US20030069327A1 - Dental compostions comprising bisacrylamides and use thereof - Google Patents

Dental compostions comprising bisacrylamides and use thereof Download PDF

Info

Publication number
US20030069327A1
US20030069327A1 US09/925,173 US92517301A US2003069327A1 US 20030069327 A1 US20030069327 A1 US 20030069327A1 US 92517301 A US92517301 A US 92517301A US 2003069327 A1 US2003069327 A1 US 2003069327A1
Authority
US
United States
Prior art keywords
unsubstituted
substituted
arylene
alkylene
difunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/925,173
Inventor
Uwe Walz
Joachim Klee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dentsply Detrey GmbH
Original Assignee
Dentsply Detrey GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dentsply Detrey GmbH filed Critical Dentsply Detrey GmbH
Priority to US09/925,173 priority Critical patent/US20030069327A1/en
Assigned to DENTSPLY DETREY GMBH reassignment DENTSPLY DETREY GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLEE, JOACHIM E., WALZ, UWE
Assigned to DENTSPLY DETREY GMBH reassignment DENTSPLY DETREY GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KLEE, JOACHIM E.
Publication of US20030069327A1 publication Critical patent/US20030069327A1/en
Priority claimed from US11/699,597 external-priority patent/US20070129458A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/54Filling; Sealing

Abstract

The invention concerns a dental composition comprising bisacrylamides that are polymerizable by free-radical polymerization and by Michael-addition polymerization with amines. The application of polymerization and addition polymerization with amines opens the possibility to completely reacted materials that have no oxygen inhibited layers. The claimed bisacrylamides have an improved hydrolytic stability.

