US20030077484A1 - Secondary battery with thermal protector - Google Patents

Secondary battery with thermal protector Download PDF

Info

Publication number
US20030077484A1
US20030077484A1 US10/270,006 US27000602A US2003077484A1 US 20030077484 A1 US20030077484 A1 US 20030077484A1 US 27000602 A US27000602 A US 27000602A US 2003077484 A1 US2003077484 A1 US 2003077484A1
Authority
US
United States
Prior art keywords
lead
battery
fuse
electrically
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/270,006
Other versions
US6899972B2 (en
Inventor
Sung-Jae Cho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR2001-64384 priority Critical
Priority to KR10-2001-0064384A priority patent/KR100420146B1/en
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Assigned to SAMSUNG SDI CO., LTD., A CORPORATION ORGANIZED UNDER THE LAWS OF THE REPUBLIC OF KOREA reassignment SAMSUNG SDI CO., LTD., A CORPORATION ORGANIZED UNDER THE LAWS OF THE REPUBLIC OF KOREA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHO, SUNG-JAE
Publication of US20030077484A1 publication Critical patent/US20030077484A1/en
Application granted granted Critical
Publication of US6899972B2 publication Critical patent/US6899972B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2/00Constructional details or processes of manufacture of the non-active parts
    • H01M2/20Current conducting connections for cells
    • H01M2/34Current conducting connections for cells with provision for preventing undesired use or discharge, e.g. complete cut of current
    • H01M2/348Current conducting connections for cells with provision for preventing undesired use or discharge, e.g. complete cut of current in response to temperature
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2/00Constructional details or processes of manufacture of the non-active parts
    • H01M2/02Cases, jackets or wrappings
    • H01M2/04Lids or covers
    • H01M2/0404Lids or covers for small-sized cells or batteries, e.g. miniature battery or power cells, batteries or cells for portable equipment
    • H01M2/0426Lids or covers for small-sized cells or batteries, e.g. miniature battery or power cells, batteries or cells for portable equipment with a metallic cover of which the borders are soldered or welded with the case
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse

Abstract

A secondary battery includes: a battery unit in which a cathode plate, a separator, and an anode plate are sequentially disposed upon one another and wound together; a can provided as a housing for the battery unit, and into which an electrolyte is injected; a cap assembly bound to an upper portion of the can; and a thermal protector installed in the can for electrically connecting an electrode lead drawn from the battery unit to an electrode terminal via the cap assembly, and for cutting off current flow when the battery unit is overcharged. When the inner temperature of the battery rises due to overcharging, the thermal protector installed in the can accurately detects the increase in temperature, and cuts off current flow, thereby preventing thermal runaway and improving reliability of the secondary battery.

