The cultures were grown on 100 mm plastic cell dishes in DMEM containing 10% foetal bovine serum (FBS) and kept at 5% CO[0112] 2/95% O2 at 37° C. Cells were grown to confluence and used 3-5 days post-plating. All test compounds were added to cells for 24 hours prior to analysis.
  • Immunoprecipitation
  • Cells were treated with test compounds and CFTR immunoprecipitated as described in Bradbury et al. [0113] Am. J. Physiol. 276, L659-668 (1999). Briefly, treated cells were lysed in buffer containing 1% TRITON X-100 and various protease inhibitors. Soluble material was immunoprecipitated using both R domain and C-terminal monoclonal antibodies. Immunoprecipitated CFTR was then subject to in vitro phosphorylation using camp-dependent PKA catalytic subunit and [γ-32P]ATP, followed by resolution on SDS-PAGE gels. After fixation, the gels were dried and processed for autoradiography and phosphor image analysis. Quantitation of B and C bands on a BioRad personal fix image analysis station.
  • It was found that compounds of the invention (at 100 μM) showed no significant changes in the levels of Bands B and C in treated cells relative to untreated cells. Based on the results obtained from using these test compounds, there was no gross effect of the test compounds on the expression levels of wild type CFTR. Analysis of band C of ΔF508 CFTR CHO cells showed that very little Band C was present in ΔF508 cells compared to wild-type cells. Exposure of these cells to test compounds at 100 μM for 24 hours at 37° C. did not affect the level of Band C CFTR in either wild-type or ΔF508 CFTR expressing cells. In contrast, analysis of Band B CFTR in ΔF508 cells showed that test compounds at 100 μM resulted in a significant increase (about 6-7 fold) in the level of Band B compared to ΔF508 cells not exposed to the test compounds. [0114]
  • EXAMPLE 33 Toxicity Assay
  • Test compounds of the invention were administered to three groups of 10 mice at 100, 300, and 1,000 mg/kg. An additional group received vehicle (20% hydroxypropyl-β-cyclodextrin aqueous solution) at 10 mL/kg. Mortality/morbidity checks were made twice daily. Clinical observations were recorded predose and /or postdose on Day 1, and daily thereafter through Day 8. Body weights were recorded on the day of dosing (Day 1) and on Day 8. Mice were euthanized by CO[0115] 2 asphyxiation and necropsied on Day 8 or upon death.
  • One test compound was tested so far and based on the results obtained, the no-observed toxicity level for this compound when administered to CD-1 mice as a single intraperitoneal does 100 mg/kg. Clinical signs of toxicity were noted after dosing at 300 mg/kg with recovery within 24 hours, while dosing at 1,000 mg/kg resulted in death (80% of animals) by the end of Day 2. [0116]
  • Other Embodiments
  • From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, other embodiments are also within the claims. [0117]

Claims (61)