Description

    TECHNICAL BACKGROUND
  • Since decades the free-radical polymerization used in electrotechnics, electronics, dental industry, is combined with remarkable advantages in these fields. The frequently used acrylates and methacrylates are applied in combination with pigments and fillers or as pure polymerizable resins. It is well-known that during free-radical polymerization some side-reactions take place. One of them is the inhibition of the outer layer of the polymerizable material due to the influence of oxygen. The thickness of this layer depends on the viscosity of the polymerizable material, the degree of filling, the applied temperature and the time of polymerization. Frequently, the oxygen inhibited layer is disadvantageous due to the mechanical properties in this part are insufficient, the abrasion is higher and the toxicological/allergic potential is increased. The polymerization of very small layers is limited due to the oxygen inhibition, for example in case of covering electronic circuits by screen printing or for dental sealing materials or varnishes. [0001]
  • Furthermore, the conventional methacrylates that were used for dental applications are ester compound. Consequently, they hydrolysis under acidic or basic conditions that frequently leads to a long-term failure. [0002]
  • In order to reduce the oxygen inhibited layer different possibilities were suggested. One of them is the today well-known use of carbonyl/amine initiator systems for photochemical polymerization (R. S. Davison, J. W. Goodin, Eur. Polym. J 18 (1982) 597). Dekker used special color initiators that change triplet-oxygen into singulet-oxygen (C. Dekker, Makromol. Chem. 180 (1979) 2027). Furthermore, surface active additives were used (C. R. Morgan, A. D. Ketley, J. Radiat. Curing 7 (1980) 10) or the photochemical SH-En-Addition was applied (C. R. Morgan, F. Magnotta, A. D. Ketley, J. Polym. Sci., Polym. Ed. 15 (1977), 627). [0003]
  • The photochemical polymerization of monoacrylamides was studied by Smets (G. Smets, Bull. Soc. Chim. Belges 71 (1962) 857, G. Oster, J. Amer. Chem. Soc. 79 (1957) 595). A large number of bisacrylamides were described by Ferrutti (P. Ferrutti et al., Polymer 26 (1985) 1336). These bisacrylamides are solids that are soluble in water due to the secondary amide group or they comprises a piperidine group. [0004]
  • A combination of free-radical and Michael addition polymerization was suggest for encapsulation of electronic circuits (DD 295645; invs.: J. Klee, H.-H. Hörhold, I. Scherlitz-Hofmann). [0005]
  • The new synthesized bisacrylamides should be liquids in order to polymerized them without of solvents and furthermore they and the resulting polymers should be insoluble in water. [0006]
  • DESCRIPTION OF THE INVENTION
  • A dental composition that comprises at least one acrylamide selected from bisacrylamide, polyacrylamide, bis(meth)acrylamide and poly(meth)acrylamide; a polymerizable monomer; at least one amine and/or an initiator; a stabilizer; pigments and an organic and/or inorganic filler and that have an improved hydrolysis stability. [0007]
  • The bisacrylamide are characterized by the following formula: [0008]
    Figure US20030069327A1-20030410-C00001
  • wherein [0009]
  • R[0010] 1 is H or a substituted or unsubstituted C1 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene,
  • R[0011] 2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene,
  • Preferably bisacrylamides are characterized by the following formula: [0012]
    Figure US20030069327A1-20030410-C00002
  • wherein [0013]
  • R[0014] 2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene,
  • The claimed dental composition preferably contains as polymerizable monomer a mono- or a polyfunctional (meth)-acrylate, such as a polyalkylenoxide di- and poly-(meth)acrylate, an urethane di- and poly(meth) acrylate, a vinyl-, vinylen- or vinyliden-, acrylate- or methacrylate; preferably were used diethyleneglycol dimethacrylate, triethyleneglycol dimethacrylate, 3,(4),8,(9)-dimethacryloyloxymethyltricyclodecane, dioxolan bismethacry-late, glycerol trimethacrylate, furfuryl methacrylate or a monoacrylamide in a content of 5 to 80 wt-%. [0015]
  • Bisacrylamides react with amines in a thermal Michael addition polymerization. Preferably for the addition polymerization are used primary monoamines, disecondary diamines and/or polyamines of the following structure: [0016]
    Figure US20030069327A1-20030410-C00003
  • wherein [0017]
  • R[0018] 1 is a substituted or unsubstituted C1 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene,
  • R[0019] 2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene and
  • R[0020] 3 is a substituted or unsubstituted C2 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene,
  • Furthermore the claimed dental composition can contain a polymerization initiator, that preferably is a thermal initiator, a redox-initiator or a photo initiator such as champhor quinone. [0021]
  • In order to avoid a spontaneous polymerization stabilizer are added such as a radical absorbing monomer for example hydrochinonmonomethylether, hydrochinondimethylether, 2,6-di-tert.-butyl-p-cresol. [0022]
  • The dental composition comprises an inorganic filler and/or an organic filler. Preferably inorganic fillers such as La[0023] 2O3, ZrO2, BiPO4, CaWO4, BaWO4, SrF2, Bi2O3, glasses or an organic fillers, such as polymer granulate or a combination of organic/or inorganic fillers are applied.
  • The dental composition is preferably usable as dental root canal filling material or as pulp capping material. [0024]
  • In an alternative embodiment, the bisacrylamide can have the following formula [0025]
    Figure US20030069327A1-20030410-C00004
  • or it can be a polyacrylamide as follows [0026]
    Figure US20030069327A1-20030410-C00005
  • Similarly, the bis(meth)acrylamide can have the following formula [0027]
    Figure US20030069327A1-20030410-C00006
  • or it can be a poly (meth)acrylamide as follows [0028]
    Figure US20030069327A1-20030410-C00007