Description

    CLAIM OF PRIORITY
  • This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from my application SECONDARY BATTERY MOUNTING THERMAL PROTECTOR filed with the Korean Industrial Property Office on Oct. 18, 2001 and there duly assigned Serial No. 2001-64384. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Technical Field [0002]
  • The present invention relates to a secondary battery and, more particularly to, a secondary battery with a thermal protector capable of cutting off a current flow by sensing its inner temperature. [0003]
  • 2. Related Art [0004]
  • Lithium secondary batteries, which are capable of repeatedly charging and discharging, have been rapidly developed in view of their higher operating voltage and higher energy density per unit weight, compared with nickel-cadmium (Ni—Cd) batteries and nickel-metal hydride (Ni-MH) batteries. The lithium secondary batteries can be classified into liquid electrolyte batteries and solid electrolyte batteries according to the electrolyte used. In general, batteries using a liquid electrolyte are referred to as lithium-ion batteries and batteries using a polymeric electrolyte are referred to as lithium polymer batteries. [0005]
  • However, the lithium polymer batteries have some safety problems. In particular, the lithium polymer batteries consist of a carbonic anode, a lithium oxide cathode, and an organic solvent electrolyte. When a lithium ion battery is overcharged, the electrolyte is decomposed at the cathode and the lithium metal is separated at the anode. As a result, the characteristics of the battery may degrade, and the battery may generate excess heat or even combust. [0006]
  • Since the lithium polymer electrolyte is locally overheated during charging and discharging operations, the polymeric electrolyte that is thermally sensitive may dissolve or soften. As a result, the electric current and potential are nonuniform, and a short circuit may occur. Also, there is a risk of fire or explosion. [0007]
  • In general, the mechanism that causes combustion or heat generation in the lithium ion battery can be explained by an internal short circuit and thermal runaway. To eliminate these risks, the lithium ion battery has been equipped with various kinds of protectors. [0008]
  • A secondary battery with such a protector is disclosed in Japanese Patent Laid-open No. 1999-67188 to Tsumamoto et al., entitled LEAD TERMINAL FOR SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY, published on Mar. 9, 1999. In such a secondary battery, an anode lead terminal includes a lead end for a charging circuit (charging lead end), a collector lead end, a lead end for a discharging circuit (discharging lead end) which is diverged from the collector lead end, and a fuse interposed between the charging lead end and the collector lead end. The lead ends and the fuse are disposed between multiple sheets of resin films. The secondary lithium battery includes a battery unit and a base for the battery unit. As is well known, in the battery unit, a cathode sheet, a separator and an anode sheet are wound together. [0009]
  • The charging lead end and the discharging lead end of the anode lead terminal attached to the anode sheet protrude from the battery unit. A cathode lead terminal with a resin film thereon, attached to the cathode sheet, protrudes from the battery unit. [0010]
  • When the secondary battery having the above structure is overcharged generating heat, the temperature of the fuse installed in the anode lead terminal rises. When the temperature of the fuse rises to 130° C., for example, the fuse blows. As a result, the charging lead end is not electrically connected to the collector lead end, and a charging current flow is cut off. [0011]
  • The above-described secondary lithium battery has the following problems. The fuse is sealed in the resin films and inserted into the case, wherein a thickness of the fuse provides a small gap within the resin films. Since the electrolyte is contained in the case, the electrolyte permeates the fuse through the gap and changes the physical characteristics of the fuse. As a result, it is difficult for the fuse to correctly operate at a particular temperature. Therefore, the secondary battery is unreliable. [0012]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention provides a safety-improved secondary battery with a thermal protector therein capable of cutting off current flow when the battery is overcharged. [0013]
  • In one aspect, there is provided a secondary battery comprising: a battery unit in which a cathode plate, a separator, and an anode plate are sequentially disposed upon one another and wound together; a can as a housing for the battery unit, into which an electrolyte is injected; a cap assembly bound to an upper portion of the can; and a thermal protector installed in the can, which electrically connects an electrode lead drawn from the battery unit to an electrode terminal via the cap assembly and cut offs a current flow when the battery unit is overcharged. [0014]
  • The thermal protector may comprise: a body; a fuse mounted on the body; a plurality of leads, each of which is connected to respective ends of the fuse; and a connector which is electrically connected to one of the plurality of leads. The body of the thermal protector may have a mount area for the fuse connected to the plurality of leads, and may have a surface area slightly greater than the can so as to be press-fitted into the can. [0015]
  • In the secondary battery according to the present invention, one end of the fuse may be welded to a terminal lead electrically connected to the electrode terminal, and the other end of the fuse may be welded to a tap lead electrically connected to the electrode lead. [0016]