What is claimed is:
1. A compound of formula (I):
Figure US20030083521A1-20030501-C00005
wherein
A is a cyclic moiety selected from the group consisting of C3-14 cycloalkyl, 3-14 membered heterocycloalkyl, C4-14 cycloalkenyl, 3-14 membered heterocycloalkenyl, monocyclic aryl, or monocyclic heteroaryl; the cyclic moiety being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxyl, hydroxylalkyl, halo, haloalkyl, amino, alkylcarbonyloxy, alkyloxycarbonyl, alkylcarbonyl, alkylsulfonylamino, aminosulfonyl, or alkylsulfonyl;
each of H1 and X2, independently, is O or S;
Y1 is —CH2—, —O—, —S—, —N(Ra)—, —N(Ra)—C(O)—O—, —O—C(O)—N(Ra)—, —N(Ra)—C(O)—N(Rb)—, —C(O)—O—, —O—C(O)—O—, or a bond; each of Ra and Rb, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl;
Y2 is a bond;
L is an unsaturated straight C4-12 hydrocarbon chain containing at least two double bonds, at least one triple bond, or at least one double bond and one triple bond; said unsaturated hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, hydroxyl, halo, carboxyl, amino, nitro, cyano, C3-6 cycloalkyl, 3-6 membered heterocycloalkyl, monocyclic aryl, 5-6 membered heteroaryl, C1-4 alkylcarbonyloxy, C1-4 alkyloxycarbonyl, C1-4 alkylcarbonyl, or formyl; and further being optionally interrupted by —O—, —N(Rg)—, —N(Rg)—C(O)—O—, —O—C(O)—N(Rg)—, —N(Rg)—C(O)—N(Rh)—, —O—C(O)—, —C(O)—O—, or —O—C(O)—O—; each of Rg and Rh, independently, being hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, or haloalkyl, wherein the carbon bonded to Y2 is unsaturated, and provided that when L is a C4-5 hydrocarbon chain and contains two double bonds, Y1 is not CH2;
R1 is hydrogen, alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, hydroxyl, haloalkyl, or an amino protecting group; and
R2 is hydrogen, alkyl, hydroxylalkyl, haloalkyl, or a hydroxyl protecting group;
or a salt thereof.
2. The compound of claim 1, wherein R1 is hydrogen.
3. The compound of claim 1, wherein R2 is hydrogen.
4. The compound of claim 1, wherein each of R1 and R2 is hydrogen.
5. The compound of claim 1, wherein X1 is O.
6. The compound of claim 1, wherein X2 is O.
7. The compound of claim 1, wherein each of X1 and X2 is O.
8. The compound of claim 1, wherein Y1 is —CH2—, —O—, —N(Ra)—, or a bond.
9. The compound of claim 1, wherein Y1 is a bond.
10. The compound of claim 1, wherein L is an unsaturated straight C4-10 hydrocarbon chain substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, or amino.
11. The compound of claim 1, wherein L is an unsaturated straight C5-8 hydrocarbon chain substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, or amino.
12. The compound of claim 1, wherein L is an unsaturated straight C4-6 hydrocarbon chain.
13. The compound of claim 1, wherein L is an unsaturated straight C5 hydrocarbon chain.
14. The compound of claim 1, wherein L is an unsaturated straight C6 hydrocarbon chain.
15. The compound of claim 1, wherein L is an unsaturated straight C4-10 hydrocarbon chain containing 2-5 double bonds optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
16. The compound of claim 1, wherein L is an unsaturated straight C4-8 hydrocarbon chain containing 2-5 double bonds optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
17. The compound of claim 1, wherein L is —(CH═CH)m— where m is 2 or 3, L being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
18. The compound of claim 1, wherein L is an unsaturated straight C4-10 hydrocarbon chain containing 1-2 double bonds and 1-2 triple bonds, said hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
19. The compound of claim 1, wherein L is an unsaturated straight C4-8 hydrocarbon chain containing 1-2 double bonds and 1-2 triple bonds, said hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
20. The compound of claim 1, wherein L is —C≡C—(CH═CH)n— where n is 1 or 2, L being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
21. The compound of claim 1, wherein A is phenyl.
22. The compound of claim 1, wherein A is phenyl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino.
23. The compound of claim 22, wherein L is an unsaturated straight C4-6 hydrocarbon chain.
24. The compound of claim 23, wherein L is a saturated straight C6 hydrocarbon chain.
25. The compound of claim 24, wherein each of R1and R2 is hydrogen.
26. The compound of claim 25, wherein each of X1 and X2 is O.
27. The compound of claim 26, wherein Y1 is —CH2—, —O—, 13 N(Ra)—, or a bond.
28. The compound of claim 22, wherein L is an unsaturated straight C4-8 hydrocarbon chain containing 2-5 double bonds; said hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
29. The compound of claim 28, wherein L is —(CH═CH)m—, where m is 2 or 3.
30. The compound of claim 29, wherein each of R1 and R2 is hydrogen.
31. The compound of claim 30, wherein each of Xand X2 is O.
32. The compound of claim 31, wherein Y1 is —CH2—, —O—, —N(Ra)—, or a bond.
33. The compound of claim 22, wherein L is an unsaturated straight C4-8 hydrocarbon chain containing 1-2 double bonds and 1-2 triple bonds; said hydrocarbon chain being optionally substituted with C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, or C1-4 alkoxy.
34. The compound of claim 33, wherein L is —C≡C—(CH═CH)n—, where n is 1 or 2.
35. The compound of claim 34, wherein each of R1 and R2 is hydrogen.
36. The compound of claim 35, wherein each of X1 and X2 is O.
37. The compound of claim 36, wherein Y1 is —CH2—, —O—, —N(Ra)—, or a bond.
38. The compound of claim 1, said compound being 5-phenyl-2,4-pentadienoyl hydroxamic acid, N-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 3-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-methyl-5-phenyl-2,4-pentadienoyl hydroxamic acid, 4-chloro-5-phenyl-2,4-pentadienoyl hydroxamic acid, 5-(4-dimethylaminophenyl)-2,4-pentadienoyl hydroxamic acid, 5-phenyl-2-en-4-yn-pentanoyl hydroxamic acid, N-methyl-6-phenyl-3,5-hexadienoyl hydroxamic acid, or 7-phenyl-2,4,6-hepta-trienoylhydroxamic acid.
39. The compound of claim 1, said compound being 5-phenyl-2,4-pentadienoylhydroxamic acid.
40. The compound of claim 1, said compound being 7-phenyl-2,4,6-heptatrienoylhydroxamic acid.
41. A compound of formula (II):
Figure US20030083521A1-20030501-C00006
wherein
A is a cyclic moiety selected from the group consisting of monocyclic aryl or monocyclic heteroaryl; each of said cyclic moieties being optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino;
each of X1 and X2, independently, is O or S;
each of R1 and R2, independently, is hydrogen, alkyl, hydroxylalkyl, or haloalkyl;
each of R3, R4, R5, R6, R7, R8, R9 and R10 independently, is hydrogen, C1-4 alkyl, C2-4 alkenyl, C2-4 alkynyl, C1-4 alkoxy, hydroxyl, halo, hydroxylC1-4 alkyl, haloC1-4 alkyl, or amino; and
each of a, b, c, d, and e, independently, is 0 or 1, and f is 0; provided that at least one of b, c, d, and e is not zero;
or a salt thereof.
42. The compound of claim 41, wherein R1 is hydrogen.
43. The compound of claim 41, wherein R2 is hydrogen.
44. The compound of claim 41, wherein each of R1 and R2 is hydrogen.
45. The compound of claim 41, wherein X1 is O.
46. The compound of claim 41, wherein X2 is O.
47. The compound of claim 41, wherein each of X1 and X2 is O.
48. The compound of claim 41, wherein a is 0.
49. The compound of claim 41, wherein c is 0.
50. The compound of claim 41, wherein each of a and f is 0.
51. The compound of claim 41, wherein the total number of b, c, d, and e is 3 or 4.
52. The compound of claim 41, wherein the total number of b, c, d, and e is 3 or 4.
53. The compound of claim 41, wherein each of R3, R4, R5, R6, R7, R8, R9 and R10, independently, is hydrogen, C1-4 alkyl, C1-4 alkoxy, hydroxyl, hydroxylC1-4 alkyl, or amino.
54. The compound of claim 41, wherein each of R5, R6, R7, and R8, independently, is hydrogen, C1-4 alkyl, C1-4 alkoxy, hydroxyl, hydroxylC1-4 alkyl, or amino; and each of R3, R4, R9 and R10, independently, is hydrogen.
55. The compound of claim 41, wherein each of R3, R4, R5, R6, R7, R8, R9 and R10 is hydrogen.
56. The compound of claim 41, wherein A is phenyl.
57. The compound of claim 41, wherein A is phenyl optionally substituted with alkyl, alkenyl, alkynyl, alkoxy, hydroxylalkyl, or amino.
58. The compound of claim 57, wherein a is 0.
59. The compound of claim 57, wherein the total number of b, c, d, and e is 3 or 4; and a is 0.
60. The compound of claim 59, wherein each of R1 and R2 is hydrogen, and each of X1 and X2 is O.
61. The compound of claim 60, wherein each of R3, R4, R5, R6, R7, R8, R9 and R10, independently, is hydrogen, C1-4 alky, C1-4 alkoxy, hydroxyl, hydroxylC1-4 alkyl, or amino.
US10/307,321 2001-03-27 2002-12-02 Histone deacetylase inhibitors Abandoned US20030083521A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/307,321 US20030083521A1 (en) 2001-03-27 2002-12-02 Histone deacetylase inhibitors
US10/715,377 US7314953B2 (en) 2001-03-27 2003-11-19 Treatment of lung cells with histone deacetylase inhibitors
US12/003,511 US9486421B2 (en) 2001-03-27 2007-12-26 Treatment of lung cells with histone deacetylase inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/812,944 US6495719B2 (en) 2001-03-27 2001-03-27 Histone deacetylase inhibitors
US10/307,321 US20030083521A1 (en) 2001-03-27 2002-12-02 Histone deacetylase inhibitors

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/812,944 Division US6495719B2 (en) 2001-03-27 2001-03-27 Histone deacetylase inhibitors
US10/025,947 Continuation-In-Part US8026280B2 (en) 2001-03-27 2001-12-26 Histone deacetylase inhibitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/715,377 Continuation-In-Part US7314953B2 (en) 2001-03-27 2003-11-19 Treatment of lung cells with histone deacetylase inhibitors

Publications (1)

Publication Number Publication Date
US20030083521A1 true US20030083521A1 (en) 2003-05-01

Family

ID=25211048

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/812,944 Expired - Lifetime US6495719B2 (en) 2001-03-27 2001-03-27 Histone deacetylase inhibitors
US10/307,321 Abandoned US20030083521A1 (en) 2001-03-27 2002-12-02 Histone deacetylase inhibitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/812,944 Expired - Lifetime US6495719B2 (en) 2001-03-27 2001-03-27 Histone deacetylase inhibitors

Country Status (1)

Country Link
US (2) US6495719B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020143037A1 (en) * 2001-03-27 2002-10-03 Circagen Pharmaceutical, A Delaware Corporation Histone deacetylase inhibitors
US20040180962A1 (en) * 2001-09-10 2004-09-16 Peter Truog Dosage forms having prolonged active ingredient release
US20040254220A1 (en) * 2003-03-17 2004-12-16 Syrrx, Inc. Histone deacetylase inhibitors
US20050107348A1 (en) * 2001-03-27 2005-05-19 Errant Gene Therapeutics, Llc, A Delaware Limited Liability Corporation Histone deacetylase inhibitors
US20050137234A1 (en) * 2003-12-19 2005-06-23 Syrrx, Inc. Histone deacetylase inhibitors
US20050159470A1 (en) * 2003-12-19 2005-07-21 Syrrx, Inc. Histone deacetylase inhibitors
US20060045912A1 (en) * 2004-08-30 2006-03-02 Peter Truog 4-phenylbutyric acid controlled-release formulations for therapeutic use
US20060160902A1 (en) * 2004-11-08 2006-07-20 Wiech Norbert L Histone deacetylase inhibitors
US20060205941A1 (en) * 2004-12-16 2006-09-14 Bressi Jerome C Histone deacetylase inhibitors
US20060258694A1 (en) * 2005-05-11 2006-11-16 Bressi Jerome C Histone deacetylase inhibitors
US20070037869A1 (en) * 2001-03-27 2007-02-15 Hsuan-Yin Lan-Hargest Histone deacetylase inhibitors
US20070173527A1 (en) * 2006-01-13 2007-07-26 Bressi Jerome C Histone deacetylase inhibitors
US7250514B1 (en) 2002-10-21 2007-07-31 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20080108829A1 (en) * 2005-07-14 2008-05-08 Bressi Jerome C Histone deacetylase inhibitors
US20080312324A1 (en) * 2001-03-27 2008-12-18 Hsuan-Yin Lan-Hargest Treatment of lung cells with histone deacetylase inhibitors
US20100317739A1 (en) * 2007-12-14 2010-12-16 Brown Milton L Histone deacetylase inhibitors