  • In these formulas, R1 and R3 are the same or different, and are preferably independently H or a substituted or unsubstituted C1 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene; R2 is preferably a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene; and R4 is preferably a mono- or polyfunctional substituted or unsubstituted C1 to C18 alkylene, mono- or polyfunctional substituted or unsubstituted cycloalkylene, mono- or polyfunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, mono- or polyfunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, mono- or polyfunctional substituted or unsubstituted C7 to C30 alkylene arylene.[0029]
  • EXAMPLE 1
  • N,N′-bisacryloyl-N,N′-dibenzyl-5-oxanonanediamine-1.9: In a 4-necked 1-I-flask equipped with a stirrer, a thermometer and two 50 ml dropping funnels 102.16 g (0.3 mol) of N,N′-dibenzyl-5-oxanonanediamine-1.9 were dissolved in 300 ml of methylenechloride. After cooling to 0-5° C. 57.020 g (0.63 mol) of acryloylchloride dissolved in 30 ml of methylenechloride and 25.20 g (0.63 mol) of NaOH dissolved in 60 ml of water were added simultaneously under stirring during 1.5 hours so that the temperature remains at 0-5° C. Thereafter the mixture were stirred at room temperature for additional two hours. Than the reaction mixture were hydrolyzed with 600 ml of ice-water. The organic phase were separated and the aqueous solution were extracted twice with methylenechloride. The collected organic liquids were washed with 150 ml of 1 n HCl, 150 ml of 1 n NaHCO[0030] 3 and sometimes with 150 ml of deionised water until the water shows a pH-value of approximately 7. Than the organic solution was dried over NaSO4. Thereafter the NaSO4 was filtered off and to the solution 0.1346 g of 2,6-di-tert.-butyl-p-cresol were added. The methylenechloride was removed at 40° C. in vacuum and the bisacrylamide was dried.
  • Yield: 132.6 g (98.5% of th.), n[0031] D 20=1.5499, η=2.35 Pa*s, Mn (vpo)=450 g/mol
  • C[0032] 28H36N2O3, 448.61 calc C, 74.97; H, 8.09; N, 6.24; found C, 74.50; H, 8.09; N, 6.24;
  • IR: 1655 cm[0033] −1 (CONR), 1620 cm−1 (CH2═CH—)
  • [0034] 1H—NMR: 7.4-7.2 (Ph), 6.65/4.52 (CH2Ph), 5.58/6.38 (CH2═CH), 3.4-3.2 (CH2O, CH2N), 1.6-1.5 (CH2CH2)
  • [0035] 13C—NMR: 166.69/166.28 (3), 137.60/136.95 (5), 129.66/128.95 (2), 128.80/128.50 (6), 128.35/128.23 (7), 128.16/128.00 (8), 127.27/126.25 (1), 70.40/70.27 (12), 50.99/48.88 (4), 48.07/46.97 (9), 27.43/27.11 (11), 25.43/23.15 (10)
    Figure US20030069327A1-20030410-C00008
  • Addition Polymerization: [0036]
  • 5.000 g (11.137 mmol) of N,N′-bisacryloyl-N,N′-dibenzyl-5-oxanonanediamine-1.9 and 3.792 g (11.137 mmol) were mixed homogeneously together and reacted for 60 hours at 60° C. The addition polymer shows the following results obtained by GPC: [0037] Mn Mw Mz [η] g mol−1 g mol−1 g mol−1 Mw/Mn ml g−1 3615 9403 16280 2.60 8.741
  • EXAMPLE 2
  • N,N′-bisacryloyl-N,N′-dibenzylethylenediamine: In a 4-necked 1-l-flask equipped with a stirrer, a thermometer and two 50 ml dropping funnels 29.198 g (0.12 mol) of N,N′-dibenzylethylenediamine were dissolved in 100 ml of methylenechloride. After cooling to 0-5° C. 21.991 g (0.24 mol) of acryloylchloride dissolved in 30 ml of methylenechloride and 9.718 g (0.24 mol) of NaOH dissolved in 40 ml of water were added simultaneously under stirring during 1.5 hours so that the temperature remains at 0-5° C. Thereafter the mixture were stirred at room temperature for additional two hours. Than the reaction mixture were hydrolyzed with 600 ml of ice-water. The organic phase were separated and the aqueous solution were extracted twice with methylenechloride. The collected organic liquids were washed with 100 ml of 1 n HCl, 100 ml of 1 n NaHCO[0038] 3 and sometimes with 100 ml of deionised water until the water shows a pH-value of approximately 7. Than the organic solution was dried over NaSO4. Thereafter the NaSO4 was filtered off and to the solution 0.028 g of 2,6-di-tert.-butyl-p-cresol were added. The methylenechloride was removed at 40° C. in vacuum and the bisacrylamide was dried.
  • Yield: 27.9 g (65.9% of th.), m[0039] p=75,5-76,6° C., Tg=−7.2° C., Mn (vpo)=350 g/mol
  • C[0040] 22H24N2O2, 348.45 calc. C, 75.83; H, 6.94; N, 8.04; found C, 76.00; H, 7.26; N, 8.05;
  • EXAMPLE 3
  • N,N′-bisacryloyl-N,N′-dibenzyl-4,4′-diaminodicyclohexylamine: In a 4-necked 1-l-flask equipped with a stirrer, a thermometer and two 50 ml dropping funnels 60.551 g (0.16 mol) of N,N′-dibenzyl-4,4′-diaminodicyclohexylamine were dissolved in 150 ml of methylenechloride. After cooling to 0-5° C. 28.061 g (0.31 mol) of acryloylchloride dissolved in 30 ml of methylenechloride and 12.401 g (0.31 mol) of NaOH dissolved in 50 ml of water were added simultaneously under stirring during 1.5 hours so that the temperature remains at 0-5° C. Thereafter the mixture were stirred at room temperature for additional two hours. Than the reaction mixture were hydrolyzed with 500 ml of ice-water. The organic phase were separated and the aqueous solution were extracted twice with methylenechloride. The collected organic liquids were washed with 100 ml of 1 n HCl, 100 ml of 1 n NaHCO[0041] 3 and sometimes with 10 ml of deionised water until the water shows a pH-value of approximately 7. Than the organic solution was dried over NaSO4. Thereafter the NaSO4 was filtered off and to the solution 0.077 g of 2,6-di-tert.-butyl-p-cresol were added. The methylenechloride was removed at 40° C. in vacuum and the bisacrylamide was dried.
  • Yield: 54.0 g (69.9% of th.), Tg=47.1° C. [0042]
  • Application Example 1 Dental Root Canal Sealer
  • Bisacrylamide-Paste [0043]
  • 5.0000 g of N,N′-bisacryloyl-N,N′-dibenzyl-5-oxanonanediamine-1.9 of example 1, 3.1642 g of Calciumtungstate, 0.7911 g of Zirconiumoxide, 0.0300 g of Aerosil and 0.0100 g of Fe[0044] 2O3 were mixed homogeneously.
  • Amine-Paste [0045]
  • 1.8962 9 of N,N′-dibenzyl-5-oxanonanediamine-1.9, 0.8423 g of 1-Aminoadamantane, 10.9540 g of Calciumtungstate, 2.7385 g of Zirconiumoxide and 0.3353 g of Aerosil were mixed homogeneously. [0046]
  • Immediately before use both pastes were mixed homogeneously in a ratio of 1/1 (v/v) or 1/1.86 (w/w). The material shows an radio-opacity of 11.5 mm/mm Al. [0047]