  • Preferably, the connector of the secondary battery according to the present invention comprises: a lead plate; and a polymeric resin film wound on the lead plate. [0017]
  • Preferably, the fuse is formed of a low melting point material operable at a temperature of about 85-120° C.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of the invention, and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which like reference numerals indicate the same or similar components, and wherein: [0019]
  • FIG. 1 is a perspective view of a lead terminal; [0020]
  • FIG. 2 is an exploded perspective view of a secondary battery with the lead terminal of FIG. 1; [0021]
  • FIG. 3 is an exploded perspective view of a secondary battery according to an embodiment of the present invention; [0022]
  • FIG. 4 is an exploded perspective view of a thermal protector of FIG. 3; and [0023]
  • FIG. 5 is a perspective view of a complete assembly of the thermal protector of FIG. 4.[0024]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, an anode lead terminal [0025] 10 includes a lead end 11 for a charging circuit (charging lead end), a collector lead end 12, a lead end 13 for a discharging circuit (discharging lead end), which is diverged from the collector lead end 12, and a fuse 14 interposed between the charging lead end 11 and the collector lead end 12. The lead ends 11 through 13 and the fuse 14 are disposed between multiple sheets of resin films 15.
  • A secondary lithium battery using the anode lead terminal [0026] 10 is shown in FIG. 2. Referring to FIG. 2, the secondary lithium battery includes a battery unit 19 and a base 20 for the battery unit 19. As is well known, in the battery unit 19, a cathode sheet, a separator, and an anode sheet are wound together.
  • The charging lead end [0027] 11 and the discharging lead end 13 of the anode lead terminal 10 attached to the anode sheet protrude from the battery unit 19. A cathode lead terminal 25 with a resin film 26 thereon, attached to the cathode sheet, protrudes from the battery unit 19.
  • When the secondary battery having the above structure is overcharged so as to generate heat, the temperature of the fuse [0028] 14 installed in the anode lead terminal 10 rises. When the temperature of the fuse 14 rises to 130° C., for example, the fuse 14 blows. As a result, the charging lead end 11 is electrically disconnected from the collector lead end 12, and a charging current flow is cut off.
  • The above-described secondary lithium battery has the following problems. The fuse [0029] 14 is sealed in the resin films 15 and inserted into the case 20, and a thickness of the fuse 14 provides a small gap within the resin films 15. Since the electrolyte is contained in the case 20, the electrolyte permeates the fuse 14 through the gap and changes the physical characteristics of the fuse 14. As a result, it is difficult for the fuse 14 to correctly operate at a particular temperature. Therefore, the secondary battery is unreliable.
  • A secondary lithium battery according to an embodiment of the present invention is shown in FIG. 3. Referring to FIG. 3, a secondary lithium battery [0030] 30 includes a battery unit 31, a can 32 into which the battery unit 31 is inserted, a cap assembly 33 coupled to the can 32, and a thermal protector 40.
  • The battery unit [0031] 31 includes a cathode plate, an anode plate, and a separator interposed between the cathode plate and the anode plate for electrically insulating the same. Each of the cathode plate and the anode plate includes a current collector and an active material layer coated on at least one surface of the current collector. The battery unit 31 is formed as a “jelly-roll” in which the cathode plate, the separator, and the anode plate sequentially disposed upon one another are wound together.
  • In the battery unit [0032] 31, a cathode lead 31 a and an anode lead 31 b protrude from one end of the respective cathode plate and anode plates. An upper insulating plate 34 with a hole 34 a, through which the anode lead 31 b passes, is placed on an upper surface of the battery unit 31.
  • The thermal protector [0033] 40 is mounted on the insulating plate 34. The thermal protector 40 includes a body 41, a fuse 42 installed in the body 41, and a plurality of leads.
  • On the thermal protector [0034] 40, the cap assembly 33 to be coupled to the can 32 is mounted. The cap assembly 33 includes a cap plate 35 which is bound to an upper portion of the can 32 by welding.
  • The cap plate [0035] 35 has a hole 35 a through which an electrode terminal 36 can be inserted. The electrode terminal 36 is electrically connected to one of the electrode leads drawn from the battery unit 31. In this embodiment, the electrode terminal 36 is an anode terminal electrically connected to the anode lead 31 b. The cathode lead 31 a is welded to the can 32. Alternatively, the positions of the cathode lead 31 a and the anode lead 31 b can be switched. In that case, the element 31 a would be an anode lead which is electrically coupled to the can 32, whereas the element 31 b would be a cathode lead which is coupled to the electrode terminal 36 acting as a cathode terminal. A variety of embodiments are possible for the electrode connection structure.
  • The electrode terminal [0036] 36 is surrounded by a tubular gasket 37. The gasket 37 is formed of an insulating material, such as a polymeric resin, for electrical insulation between the cap plate 35 and the electrode terminal 36 and to prevent a leakage of the electrolyte from the can 32. The electrode terminal 36 surrounded by the gasket 37 is tightly fixed through the hole 35 a of the cap plate 35 by riveting or spinning.