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777217B1 (en) * 1996-03-26 2004-08-17 President And Fellows Of Harvard College Histone deacetylases, and uses related thereto
US6822267B1 (en) * 1997-08-20 2004-11-23 Advantest Corporation Signal transmission circuit, CMOS semiconductor device, and circuit board
US20030129724A1 (en) 2000-03-03 2003-07-10 Grozinger Christina M. Class II human histone deacetylases, and uses related thereto
US7214831B2 (en) * 2002-05-22 2007-05-08 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors based on alpha-chalcogenmethylcarbonyl compounds
US7244853B2 (en) 2001-05-09 2007-07-17 President And Fellows Of Harvard College Dioxanes and uses thereof
EP2269609A3 (en) * 2001-10-16 2012-07-11 Sloan-Kettering Institute for Cancer Research Treatment of neurodegenerative diseases and cancer of the brain with SAHA
CA2476434A1 (en) * 2002-02-15 2003-08-28 Sloan-Kettering Institute For Cancer Research Method of treating trx mediated diseases
US20040132825A1 (en) * 2002-03-04 2004-07-08 Bacopoulos Nicholas G. Methods of treating cancer with HDAC inhibitors
US7148257B2 (en) * 2002-03-04 2006-12-12 Merck Hdac Research, Llc Methods of treating mesothelioma with suberoylanilide hydroxamic acid
US20060276547A1 (en) * 2002-03-04 2006-12-07 Bacopoulos Nicholas G Methods of treating cancer with HDAC inhibitors
US7456219B2 (en) 2002-03-04 2008-11-25 Merck Hdac Research, Llc Polymorphs of suberoylanilide hydroxamic acid
US20070060614A1 (en) * 2002-03-04 2007-03-15 Bacopoulos Nicholas G Methods of treating cancer with hdac inhibitors
CA2478094C (en) * 2002-03-04 2010-11-23 Aton Pharma, Inc. Methods of inducing terminal differentiation
AU2003226014A1 (en) * 2002-03-28 2003-10-13 Brigham And Women's Hospital, Inc. Histone deacetylase inhibitors for the treatment of multiple sclerosis, amyotrophic lateral sclerosis and alzheimer's disease
WO2003088954A1 (en) * 2002-04-15 2003-10-30 Sloan-Kettering Institute For Cancer Research Combination therapy for the treatment of cancer
WO2003099272A1 (en) 2002-05-22 2003-12-04 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors based on alpha-ketoepoxide compounds
US7154002B1 (en) 2002-10-08 2006-12-26 Takeda San Diego, Inc. Histone deacetylase inhibitors
FR2847817B1 (en) * 2002-11-28 2006-11-10 Centre Nat Rech Scient USE OF A HISTONE DEACETYLASE INHIBITOR FOR THE TREATMENT OF MUSCLE DYSTROPHIES
US20050222013A1 (en) * 2003-01-16 2005-10-06 Georgetown University Methods for the use of inhibitors of histone deacetylase as synergistic agents in cancer therapy
US7842835B2 (en) * 2003-07-07 2010-11-30 Georgetown University Histone deacetylase inhibitors and methods of use thereof
JP4338734B2 (en) * 2003-08-26 2009-10-07 メルク エイチディーエーシー リサーチ エルエルシー Cancer treatment with HDAC inhibitors
SG171690A1 (en) 2005-03-22 2011-06-29 Harvard College Treatment of protein degradation disorders
TWI365068B (en) * 2005-05-20 2012-06-01 Merck Sharp & Dohme Formulations of suberoylanilide hydroxamic acid and methods for producing same
CN101325955A (en) * 2005-11-04 2008-12-17 默克公司 Method of treating cancers with saha and pemetrexed
JP2009514891A (en) * 2005-11-04 2009-04-09 メルク エンド カムパニー インコーポレーテッド Methods using SAHA and erlotinib for treating cancer
EP1991247B1 (en) 2006-02-14 2015-10-14 President and Fellows of Harvard College Bifunctional histone deacetylase inhibitors
DK2010168T3 (en) 2006-02-14 2014-07-21 Harvard College Histone deacetylase inhibitore
EP2019674B1 (en) * 2006-05-03 2016-11-23 The President and Fellows of Harvard College Histone deacetylase and tubulin deacetylase inhibitors
JP2010509221A (en) * 2006-11-03 2010-03-25 ユニバーシテイ・オブ・メリーランド,ボルテイモア Methods of using SAHA and bortezomib to treat multiple myeloma
WO2009067808A1 (en) * 2007-11-27 2009-06-04 Ottawa Health Research Institute Amplification of cancer-specific oncolytic viral infection by histone deacetylase inhibitors
WO2010011700A2 (en) 2008-07-23 2010-01-28 The Brigham And Women's Hospital, Inc. Treatment of cancers characterized by chromosomal rearrangement of the nut gene
EP2321264B1 (en) 2008-07-23 2016-05-04 President and Fellows of Harvard College Deacetylase inhibitors and uses thereof
JP5416774B2 (en) * 2008-08-25 2014-02-12 デュポン・エレクトロニック・ポリマーズ・エル・ピー Novel propanoate and its production method
WO2011019393A2 (en) 2009-08-11 2011-02-17 President And Fellows Of Harvard College Class- and isoform-specific hdac inhibitors and uses thereof

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680755A (en) * 1952-01-22 1954-06-08 Eastman Kodak Co Method of obtaining trans polyene compounds
US2840586A (en) * 1958-06-24 Intermediates for the preparation of
US3674884A (en) * 1967-08-04 1972-07-04 Ube Industries Process for the preparation of aromatic hydrocarbons containing monoethylenic unsaturated radicals
US3687955A (en) * 1967-08-09 1972-08-29 Guido Cerbati The tropine ester of 2-phenyl-4-pentynoic acid
US3755604A (en) * 1970-12-14 1973-08-28 Mead Johnson & Co Sebum inhibitors
US3886278A (en) * 1973-08-22 1975-05-27 Mead Johnson & Co Ammonium carboxylate sebum inhibition process
US3909353A (en) * 1973-03-12 1975-09-30 Ajinomoto Kk Method of producing L-phenylalanine by fermentation
US3978100A (en) * 1973-04-18 1976-08-31 Kuraray Co., Ltd. Allenic esters, process for preparation thereof and process for rearrangement thereof
US3984440A (en) * 1973-08-10 1976-10-05 Hoffmann-La Roche Inc. Polyene compounds
US4011339A (en) * 1975-08-15 1977-03-08 Sandoz, Inc. Hypolipidemic allene carboxylic acids
US4024182A (en) * 1975-08-15 1977-05-17 Sandoz, Inc. Preparation of aryl-butadienoic acids
US4044149A (en) * 1974-05-13 1977-08-23 Eli Lilly And Company Aluminum salts of substituted phenylalkanoic acids and pharmaceutical suspensions prepared therefrom
US4048332A (en) * 1972-06-15 1977-09-13 The Boots Company Limited Phenylalkanoic acids
US4081476A (en) * 1973-08-20 1978-03-28 Sandoz, Inc. 1-Aryl-1-lower alkyl-1-buten-3-ols and ester derivatives
US4113858A (en) * 1975-01-20 1978-09-12 St. Luke's Hospital Novel compounds, compositions and methods of their use
US4116975A (en) * 1976-10-18 1978-09-26 Hoffmann-La Roche Inc. Polyene compounds
US4171318A (en) * 1978-08-24 1979-10-16 Hoffmann-La Roche Inc. Fluorinated polyenes
US4188338A (en) * 1976-12-18 1980-02-12 Akzona Incorporated Hydroxamic acids and process for making same
US4193931A (en) * 1977-05-04 1980-03-18 Hoffmann-La Roche Inc. Polyene compounds
US4211783A (en) * 1978-03-20 1980-07-08 American Cyanamid Company Hypolipidemic and antiatherosclerotic novel 4-(aralkyl- and heteroarylalkylamino)phenyl compounds
US4258057A (en) * 1978-07-08 1981-03-24 Hoechst Aktiengesellschaft Prostaglandin derivatives of the Δ2,4-11-deoxy-PEG series
US4288253A (en) * 1974-08-30 1981-09-08 Pamrod, Incorporated Water insensitive bonded perlite structural materials
US4309407A (en) * 1979-11-20 1982-01-05 A. Nattermann & Cie. Gmbh Alkenyl-substituted thienylalkanecarboxylic acids and derivatives thereof
US4309357A (en) * 1979-03-08 1982-01-05 Montedison S.P.A. Process for preparing dienoic acids
US4335054A (en) * 1980-05-13 1982-06-15 Ciba-Geigy Corporation Process for the preparation of alkenylbenzenecarboxylic acid derivatives and alkenylnaphthalenecarboxylic acid derivatives
US4355168A (en) * 1979-12-03 1982-10-19 Montedison S.P.A. Process for preparing aryl- or heteroarylhexadienoic acids
US4371614A (en) * 1980-08-22 1983-02-01 Ajinomoto Co., Inc. E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan
US4388459A (en) * 1979-02-01 1983-06-14 American Cyanamid Company Certain cinnamic acid or propiolic acid derivatives
US4439443A (en) * 1981-08-07 1984-03-27 Richardson-Merrell Inc. Snake bite therapy
US4440940A (en) * 1979-10-17 1984-04-03 American Cyanamid Company Anti-atherosclerotic agents
US4472430A (en) * 1982-06-28 1984-09-18 Usv Pharmaceutical Corporation Alpha-alkyl polyolefinic carboxylic acids and derivatives thereof useful in the treatment of psoriasis
US4504494A (en) * 1982-01-28 1985-03-12 Societe Anonyme Dite: L'oreal Preparation of anthralin solutions or suspensions in aromatic esters and their use for diseases of the skin and nails
US4505930A (en) * 1982-06-28 1985-03-19 Usv Pharmaceutical Corporation Alpha-alkyl polyolefinic carboxylic acids and derivatives thereof useful in the treatment of psoriasis and allergic responses
US4534979A (en) * 1982-06-28 1985-08-13 Usv Pharmaceutical Corp. Polyene compounds useful in the treatment of psoriasis and allergic responses
US4545984A (en) * 1981-05-27 1985-10-08 Henkel Kommanditgesellschaft Auf Aktien Arene-carboxylic acid derivatives as antiseborrheic additives for cosmetic agents
US4564476A (en) * 1984-10-29 1986-01-14 Mcneilab, Inc. Aryl fatty acid leukotriene synthesis inhibitors
US4604407A (en) * 1985-04-04 1986-08-05 E. R. Squibb & Sons, Inc. Hydroxamates
US4605669A (en) * 1985-04-26 1986-08-12 Abbott Laboratories Lipoxygenase inhibiting naphthohydroxamic acids
US4607053A (en) * 1984-05-17 1986-08-19 E. R. Squibb & Sons, Inc. Arylhydroxamates useful as antiallergy agents
US4608390A (en) * 1985-04-26 1986-08-26 Abbott Laboratories Lipoxygenase inhibiting compounds
US4619945A (en) * 1985-10-09 1986-10-28 Usv Pharmaceutical Corp Polyene compounds useful in the treatment of allergic responses
US4638011A (en) * 1984-12-17 1987-01-20 E. R. Squibb & Sons, Inc. Tetrahydrothienyl substituted prostaglandin analogs
US4699920A (en) * 1983-12-22 1987-10-13 Schering Aktiengesellschaft 9-halo-2-prostaglandin derivatives, processes for the preparation thereof and use thereof as medicinal agents
US4722939A (en) * 1983-07-29 1988-02-02 Usv Pharmaceutical Corporation Derivatives of alpha-alkyl polyolefinic carboxylic acid useful in the treatment of psoriasis
US4731382A (en) * 1986-12-29 1988-03-15 Bristol-Myers Company Lipoxygenase inhibitory phenylalkanohydroxamic acids
US4753934A (en) * 1983-02-28 1988-06-28 Celamerck Gmbh & Co. Kg Acrylic acid heterocyclic amides, fungicidal compositions and use
US4820828A (en) * 1987-03-04 1989-04-11 Ortho Pharmaceutical Corporation Cinnamohydroxamic acids
US4833257A (en) * 1986-07-28 1989-05-23 Arizona Board Of Regents Compositions of matter and methods of using same
US4950467A (en) * 1986-11-14 1990-08-21 Ici Americas Inc. Ultraviolet radiation absorbing compositions
US4981865A (en) * 1989-05-26 1991-01-01 Warner-Lambert Co. N-hydroxyamide, N-hydroxythioamide, hydroxyurea, and N-hydroxythiourea derivatives of selected nsaids as antiinflammatory agents
US4985436A (en) * 1984-02-17 1991-01-15 Arizona Board Of Regents Composition of matter for inhibiting leukemias and sarcomas
US5028629A (en) * 1990-03-28 1991-07-02 Eli Lilly And Company 5-Lipoxygenase inhibitors
US5084214A (en) * 1988-06-24 1992-01-28 Shionogi & Co., Ltd. Phenolic thioethers, and their production and use
US5089524A (en) * 1990-06-28 1992-02-18 G. D. Searle & Co. Tetraenyl prostanoic acid derivatives as prodrugs for the treatment of peptic ulcer disease
US5091569A (en) * 1989-06-29 1992-02-25 Shionogi & Co., Ltd. Di-tert-butyl(hydroxy)phenylthio substituted hydroxamic acid derivatives
US5112846A (en) * 1989-05-26 1992-05-12 Warner-Lambert Company N-hydroxyamide, N-hydroxythioamide, hydroxyurea, and N-hydroxythiourea derivatives of selected nsaids as antiinflammatory agents
US5141959A (en) * 1990-09-21 1992-08-25 Bristol-Myers Squibb Company Isoprenoid phospholipase a2 inhibitors and preparations comprising same
US5235068A (en) * 1988-04-28 1993-08-10 Sumitomo Chemical Company, Limited Process for producing acylaromatic compounds
US5244922A (en) * 1990-09-04 1993-09-14 Burzynski Stanislaw R Methods for treating viral infections
US5246955A (en) * 1990-03-30 1993-09-21 Research Corporation Technologies, Inc. Antineoplastic compounds and methods of using same
US5320833A (en) * 1990-11-17 1994-06-14 Basf Aktiengesellschaft Arylpolyenecarboxylic acids and their derivatives as sunscreen agents in cosmetic preparations
US5385942A (en) * 1989-09-11 1995-01-31 Eisai Co., Ltd. Quinone derivatives and pharmacological use
US5420160A (en) * 1991-09-10 1995-05-30 Bayer Aktiengesellschaft 1-alkoxyhexatriene-2-carboxylates
US5486540A (en) * 1993-10-28 1996-01-23 Allergan, Inc. Cyclopentane heptanoic or heptenoic acid, 2-arylalkyl or arylalkenyl and derivatives as therapeutic agents
US5525629A (en) * 1992-04-07 1996-06-11 British Bio-Technology Limited Inhibition of cytokine production
US5534654A (en) * 1991-12-10 1996-07-09 Shionogi & Co., Ltd. Aromatic-sulfonamide-type hydroxamic acid derivative
US5541155A (en) * 1994-04-22 1996-07-30 Emisphere Technologies, Inc. Acids and acid salts and their use in delivery systems
US5547988A (en) * 1986-12-23 1996-08-20 Tristrata Technology, Inc. Alleviating signs of dermatological aging with glycolic acid, lactic acid or citric acid
US5602135A (en) * 1993-10-18 1997-02-11 Allergan Phenyl or heteroaryl and tetrahydronaphthyl substituted diene compounds having retinoid like biological activity
US5607978A (en) * 1992-09-21 1997-03-04 Allergan Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US5643949A (en) * 1987-05-15 1997-07-01 Tristrata, Inc. Phenyl alpha acyloxyalkanoic acids, derivatives and their therapeutic use
US5672746A (en) * 1994-08-30 1997-09-30 American Biogenetic Sciences, Inc. Antiproliferative and neurotrophic molecules
US5705167A (en) * 1994-04-26 1998-01-06 Centre International De Recherches Dermatologiques Galderma Aromatic polyenic compounds and pharmaceutical/cosmetic compositions comprised thereof
US5710178A (en) * 1991-10-21 1998-01-20 The United States Of America As Represented By The Department Of Health And Human Services Compositions and methods for therapy and prevention of pathologies including cancer, AIDS, and anemia
US5753704A (en) * 1992-09-30 1998-05-19 Unichema Chemie B.V. Therapeutic compositions comprising unsaturated dioic acids or derivatives thereof
US5795914A (en) * 1989-06-27 1998-08-18 Ono Pharmaceutical Co., Ltd. Phenylalkan(en)oic acid
US5804601A (en) * 1995-04-10 1998-09-08 Takeda Chemical Industries, Ltd. Aromatic hydroxamic acid compounds, their production and use
US5872152A (en) * 1992-05-01 1999-02-16 British Biotech Pharmaceuticals Limited Use of MMP inhibitors
US5883124A (en) * 1991-10-21 1999-03-16 The United States Of America As Represented By The Department Of Health And Human Services Compositions and methods for treating and preventing pathologies including cancer
US5891737A (en) * 1995-06-07 1999-04-06 Zymogenetics, Inc. Combinatorial non-peptide libraries
US5908868A (en) * 1991-04-09 1999-06-01 Sloan-Kettering Institute For Cancer Research Retinol derivatives useful for enhancing immune response
US5910508A (en) * 1996-09-02 1999-06-08 Centre International De Recherches Dermatologiques Galderma Polycyclic polyenic compounds and pharmaceutical/cosmetic compositions comprised thereof
US5910606A (en) * 1996-01-31 1999-06-08 Hoffmann-La Roche Inc. Process for making α,β-unsaturated carboxylic acids
US5932606A (en) * 1997-03-24 1999-08-03 Merck & Co., Inc. Pyrazinone, pyridinone, piperidine and pyrrolidine thrombin inhibitors
US6030993A (en) * 1996-07-02 2000-02-29 Sang Sup Jew 2-hydroxypropionic acid derivative and its manufacturing method
US6037367A (en) * 1995-07-14 2000-03-14 Smithkline Beecham Corporation Substituted-pent-4-ynoic acids
US6043389A (en) * 1997-03-11 2000-03-28 Mor Research Applications, Ltd. Hydroxy and ether-containing oxyalkylene esters and uses thereof
US6046237A (en) * 1995-07-14 2000-04-04 Berge; Rolf Non-β-oxidizable fatty acid analogues, their uses as therapeutic active medicaments
US6057369A (en) * 1996-01-02 2000-05-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Substituted (aryl, heteroaryl, arylmethyl or heteroarylmethyl) hydroxamic acid compounds
US6060510A (en) * 1995-02-07 2000-05-09 Brusilow Enterprises Llc Triglycerides and ethyl esters of phenylalkanoic acid and phenylalkenoic acid useful in the treatment of various disorders
US6068987A (en) * 1996-09-20 2000-05-30 Merck & Co., Inc. Histone deacetylase as target for antiprotozoal agents
US6071923A (en) * 1994-09-16 2000-06-06 Bar-Ilan University Retinoyloxy aryl-substituted alkylene butyrates useful for the treatment of cancer and other proliferative diseases
US6110970A (en) * 1997-03-11 2000-08-29 Beacon Laboratories, Inc. Nitrogen-containing oxyalkylene esters and uses thereof
US6110955A (en) * 1997-03-11 2000-08-29 Beacon Laboratories, Inc. Metabolically stabilized oxyalkylene esters and uses thereof
US6110697A (en) * 1995-09-20 2000-08-29 Merck & Co., Inc. Histone deacetylase as target for antiprotozoal agents
US6124495A (en) * 1997-03-11 2000-09-26 Beacon Laboratories, Inc. Unsaturated oxyalkylene esters and uses thereof
US20020115826A1 (en) * 2000-03-24 2002-08-22 Daniel Delorme Inhibitors of histone deacetylase
US6451334B2 (en) * 1997-05-30 2002-09-17 Susan P. Perrine Compositions and administration of compositions for the treatment of blood disorders

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6406688A (en) 1964-06-05 1965-12-06
DE1542780A1 (en) 1965-06-05 1970-06-04 Bayer Ag Fungitoxic agents
US3624127A (en) 1966-10-11 1971-11-30 Sterling Drug Inc Basic esters of cyclohexylideneacetic acids and intermediates
US3781314A (en) 1971-07-14 1973-12-25 Hoffmann La Roche Polyene compounds
US4026909A (en) 1975-07-14 1977-05-31 The Upjohn Company Cis-13-PGF2.sub.α analogs
US4098824A (en) 1975-10-02 1978-07-04 Laboratoire L. Lafon Benzhydrylsulphinyl derivatives
US4061656A (en) 1975-11-14 1977-12-06 Hoffmann-La Roche Inc. Polyene compounds
US4130653A (en) 1978-03-31 1978-12-19 Merrell Toraude Et Compagnie Method of treating hypertension
IT1213176B (en) 1984-06-11 1989-12-14 Milano A COMPOSITIONS AND COMPOUNDS FOR THE TREATMENT OF PROSTATIC ADENOMA.
US4623661A (en) 1985-04-26 1986-11-18 Abbott Laboratories Lipoxygenase inhibiting compounds
US4621099A (en) 1985-09-23 1986-11-04 Usv Pharmaceutical Corporation Polyene compounds useful in the treatment of allergic responses
US4791133A (en) 1987-06-26 1988-12-13 G. D. Searle & Co. Phenylene, furyl, and thienyl leukotriene B4 analogues
US5272180A (en) 1987-07-29 1993-12-21 Takeda Chemical Industries, Ltd. Cell proliferation inhibitor
US5075330A (en) 1989-05-26 1991-12-24 Warner-Lambert Co. N-hydroxyamide, N-hydroxythioamide, N-hydroxyurea, and N-hydroxythiourea derivatives of selected NSAIDS as antiinflammatory agents
US6001877A (en) 1989-06-27 1999-12-14 Ono Pharmaceutical Co., Ltd. Phenylalkan(en)oic acid
IT1238346B (en) 1989-11-14 1993-07-13 MODIFIED GANGLIOSIDES AND THEIR FUNCTIONAL DERIVATIVES.
US5064860A (en) 1990-09-07 1991-11-12 G. D. Searle & Co. Method of inhibiting superoxide generation
US5369108A (en) 1991-10-04 1994-11-29 Sloan-Kettering Institute For Cancer Research Potent inducers of terminal differentiation and methods of use thereof
US5688819A (en) 1992-09-21 1997-11-18 Allergan Cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US5466718A (en) 1993-04-02 1995-11-14 Takasago Institute For Interdisciplinary Tyrosinase inhibitors
DK0728742T3 (en) 1995-02-24 2000-04-17 Hoffmann La Roche Hitherto unknown retinoids
DE19533025A1 (en) 1995-09-07 1997-03-13 Basf Ag New carboxylic acid derivatives, their production and use
US5998654A (en) 1997-07-25 1999-12-07 Ligand Pharmaceuticals Incorporated Retinoic acid receptor antagonist compounds and methods
US6147224A (en) 1998-10-01 2000-11-14 Allergan Sales, Inc. 2,4-pentadienoic acid derivatives having selective activity for retinoid X (RXR) receptors

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2840586A (en) * 1958-06-24 Intermediates for the preparation of
US2680755A (en) * 1952-01-22 1954-06-08 Eastman Kodak Co Method of obtaining trans polyene compounds
US3674884A (en) * 1967-08-04 1972-07-04 Ube Industries Process for the preparation of aromatic hydrocarbons containing monoethylenic unsaturated radicals
US3687955A (en) * 1967-08-09 1972-08-29 Guido Cerbati The tropine ester of 2-phenyl-4-pentynoic acid
US3755604A (en) * 1970-12-14 1973-08-28 Mead Johnson & Co Sebum inhibitors
US4048332A (en) * 1972-06-15 1977-09-13 The Boots Company Limited Phenylalkanoic acids
US3909353A (en) * 1973-03-12 1975-09-30 Ajinomoto Kk Method of producing L-phenylalanine by fermentation
US3978100A (en) * 1973-04-18 1976-08-31 Kuraray Co., Ltd. Allenic esters, process for preparation thereof and process for rearrangement thereof
US3984440A (en) * 1973-08-10 1976-10-05 Hoffmann-La Roche Inc. Polyene compounds
US4081476A (en) * 1973-08-20 1978-03-28 Sandoz, Inc. 1-Aryl-1-lower alkyl-1-buten-3-ols and ester derivatives
US3886278A (en) * 1973-08-22 1975-05-27 Mead Johnson & Co Ammonium carboxylate sebum inhibition process
US4044149A (en) * 1974-05-13 1977-08-23 Eli Lilly And Company Aluminum salts of substituted phenylalkanoic acids and pharmaceutical suspensions prepared therefrom
US4288253A (en) * 1974-08-30 1981-09-08 Pamrod, Incorporated Water insensitive bonded perlite structural materials
US4113858A (en) * 1975-01-20 1978-09-12 St. Luke's Hospital Novel compounds, compositions and methods of their use
US4011339A (en) * 1975-08-15 1977-03-08 Sandoz, Inc. Hypolipidemic allene carboxylic acids
US4024182A (en) * 1975-08-15 1977-05-17 Sandoz, Inc. Preparation of aryl-butadienoic acids
US4116975A (en) * 1976-10-18 1978-09-26 Hoffmann-La Roche Inc. Polyene compounds
US4188338A (en) * 1976-12-18 1980-02-12 Akzona Incorporated Hydroxamic acids and process for making same
US4193931A (en) * 1977-05-04 1980-03-18 Hoffmann-La Roche Inc. Polyene compounds
US4211783A (en) * 1978-03-20 1980-07-08 American Cyanamid Company Hypolipidemic and antiatherosclerotic novel 4-(aralkyl- and heteroarylalkylamino)phenyl compounds
US4258057A (en) * 1978-07-08 1981-03-24 Hoechst Aktiengesellschaft Prostaglandin derivatives of the Δ2,4-11-deoxy-PEG series
US4171318A (en) * 1978-08-24 1979-10-16 Hoffmann-La Roche Inc. Fluorinated polyenes
US4388459A (en) * 1979-02-01 1983-06-14 American Cyanamid Company Certain cinnamic acid or propiolic acid derivatives
US4309357A (en) * 1979-03-08 1982-01-05 Montedison S.P.A. Process for preparing dienoic acids
US4440940A (en) * 1979-10-17 1984-04-03 American Cyanamid Company Anti-atherosclerotic agents
US4309407A (en) * 1979-11-20 1982-01-05 A. Nattermann & Cie. Gmbh Alkenyl-substituted thienylalkanecarboxylic acids and derivatives thereof
US4355168A (en) * 1979-12-03 1982-10-19 Montedison S.P.A. Process for preparing aryl- or heteroarylhexadienoic acids
US4335054A (en) * 1980-05-13 1982-06-15 Ciba-Geigy Corporation Process for the preparation of alkenylbenzenecarboxylic acid derivatives and alkenylnaphthalenecarboxylic acid derivatives
US4371614A (en) * 1980-08-22 1983-02-01 Ajinomoto Co., Inc. E.Coli bacteria carrying recombinant plasmids and their use in the fermentative production of L-tryptophan
US4545984A (en) * 1981-05-27 1985-10-08 Henkel Kommanditgesellschaft Auf Aktien Arene-carboxylic acid derivatives as antiseborrheic additives for cosmetic agents
US4439443A (en) * 1981-08-07 1984-03-27 Richardson-Merrell Inc. Snake bite therapy
US4504494A (en) * 1982-01-28 1985-03-12 Societe Anonyme Dite: L'oreal Preparation of anthralin solutions or suspensions in aromatic esters and their use for diseases of the skin and nails
US4472430A (en) * 1982-06-28 1984-09-18 Usv Pharmaceutical Corporation Alpha-alkyl polyolefinic carboxylic acids and derivatives thereof useful in the treatment of psoriasis
US4534979A (en) * 1982-06-28 1985-08-13 Usv Pharmaceutical Corp. Polyene compounds useful in the treatment of psoriasis and allergic responses
US4505930A (en) * 1982-06-28 1985-03-19 Usv Pharmaceutical Corporation Alpha-alkyl polyolefinic carboxylic acids and derivatives thereof useful in the treatment of psoriasis and allergic responses
US4753934A (en) * 1983-02-28 1988-06-28 Celamerck Gmbh & Co. Kg Acrylic acid heterocyclic amides, fungicidal compositions and use
US4722939A (en) * 1983-07-29 1988-02-02 Usv Pharmaceutical Corporation Derivatives of alpha-alkyl polyolefinic carboxylic acid useful in the treatment of psoriasis
US4699920A (en) * 1983-12-22 1987-10-13 Schering Aktiengesellschaft 9-halo-2-prostaglandin derivatives, processes for the preparation thereof and use thereof as medicinal agents
US4985436A (en) * 1984-02-17 1991-01-15 Arizona Board Of Regents Composition of matter for inhibiting leukemias and sarcomas
US4607053A (en) * 1984-05-17 1986-08-19 E. R. Squibb & Sons, Inc. Arylhydroxamates useful as antiallergy agents
US4564476A (en) * 1984-10-29 1986-01-14 Mcneilab, Inc. Aryl fatty acid leukotriene synthesis inhibitors
US4638011A (en) * 1984-12-17 1987-01-20 E. R. Squibb & Sons, Inc. Tetrahydrothienyl substituted prostaglandin analogs
US4604407A (en) * 1985-04-04 1986-08-05 E. R. Squibb & Sons, Inc. Hydroxamates
US4608390A (en) * 1985-04-26 1986-08-26 Abbott Laboratories Lipoxygenase inhibiting compounds
US4605669A (en) * 1985-04-26 1986-08-12 Abbott Laboratories Lipoxygenase inhibiting naphthohydroxamic acids
US4619945A (en) * 1985-10-09 1986-10-28 Usv Pharmaceutical Corp Polyene compounds useful in the treatment of allergic responses
US4833257A (en) * 1986-07-28 1989-05-23 Arizona Board Of Regents Compositions of matter and methods of using same
US4950467A (en) * 1986-11-14 1990-08-21 Ici Americas Inc. Ultraviolet radiation absorbing compositions
US5547988B1 (en) * 1986-12-23 1997-07-15 Tristrata Inc Alleviating signs of dermatological aging with glycolic acid lactic acid or citric acid
US5547988A (en) * 1986-12-23 1996-08-20 Tristrata Technology, Inc. Alleviating signs of dermatological aging with glycolic acid, lactic acid or citric acid
US4731382A (en) * 1986-12-29 1988-03-15 Bristol-Myers Company Lipoxygenase inhibitory phenylalkanohydroxamic acids
US4820828A (en) * 1987-03-04 1989-04-11 Ortho Pharmaceutical Corporation Cinnamohydroxamic acids
US5643949A (en) * 1987-05-15 1997-07-01 Tristrata, Inc. Phenyl alpha acyloxyalkanoic acids, derivatives and their therapeutic use
US5235068A (en) * 1988-04-28 1993-08-10 Sumitomo Chemical Company, Limited Process for producing acylaromatic compounds
US5084214A (en) * 1988-06-24 1992-01-28 Shionogi & Co., Ltd. Phenolic thioethers, and their production and use
US4981865A (en) * 1989-05-26 1991-01-01 Warner-Lambert Co. N-hydroxyamide, N-hydroxythioamide, hydroxyurea, and N-hydroxythiourea derivatives of selected nsaids as antiinflammatory agents
US5112846A (en) * 1989-05-26 1992-05-12 Warner-Lambert Company N-hydroxyamide, N-hydroxythioamide, hydroxyurea, and N-hydroxythiourea derivatives of selected nsaids as antiinflammatory agents
US5795914A (en) * 1989-06-27 1998-08-18 Ono Pharmaceutical Co., Ltd. Phenylalkan(en)oic acid
US5091569A (en) * 1989-06-29 1992-02-25 Shionogi & Co., Ltd. Di-tert-butyl(hydroxy)phenylthio substituted hydroxamic acid derivatives
US5385942A (en) * 1989-09-11 1995-01-31 Eisai Co., Ltd. Quinone derivatives and pharmacological use
US5028629A (en) * 1990-03-28 1991-07-02 Eli Lilly And Company 5-Lipoxygenase inhibitors
US5246955A (en) * 1990-03-30 1993-09-21 Research Corporation Technologies, Inc. Antineoplastic compounds and methods of using same
US5089524A (en) * 1990-06-28 1992-02-18 G. D. Searle & Co. Tetraenyl prostanoic acid derivatives as prodrugs for the treatment of peptic ulcer disease
US5244922A (en) * 1990-09-04 1993-09-14 Burzynski Stanislaw R Methods for treating viral infections
US5141959A (en) * 1990-09-21 1992-08-25 Bristol-Myers Squibb Company Isoprenoid phospholipase a2 inhibitors and preparations comprising same
US5320833A (en) * 1990-11-17 1994-06-14 Basf Aktiengesellschaft Arylpolyenecarboxylic acids and their derivatives as sunscreen agents in cosmetic preparations
US5908868A (en) * 1991-04-09 1999-06-01 Sloan-Kettering Institute For Cancer Research Retinol derivatives useful for enhancing immune response
US5420160A (en) * 1991-09-10 1995-05-30 Bayer Aktiengesellschaft 1-alkoxyhexatriene-2-carboxylates
US5883124A (en) * 1991-10-21 1999-03-16 The United States Of America As Represented By The Department Of Health And Human Services Compositions and methods for treating and preventing pathologies including cancer
US5710178A (en) * 1991-10-21 1998-01-20 The United States Of America As Represented By The Department Of Health And Human Services Compositions and methods for therapy and prevention of pathologies including cancer, AIDS, and anemia
US5534654A (en) * 1991-12-10 1996-07-09 Shionogi & Co., Ltd. Aromatic-sulfonamide-type hydroxamic acid derivative
US5525629A (en) * 1992-04-07 1996-06-11 British Bio-Technology Limited Inhibition of cytokine production
US5872152A (en) * 1992-05-01 1999-02-16 British Biotech Pharmaceuticals Limited Use of MMP inhibitors
US5607978A (en) * 1992-09-21 1997-03-04 Allergan Non-acidic cyclopentane heptanoic acid, 2-cycloalkyl or arylalkyl derivatives as therapeutic agents
US5753704A (en) * 1992-09-30 1998-05-19 Unichema Chemie B.V. Therapeutic compositions comprising unsaturated dioic acids or derivatives thereof
US5602135A (en) * 1993-10-18 1997-02-11 Allergan Phenyl or heteroaryl and tetrahydronaphthyl substituted diene compounds having retinoid like biological activity
US5486540A (en) * 1993-10-28 1996-01-23 Allergan, Inc. Cyclopentane heptanoic or heptenoic acid, 2-arylalkyl or arylalkenyl and derivatives as therapeutic agents
US5541155A (en) * 1994-04-22 1996-07-30 Emisphere Technologies, Inc. Acids and acid salts and their use in delivery systems
US5705167A (en) * 1994-04-26 1998-01-06 Centre International De Recherches Dermatologiques Galderma Aromatic polyenic compounds and pharmaceutical/cosmetic compositions comprised thereof
US5672746A (en) * 1994-08-30 1997-09-30 American Biogenetic Sciences, Inc. Antiproliferative and neurotrophic molecules
US6071923A (en) * 1994-09-16 2000-06-06 Bar-Ilan University Retinoyloxy aryl-substituted alkylene butyrates useful for the treatment of cancer and other proliferative diseases
US6083984A (en) * 1995-02-07 2000-07-04 Brusilow Enterprises Llc Triglycerides and ethyl esters of phenylalkanoic acid and phenylalkenoic acid useful in the treatment of various disorders
US6060510A (en) * 1995-02-07 2000-05-09 Brusilow Enterprises Llc Triglycerides and ethyl esters of phenylalkanoic acid and phenylalkenoic acid useful in the treatment of various disorders
US5804601A (en) * 1995-04-10 1998-09-08 Takeda Chemical Industries, Ltd. Aromatic hydroxamic acid compounds, their production and use
US5891737A (en) * 1995-06-07 1999-04-06 Zymogenetics, Inc. Combinatorial non-peptide libraries
US6037367A (en) * 1995-07-14 2000-03-14 Smithkline Beecham Corporation Substituted-pent-4-ynoic acids
US6046237A (en) * 1995-07-14 2000-04-04 Berge; Rolf Non-β-oxidizable fatty acid analogues, their uses as therapeutic active medicaments
US6110697A (en) * 1995-09-20 2000-08-29 Merck & Co., Inc. Histone deacetylase as target for antiprotozoal agents
US6057369A (en) * 1996-01-02 2000-05-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Substituted (aryl, heteroaryl, arylmethyl or heteroarylmethyl) hydroxamic acid compounds
US5910606A (en) * 1996-01-31 1999-06-08 Hoffmann-La Roche Inc. Process for making α,β-unsaturated carboxylic acids
US6030993A (en) * 1996-07-02 2000-02-29 Sang Sup Jew 2-hydroxypropionic acid derivative and its manufacturing method
US5910508A (en) * 1996-09-02 1999-06-08 Centre International De Recherches Dermatologiques Galderma Polycyclic polyenic compounds and pharmaceutical/cosmetic compositions comprised thereof
US6068987A (en) * 1996-09-20 2000-05-30 Merck & Co., Inc. Histone deacetylase as target for antiprotozoal agents
US6043389A (en) * 1997-03-11 2000-03-28 Mor Research Applications, Ltd. Hydroxy and ether-containing oxyalkylene esters and uses thereof
US6110970A (en) * 1997-03-11 2000-08-29 Beacon Laboratories, Inc. Nitrogen-containing oxyalkylene esters and uses thereof
US6110955A (en) * 1997-03-11 2000-08-29 Beacon Laboratories, Inc. Metabolically stabilized oxyalkylene esters and uses thereof
US6124495A (en) * 1997-03-11 2000-09-26 Beacon Laboratories, Inc. Unsaturated oxyalkylene esters and uses thereof
US5932606A (en) * 1997-03-24 1999-08-03 Merck & Co., Inc. Pyrazinone, pyridinone, piperidine and pyrrolidine thrombin inhibitors
US6451334B2 (en) * 1997-05-30 2002-09-17 Susan P. Perrine Compositions and administration of compositions for the treatment of blood disorders
US20020115826A1 (en) * 2000-03-24 2002-08-22 Daniel Delorme Inhibitors of histone deacetylase

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858664B2 (en) 2001-03-27 2010-12-28 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US7902259B2 (en) 2001-03-27 2011-03-08 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US20080312324A1 (en) * 2001-03-27 2008-12-18 Hsuan-Yin Lan-Hargest Treatment of lung cells with histone deacetylase inhibitors
US20050107348A1 (en) * 2001-03-27 2005-05-19 Errant Gene Therapeutics, Llc, A Delaware Limited Liability Corporation Histone deacetylase inhibitors
US7842727B2 (en) 2001-03-27 2010-11-30 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US9486421B2 (en) 2001-03-27 2016-11-08 Errant Gene Therapeutics, Llc Treatment of lung cells with histone deacetylase inhibitors
US20070037869A1 (en) * 2001-03-27 2007-02-15 Hsuan-Yin Lan-Hargest Histone deacetylase inhibitors
US8420698B2 (en) 2001-03-27 2013-04-16 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US20020143037A1 (en) * 2001-03-27 2002-10-03 Circagen Pharmaceutical, A Delaware Corporation Histone deacetylase inhibitors
US8026280B2 (en) 2001-03-27 2011-09-27 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US20050171208A1 (en) * 2001-03-27 2005-08-04 Errant Gene Therapeutics, Llc, A Delaware Limited Liability Corporation Histone deacetylase inhibitors
US20040180962A1 (en) * 2001-09-10 2004-09-16 Peter Truog Dosage forms having prolonged active ingredient release
US7611729B2 (en) 2001-09-10 2009-11-03 Lunamed Ag Dosage forms having prolonged active ingredient release
US7250514B1 (en) 2002-10-21 2007-07-31 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20050137232A1 (en) * 2003-03-17 2005-06-23 Syrrx, Inc. Histone deacetylase inhibitors
US20040254220A1 (en) * 2003-03-17 2004-12-16 Syrrx, Inc. Histone deacetylase inhibitors
US20050159470A1 (en) * 2003-12-19 2005-07-21 Syrrx, Inc. Histone deacetylase inhibitors
US20050137234A1 (en) * 2003-12-19 2005-06-23 Syrrx, Inc. Histone deacetylase inhibitors
US20060045912A1 (en) * 2004-08-30 2006-03-02 Peter Truog 4-phenylbutyric acid controlled-release formulations for therapeutic use
US20060160902A1 (en) * 2004-11-08 2006-07-20 Wiech Norbert L Histone deacetylase inhibitors
US20060205941A1 (en) * 2004-12-16 2006-09-14 Bressi Jerome C Histone deacetylase inhibitors
US20060258694A1 (en) * 2005-05-11 2006-11-16 Bressi Jerome C Histone deacetylase inhibitors
US20080108829A1 (en) * 2005-07-14 2008-05-08 Bressi Jerome C Histone deacetylase inhibitors
US20090111996A1 (en) * 2005-07-14 2009-04-30 Bressi Jerome C Histone deacetylase inhibitors
US7732475B2 (en) 2005-07-14 2010-06-08 Takeda San Diego, Inc. Histone deacetylase inhibitors
US7741494B2 (en) 2005-07-14 2010-06-22 Takeda San Diego, Inc. Histone deacetylase inhibitors
US20080119648A1 (en) * 2005-07-14 2008-05-22 Bressi Jerome C Histone deacetylase inhibitors
US20080119658A1 (en) * 2005-07-14 2008-05-22 Bressi Jerome C Histone deacetylase inhibitors
US20080114037A1 (en) * 2005-07-14 2008-05-15 Bressi Jerome C Histone deacetylase inhibitors
US20070173527A1 (en) * 2006-01-13 2007-07-26 Bressi Jerome C Histone deacetylase inhibitors
WO2008011074A3 (en) * 2006-07-20 2008-10-30 Errant Gene Therapeutics Llc Histone deacetylase inhibitors
WO2008011074A2 (en) * 2006-07-20 2008-01-24 Errant Gene Therapeutics, Llc Histone deacetylase inhibitors
US20100317739A1 (en) * 2007-12-14 2010-12-16 Brown Milton L Histone deacetylase inhibitors
US8293513B2 (en) 2007-12-14 2012-10-23 Georgetown University Histone deacetylase inhibitors

Also Published As

Publication number Publication date
US6495719B2 (en) 2002-12-17
US20020143196A1 (en) 2002-10-03

Similar Documents

Publication Publication Date Title
US6495719B2 (en) Histone deacetylase inhibitors
US8420698B2 (en) Histone deacetylase inhibitors
US7579372B2 (en) Histone deacetylase inhibitors based on alpha-ketoepoxide compounds
US7193105B2 (en) Histone deacetylase inhibitors based on trihalomethylcarbonyl compounds
US20110288168A1 (en) Histone deacetylase inhibitors
US7214831B2 (en) Histone deacetylase inhibitors based on alpha-chalcogenmethylcarbonyl compounds
US8026280B2 (en) Histone deacetylase inhibitors
US20100234455A1 (en) Histone Deacetylase Inhibitors
CA2442366C (en) Histone deacetylase inhibitors
CA2783647A1 (en) Histone deacetylase inhibitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ERRANT GENE THERAPEUTICS, LLC, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BEACON LABORATORIES, INC.;REEL/FRAME:015327/0839

Effective date: 20040901

AS Assignment

Owner name: ERRANT GENE THERAPEUTICS, LLC, ILLINOIS

Free format text: CHANGE ASSIGNEE ADDRESS REEL/FRAME 015327/0839;ASSIGNOR:ERRANT GENE THERAPEUTICS, LLC;REEL/FRAME:020251/0712

Effective date: 20040901