Claims (12)

We claim:
1. A dental composition that comprises at least a bisacrylamide, a polymerizable monomer, at least an amine and/or an initiator, a stabilizer, pigments and an organic and/or inorganic filler and that have an improved hydrolysis stability.
2. Dental composition of claim 1, wherein said bisacrylamide are characterized by the following formula:
Figure US20030069327A1-20030410-C00009
wherein
R1 is H or a substituted or unsubstituted C1 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene,
R2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene,
3. Dental composition of claim 1, wherein said bisacrylamide are characterized by the following formula:
Figure US20030069327A1-20030410-C00010
wherein
R2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene,
4. Dental composition of claim 1, wherein said polymerizable monomer is a mono- or a polyfunctional (meth)-acrylate, such as a polyalkylenoxide di- and poly-(meth)acrylate, an urethane di- and poly(meth) acrylate, a vinyl-, vinylen- or vinyliden-, acrylate- or methacrylate; preferably were used diethyleneglycol dimethacrylate, triethyleneglycol dimethacrylate, 3,(4),8,(9)-dimethacryloyloxymethyltricyclodecane, dioxolan bismethacry-late, glycerol trimethacrylate, furfuryl methacrylate or a monoacrylamide in a content of 5 to 80 wt-%.
5. Dental composition of claim 1, wherein said wherein said amines are primary monoamines, disecondary diamines and/or polyamines of the following structure:
Figure US20030069327A1-20030410-C00011
wherein
R1 is a substituted or unsubstituted C1 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene,
R2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene and
R3 is a substituted or unsubstituted C2 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene,
6. Dental composition of claim 1, wherein said polymerization initiator is a thermal initiator, a redox-initiator or a photo initiator.
7. Dental composition of claim 1, wherein said photo initiator preferably is champhor quinone.
8. Dental composition of claim 1, wherein said filler is an inorganic filler and/or an organic filler.
9. Dental composition of claim 1, wherein said stabilizer is a radical absorbing monomer such as hydrochinonmonomethylether, hydrochinondimethylether, 2,6-di-tert.-butyl-p-cresol.
10. Dental composition of claim 1, that is preferably usable as dental root canal filling material or as pulp capping material.
11. A dental composition that comprises at least one acrylamide selected from the group consisting of bisacrylamide, polyacrylamide, bis(meth)acrylamide and poly(meth)acrylamide; a polymerizable monomer, at least one amine or an initiator, and an organic or inorganic filler, which has improved hydrolysis stability.
12. A dental composition as in claim 11, wherein said bisacrylamide if present, has the formula
Figure US20030069327A1-20030410-C00012
said polyacrylamide if present has the formula
Figure US20030069327A1-20030410-C00013
said bis(meth)acrylamide if present has the formula
Figure US20030069327A1-20030410-C00014
and said poly (meth)acrylamide if present has the formula
Figure US20030069327A1-20030410-C00015
wherein R1 and R3 are the same or different, and are independently H or a substituted or unsubstituted C1 to C18 alkylene, substituted or unsubstituted cycloalkylene, substituted or unsubstituted C5 to C18 arylene or heteroarylene, substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, substituted or unsubstituted C7 to C30 alkylene arylene; R2 is a difunctional substituted or unsubstituted C1 to C18 alkylene, difunctional substituted or unsubstituted cycloalkylene, difunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, difunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, difunctional substituted or unsubstituted C7 to C30 alkylene arylene; and, R4 is a mono- or polyfunctional substituted or unsubstituted C1 to C18 alkylene, mono- or polyfunctional substituted or unsubstituted cycloalkylene, mono- or polyfunctional substituted or unsubstituted C5 to C18 arylene or heteroarylene, mono- or polyfunctional substituted or unsubstituted C5 to C18 alkylarylene or alkylheteroarylene, mono- or polyfunctional substituted or unsubstituted C7 to C30 alkylene arylene.
US09/925,173 2001-08-09 2001-08-09 Dental compostions comprising bisacrylamides and use thereof Abandoned US20030069327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/925,173 US20030069327A1 (en) 2001-08-09 2001-08-09 Dental compostions comprising bisacrylamides and use thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09/925,173 US20030069327A1 (en) 2001-08-09 2001-08-09 Dental compostions comprising bisacrylamides and use thereof
US10/308,564 US6767936B2 (en) 2000-08-11 2002-12-03 Dental compositions comprising bisacrylamides and use thereof
US11/699,597 US20070129458A1 (en) 2000-08-11 2007-01-29 Dental compositions comprising disacrylamides and use thereof
US12/586,789 US20100022681A1 (en) 2000-08-11 2009-09-28 Dental compositions comprising cisacrylamides and use thereof
US14/574,716 US20150105489A1 (en) 2001-08-07 2014-12-18 Dental compositions comprising bisacrylamides and use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/308,564 Division US6767936B2 (en) 2000-08-11 2002-12-03 Dental compositions comprising bisacrylamides and use thereof