  • Another insulating layer ([0037] 38) may be placed below the cap plate 35. The cap plate 35 has an electrolyte inject hole 35 b. After an injection of the electrolyte, the electrolyte inject hole 35 b is sealed with a ball.
  • According to a feature of the present invention, the thermal protector [0038] 40 which is capable of rapidly cutting off current flow when the battery 30 is overcharged is installed between the can 32 and the cap assembly 33. Since the thermal protector 40 is installed in the can 32, the risk of combustion or heat generation in the battery 30 is prevented, and reliability of the battery 30 is improved.
  • FIG. 4 is an exploded perspective view of the thermal protector [0039] 40. Referring to FIG. 4, the thermal protector 40 includes a body 41, a fuse 42 inserted into the body 41, a tap lead 43 and a terminal lead 44 which are electrically connected to the fuse 42, and a connector 45 electrically connected to the anode lead 31 b drawn from the battery unit 31.
  • In particular, the body [0040] 41 is installed in the can 32. Accordingly, it is preferable that the body 41 be formed of a polymeric resin so as not to chemically react with the electrolyte. Advantageously, the body 41 is formed of a polymeric resin which expands thermally at high temperatures, and is press-fitted into the can 32 so as to prevent leakage of the electrolyte along the wall of the can 32. The body 41 is formed having a surface size slightly larger than that of the can 32.
  • The body [0041] 41 has a mount area 41 a for the fuse 42. The mount area 41 a may have a variety of shapes as long as it can allow the fuse 42 to operate at a particular temperature without reacting with the electrolyte.
  • The fuse [0042] 42 is mounted in the mount area 41 a. The fuse 42 is formed of a low melting point material, for example, a lead alloy, capable of blowing due to the heat generated when the inner temperature of the battery 30 rises. One end of the fuse 42 is welded to the tap lead 43, with the other end being welded to the terminal lead 44. The fuse 42 operates at a temperature of about 85-120° C., and preferably, about 95±5° C.
  • Outer margins of the tap lead [0043] 43 and the terminal lead 44, to which the fuse 42 is welded, are coated with a sealing material 46. A polymeric resin 47, such as polyethyleneterephthalate (PET), is ultrasonically fused to the top surfaces of the tap lead 43 and the terminal lead 44, as well as to the fuse 42. The fuse 42 is double sealed with the sealing material 46 and the polymeric resin 47.
  • The fuse [0044] 42 welded to one end of each of the tap lead 43 and the terminal lead 44 is inserted into the mount area 41 a of the body 41 to define its position.
  • Meanwhile, to prevent the thermal protector [0045] 40 from entering the can 32 and contacting the electrolyte, the connector 45 is formed in the body 41. The connector 45 includes a lead plate 48 electrically connected to the anode lead 31 b, and a film 49 attached to the lead plate 48. The film 49 is formed of a polymeric resin which does not react with the electrolyte, and is preferably a triple-layer structure of chlorinated polypropylene (CPP), polyethylene (PE), and CPP. The film 49 is fused to the lead plate 48.
  • The connector [0046] 45 is integrally formed with the body 41. In particular, the connector 45 is inserted and integrated into the body 41 by insert molding. An upper lead 48 a of the connector 48 is exposed to the top surface of the body 41, whereas a lower lead 48 b of the connector 48 is exposed to the bottom surface of the body 41. The film 49 fused to the lead plate 48 of the connector 45 is located within the body 41 and melts to completely bind to the body 41 during the molding process.
  • FIG. 5 is a perspective view of a complete assembly of the thermal protector [0047] 40 of FIG. 4. Referring to FIG. 5, in the mount area 41 a of the body 41, the fuse 42 is placed. The tap lead 43, to which one end of the fuse 42 is welded, extends in one direction at one end of the mount area 41 a. The terminal lead 44, to which the other end of the fuse 42 is welded, extends in the same direction at the other end of the mount area 41 a. The terminal lead 44 is electrically connected to the electrode terminal 36 which is surrounded by the gasket 37.
  • At one end of the body [0048] 41, the connector 45 is attached. As described above with reference to FIG. 4, the lead plate 48 on which the film 49 is wound is integrated into the body 41 by insert molding, with the upper lead 48 a of the lead plate 48 being exposed to the top surface of the body 41. The upper lead 48 a is welded to the tap lead 43. The lower lead 48 b of the lead plate 48, which is exposed to the bottom surface of the body 41, is welded to the anode lead 31 b drawn from the battery unit 31.
  • In the thermal protector [0049] 40 having the above structure, the lower lead 48 b is coupled to the anode lead 31 b drawn from the battery unit 31, and the upper lead 48 a extending from the lower lead 48 b is coupled to the tap lead 43. The tap lead 43 is electrically connected to the terminal lead 44 via the fuse 42. The terminal lead 44 is electrically connected to the electrode terminal 36. Accordingly, the anode lead 31 b is electrically connected to the electrode terminal 36 via the lower lead 48 b, the upper lead 48 a, the tap lead 43, the fuse 42, and the terminal lead 44.
  • A process of assembling the battery [0050] 30 with the thermal protector 40 having the above structure will be described.
  • Initially, referring to FIG. 3, the can [0051] 32 and the cap assembly 35 to be bound to the upper portion of the can 32 are provided. The battery unit 31, in which the cathode plate, the separator, and the anode plate sequentially disposed upon one another are wound like a “jelly-roll”, is inserted into the can 32. The position of the anode lead 31 b is considered to match the lower lead 48 b of the thermal protector 40 for welding.
  • Next, the upper insulating plate [0052] 34 is placed in the battery unit 31, and the thermal protector 40 is inserted into the battery unit 31. The body 41 of the thermal protector 40 is press-fitted into the can 32. To this end, the body 41 is designed so as to have a surface area slightly larger than the can 32.
  • In general, through a gap between the inner wall of the can and the edge of the body [0053] 41, the electrolyte permeates the thermal protector 40. However, according to the present invention, since the body 41 is formed of a polymeric resin which is likely to expand thermally with increasing temperatures and is press-fitted into the can 32, the body 41 expands towards the inner wall of the can 32 to completely seal the gap as heat is generated from the battery 30 during charging and discharging operations. As a result, the permeation of the electrolyte into the thermal protector 40 along the inner wall of the can 32 can be prevented.
  • Prior to the fitting of the thermal protector [0054] 40 into the can 32, the anode lead 31 b drawn from the battery 31 needs to be electrically connected to the connector 45 of the thermal protector 40. The connector 45 having the lead plate 48, on which the multi-layered polymeric resin film 49 is wound, is connected to the body 41 by insert molding. The lower lead 48 b of the lead plate 48 is exposed to the bottom surface of the body 41 and is welded to the anode lead 31 b.
  • Next, in a state where the fuse [0055] 42 having both ends welded to the tap lead 43 and the terminal lead 44, respectively, is mounted in the mount area 41 a of the body 41, the tap lead 43 is welded to the upper lead 48 a of the lead plate 48, which is exposed to the top surface of the body 41. For convenience in assembly, prior to the welding of the tap lead 43 to the upper lead 48 a, the terminal lead 44 is welded to the bottom of the electrode terminal 36 inserted through the hole 35 a of the cap plate 35.
  • After the thermal protector [0056] 40 is installed in the can 32, the cap assembly 33 is placed on the thermal protector 40 and bound to the can 32 according to a general battery manufacturing process. Next, the electrolyte is injected through the electrolyte inject hole 35 b formed in the cap plate 35, and the electrolyte inject hole 35 b is sealed. The cathode lead 3 la is welded to the can 32 or the cap plate 35.
  • In the battery [0057] 30 manufactured in the above-described manner, when the inner temperature of the battery 30 rises due to a failure (for example, overcharging), the temperature of the fuse 42 rises. When the temperature of the fuse 42 rises above a particular temperature, the fuse 42 blows. As a result, the current flow from the anode lead 31 b to the electrode terminal 36 is forcibly cut off, thereby preventing undesirable reactions, such as thermal runaway.
  • Table 1 below shows the results of experiments on overcharging of batteries. [0058] TABLE 1 Comparative Comparative C-Rate Example 1 Example 2 Example 1C Whether it 50/50 50/50 operates or not Whether it has a Favorable Favorable Favorable failure or not 2C Whether it 48/50 50/50 operates or not Whether it has a Poor Poor Favorable failure or not 3C Whether it 50/50 50/50 operates or not Whether it has a Poor Favorable Favorable failure
  • In Table 1, for the values expressed as N2/N1, N1 indicates the total number of batteries tested, and N2 indicates the number of the batteries where no failure occurred. Comparative Example 1 is for the case where no protector was mounted, and Comparative Example 2 is for the case where a conventional protector was mounted. In Example, the thermal protector [0059] 40 according to the present invention was mounted.
  • As shown in Table 1, when no protector was equipped, the battery became unstable at 2C and 3C discharge rates. In this case, combustion or explosion may occur in those batteries. When the conventional protector was equipped, although no combustion or explosion occurred in 3C high rate discharging, two of fifty batteries exploded at a 2C discharge rate. [0060]
  • However, in the battery [0061] 30 with the thermal protector 40 according to the present invention, since the fuse 42 correctly operated at a particular temperature, no combustion or explosion occurred at all discharge rates of 1C, 2C, and 3C. This is because the thermal protector 40 cut off current flow by sensing an increase in the temperature of the battery 30 when it was overcharged.
  • As described above, a secondary battery with the thermal protector according to the present invention provides the following effects. [0062]
  • First, when the inner temperature of the battery rises due to overcharging, the thermal protector installed in the can accurately detects the increase in temperature and cuts off current flow, thereby preventing thermal runaway and improving reliability. [0063]
  • Second, although the thermal protector is installed within the battery, no permeation of the electrolyte into the thermal protector occurs. As a result, the thermal protector can correctly operate at a particular temperature to block current overflow. [0064]
  • Third, since the thermal protector can be installed within the battery, a compact, lightweight battery ensuring safety can be manufactured. [0065]
  • Fourth, since an increase in the internal temperature of the battery is detected in the battery can, current flow can be timely cut off to rapidly react to thermal variations in the battery. [0066]
  • While the present invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims. [0067]

Claims (22)

What is claimed is:
1. A secondary battery comprising:
a battery unit in which a cathode plate, a separator and an anode plate are sequentially disposed upon one another and wound together;
a can provided as a housing for the battery unit, and into which an electrolyte is injected;
a cap assembly bound to an upper portion of the can; and
a thermal protector installed in the can for electrically connecting an electrode lead drawn from the battery unit to an electrode terminal via the cap assembly, and for cutting off a current flow when the battery unit is overcharged.
2. The secondary battery of claim 1, wherein the thermal protector comprises:
a body;
a fuse mounted on the body;
a plurality of leads, each connected to a respective end of the fuse; and
a connector which is electrically connected to one of the plurality of leads.
3. The secondary battery of claim 2, wherein the body has a mount area for the fuse, and has a surface area slightly greater than the can so as to be press-fitted into the can.
4. The secondary battery of claim 3, wherein the body is formed by molding using a material capable of expanding thermally, the body expanding toward an inner wall of the can as an internal temperature of the battery rises so as to block a leakage of the electrolyte through a gap between the inner wall of the can and the body.
5. The secondary battery of claim 2, wherein one end of the fuse is welded to a terminal lead electrically connected to the electrode terminal, and another end of the fuse is welded to a tap lead electrically connected to the electrode lead.
6. The secondary battery of claim 5, wherein outer margins of the fuse are welded to the plurality of leads and are coated with a sealing material for tight sealing purposes.
7. The secondary battery of claim 2, wherein the connector comprises:
a lead plate; and
a polymeric resin film wound on the lead plate.
8. The secondary battery of claim 7, wherein the connector is integrally formed with the body by insert molding.
9. The secondary battery of claim 8, wherein the lead plate comprises:
an upper lead which is exposed to an upper surface of the body and is welded to a tap lead; and
a lower lead which extends from the upper lead, is exposed to a bottom surface of the body, and is welded to the electrode lead.
10. The secondary battery of claim 9, wherein the electrode lead is electrically connected to the electrode terminal via the lower lead, the upper lead, the tap lead, the fuse, and a terminal lead to provide a current flow, and the current flow is cut off as a result of blowing of the fuse when the battery unit is overcharged.
11. The secondary battery of claim 2, wherein the fuse is formed of a low melting point material operable at a temperature in a range of about 85-120° C.
12. A secondary battery comprising:
a battery unit including a cathode plate and an anode plate, and having an electrode lead extending therefrom;
a can provided as a housing for the battery unit, and into which an electrolyte is injected;
a cap assembly bound to an upper portion of the can; and
thermal protector means installed in the can for electrically connecting the electrode lead from the battery unit to an electrode terminal, and for cutting off a current flow when the battery unit is overcharged.
13. The secondary battery of claim 12, wherein the thermal protector means comprises:
a body;
a fuse mounted on the body;
a plurality of leads, each connected to a respective end of the fuse; and
a connector electrically connected to one of the plurality of leads.
14. The secondary battery of claim 13, wherein the body has a mount area for the fuse, and has a surface area slightly greater than the can so as to be press-fitted into the can.
15. The secondary battery of claim 13, wherein the body is formed by molding using a material capable of expanding thermally, the body expanding toward an inner wall of the can as an internal temperature of the battery rises so as to block a leakage of the electrolyte through a gap between the inner wall of the can and the body.
16. The secondary battery of claim 2, wherein the plurality of leads includes a terminal lead electrically connected to the electrode terminal and a tap lead electrically connected to the electrode lead, and wherein one end of the fuse is welded to the terminal lead and another end of the fuse is welded to the tap lead.
17. The secondary battery of claim 16, wherein outer margins of the fuse are welded to the terminal lead and the tap lead, respectively, and are coated with a sealing material for tight sealing purposes.
18. The secondary battery of claim 13, wherein the connector comprises:
a lead plate; and
a polymeric resin film wound on the lead plate.
19. The secondary battery of claim 18, wherein the connector is integrally formed with the body by insert molding.
20. The secondary battery of claim 13, wherein the plurality of leads includes a terminal lead electrically connected to the electrode terminal and a tap lead electrically connected to the electrode lead, and wherein the connector includes a lead plate which comprises:
an upper lead which is exposed to an upper surface of the body and is welded to the tap lead; and
a lower lead which extends from the upper lead, is exposed to a bottom surface of the body, and is welded to the electrode lead.
21. The secondary battery of claim 20, wherein the electrode lead is electrically connected to the electrode terminal via the lower lead, the upper lead, the tap lead, the fuse, and the terminal lead to provide a current flow, and the current flow is cut off as a result of blowing of the fuse when the battery unit is overcharged.
22. The secondary battery of claim 13, wherein the fuse is formed of a low melting point material operable at a temperature in a range of about 85-120° C.
US10/270,006 2001-10-18 2002-10-15 Secondary battery with thermal protector Expired - Fee Related US6899972B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR2001-64384 2001-10-18
KR10-2001-0064384A KR100420146B1 (en) 2001-10-18 2001-10-18 Secondary battery mounting thermal protector

Publications (2)

Publication Number Publication Date
US20030077484A1 true US20030077484A1 (en) 2003-04-24
US6899972B2 US6899972B2 (en) 2005-05-31

Family

ID=19715231

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/270,006 Expired - Fee Related US6899972B2 (en) 2001-10-18 2002-10-15 Secondary battery with thermal protector

Country Status (4)

Country Link
US (1) US6899972B2 (en)
JP (1) JP4230747B2 (en)
KR (1) KR100420146B1 (en)
CN (1) CN1311571C (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126656A1 (en) * 2002-12-18 2004-07-01 Sung-Jae Cho Secondary battery and method of manufacturing same
US20060057456A1 (en) * 2004-09-09 2006-03-16 Hong Eui S Lithium secondary battery
US20060099504A1 (en) * 2004-09-24 2006-05-11 Kim Kwang C Secondary battery
CN100428555C (en) * 2005-03-24 2008-10-22 三星Sdi株式会社 Rechargeable battery
US20100159313A1 (en) * 2008-12-22 2010-06-24 Samsung Sdi Co., Ltd. Battery pack
US20100316905A1 (en) * 2009-06-16 2010-12-16 Sooyeon Maeng Secondary battery
US20110081560A1 (en) * 2009-10-01 2011-04-07 Samsung Sdi Co., Ltd. Current interrupting device and secondary battery including current interrupting device
US20110183193A1 (en) * 2010-01-26 2011-07-28 Sangwon Byun Rechargeable battery
US20110236727A1 (en) * 2010-03-29 2011-09-29 Young-Cheol Jang Secondary battery pack
US20110244280A1 (en) * 2010-03-30 2011-10-06 Sang-Won Byun Secondary battery
US20120282494A1 (en) * 2011-05-03 2012-11-08 Samsung Sdi Co., Ltd. Battery pack
US8501341B2 (en) 2010-06-30 2013-08-06 Samsung Sdi Co., Ltd. Rechargeable battery
WO2013113473A1 (en) * 2012-02-01 2013-08-08 Daimler Ag High-voltage battery for a vehicle and method for operating a high-voltage battery
CN103700885A (en) * 2013-12-19 2014-04-02 深圳市吉阳自动化科技有限公司 Laminator and lamination method thereof
US20140199562A1 (en) * 2013-01-16 2014-07-17 Samsung Sdi Co., Ltd. Rechargeable battery
US9722237B2 (en) 2014-03-20 2017-08-01 Samsung Sdi Co., Ltd. Secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100516772B1 (en) 2003-08-22 2005-09-22 삼성에스디아이 주식회사 Secondary Battery having a Tap in Short Part of Can
KR100899282B1 (en) * 2006-07-18 2009-05-27 주식회사 엘지화학 Safety Switch Using Heat Shrinkage Tube and Secondary Battery Including the Same
KR100886571B1 (en) 2006-08-07 2009-03-05 주식회사 엘지화학 Battery Pack Case
KR100865399B1 (en) * 2007-05-07 2008-10-24 삼성에스디아이 주식회사 Secondary battery
DE102008020912A1 (en) * 2008-04-17 2009-10-22 Varta Microbattery Gmbh Galvanic cell with irreversible fuse
US9246140B2 (en) * 2009-07-09 2016-01-26 Samsung Sdi Co., Ltd. Rechargeable battery with a cap assembly having a first tab located outside of the case
US8877361B2 (en) * 2009-09-01 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery
US9099732B2 (en) 2010-06-11 2015-08-04 Samsung Sdi Co., Ltd. Rechargeable battery having a fuse with an insulating blocking member
US8557419B2 (en) * 2010-09-02 2013-10-15 Bathium Canada Inc. Shape memory current collecting terminals for electrochemical cells
US9478774B2 (en) 2010-12-02 2016-10-25 Samsung Sdi Co., Ltd. Rechargeable battery
JP5704645B2 (en) * 2011-03-30 2015-04-22 Necエナジーデバイス株式会社 Secondary battery
US9136555B2 (en) * 2011-05-02 2015-09-15 Samsung Sdi Co., Ltd. Rechargeable battery
KR101274806B1 (en) 2011-07-26 2013-06-13 로베르트 보쉬 게엠베하 Rechargeable battery
US9634299B2 (en) 2011-09-06 2017-04-25 Samsung Sdi Co., Ltd. Rechargeable battery
KR101683210B1 (en) 2011-11-17 2016-12-07 삼성에스디아이 주식회사 Rechargeable battery
KR101683209B1 (en) * 2011-12-06 2016-12-07 삼성에스디아이 주식회사 Rechargeable battery
US9172079B2 (en) * 2012-02-01 2015-10-27 Samsung Sdi Co., Ltd. Rechargeable battery
KR101702988B1 (en) 2013-04-17 2017-02-06 삼성에스디아이 주식회사 Rechargeable battery with fuse
KR20150026370A (en) * 2013-09-02 2015-03-11 에스케이이노베이션 주식회사 Battery overcharge protection apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167188A (en) 1997-08-22 1999-03-09 Japan Storage Battery Co Ltd Lead terminal for secondary battery and lithium secondary battery
JPH1167190A (en) * 1997-08-27 1999-03-09 Japan Storage Battery Co Ltd Thermal fuse and lithium secondary battery provided therewith
TW432736B (en) 1999-02-23 2001-05-01 Sanyo Electric Co Pack battery

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781092B2 (en) * 2002-12-18 2010-08-24 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing same
US20040126656A1 (en) * 2002-12-18 2004-07-01 Sung-Jae Cho Secondary battery and method of manufacturing same
US7666546B2 (en) * 2004-09-09 2010-02-23 Samsung Sdi Co., Ltd. Lithium secondary battery
US20060057456A1 (en) * 2004-09-09 2006-03-16 Hong Eui S Lithium secondary battery
US7862925B2 (en) 2004-09-24 2011-01-04 Samsung Sdi Co., Ltd. Secondary battery
CN100420085C (en) * 2004-09-24 2008-09-17 三星Sdi株式会社 Seconary battery
US20060099504A1 (en) * 2004-09-24 2006-05-11 Kim Kwang C Secondary battery
CN100428555C (en) * 2005-03-24 2008-10-22 三星Sdi株式会社 Rechargeable battery
US20100159313A1 (en) * 2008-12-22 2010-06-24 Samsung Sdi Co., Ltd. Battery pack
EP2200107A3 (en) * 2008-12-22 2011-05-04 Samsung SDI Co., Ltd. Battery Pack
US8748033B2 (en) 2008-12-22 2014-06-10 Samsung Sdi Co., Ltd. Battery pack exhibiting improved insulation performance and assembly productivity
EP2264811A1 (en) * 2009-06-16 2010-12-22 Samsung SDI Co., Ltd. Secondary battery
US20100316905A1 (en) * 2009-06-16 2010-12-16 Sooyeon Maeng Secondary battery
US8758930B2 (en) 2009-06-16 2014-06-24 Samsung Sdi Co., Ltd. Secondary battery having a short induction plate
US20110081560A1 (en) * 2009-10-01 2011-04-07 Samsung Sdi Co., Ltd. Current interrupting device and secondary battery including current interrupting device
US8741453B2 (en) * 2009-10-01 2014-06-03 Samsung Sdi Co., Ltd. Current interrupting device and secondary battery including current interrupting device
US20110183193A1 (en) * 2010-01-26 2011-07-28 Sangwon Byun Rechargeable battery
US8846242B2 (en) 2010-01-26 2014-09-30 Samsung Sdi Co., Ltd. Rechargeable battery
US8617737B2 (en) 2010-01-26 2013-12-31 Samsung Sdi Co., Ltd. Rechargeable battery
US20110236727A1 (en) * 2010-03-29 2011-09-29 Young-Cheol Jang Secondary battery pack
US9059459B2 (en) * 2010-03-30 2015-06-16 Samsung Sdi Co., Ltd. Secondary battery
US20110244280A1 (en) * 2010-03-30 2011-10-06 Sang-Won Byun Secondary battery
US8846241B2 (en) 2010-06-30 2014-09-30 Samsung Sdi Co., Ltd. Rechargeable battery
US8501341B2 (en) 2010-06-30 2013-08-06 Samsung Sdi Co., Ltd. Rechargeable battery
US20120282494A1 (en) * 2011-05-03 2012-11-08 Samsung Sdi Co., Ltd. Battery pack
WO2013113473A1 (en) * 2012-02-01 2013-08-08 Daimler Ag High-voltage battery for a vehicle and method for operating a high-voltage battery
US20140199562A1 (en) * 2013-01-16 2014-07-17 Samsung Sdi Co., Ltd. Rechargeable battery
EP2757609A1 (en) * 2013-01-16 2014-07-23 Samsung SDI Co., Ltd. Rechargeable battery
US9478789B2 (en) * 2013-01-16 2016-10-25 Samsung Sdi Co., Ltd. Rechargeable battery
CN103700885A (en) * 2013-12-19 2014-04-02 深圳市吉阳自动化科技有限公司 Laminator and lamination method thereof
US9722237B2 (en) 2014-03-20 2017-08-01 Samsung Sdi Co., Ltd. Secondary battery

Also Published As

Publication number Publication date
US6899972B2 (en) 2005-05-31
CN1412876A (en) 2003-04-23
JP2003178745A (en) 2003-06-27
JP4230747B2 (en) 2009-02-25
KR20030032562A (en) 2003-04-26
CN1311571C (en) 2007-04-18
KR100420146B1 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
EP2357685B1 (en) Rechargeable battery
EP2139057B1 (en) Electrode assembly and lithium secondary battery using the same
US7033697B2 (en) Battery unit and secondary battery employing the same
KR100867068B1 (en) Non-aqueous electrolytic secondary battery
JP4391467B2 (en) Lithium secondary battery
EP2337110B1 (en) Cap assembly with improved stability and cylindrical secondary battery including the same
US8663831B2 (en) Rechargeable battery and its fabrication method
US6861821B2 (en) Battery with resin integrated resin substrate
US7935439B2 (en) Pouch type lithium secondary battery
KR100591432B1 (en) Secondary battery
JP4628682B2 (en) Battery unit and lithium secondary battery using the same
KR100342045B1 (en) Secondary battery
RU2316849C1 (en) Pcm module casting and battery incorporating it
JP5547302B2 (en) Battery pack including PCM using safety member
US7125627B2 (en) Secondary battery having a container with a safety unit
JP4187685B2 (en) Secondary battery
EP1753053B1 (en) Rechargeable battery
US8277963B2 (en) Battery pack
EP2166595B1 (en) Secondary battery
EP2059960B1 (en) Pouch-typed secondary battery with improved safety and excellent manufacturing process property
US9496540B2 (en) Secondary battery having electrode with self cutting part to be destructed on application of over-current
US8507127B2 (en) Rechargeable battery
US7811686B2 (en) Rechargeable battery
CN1311571C (en) Charging cell with heat protector
US7981540B2 (en) Rechargeable battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG SDI CO., LTD., A CORPORATION ORGANIZED UND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHO, SUNG-JAE;REEL/FRAME:013394/0016

Effective date: 20021010

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Expired due to failure to pay maintenance fee

Effective date: 20170531