Publications (1)

Publication Number Publication Date
US20030069327A1 true US20030069327A1 (en) 2003-04-10

Family

ID=25451325

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/925,173 Abandoned US20030069327A1 (en) 2001-08-09 2001-08-09 Dental compostions comprising bisacrylamides and use thereof
US10/308,564 Active US6767936B2 (en) 2000-08-11 2002-12-03 Dental compositions comprising bisacrylamides and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/308,564 Active US6767936B2 (en) 2000-08-11 2002-12-03 Dental compositions comprising bisacrylamides and use thereof

Country Status (1)

Country Link
US (2) US20030069327A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007014205A2 (en) 2005-07-25 2007-02-01 Saudi Basic Industries Corporation An integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
EP1995232A1 (en) * 2007-05-25 2008-11-26 Evonik Röhm GmbH Use of feed compositions in preparation of methacrylic acid by oxidation
EP1995231A1 (en) * 2007-05-25 2008-11-26 Evonik Röhm GmbH Process for preparation of methyl methacrylate using recycled methanol
EP1994978A1 (en) * 2007-05-25 2008-11-26 Evonik Röhm GmbH Process for preparation of methyl methacrylate by esterification during oxidation
EP3141567A1 (en) * 2015-09-09 2017-03-15 DENTSPLY DETREY GmbH Polymerizable polyacidic polymer

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070129458A1 (en) * 2000-08-11 2007-06-07 Uwe Walz Dental compositions comprising disacrylamides and use thereof
US6953832B2 (en) * 2001-01-15 2005-10-11 Ivoclar Vivadent Ag Dental materials based on polyfunctional amides
US20030045604A1 (en) * 2001-08-13 2003-03-06 Klee Joachim E. Dental root canal filling cones
US7621952B2 (en) * 2004-06-07 2009-11-24 Dfine, Inc. Implants and methods for treating bone
US20060095138A1 (en) * 2004-06-09 2006-05-04 Csaba Truckai Composites and methods for treating bone
US8048083B2 (en) 2004-11-05 2011-11-01 Dfine, Inc. Bone treatment systems and methods
US7559932B2 (en) * 2004-12-06 2009-07-14 Dfine, Inc. Bone treatment systems and methods
US7717918B2 (en) 2004-12-06 2010-05-18 Dfine, Inc. Bone treatment systems and methods
US7722620B2 (en) * 2004-12-06 2010-05-25 Dfine, Inc. Bone treatment systems and methods
US7678116B2 (en) * 2004-12-06 2010-03-16 Dfine, Inc. Bone treatment systems and methods
US20060122614A1 (en) * 2004-12-06 2006-06-08 Csaba Truckai Bone treatment systems and methods
US8070753B2 (en) * 2004-12-06 2011-12-06 Dfine, Inc. Bone treatment systems and methods
US9066769B2 (en) 2005-08-22 2015-06-30 Dfine, Inc. Bone treatment systems and methods
DE102004061924B4 (en) * 2004-12-22 2010-01-28 Ivoclar Vivadent Ag Hydrolysis stable self-etching one-component end-face adhesive
US20070233250A1 (en) * 2006-02-07 2007-10-04 Shadduck John H Systems for treating bone
US9597118B2 (en) 2007-07-20 2017-03-21 Dfine, Inc. Bone anchor apparatus and method
US8696679B2 (en) * 2006-12-08 2014-04-15 Dfine, Inc. Bone treatment systems and methods
US9445854B2 (en) 2008-02-01 2016-09-20 Dfine, Inc. Bone treatment systems and methods
WO2008097855A2 (en) * 2007-02-05 2008-08-14 Dfine, Inc. Bone treatment systems and methods
EP2155084B1 (en) * 2007-04-03 2013-11-27 Dfine, Inc. Bone treatment systems
WO2008137428A2 (en) 2007-04-30 2008-11-13 Dfine, Inc. Bone treatment systems and methods
EP2065363B1 (en) * 2007-11-30 2015-07-22 Ivoclar Vivadent AG Dental materials based on alkylenediamine-N,N,N',N'-tetraacetic acid-(meth)acrylamides
JP5509098B2 (en) * 2008-02-28 2014-06-04 ディーエフアイエヌイー・インコーポレーテッド Bone treatment system and method
US9180416B2 (en) 2008-04-21 2015-11-10 Dfine, Inc. System for use in bone cement preparation and delivery
US8777479B2 (en) 2008-10-13 2014-07-15 Dfine, Inc. System for use in bone cement preparation and delivery
US8540723B2 (en) 2009-04-14 2013-09-24 Dfine, Inc. Medical system and method of use

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE295645C (en)
SU334845A1 (en) 1970-07-22 1984-01-30 Филиал Института Химической Физики Ан Ссср Process for inhibiting radical polymerization of oligoester acrylates
US3997504A (en) * 1971-04-01 1976-12-14 Plymale Richard W Composition and method for treating teeth
US3787213A (en) * 1972-01-19 1974-01-22 J Gervay Process for modifying surfaces using photopolymerizable elements comprising hydrophilic colloids and polymerizable monomers
DE2211128A1 (en) 1972-03-08 1973-09-13 Erich Kopp Dental prostheses - cast from compsn contg acrylamide and methylene-bisacrylamide, initiator activator and opt fillers
US4089763A (en) * 1973-04-24 1978-05-16 Imperial Chemical Industries Limited Method of repairing teeth using a composition which is curable by irradiation with visible light
EP0012535B1 (en) * 1978-12-18 1983-01-19 Imperial Chemical Industries Plc Dental compositions comprising a selected vinyl urethane prepolymer and processes for their manufacture
DE2931926A1 (en) * 1979-08-07 1981-02-26 Bayer Ag Dental measures
DE2931925A1 (en) 1979-08-07 1981-02-26 Bayer Ag (meth) acrylic acid esters of tricyclic decandioles containing ether groups
US4297266A (en) * 1980-02-08 1981-10-27 Den-Mat, Inc. Microfilled dental composite and method using the same
GB2074590B (en) * 1980-04-29 1984-02-22 Kuraray Co Acrylate urethane binders in dental cement compositions
EP0049599A1 (en) 1980-10-02 1982-04-14 George Herrick Method and apparatus for forming an elevated concrete slab section of a building
IL65159D0 (en) 1981-03-04 1982-05-31 Ici Plc Polymerisable dental compositions
US4674980A (en) 1982-05-03 1987-06-23 Den-Mat, Inc. Dental composite and porcelain repair
NZ204975A (en) 1982-08-02 1985-10-11 Johnson & Johnson Dental Prod Polymerisable dental restorative compositions having improved mechanical properties and hydrolytic stability
US4587329A (en) * 1984-08-17 1986-05-06 The Dow Chemical Company Dense star polymers having two dimensional molecular diameter
US4558120A (en) * 1983-01-07 1985-12-10 The Dow Chemical Company Dense star polymer
US4525256A (en) * 1983-07-01 1985-06-25 Johnson & Johnson Dental Products Company Photopolymerizable composition including catalyst comprising diketone plus 4-(N,N-dimethylamino)benzoic acid or ester thereof
DE3703130A1 (en) * 1986-07-25 1988-01-28 Bayer Ag Urethane groups containing (meth) acrylic acid derivatives
DE3703080A1 (en) 1986-07-25 1988-01-28 Bayer Ag (meth) acrylic acid ester
DE3703120A1 (en) 1986-07-25 1988-01-28 Bayer Ag Urethane groups containing (meth) acrylic acid derivatives from tricyclo (5.2.1.0 (up arrow) 2 (up arrow) (up arrow). (up arrow) (up arrow) 6 (up arrow)) decanes
CA1323949C (en) * 1987-04-02 1993-11-02 Michael C. Palazzotto Ternary photoinitiator system for addition polymerization
US4746686A (en) * 1987-04-17 1988-05-24 Kerr Manufacturing Company Visible light activated cavity liner
US4857599A (en) * 1988-02-08 1989-08-15 The Dow Chemical Company Modified dense star polymers
IT1237126B (en) * 1989-11-07 1993-05-18 Ciba Geigy Spa Stabilizers containing polymeric hindered amine groups and groups idrossilamminici
US5709548A (en) * 1990-02-23 1998-01-20 Minnesota Mining And Manufacturing Company Dental crown liner composition and methods of preparing provisional applications
EP0449413B1 (en) * 1990-03-23 1995-12-20 Imperial Chemical Industries Plc Polymers
JPH0649737B2 (en) * 1990-04-20 1994-06-29 株式会社総合歯科医療研究所 Photocurable resin composition for the production of tough thick castings
US5237006A (en) * 1990-09-28 1993-08-17 General Electric Company Thermoplastic resin compositions containing polyphenylene ethers and polyesters
US5154762A (en) 1991-05-31 1992-10-13 Minnesota Mining And Manufacturing Company Universal water-based medical and dental cement
US5236362A (en) 1991-10-11 1993-08-17 Essential Dental Systems, Inc. Root canal filling material and adhesive composition
BR9207009A (en) 1991-12-31 1995-12-05 Minnesota Mining & Mfg Composition of ethylenically unsaturated dental adhesive and process and kit for adhering a metal or metal-containing restorative to a hard tissue and hard surface
US5530092A (en) * 1992-01-13 1996-06-25 Dsm N.V. Dendritic macromolecule and the preparation thereof
SE468771B (en) * 1992-02-26 1993-03-15 Perstorp Ab Dendritic macromolecule of polyester, foerfarande Foer framstaellning daerav and anvaendning daerav
CA2124426C (en) 1993-06-23 2003-04-08 Louis H. Tateosian Dental composition, prostheses, and method for making dental prostheses
DE4324431A1 (en) * 1993-07-21 1995-01-26 Bayer Ag Acrylates and methacrylates based on cyclohexyl diphenols
US5624976A (en) * 1994-03-25 1997-04-29 Dentsply Gmbh Dental filling composition and method
US5728872A (en) 1994-06-27 1998-03-17 Lutz Riemenschneider Stabilized acrylic acid compositions
SE503559C2 (en) 1994-09-08 1996-07-08 Inst Polymerutveckling Ab Radiation curable hyperbranched polyester, process for its preparation and its use
US5468789A (en) * 1994-09-12 1995-11-21 General Electric Company Method for making radiation curable silicon containing polyacrylate hardcoat compositions and compositions made thereby
WO1996011715A1 (en) * 1994-10-13 1996-04-25 Kuraray Co., Ltd. Hard-tissue repair composition and supply unit therefor
DE4443702A1 (en) * 1994-12-08 1996-06-13 Ivoclar Ag Fine-grained polymerizable compositions that flow under pressure or shear stress
GB9504995D0 (en) * 1995-03-11 1995-04-26 Zeneca Ltd Compositions
CA2226252A1 (en) 1995-07-05 1997-01-23 Den-Mat Corporation Novel dental adhesive
US5767170A (en) * 1995-07-05 1998-06-16 Den-Mat Corporation Dental adhesive comprising an unsaturated monomer, a coupling agent, a crosslinker, leachable fluoride and a photoinitiator
DE19601924B4 (en) * 1996-01-12 2005-01-13 Ivoclar Vivadent Ag Stable organic radical-containing light-curing composite material and its use and the use of a stable organic radical for the production of a dental material
DE19622441A1 (en) * 1996-06-05 1997-12-11 Basf Ag Process for compressing ethylenically unsaturated monomers
US6136885A (en) 1996-06-14 2000-10-24 3M Innovative Proprerties Company Glass ionomer cement
US6184339B1 (en) * 1996-11-14 2001-02-06 The United States Of America As Represented By The Secretary Of The Commerce High strength polymeric networks derived from (meth) acrylate resins with organofluorine content and process for preparing same
US5969000A (en) * 1997-01-17 1999-10-19 Jeneric Pentron Incorporated Dental resin materials
US6121344A (en) * 1998-06-19 2000-09-19 Kerr Corporation Optimum particle sized hybrid composite
US6030606A (en) * 1998-06-22 2000-02-29 3M Innovative Properties Company Dental restoratives comprising Bis-EMA6
DE19848886C2 (en) 1998-10-23 2000-11-16 Heraeus Kulzer Gmbh & Co Kg Light-polymerizable one-component dental material

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007014205A2 (en) 2005-07-25 2007-02-01 Saudi Basic Industries Corporation An integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
EP1937406A2 (en) * 2005-07-25 2008-07-02 Saudi Basic Industries Corporation (Sabic) An integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
US8889088B2 (en) 2005-07-25 2014-11-18 Saudi Basic Industries Corporation Integrated plant for producing 2-ethyl-hexanol and methacrylic acid
EP1937406A4 (en) * 2005-07-25 2011-08-17 Saudi Basic Ind Corp Sabic An integrated plant for producing 2-ethyl-hexanol and methacrylic acid and a method based thereon
US20100144931A1 (en) * 2007-05-25 2010-06-10 Evonik Roehm Gmbh Process for preparation of methyl metharylate using recycled methanol
WO2008145418A1 (en) * 2007-05-25 2008-12-04 Evonik Röhm Gmbh Process for preparation of methyl methacrylate using recycled methanol
WO2008145417A1 (en) * 2007-05-25 2008-12-04 Evonik Röhm Gmbh Process for preparation of methyl methacrylate by esterification during oxidation
WO2008145416A1 (en) * 2007-05-25 2008-12-04 Evonik Röhm Gmbh Use of feed compositions in preparation of methacrylic acid by oxidation
US20100120949A1 (en) * 2007-05-25 2010-05-13 Evonik Roehm Gmbh Use of a feed compositions in preparation of methacrylic acid by oxidation
US20100130648A1 (en) * 2007-05-25 2010-05-27 Evonik Roehm Gmbh Process for preparation of methyl methacrylate by esterification during oxidation
EP1994978A1 (en) * 2007-05-25 2008-11-26 Evonik Röhm GmbH Process for preparation of methyl methacrylate by esterification during oxidation
EP1995231A1 (en) * 2007-05-25 2008-11-26 Evonik Röhm GmbH Process for preparation of methyl methacrylate using recycled methanol
US8350081B2 (en) 2007-05-25 2013-01-08 Evonik Roehm Gmbh Process for preparation of methyl metharylate using recycled methanol
US8829235B2 (en) 2007-05-25 2014-09-09 Evonk Röhm GmbH Process for preparation of methyl methacrylate by esterification during oxidation
EP1995232A1 (en) * 2007-05-25 2008-11-26 Evonik Röhm GmbH Use of feed compositions in preparation of methacrylic acid by oxidation
CN104761447A (en) * 2007-05-25 2015-07-08 赢创罗姆有限公司 Process for preparation of methyl methacrylate by esterification during oxidation
US9206108B2 (en) 2007-05-25 2015-12-08 Evonik Roehm Gmbh Use of a feed compositions in preparation of methacrylic acid by oxidation
EP3141567A1 (en) * 2015-09-09 2017-03-15 DENTSPLY DETREY GmbH Polymerizable polyacidic polymer
WO2017042333A1 (en) 2015-09-09 2017-03-16 Dentsply Detrey Gmbh Polymerizable polyacidic polymer
CN107922544A (en) * 2015-09-09 2018-04-17 登特斯普伊德特雷有限公司 Polymerizable polynary acid polymer

Also Published As

Publication number Publication date
US20030130373A1 (en) 2003-07-10
US6767936B2 (en) 2004-07-27

Similar Documents

Publication Publication Date Title
US8297976B2 (en) Dental adhesive and method of use
EP0266220B1 (en) Curable composition
EP0906076B1 (en) Glass ionomer cement
US6126922A (en) Fluorid-releasing compositions and compositions with improved rheology
EP0323521B1 (en) Curable composition
US9028254B2 (en) Dental prosthetics comprising curable acrylate polymer compositions and methods of their use
EP0209365B1 (en) Compositions containing poly(ethylenically unsaturated)carbamoyl isocyanurates and their use for dental treatment
EP0172513B1 (en) Use of porous fillers in polymerizable dental compositions, these compositions and their use as moulding masses
EP0499180B1 (en) Dental/medical composition for restorative/prosthetic purposes and its use
US6592851B2 (en) Methods for dentistry using compositions comprising an oil
US5367002A (en) Dental composition and method
DE19818210C5 (en) Radically polymerizable dental material
AU2002360672B2 (en) Composition containing a polymerizable reducing agent, kit, and method
DE3941629C2 (en) Dental glomer isomer cement paste
EP0045494B1 (en) Photopolymerisable compositions useful in dentistry
KR101330957B1 (en) Dental compositions containing hybrid monomers
EP0621028B1 (en) Dental composition and method
US8404144B2 (en) Compositions including polymerizable bisphosphonic acids and methods
JP4295671B2 (en) Two-part self-adhesive dental composition
US6818682B2 (en) Multi-part dental compositions and kits
US8129444B2 (en) Self-adhesive dental materials
US6730715B2 (en) Dental restorative composition, dental restoration, and a method of use thereof
CA2168965C (en) Dental composition and method
EP0973482B2 (en) Dental primer compositions
EP0044352B1 (en) Adducts from diisocyanates and methacryloylalkylethers, -alcoxybenzenes resp. -alcoxycycloalcanes and their use

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENTSPLY DETREY GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WALZ, UWE;KLEE, JOACHIM E.;REEL/FRAME:012656/0497

Effective date: 20011109

AS Assignment

Owner name: DENTSPLY DETREY GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KLEE, JOACHIM E.;REEL/FRAME:013433/0232

Effective date: 20021014

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION