US20030060390A1 - Rinse-added fabric conditioning composition for use where residual detergent is present - Google Patents
Rinse-added fabric conditioning composition for use where residual detergent is present Download PDFInfo
- Publication number
- US20030060390A1 US20030060390A1 US10/090,911 US9091102A US2003060390A1 US 20030060390 A1 US20030060390 A1 US 20030060390A1 US 9091102 A US9091102 A US 9091102A US 2003060390 A1 US2003060390 A1 US 2003060390A1
- Authority
- US
- United States
- Prior art keywords
- composition
- fabrics
- composition according
- fabric
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 229
- 239000004744 fabric Substances 0.000 title claims abstract description 149
- 239000003599 detergent Substances 0.000 title claims abstract description 61
- 230000003750 conditioning effect Effects 0.000 title claims abstract description 24
- 239000004094 surface-active agent Substances 0.000 claims abstract description 55
- 239000002516 radical scavenger Substances 0.000 claims abstract description 33
- 230000009467 reduction Effects 0.000 claims abstract description 15
- 239000002979 fabric softener Substances 0.000 claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims description 75
- -1 e.g. Chemical group 0.000 claims description 67
- 239000003795 chemical substances by application Substances 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 239000003755 preservative agent Substances 0.000 claims description 34
- 238000005406 washing Methods 0.000 claims description 33
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 31
- 239000000194 fatty acid Substances 0.000 claims description 31
- 229930195729 fatty acid Natural products 0.000 claims description 31
- 239000002689 soil Substances 0.000 claims description 31
- 150000004665 fatty acids Chemical class 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 28
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 27
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 27
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 23
- 150000001450 anions Chemical class 0.000 claims description 22
- 150000001412 amines Chemical group 0.000 claims description 21
- 239000007795 chemical reaction product Substances 0.000 claims description 20
- 239000002518 antifoaming agent Substances 0.000 claims description 19
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 18
- 239000005977 Ethylene Substances 0.000 claims description 18
- JZMJDSHXVKJFKW-UHFFFAOYSA-M methyl sulfate(1-) Chemical compound COS([O-])(=O)=O JZMJDSHXVKJFKW-UHFFFAOYSA-M 0.000 claims description 18
- 229920001296 polysiloxane Polymers 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 16
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 13
- 150000003856 quaternary ammonium compounds Chemical class 0.000 claims description 13
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 12
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000003381 stabilizer Substances 0.000 claims description 12
- 230000015572 biosynthetic process Effects 0.000 claims description 11
- 239000002270 dispersing agent Substances 0.000 claims description 10
- 239000004615 ingredient Substances 0.000 claims description 10
- 125000006273 (C1-C3) alkyl group Chemical group 0.000 claims description 9
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 9
- 125000002252 acyl group Chemical group 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 229920002678 cellulose Polymers 0.000 claims description 9
- 239000001913 cellulose Substances 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 7
- KIWBPDUYBMNFTB-UHFFFAOYSA-N Ethyl hydrogen sulfate Chemical compound CCOS(O)(=O)=O KIWBPDUYBMNFTB-UHFFFAOYSA-N 0.000 claims description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 7
- 239000004599 antimicrobial Substances 0.000 claims description 7
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 7
- 229920002554 vinyl polymer Polymers 0.000 claims description 7
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 238000004900 laundering Methods 0.000 claims description 6
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 5
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000012188 paraffin wax Substances 0.000 claims description 5
- 239000003760 tallow Chemical class 0.000 claims description 5
- 125000003342 alkenyl group Chemical group 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 4
- 230000001143 conditioned effect Effects 0.000 claims description 4
- 239000004205 dimethyl polysiloxane Chemical class 0.000 claims description 4
- 235000013870 dimethyl polysiloxane Nutrition 0.000 claims description 4
- 229910021645 metal ion Inorganic materials 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- 125000001424 substituent group Chemical group 0.000 claims description 4
- 239000000230 xanthan gum Substances 0.000 claims description 4
- 229920001285 xanthan gum Polymers 0.000 claims description 4
- 235000010493 xanthan gum Nutrition 0.000 claims description 4
- 229940082509 xanthan gum Drugs 0.000 claims description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 3
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 239000002168 alkylating agent Substances 0.000 claims description 3
- 229940100198 alkylating agent Drugs 0.000 claims description 3
- 125000005529 alkyleneoxy group Chemical group 0.000 claims description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 3
- 150000004676 glycans Chemical class 0.000 claims description 3
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 3
- 229920003063 hydroxymethyl cellulose Polymers 0.000 claims description 3
- 229940031574 hydroxymethyl cellulose Drugs 0.000 claims description 3
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 3
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 229920001983 poloxamer Chemical class 0.000 claims description 3
- 229920000435 poly(dimethylsiloxane) Chemical class 0.000 claims description 3
- 229920001282 polysaccharide Polymers 0.000 claims description 3
- 239000005017 polysaccharide Substances 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 2
- 125000002853 C1-C4 hydroxyalkyl group Chemical group 0.000 claims description 2
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical class C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 claims description 2
- 229940072056 alginate Drugs 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- 229940008099 dimethicone Drugs 0.000 claims description 2
- 150000002194 fatty esters Chemical class 0.000 claims description 2
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 claims description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 claims description 2
- UHGIMQLJWRAPLT-UHFFFAOYSA-N octadecyl dihydrogen phosphate Chemical compound CCCCCCCCCCCCCCCCCCOP(O)(O)=O UHGIMQLJWRAPLT-UHFFFAOYSA-N 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- 229960000502 poloxamer Drugs 0.000 claims description 2
- 229920001451 polypropylene glycol Chemical class 0.000 claims description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- QQOWHRYOXYEMTL-UHFFFAOYSA-N triazin-4-amine Chemical class N=C1C=CN=NN1 QQOWHRYOXYEMTL-UHFFFAOYSA-N 0.000 claims description 2
- 239000007859 condensation product Substances 0.000 claims 4
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims 1
- 125000004185 ester group Chemical group 0.000 claims 1
- 239000000243 solution Substances 0.000 description 54
- 229920000858 Cyclodextrin Polymers 0.000 description 46
- 239000002304 perfume Substances 0.000 description 30
- 229940097362 cyclodextrins Drugs 0.000 description 25
- 150000003839 salts Chemical class 0.000 description 22
- 230000002335 preservative effect Effects 0.000 description 20
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 15
- 0 *[N+]1([2*]CC([1*])=O)CCN=C1[1*].C Chemical compound *[N+]1([2*]CC([1*])=O)CCN=C1[1*].C 0.000 description 14
- 235000019645 odor Nutrition 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 230000000845 anti-microbial effect Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 11
- TWRQCVNFACGORI-UHFFFAOYSA-N hexane;dihydrochloride Chemical compound Cl.Cl.CCCCCC TWRQCVNFACGORI-UHFFFAOYSA-N 0.000 description 11
- 238000006467 substitution reaction Methods 0.000 description 11
- 229940123208 Biguanide Drugs 0.000 description 10
- 229910001385 heavy metal Inorganic materials 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- HFHDHCJBZVLPGP-RWMJIURBSA-N alpha-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO HFHDHCJBZVLPGP-RWMJIURBSA-N 0.000 description 9
- 229920001450 Alpha-Cyclodextrin Polymers 0.000 description 8
- 229940043377 alpha-cyclodextrin Drugs 0.000 description 8
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 8
- 244000005700 microbiome Species 0.000 description 8
- 239000003352 sequestering agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 6
- 150000001768 cations Chemical class 0.000 description 6
- 239000006260 foam Substances 0.000 description 6
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- IVSZLXZYQVIEFR-UHFFFAOYSA-N m-xylene Chemical group CC1=CC=CC(C)=C1 IVSZLXZYQVIEFR-UHFFFAOYSA-N 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 238000009987 spinning Methods 0.000 description 6
- 125000003161 (C1-C6) alkylene group Chemical group 0.000 description 5
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 5
- 239000001116 FEMA 4028 Substances 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 5
- 229960004853 betadex Drugs 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 230000020477 pH reduction Effects 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 230000001629 suppression Effects 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- XMVBHZBLHNOQON-UHFFFAOYSA-N 2-butyl-1-octanol Chemical compound CCCCCCC(CO)CCCC XMVBHZBLHNOQON-UHFFFAOYSA-N 0.000 description 4
- PZOGAKOZVSTZSO-UHFFFAOYSA-N 2-methyl-5,6-dihydro-4h-cyclopenta[d][1,2]thiazol-3-one Chemical compound C1CCC2=C1SN(C)C2=O PZOGAKOZVSTZSO-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 4
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 4
- DMSMPAJRVJJAGA-UHFFFAOYSA-N benzo[d]isothiazol-3-one Chemical compound C1=CC=C2C(=O)NSC2=C1 DMSMPAJRVJJAGA-UHFFFAOYSA-N 0.000 description 4
- 229960003260 chlorhexidine Drugs 0.000 description 4
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 4
- 150000001879 copper Chemical class 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 229940117927 ethylene oxide Drugs 0.000 description 4
- 239000000417 fungicide Substances 0.000 description 4
- GDSRMADSINPKSL-HSEONFRVSA-N gamma-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO GDSRMADSINPKSL-HSEONFRVSA-N 0.000 description 4
- 229940080345 gamma-cyclodextrin Drugs 0.000 description 4
- OGBDBLQBNVXCJX-UHFFFAOYSA-N hexane tetrahydrochloride Chemical compound Cl.Cl.Cl.Cl.CCCCCC OGBDBLQBNVXCJX-UHFFFAOYSA-N 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 150000002898 organic sulfur compounds Chemical class 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000012085 test solution Substances 0.000 description 4
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 3
- YGUMVDWOQQJBGA-VAWYXSNFSA-N 5-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-[(e)-2-[4-[(4-anilino-6-morpholin-4-yl-1,3,5-triazin-2-yl)amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound C=1C=C(\C=C\C=2C(=CC(NC=3N=C(N=C(NC=4C=CC=CC=4)N=3)N3CCOCC3)=CC=2)S(O)(=O)=O)C(S(=O)(=O)O)=CC=1NC(N=C(N=1)N2CCOCC2)=NC=1NC1=CC=CC=C1 YGUMVDWOQQJBGA-VAWYXSNFSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 239000003945 anionic surfactant Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000002738 chelating agent Substances 0.000 description 3
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- LMHUUGBQXBBNIY-UHFFFAOYSA-N dodecane;dihydrochloride Chemical compound Cl.Cl.CCCCCCCCCCCC LMHUUGBQXBBNIY-UHFFFAOYSA-N 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002191 fatty alcohols Chemical class 0.000 description 3
- 238000005187 foaming Methods 0.000 description 3
- 230000000855 fungicidal effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 150000003333 secondary alcohols Chemical class 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- XNRNJIIJLOFJEK-UHFFFAOYSA-N sodium;1-oxidopyridine-2-thione Chemical compound [Na+].[O-]N1C=CC=CC1=S XNRNJIIJLOFJEK-UHFFFAOYSA-N 0.000 description 3
- HFQQZARZPUDIFP-UHFFFAOYSA-M sodium;2-dodecylbenzenesulfonate Chemical compound [Na+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O HFQQZARZPUDIFP-UHFFFAOYSA-M 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- ICUTUKXCWQYESQ-UHFFFAOYSA-N triclocarban Chemical compound C1=CC(Cl)=CC=C1NC(=O)NC1=CC=C(Cl)C(Cl)=C1 ICUTUKXCWQYESQ-UHFFFAOYSA-N 0.000 description 3
- 229920001567 vinyl ester resin Polymers 0.000 description 3
- 150000003751 zinc Chemical class 0.000 description 3
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Chemical compound CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 description 2
- VKZRWSNIWNFCIQ-UHFFFAOYSA-N 2-[2-(1,2-dicarboxyethylamino)ethylamino]butanedioic acid Chemical compound OC(=O)CC(C(O)=O)NCCNC(C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- XULHFMYCBKQGEE-UHFFFAOYSA-N 2-hexyl-1-Decanol Chemical compound CCCCCCCCC(CO)CCCCCC XULHFMYCBKQGEE-UHFFFAOYSA-N 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 2
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 2
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 2
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- CNGYZEMWVAWWOB-VAWYXSNFSA-N 5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfophenyl]ethenyl]benzenesulfonic acid Chemical compound N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S(O)(=O)=O)=CC=2)S(O)(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 CNGYZEMWVAWWOB-VAWYXSNFSA-N 0.000 description 2
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 2
- KQBUZODEGDFLCJ-UHFFFAOYSA-N C.C.CCC(C)N Chemical compound C.C.CCC(C)N KQBUZODEGDFLCJ-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical compound NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 241000640882 Condea Species 0.000 description 2
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- RUPBZQFQVRMKDG-UHFFFAOYSA-M Didecyldimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCC[N+](C)(C)CCCCCCCCCC RUPBZQFQVRMKDG-UHFFFAOYSA-M 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229920003091 Methocel™ Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- TTZMPOZCBFTTPR-UHFFFAOYSA-N O=P1OCO1 Chemical compound O=P1OCO1 TTZMPOZCBFTTPR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 2
- 229920004482 WACKER® Polymers 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical class [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- 150000004283 biguanides Chemical class 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 2
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- NUCJYHHDSCEKQN-UHFFFAOYSA-M dimethyl-bis(2-octadecanoyloxyethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC(=O)OCC[N+](C)(C)CCOC(=O)CCCCCCCCCCCCCCCCC NUCJYHHDSCEKQN-UHFFFAOYSA-M 0.000 description 2
- IQDGSYLLQPDQDV-UHFFFAOYSA-N dimethylazanium;chloride Chemical compound Cl.CNC IQDGSYLLQPDQDV-UHFFFAOYSA-N 0.000 description 2
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000002070 germicidal effect Effects 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 235000011167 hydrochloric acid Nutrition 0.000 description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 2
- 229920013821 hydroxy alkyl cellulose Polymers 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- NBZBKCUXIYYUSX-UHFFFAOYSA-N iminodiacetic acid Chemical class OC(=O)CNCC(O)=O NBZBKCUXIYYUSX-UHFFFAOYSA-N 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- MGIYRDNGCNKGJU-UHFFFAOYSA-N isothiazolinone Chemical class O=C1C=CSN1 MGIYRDNGCNKGJU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000693 micelle Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- JPMIIZHYYWMHDT-UHFFFAOYSA-N octhilinone Chemical compound CCCCCCCCN1SC=CC1=O JPMIIZHYYWMHDT-UHFFFAOYSA-N 0.000 description 2
- DMCJFWXGXUEHFD-UHFFFAOYSA-N pentatriacontan-18-one Chemical compound CCCCCCCCCCCCCCCCCC(=O)CCCCCCCCCCCCCCCCC DMCJFWXGXUEHFD-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- CUQCMXFWIMOWRP-UHFFFAOYSA-N phenyl biguanide Chemical compound NC(N)=NC(N)=NC1=CC=CC=C1 CUQCMXFWIMOWRP-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000012088 reference solution Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- ODLHGICHYURWBS-LKONHMLTSA-N trappsol cyclo Chemical compound CC(O)COC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](COCC(C)O)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)COCC(O)C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1COCC(C)O ODLHGICHYURWBS-LKONHMLTSA-N 0.000 description 2
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical class OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- PCWPQSDFNIFUPO-VDQKLNDWSA-N (1S,3R,5R,6S,8R,10R,11S,13R,15R,16S,18R,20R,21S,23R,25R,26S,28R,30R,31S,33R,35R,36R,37S,38R,39S,40R,41S,42R,43S,44R,45S,46R,47S,48R,49S)-37,39,41,43,45,47,49-heptakis(2-hydroxyethoxy)-5,10,15,20,25,30,35-heptakis(hydroxymethyl)-2,4,7,9,12,14,17,19,22,24,27,29,32,34-tetradecaoxaoctacyclo[31.2.2.23,6.28,11.213,16.218,21.223,26.228,31]nonatetracontane-36,38,40,42,44,46,48-heptol Chemical compound OCCO[C@H]1[C@H](O)[C@@H]2O[C@H]3O[C@H](CO)[C@@H](O[C@H]4O[C@H](CO)[C@@H](O[C@H]5O[C@H](CO)[C@@H](O[C@H]6O[C@H](CO)[C@@H](O[C@H]7O[C@H](CO)[C@@H](O[C@H]8O[C@H](CO)[C@@H](O[C@H]1O[C@@H]2CO)[C@@H](O)[C@@H]8OCCO)[C@@H](O)[C@@H]7OCCO)[C@@H](O)[C@@H]6OCCO)[C@@H](O)[C@@H]5OCCO)[C@@H](O)[C@@H]4OCCO)[C@@H](O)[C@@H]3OCCO PCWPQSDFNIFUPO-VDQKLNDWSA-N 0.000 description 1
- VKZRWSNIWNFCIQ-WDSKDSINSA-N (2s)-2-[2-[[(1s)-1,2-dicarboxyethyl]amino]ethylamino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NCCN[C@H](C(O)=O)CC(O)=O VKZRWSNIWNFCIQ-WDSKDSINSA-N 0.000 description 1
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- 125000004955 1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])C1([H])[*:2] 0.000 description 1
- 125000004958 1,4-naphthylene group Chemical group 0.000 description 1
- SQZCAOHYQSOZCE-UHFFFAOYSA-N 1-(diaminomethylidene)-2-(2-methylphenyl)guanidine Chemical compound CC1=CC=CC=C1N=C(N)N=C(N)N SQZCAOHYQSOZCE-UHFFFAOYSA-N 0.000 description 1
- FNQQYSBATGRRMC-UHFFFAOYSA-N 1-(dimethylamino)-3-[3-(dimethylamino)-2-hydroxypropoxy]propan-2-ol Chemical compound CN(C)CC(O)COCC(O)CN(C)C FNQQYSBATGRRMC-UHFFFAOYSA-N 0.000 description 1
- LRMSQVBRUNSOJL-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanoic acid Chemical class OC(=O)C(F)(F)C(F)(F)F LRMSQVBRUNSOJL-UHFFFAOYSA-N 0.000 description 1
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 1
- QGKBSGBYSPTPKJ-UZMKXNTCSA-N 2,6-di-o-methyl-β-cyclodextrin Chemical compound COC[C@H]([C@H]([C@@H]([C@H]1OC)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O[C@H]3O[C@H](COC)[C@H]([C@@H]([C@H]3OC)O)O3)[C@H](O)[C@H]2OC)COC)O[C@@H]1O[C@H]1[C@H](O)[C@@H](OC)[C@@H]3O[C@@H]1COC QGKBSGBYSPTPKJ-UZMKXNTCSA-N 0.000 description 1
- HWQVXNFIYABVIW-UHFFFAOYSA-N 2-(carboxymethylamino)-4,5-dihydroxypentanoic acid Chemical compound OCC(O)CC(C(O)=O)NCC(O)=O HWQVXNFIYABVIW-UHFFFAOYSA-N 0.000 description 1
- NSMMFSKPGXCMOE-UHFFFAOYSA-N 2-[2-(2-sulfophenyl)ethenyl]benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=CC1=CC=CC=C1S(O)(=O)=O NSMMFSKPGXCMOE-UHFFFAOYSA-N 0.000 description 1
- JAONWSWNLZLNFS-UHFFFAOYSA-N 2-[4-(2-phenylethenyl)phenyl]benzo[e]benzotriazole Chemical compound C=1C=C(N2N=C3C4=CC=CC=C4C=CC3=N2)C=CC=1C=CC1=CC=CC=C1 JAONWSWNLZLNFS-UHFFFAOYSA-N 0.000 description 1
- UGFSLKRMHPGLFU-UHFFFAOYSA-N 2-[5-(1,3-benzoxazol-2-yl)thiophen-2-yl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(S3)C=3OC4=CC=CC=C4N=3)=NC2=C1 UGFSLKRMHPGLFU-UHFFFAOYSA-N 0.000 description 1
- FPKBRMRMNGYJLA-UHFFFAOYSA-M 2-hydroxyethyl-methyl-bis(2-octadecanoyloxyethyl)azanium;methyl sulfate Chemical compound COS([O-])(=O)=O.CCCCCCCCCCCCCCCCCC(=O)OCC[N+](C)(CCO)CCOC(=O)CCCCCCCCCCCCCCCCC FPKBRMRMNGYJLA-UHFFFAOYSA-M 0.000 description 1
- PMUNIMVZCACZBB-UHFFFAOYSA-N 2-hydroxyethylazanium;chloride Chemical compound Cl.NCCO PMUNIMVZCACZBB-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- JBVOQKNLGSOPNZ-UHFFFAOYSA-N 2-propan-2-ylbenzenesulfonic acid Chemical compound CC(C)C1=CC=CC=C1S(O)(=O)=O JBVOQKNLGSOPNZ-UHFFFAOYSA-N 0.000 description 1
- QWZHDKGQKYEBKK-UHFFFAOYSA-N 3-aminochromen-2-one Chemical class C1=CC=C2OC(=O)C(N)=CC2=C1 QWZHDKGQKYEBKK-UHFFFAOYSA-N 0.000 description 1
- GUUULVAMQJLDSY-UHFFFAOYSA-N 4,5-dihydro-1,2-thiazole Chemical class C1CC=NS1 GUUULVAMQJLDSY-UHFFFAOYSA-N 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- QYYMDNHUJFIDDQ-UHFFFAOYSA-N 5-chloro-2-methyl-1,2-thiazol-3-one;2-methyl-1,2-thiazol-3-one Chemical compound CN1SC=CC1=O.CN1SC(Cl)=CC1=O QYYMDNHUJFIDDQ-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- JMHWNJGXUIJPKG-UHFFFAOYSA-N CC(=O)O[SiH](CC=C)OC(C)=O Chemical compound CC(=O)O[SiH](CC=C)OC(C)=O JMHWNJGXUIJPKG-UHFFFAOYSA-N 0.000 description 1
- FVNIMHIOIXPIQT-UHFFFAOYSA-N CCC(C)OC Chemical compound CCC(C)OC FVNIMHIOIXPIQT-UHFFFAOYSA-N 0.000 description 1
- BSWGNZZFCYWPJR-PFONDFGASA-N CCCCCCCC/C=C\CCCCCCCC(=O)OCC[NH+2](C)(C)CC[NH+2](C)(C)C.Cl.[Cl-] Chemical compound CCCCCCCC/C=C\CCCCCCCC(=O)OCC[NH+2](C)(C)CC[NH+2](C)(C)C.Cl.[Cl-] BSWGNZZFCYWPJR-PFONDFGASA-N 0.000 description 1
- QWEFEZXWCAUVPG-UHFFFAOYSA-N CCCCCCCCCCCCCCCCCC[N+](C)(C)CC[N+](C)(C)C.[Cl-].[Cl-] Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CC[N+](C)(C)C.[Cl-].[Cl-] QWEFEZXWCAUVPG-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000007645 Citrus mitis Species 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Chemical group OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 241000282375 Herpestidae Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 235000019901 KELTROL® Nutrition 0.000 description 1
- WZNJWVWKTVETCG-YFKPBYRVSA-N L-mimosine Chemical compound OC(=O)[C@@H](N)CN1C=CC(=O)C(O)=C1 WZNJWVWKTVETCG-YFKPBYRVSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- QWZLBLDNRUUYQI-UHFFFAOYSA-M Methylbenzethonium chloride Chemical compound [Cl-].CC1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 QWZLBLDNRUUYQI-UHFFFAOYSA-M 0.000 description 1
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920002257 Plurafac® Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 244000028344 Primula vulgaris Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 235000019774 Rice Bran oil Nutrition 0.000 description 1
- 244000181025 Rosa gallica Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- KSQXVLVXUFHGJQ-UHFFFAOYSA-M Sodium ortho-phenylphenate Chemical compound [Na+].[O-]C1=CC=CC=C1C1=CC=CC=C1 KSQXVLVXUFHGJQ-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 244000297179 Syringa vulgaris Species 0.000 description 1
- 235000004338 Syringa vulgaris Nutrition 0.000 description 1
- ZZXDRXVIRVJQBT-UHFFFAOYSA-M Xylenesulfonate Chemical compound CC1=CC=CC(S([O-])(=O)=O)=C1C ZZXDRXVIRVJQBT-UHFFFAOYSA-M 0.000 description 1
- BKYUFEBMJZWLBT-UHFFFAOYSA-L [2-hydroxy-3-[2-hydroxy-3-(trimethylazaniumyl)propoxy]propyl]-trimethylazanium;dichloride Chemical group [Cl-].[Cl-].C[N+](C)(C)CC(O)COCC(O)C[N+](C)(C)C BKYUFEBMJZWLBT-UHFFFAOYSA-L 0.000 description 1
- IFEUBXRSLPUMSI-UHFFFAOYSA-N [ClH]1NN=NC=C1 Chemical class [ClH]1NN=NC=C1 IFEUBXRSLPUMSI-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000004479 aerosol dispenser Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 125000005466 alkylenyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000003868 ammonium compounds Chemical group 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000012753 anti-shrinkage agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 238000000222 aromatherapy Methods 0.000 description 1
- 239000012237 artificial material Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- TWJVNKMWXNTSAP-UHFFFAOYSA-N azanium;hydroxide;hydrochloride Chemical compound [NH4+].O.[Cl-] TWJVNKMWXNTSAP-UHFFFAOYSA-N 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000002599 biostatic effect Effects 0.000 description 1
- 150000004287 bisbiguanides Chemical class 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 239000000828 canola oil Substances 0.000 description 1
- 235000019519 canola oil Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- NEHMKBQYUWJMIP-NJFSPNSNSA-N chloro(114C)methane Chemical compound [14CH3]Cl NEHMKBQYUWJMIP-NJFSPNSNSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N cinnamic acid Chemical class OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical group C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- BCYMZMFCJMHEBD-JHZYRPMRSA-L copper;(1r,4ar,4br,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylate Chemical compound [Cu+2].C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C([O-])=O.C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C([O-])=O BCYMZMFCJMHEBD-JHZYRPMRSA-L 0.000 description 1
- DYROSKSLMAPFBZ-UHFFFAOYSA-L copper;2-hydroxypropanoate Chemical compound [Cu+2].CC(O)C([O-])=O.CC(O)C([O-])=O DYROSKSLMAPFBZ-UHFFFAOYSA-L 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- AFYCEAFSNDLKSX-UHFFFAOYSA-N coumarin 460 Chemical compound CC1=CC(=O)OC2=CC(N(CC)CC)=CC=C21 AFYCEAFSNDLKSX-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 229940071118 cumenesulfonate Drugs 0.000 description 1
- 229960003280 cupric chloride Drugs 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229960004670 didecyldimethylammonium chloride Drugs 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- UAKOZKUVZRMOFN-JDVCJPALSA-M dimethyl-bis[(z)-octadec-9-enyl]azanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCC[N+](C)(C)CCCCCCCC\C=C/CCCCCCCC UAKOZKUVZRMOFN-JDVCJPALSA-M 0.000 description 1
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- PMPJQLCPEQFEJW-GNTLFSRWSA-L disodium;2-[(z)-2-[4-[4-[(z)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C/C1=CC=C(C=2C=CC(\C=C/C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-GNTLFSRWSA-L 0.000 description 1
- VVYVUOFMPAXVCH-UHFFFAOYSA-L disodium;5-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-[2-[4-[[4-anilino-6-[2-hydroxyethyl(methyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical group [Na+].[Na+].N=1C(NC=2C=C(C(C=CC=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(C)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)C)=NC=1NC1=CC=CC=C1 VVYVUOFMPAXVCH-UHFFFAOYSA-L 0.000 description 1
- YJHDFAAFYNRKQE-YHPRVSEPSA-L disodium;5-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-[(e)-2-[4-[[4-anilino-6-[bis(2-hydroxyethyl)amino]-1,3,5-triazin-2-yl]amino]-2-sulfonatophenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].N=1C(NC=2C=C(C(\C=C\C=3C(=CC(NC=4N=C(N=C(NC=5C=CC=CC=5)N=4)N(CCO)CCO)=CC=3)S([O-])(=O)=O)=CC=2)S([O-])(=O)=O)=NC(N(CCO)CCO)=NC=1NC1=CC=CC=C1 YJHDFAAFYNRKQE-YHPRVSEPSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- ZZVAPPCNIIULIO-UHFFFAOYSA-N dodecane;tetrahydrochloride Chemical compound Cl.Cl.Cl.Cl.CCCCCCCCCCCC ZZVAPPCNIIULIO-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 238000007046 ethoxylation reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical class OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 150000002433 hydrophilic molecules Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical class OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 229960002285 methylbenzethonium chloride Drugs 0.000 description 1
- 239000012569 microbial contaminant Substances 0.000 description 1
- 229950002289 mimosine Drugs 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 125000002811 oleoyl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000001741 organic sulfur group Chemical group 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229960003330 pentetic acid Drugs 0.000 description 1
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical class OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000001738 pogostemon cablin oil Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- DNXIASIHZYFFRO-UHFFFAOYSA-N pyrazoline Chemical compound C1CN=NC1 DNXIASIHZYFFRO-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000008165 rice bran oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- SZINDZNWFLBXKV-UHFFFAOYSA-M sodium;2-(2-hydroxyethoxy)ethanesulfonate Chemical group [Na+].OCCOCCS([O-])(=O)=O SZINDZNWFLBXKV-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000011044 succinic acid Nutrition 0.000 description 1
- 150000003444 succinic acids Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000000576 supplementary effect Effects 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical class NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 150000003567 thiocyanates Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical class CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229960001325 triclocarban Drugs 0.000 description 1
- 229960003500 triclosan Drugs 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 229940071104 xylenesulfonate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/835—Mixtures of non-ionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/645—Mixtures of compounds all of which are cationic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/001—Softening compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0026—Low foaming or foam regulating compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/52—Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
- C11D1/528—Carboxylic amides (R1-CO-NR2R3), where at least one of the chains R1, R2 or R3 is interrupted by a functional group, e.g. a -NH-, -NR-, -CO-, or -CON- group
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/75—Amino oxides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
Definitions
- the present invention relates to rinse-added fabric conditioning compositions for fabrics, in particular, compositions for use during the hand rinsing of fabrics as well as the rinsing of fabrics in top loaded non-automated washing machines and automated washing machines after the fabrics have been laundered with a detergent composition.
- the compositions of the present invention are particularly adapted for use in rinsing fabrics that have been washed in a high suds forming detergent composition and where a portion of that detergent composition is carried over with the fabrics into the rinse.
- a unique aspect of washing-by-hand, and/or washing in non-automatic top loaded washing machine is the high detergent to water ratio and/or the high fabric to water ratio. Indeed, fabrics treated with such detergent compositions usually carry residual detergent to the rinse step. Compared to modern (automatic) washing machines, this problem of detergent carry over is even more acute with manual washing and/or washing in non-automatic top loaded washing machine, as it is due to the poor efficiency of the spinning and/or wringing in between the wash and the rinse steps.
- softener compounds tend to form a slightly cloudy or turbid rinse bath solution.
- the clarity of the rinse solution is often perceived by the consumer as a signal of when the fabrics are completely rinsed. In other words, the more turbid the rinse solution, the more rinses the consumer will perform. It is therefore a concern that the use of a fabric conditioning composition that gives a cloudy rinse bath solution may mislead consumers to engage in excessive rinsing of their fabrics.
- the present invention provides a fabric treatment composition
- a fabric softener active comprising a fabric softener active, a suds suppressing system and a surfactant scavenger, characterized in that the composition has a suds reduction value of at least about 90%, does not form flocs and delivers a soft hand feel to the fabrics when added to a rinse solution containing residual detergent surfactant.
- the compositions of the present invention preferably comprise a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients.
- the present invention provides for the use of a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients in a rinse solution to impart softness to the treated fabrics and reduce suds formation in the rinse solution.
- the present invention further provides for the use of a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients in a rinse solution to reduce the formation of flocs in the rinse solution.
- the present invention further provides for the use of a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients to rinse fabrics washed in a high suds forming detergent composition.
- a method for rinsing laundered fabrics which comprises the step of contacting fabrics previously washed in an aqueous detergent liquor, with a rinse solution containing a composition of the invention.
- a method for reducing the volume of water consumed in a laundering operation in which a fabric conditioning composition is utilized comprising the steps of washing the fabrics in an aqueous detergent solution, removing a major portion of the aqueous detergent solution, whether through draining, spinning, wringing, partial rinsing or otherwise, and rinsing the washed fabrics in a rinse solution comprising water and a fabric conditioning composition of the present invention, wherein during this rinsing step residual detergent and soil are removed from the fabrics and the fabrics are conditioned.
- an article of manufacture comprising a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients; a container for the fabric conditioning composition; and a set of instructions associated with the container, said instructions comprising an instruction to the consumer that laundered fabrics may be rinsed and conditioned in a single rinse solution without the need for extensive rinsing prior to this conditioning step.
- alkyl means a hydrocarbyl moiety, which is straight or branched, saturated or unsaturated. Unless otherwise specified, alkyl moieties are preferably saturated or unsaturated with double bonds, preferably with one or two double bonds. Included in the term “alkyl” is the alkyl portion of acyl groups.
- the term “fabric article” means any fabric, fabric-containing, or fabric-like item that is laundered, conditioned, or treated on a regular, or irregular basis.
- a fabric article include clothing, curtains, bed linens, wall hangings, textiles, cloth, etc.
- the fabric article is a woven article, and more preferably, the fabric article is a woven article such as clothing.
- the fabric article may be made of natural and artificial materials, such as cotton, nylon, rayon, wool, silk, polycotton, polyester, etc.
- laundry residue means any material that may be present either on the fabrics or in the wash liquor during the wash cycle of the laundering process and that is carried over with the laundered fabrics into the rinse bath solution.
- laundry residue includes but is not limited to, residual soils, particulate matter, detergent surfactants, detergent builders, bleaching agents, metal ions, lipids, enzymes and any other materials that may have been present in the wash cycle solution.
- excess laundry liquor may be squeezed, wrung, or spun out of a fabric to remove excess laundry residue, prior to adding the fabric to the rinse bath solution.
- laundry residue is not completely removed (i.e., rinsed out of the fabric with water) prior to adding the fabric to a rinse bath solution.
- laundry residue includes “surfactant residue”, which means a surfactant material that may be present either on the fabrics or in the wash liquor during the wash cycle of the laundering process and that is carried over with the laundered fabrics into the rinse bath solution.
- surfactant residue is removably-attached to the fabric surface and/or fabric fibers via hydrophobic/electrostatic attractions, calcium bridging, and/or other types of weak, non-covalent bonds.
- rinse bath solution is the solution used to rinse the fabrics subsequent to their washing.
- the rinse bath solution may be used in an automated or non-automated washing machine, or in the case of hand washing, may be used in a simple container such as a basin or bucket.
- the rinse bath solution is initially water before the laundered fabrics and accompanying laundry residue and/or the rinse-added fabric treatment composition are introduced.
- visible precipitates or “flocs” refers to flocculated matter which is generally opaque in nature. Although not necessarily solid or compact, such flocs are sufficiently large to be noticeable by the unaided eye, typically, not less than about 0.4 mm when measured along their shortest axis.
- a preferred embodiment of the present invention provides a rinse added fabric conditioning composition
- a rinse added fabric conditioning composition comprising a fabric softener active, a suds suppressing system and a surfactant scavenger, characterized in that the composition has a suds reduction value of at least about 90%, does not form flocs and delivers a soft hand to the fabrics when added to a rinse solution containing surfactant residue.
- Typical levels of incorporation of the softening compound (active) in the softening composition are from about 1% to about 90%, preferably from about 1% to about 70%, more preferably from about 1% to about 40%, and even more preferably between about 2% and about 25%, by weight of the composition.
- the softening compounds can be selected from cationic, nonionic, and/or amphoteric compounds. Typical of the cationic softening compounds are the quaternary ammonium compounds or amine precursors thereof as defined hereinafter.
- a first preferred type of fabric softening active comprises, as the principal active, compounds of the formula
- each R substituent is either hydrogen, a short chain C 1 -C 6 , preferably C 1 -C 3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C 2 - 3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4, preferably 2; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—MR—; the sum of carbons in each R 1 , plus one when Y is —O—(O)C— or —NR—C(O)—, is C 12 -C 22 , preferably C 14 -C 20 , with each R 1 being a hydrocarbyl, or substituted hydrocarbyl group, and X ⁇ can be any soft
- a second type of preferred fabric softening active has the general formula:
- each R is a methyl or ethyl group and preferably each R 1 is in the range of C 15 to C 19 .
- the diester when specified, it can include the monoester that is present.
- DEQA (2) is the “propyl” ester quaternary ammonium fabric softener active having the formula 1,2-di(acyloxy)-3-trimethylammoniopropane chloride.
- a third type of preferred fabric softening active has the formula:
- each R, R 1 , and X ⁇ have the same meanings as before.
- a fourth type of preferred fabric softening active has the formula:
- each R, R 1 , and A ⁇ have the definitions given above; each R 2 is a C 1 - 6 alkylene group, preferably an ethylene group; and G is an oxygen atom or an —NR— group;
- a fifth type of preferred fabric softening active has the formula:
- R 1 , R 2 and G are defined as above.
- a sixth type of preferred fabric softening active are condensation reaction products of fatty acids with dialkylenetriamines in, e.g., a molecular ratio of about 2:1, said reaction products containing compounds of the formula:
- R 1 , R 2 are defined as above, and each R 3 is a C 1 - 6 alkylene group, preferably an ethylene group and wherein the reaction products may optionally be quaternized by the additional of an alkylating agent such as dimethyl sulfate.
- an alkylating agent such as dimethyl sulfate.
- a seventh type of preferred fabric softening active has the formula:
- R, R 1 , R 2 , R 3 and A ⁇ are defined as above;
- An eighth type of preferred fabric softening active are reaction products of fatty acid with hydroxyalkylalkylenediamines in a molecular ratio of about 2:1, said reaction products containing compounds of the formula:
- R 1 , R 2 and R 3 are defined as above;
- a nineth type of preferred fabric softening active has the formula:
- R, R 1 , R 2 , and A ⁇ are defined as above.
- Non-limiting examples of compound (1) are N,N-bis(stearoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(tallowoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(stearoyl-oxy-ethyl) N-(2 hydroxyethyl) N-methyl ammonium methylsulfate.
- Non-limiting examples of compound (2) is 1,2 di (stearoyl-oxy) 3 trimethyl ammoniumpropane chloride.
- Non-limiting examples of Compound (3) are dialkylenedimethylammonium salts such as dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride dicanoladimethylammonium methylsulfate,.
- An example of commercially available dialkylenedimethylammonium salts usable in the present invention is dioleyldimethylammonium chloride available from Witco Corporation under the trade name Adogen® 472 and dihardtallow dimethylammonium chloride available from Akzo Nobel Arquad 2HT75.
- a non-limiting example of Compound (4) is 1-methyl-1-stearoylamidoethyl-2-stearoylimidazolinium methylsulfate wherein R 1 is an acyclic aliphatic C 15 -C 17 hydrocarbon group, R 2 is an ethylene group, G is a NH group, R 5 is a methyl group and A ⁇ is a methyl sulfate anion, available commercially from the Witco Corporation under the trade name Varisoft®.
- a non-limiting example of Compound (5) is 1-tallowylamidoethyl-2-tallowylimidazoline wherein R 1 is an acyclic aliphatic C 15 -C 17 hydrocarbon group, R 2 is an ethylene group, and G is a NH group.
- a non-limiting example of Compound (6) is the reaction products of fatty acids with diethylenetriamine in a molecular ratio of about 2:1, said reaction product mixture containing N,N′′-dialkyldiethylenetriamine with the formula:
- R 1 —C(O) is an alkyl group of a commercially available fatty acid derived from a vegetable or animal source, such as Emersol® 223LL or Emersol® 7021, available from Henkel Corporation, and R 2 and R 3 are divalent ethylene groups.
- a non-limiting example of Compound (7) is a difatty amidoamine based softener having the formula:
- R 1 —C(O) is an alkyl group, available commercially from the Witco Corporation e.g. under the trade name Varisoft® 222LT.
- Compound (8) is the reaction products of fatty acids with N-2-hydroxyethylethylenediamine in a molecular ratio of about 2:1, said reaction product mixture containing a compound of the formula:
- R 1 —C(O) is an alkyl group of a commercially available fatty acid derived from a vegetable or animal source, such as Emersol® 223LL or Emersol® 7021, available from Henkel Corporation.
- Compound (9) is the diquaternary compound having the formula:
- R 1 is derived from fatty acid, and the compound is available from Witco Company.
- the anion A ⁇ which is any softener compatible anion, provides electrical neutrality.
- the anion used to provide electrical neutrality in these salts is from a strong acid, especially a halide, such as chloride, bromide, or iodide.
- a halide such as chloride, bromide, or iodide.
- other anions can be used, such as methylsulfate, ethylsulfate, acetate, formate, sulfate, carbonate, and the like.
- Chloride and methylsulfate are preferred herein as anion A.
- the anion can also, but less preferably, carry a double charge in which case A ⁇ represents half a group.
- the reduction of the suds is achieved by use of a suds suppressing system.
- the suds suppressing system is preferably present at a level of from about 0.01% to about 10%, more preferably from about 0.02% to about 5%, most preferably from about 0.05% to about 2% by weight of the composition.
- Such suds suppressing systems are even more desired components of the compositions of the invention when the detergent liquor is made of detergent which comprises a surfactant system that comprises high foaming surfactant, such as the conventional C 11 -C 18 alkyl benzene sulfonates (“LAS”).
- LAS conventional C 11 -C 18 alkyl benzene sulfonates
- suds suppressers A wide variety of materials may be used as suds suppressers, and suds suppressers are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
- Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, alcohol antifoam compounds like 2-alkyl alcanol antifoam compounds, fatty acids, paraffin antifoam compounds, and mixtures thereof.
- antifoam compound any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
- silicone antifoam compounds defined herein as any antifoam compound including a silicone component.
- silicone antifoam compounds also typically contain a silica component.
- Silicone suds suppressers are well known in the art and are, for example, disclosed in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published Feb. 7, 1990, by Starch, M. S.
- Other silicone suds suppressers are disclosed in U.S. Pat. No. 3,455,839 which relates to compositions and processes for defoaming aqueous solutions by incorporating therein small amounts of polydimethylsiloxane fluids. Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
- Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Pat. No. 3,933,672, Bartolotta et al, and in U.S. Pat. No. 4,652,392, Baginski et al, issued Mar. 24, 1987.
- silicone antifoam compounds are the combinations of polyorganosiloxane with silica particles commercially available from Dow Corning, Wacker Chemie and General Electric.
- Suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in U.S. Pat. No. 2,954,347, issued Sep. 27, 1960 to Wayne St. John.
- the monocarboxylic fatty acids, and salts thereof, for use as suds suppressing system typically have hydrocarbyl chains of about 10 to about 24 carbon atoms, preferably about 12 to about 18 carbon atoms like the tallow amphopolycarboxyglycinate commercially available under the trade name TAPAC.
- Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
- Suitable antifoam compounds include, for example, high molecular weight hydrocarbons such as paraffin, light petroleum odorless hydrocarbons, fatty esters (e.g. fatty acid triglycerides, glyceryl derivatives, polysorbates), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g.
- N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters, and nonionic polyhydroxyl derivatives.
- the hydrocarbons, such as paraffin and haloparaffin can be utilized in liquid form.
- the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about ⁇ 40° C. and about 5° C., and a minimum boiling point not less than about 110° C. (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100° C. Hydrocarbon suds suppressers are described, for example, in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo et al. The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
- the term “paraffin”, as used in this suds suppresser discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
- Copolymers of ethylene oxide and propylene oxide particularly the mixed ethoxylated/propoxylated fatty alcohols with an alkyl chain length of from about 10 to about 16 carbon atoms, a degree of ethoxylation of from about 3 to about 30 and a degree of propoxylation of from about 1 to about 10, are also suitable antifoam compounds for use herein.
- Other suds suppressers useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols as described in DE 40 21 265) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. Pat. No. 4,798,679, 4,075,118 and EP 150,872.
- the secondary alcohols include the C 6 -C 16 alkyl alcohols having a C 1 -C 16 chain like the 2-Hexyldecanol commercially available under the trade name ISOFOL16, 2-Octyldodecanol commercially available under the tradename ISOFOL20, and 2-butyl octanol, which is available under the trademark ISOFOL 12 from Condea.
- a preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12.
- Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem.
- Mixed suds suppressers typically comprise mixtures of alcohol to silicone at a weight ratio of about 1:5 to about 5:1.
- Suitable antifoams described in the literature such as in Hand Book of Food Additives, ISBN 0-566-07592-X, p. 804, are selected from dimethicone, poloxamer, polypropyleneglycol, tallow derivatives, and mixtures thereof.
- Preferred among the suds suppressing systems described above are the silicone antifoams, in particular the combinations of polyorganosiloxane with silica particles.
- the preferred surfactant scavengers of the present invention preferably include monoalkyl quaternary ammonium compounds and amine precursors thereof, polyvinyl amines, polyquaternary ammonium compounds and amine precursors thereof.
- a preferred composition of the present invention comprises at least about 0.5%, preferably from about 0.5% to about 5%, more preferably from about 1% to about 20% by weight, of a scavenger having the formula:
- each R substituent is independently either hydrogen, a short chain C 1 -C 6 , preferably C 1 -C 3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C 2-3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; each n is from 1 to about 4, preferably 2; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—NR—; the sum of carbons in each R 1 , plus one when Y is —O—(O)C— or —NR—C(O)—, is C 8 -C 22 , preferably C 8 -C 20 , with each R 1 being a hydrocarbyl, or substituted hydrocarbyl group, and X ⁇ can be any softener-compatible anion, preferably,
- each Y, R, R 1 , and X ⁇ have the same meanings as before and wherein one YR 1 ⁇ OH.
- Such compounds include those having the formula:
- each R is a methyl or ethyl group and preferably each R 1 is in the range of C 7 to C 19 .
- each R, R 1 and A ⁇ have the definitions given above; each R 2 is a C 1-6 alkylene group, preferably an ethylene group; and G is an oxygen atom or an —NR— group.
- each R, R 1 and A ⁇ have the definitions given above; each R 2 is a C 1-6 alkylene group, preferably an ethylene group; and K is an OH or an —NR 2 group.
- R, R 1 , R 2 and G are defined as above;
- R 1 ,R 2 and K are defined as above.
- R, R 1 , R 2 are defined as above, and each R 3 is a C 1-6 alkylene group, preferably an ethylene group such as diethylenetriamine or N-hydroxyethyl ethylenediamine.
- Such reaction products may optionally be quaternized by addition of an alkylation agent such as dimethyl sulfate. Quaternized reaction products are described in additional detail in U.S. Pat. No. 5,296,622, issued Mar. 22, 1994 to Uphues et al., which is incorporated herein by reference;
- R, R 1 , R 2 , R 3 and A ⁇ are defined as above;
- R, R 1 , R 2 and R 3 are defined as above;
- R, R 1 , R 2 , and A ⁇ are defined as above.
- the fabric softener used in the compositions of the present invention is a dialkyl substituted quaternary ammonium compound and the surfactant scavenger is a monoalkyl quaternary ammonium compound
- the fabric softening active and surfactant scavenger be prepared together from the same starting materials via standard reaction chemistry.
- the fabric softening active is a reaction product of fatty acids and oligamines
- the mole ratio of fatty acid to amine is less than about 2:1, preferably between about 1.6:1 to about 0.8:1, and more preferably between about 1.6:1 and about 1:1, to obtain a mixture of mono- and dialkyl substituted compounds.
- the final composition is less likely to experience phase separation.
- the monoalkyl quaternary ammonium compound can have a tendency to form micelles in the finished product.
- the fabric softening actives and surfactant scavengers used in the compositions of the present invention be synthesized in a common reaction from the same starting materials.
- the anion A ⁇ which is any softener compatible anion, provides electrical neutrality.
- the anion used to provide electrical neutrality in these salts is from a strong acid, especially a halide, such as chloride, bromide, or iodide.
- a halide such as chloride, bromide, or iodide.
- other anions can be used, such as methylsulfate, ethylsulfate, acetate, formate, sulfate, carbonate, and the like.
- Chloride and methylsulfate are preferred herein as anion A.
- the anion can also, but less preferably, carry a double charge in which case A ⁇ represents half a group.
- a preferred composition according to the present invention contains at least about 0.2%, preferably from about 0.2% to about 5%, more preferably from about 0.2% to about 20% by weight, of one or more polyvinyl amines having the formula
- y is from about 3 to about 10,000, preferably from about 10 to about 5,000, more preferably from about 20 to about 500.
- Polyvinyl amines suitable for use in the present invention are available from BASF.
- one or more of the polyvinyl amine backbone —NH 2 unit hydrogens can be substituted by an acyl group having the formula —(C(O)—R)— where R is as defined as above or an alkyleneoxy unit having the formula:
- R 1 is C 2 -C 4 alkylene
- R 2 is hydrogen, C 1 -C 4 alkyl, and mixtures thereof
- x is from 1 to 50.
- the polyvinyl amine is reacted first with a substrate which places a 2-propyleneoxy unit directly on the nitrogen followed by reaction of one or more moles of ethylene oxide to form a unit having the general formula:
- x has the value of from about 1 to about 50. Substitutions such as the above are represented by the abbreviated formula PO—EO x —. However, more than one propyleneoxy unit can be incorporated into the alkyleneoxy substituent.
- a preferred composition of the present invention comprises at least about 0.2%, preferably from about 0.2% to about 5%, more preferably from about 0.5% to about 10% by weight, of a scavenger having the formula:
- R is substituted or unsubstituted C 2 -C 12 alkylene, substituted or unsubstituted C 2 -C 12 hydroxyalkylene; each R 1 is independently C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl or hydrogen, each R 2 is independently C 1 -C 22 alkyl, C 3 -C 22 alkenyl, hydrogen, R 5 —Y—(CH 2 ) m —, wherein R 5 is C 1 -C 22 alkyl, C 3 -C 22 alkenyl, and mixtures thereof; m is from 1 to about 6; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—MR—; X is an anion.
- R is ethylene or propylene;
- R 1 is methyl or ethyl, more preferably methyl;
- at least one R 2 is preferably C 1 -C 4 alkyl, more preferably methyl.
- at least one R 2 is C 11 -C 22 alkyl, C 11 -C 22 alkenyl, and mixtures thereof.
- the formulator may similarly choose R 2 to be a R 5 —Y—(CH 2 ) m — moiety wherein R 5 is an alkyl moiety having from 1 to 22 carbon atoms, preferably the alkyl moiety when taken together with the Y unit is an acyl unit derived preferably from a source of triglyceride selected from the group consisting of tallow, (partially) hydrogenated tallow, lard, (partially) hydrogenated lard, vegetable oils and/or (partially) hydrogenated vegetable oils, such as, coconut oil, palm oil, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures thereof.
- R 1 is methyl
- one R 2 units is methyl and the other R 2 unit is R 5 —Y—(CH 2 ) m -wherein R 5 —Y— is an oleoyl unit and m is equal to 2.
- X ⁇ is a softener compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and mixtures thereof, more preferably chloride and methyl sulfate.
- a strong acid for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and mixtures thereof, more preferably chloride and methyl sulfate.
- the surfactant scavenger is the monoalkyl variant of the softener active present.
- the surfactant scavenger and softener active are prepared from the same starting materials via standard reaction chemistry by adjusting the ratio fatty acid to amine to obtain the preferred mixture of monoalkylsubstituted (scavenger) and dialkylsubstituted (softener active) compounds.
- Non-limiting examples of such compounds are the reaction products of fatty acid with methyl diethanolamine in a ratio between about 2:1 and about 1:1, quatemized with methyl chloride, resulting in a mixture of N,N-bis(stearoyl-oxy-ethyl) N,N-dimethyl ammonium chloride and N-(stearoyl-oxy-ethyl) N,-hydroxyethyl N,N dimethyl ammonium chloride.
- This compound is referred to as LF-DEEDMAC.
- the fabric conditioning compositions of the present invention may comprise an optional dispersant for suspending materials in the rinse and inhibiting their deposition on the laundered fabrics.
- Dispersing agents can advantageously be utilized at levels from about 0% to about 7%, more preferably from about 0.1% to about 5%, and even more preferably from about 0.2% to about 3% by weight, in the compositions described herein.
- the optional dispersing agent will be substantially water soluble.
- Suitable nonionic surfactants to serve as the dispersing agent include addition products of ethylene oxide and, optionally, propylene oxide, with fatty alcohols, fatty acids, fatty amines, etc. They are referred to herein as ethoxylated fatty alcohols, ethoxylated fatty acids, and ethoxylated fatty amines. Any of the ethoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant. Suitable compounds are surfactants of the general formula:
- R 1 is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups, and primary, secondary and branched chain alkyl- and alkenyl substituted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of from about 8 to about 20, preferably from about 9 to about 18 carbon atoms.
- Y is typically —O—, —C(O)O—, preferably —O—, and in which R 1 , when present, have the meanings given hereinbefore, and z is preferably at least about 4, more preferably about 7 to about 25.
- R 1 O(CH(R 2 )CH 2 O) x (CH 2 CH 2 O) y R 3 or R 1 O(CH 2 CH 2 O) x (CH(R 2 )CH 2 O) y R 3
- R 1 is defined as above; R 2 is a C 1 -C 3 alkyl unit; and R 3 is hydrogen or C 1 -C 3 alkyl.
- the individual alkoxy monomers can be arranged blockwise or randomly.
- Non-limiting examples are the Plurafac surfactants from BASF.
- Non-limiting examples are the Pluronic PE compounds from BASF.
- Typical levels of stabilizing agents are of from about 0.01% to about 20%, preferably from about 0.05% to about 8%, more preferably from about 0.1% to about 6% by weight of the composition.
- Suitable stabilizing agents to be used herein include synthetic and naturally occurring polymers.
- Suitable stabilizing agents for use herein include xanthan gum or derivatives thereof, alginate or a derivative thereof, polysaccharide polymers such as substituted cellulose materials like ethoxylated cellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose and mixtures thereof.
- Xanthan gum is a particularly preferred stabilizer.
- Preferred stabilizing agents for use in the compositions of the invention are xanthan gum or derivatives thereof sold by the Kelco Division of Merck under the trade names KELTROL®, KELZAN AR®, KELZAN D35®, KELZAN S®, KELZAN XZ® and the like.
- Polymeric soil release agents are also useful in the present invention as stabilizing agents. These include cellulosic derivatives such as hydroxyether cellulosic polymers, ethoxylated cellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C 1 -C 4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Pat. No. 4,000,093, issued Dec. 28, 1976 to Nicol, et al.
- the pH of the compositions may be adjusted by the use of various pH acidification agents.
- Preferred acidification agents include inorganic and organic acids including, for example, carboxylate acids, such as citric and succinic acids, Highly preferred acidification agents are inorganic acids such as hydrochloric acid and phosphoric acid.
- Such acidification agents will be used at levels needed to adjust the pH of the composition to a preferred level. Typically, the level of the acidification agent will be about 0.01% to about 0.02% by weight of the composition.
- Heavy metal ion (HMI) sequestrants are useful components herein for optimum whiteness and HMI control.
- Heavy metal ion sequestrants are preferably present at a level of from about 0.005% to about 20%, more preferably from about 0.1% to about 10%, most preferably from about 0.2% to about 5% by weight of the compositions.
- Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
- a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
- any salts/complexes are water soluble.
- the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least about 1:1.
- Suitable heavy metal ion sequestrants for use herein include the organo aminophosphonates, such as the amino alkylene poly (alkylene phosphonates) and nitrilo trimethylene phosphonates.
- organo aminophosphonates are diethylene triamine penta (methylene phosphonate) and hexamethylene diamine tetra (methylene phosphonate).
- Suitable heavy metal ion sequestrants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, or ethylenediamine disuccinic acid.
- a further suitable material is ethylenediamine-N,N′-disuccinic acid (EDDS), most preferably present in the form of its S,S isomer, which is preferred for its biodegradability profile.
- heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EPA 317 542 and EPA 399 133.
- compositions of the present invention may optionally contain a dye or other colorant to improve the aesthetics of the composition.
- a dye will preferably comprise less than about 0.005% by weight of the composition, and even more preferably less than about 0.002%. Dyes are well known in the art and are available from a variety of commercial sources.
- optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5-and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in “The Production and Application of Fluorescent Brightening Agents”, M. Zahradnik, Published by John Wiley & Sons, New York (1982).
- optical brighteners which are useful in the present compositions are those identified in U.S. Pat. No. 4,790,856, issued to Wixon on Dec. 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona.
- Tinopal UNPA Tinopal CBS and Tinopal 5BM
- Ciba-Geigy available from Ciba-Geigy
- Artic White CC available from Hilton-Davis, located in Italy
- 2-(4-stryl-phenyl)-2H-napthol[1,2-d]triazoles 4,4′-bis-(1,2,3-triazol-2-yl)-stil- benes
- 4,4′-bis(stryl)bisphenyls and the aminocoumarins.
- these brighteners include 4-methyl-7-diethyl- amino coumarin; 1,2-bis(-venzimidazol-2-yl)ethylene; 1,3-diphenyl-phrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-stryl-napth-[1,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [1,2-d]triazole. See also U.S. Pat. No. 3,646,015, issued Feb. 29, 1972 to Hamilton. Anionic brighteners are preferred herein.
- hydrophilic optical brighteners useful in the present invention are those having the structural formula:
- R 1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl
- R 2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino
- M is a salt-forming cation such as sodium or potassium.
- R 1 is anilino
- R 2 is N-2-bis-hydroxyethyl and M is a cation such as sodium
- the brightener is 4,4′,-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2′-stilbenedisulfonic acid and disodium salt.
- This particular brightener species is commercially marketed under the trade name Tinopal-UNPA-GX® by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the rinse added compositions herein.
- R 1 is anilino
- R 2 is N-2-hydroxyethyl-N-2-methylamino
- M is a cation such as sodium
- the brightener is 4,4′-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2′-stilbenedisulfonic acid disodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX® by Ciba-Geigy Corporation.
- R 1 is anilino
- R 2 is morphilino
- M is a cation such as sodium
- the brightener is 4,4′-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2′-stilbenedisulfonic acid, sodium salt.
- This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX® by Ciba Geigy Corporation.
- Materials for use in odor control may be of the type disclosed in U.S. Pat. Nos. 5,534,165; 5,578,563; 5,663,134; 5,668,097; 5,670,475; and 5,714,137, Trinh et al. issued Jul. 9, 1996; Nov. 26, 1996; Sep. 2, 1997; Sep. 16, 1997; Sep. 23, 1997; and Feb. 3, 1998 respectively, all of said patents being incorporated herein by reference.
- Such compositions can contain several different optional odor control agents.
- a pro-perfume may be useful in order to mask malodor.
- a pro-perfume is defined as a perfume precursor that releases a desirable odor and/or perfume molecule through the breaking of a chemical bond.
- a desired perfume raw material is chemically linked with a carrier, preferably a slightly volatile or a sparingly volatile carrier.
- the combination results in a less volatile and more hydrophobic pro-perfume which results in increased deposition onto the fabric article.
- the perfume is then released by breaking the bond between the perfume raw material and the carrier either through a change in pH (e.g., due to perspiration during wear), air moisture, heat, enzymatic action and/or sunlight during storage or line drying.
- pH e.g., due to perspiration during wear
- air moisture e.g., heat, enzymatic action and/or sunlight during storage or line drying.
- a perfume raw material for use in pro-perfumes are typically saturated or unsaturated, volatile compounds which contain an alcohol, an aldehyde, and/or a ketone group.
- the perfume raw materials useful herein include any fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances.
- Such materials are often accompanied by auxiliary materials, such as fixatives, extenders, stabilizers and solvents. These auxiliaries are also included within the meaning of “perfume”, as used herein.
- perfumes are complex mixtures of a plurality of organic compounds.
- cyclodextrin includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof.
- the alpha-cyclodextrin consists of six glucose units
- the beta-cyclodextrin consists of seven glucose units
- the gamma-cyclodextrin consists of eight glucose units arranged in donut-shaped rings.
- the specific coupling and conformation of the glucose units give the cyclodextrins rigid, conical molecular structures with hollow interiors of specific volumes.
- the “lining” of each internal cavity is formed by hydrogen atoms and glycosidic bridging oxygen atoms; therefore, this surface is fairly hydrophobic.
- the unique shape and physical-chemical properties of the cavity enable the cyclodextrin molecules to absorb (form inclusion complexes with) organic molecules or parts of organic molecules which can fit into the cavity. Many odorous molecules can fit into the cavity including many malodorous molecules and perfume molecules.
- cyclodextrins and especially mixtures of cyclodextrins with different size cavities, can be used to control odors caused by a broad spectrum of organic odoriferous materials, which may, or may not, contain reactive functional groups.
- Cyclodextrins that are useful in the present invention are highly water-soluble such as, alpha-cyclodextrin and/or derivatives thereof, gamma-cyclodextrin and/or derivatives thereof, derivatised beta-cyclodextrins, and/or mixtures thereof.
- the derivatives of cyclodextrin consist mainly of molecules wherein some of the OH groups are converted to OR groups.
- Cyclodextrin derivatives include, e.g., those with short chain alkyl groups such as methylated cyclodextrins, and ethylated cyclodextrins, wherein R is a methyl or an ethyl group; those with hydroxyalkyl substituted groups, such as hydroxypropyl cyclodextrins and/or hydroxyethyl cyclodextrins, wherein R is a —CH 2 —CH(OH)—CH 3 or a ⁇ CH 2 CH 2 —OH group; branched cyclodextrins such as maltose-bonded cyclodextrins; cationic cyclodextrins such as those containing 2-hydroxy-3-(dimethylamino)propyl ether, wherein R is CH 2 —CH(OH)—CH 2 —N(CH 3 ) 2 which is cationic at low pH; quaternary ammonium, e.
- Highly water-soluble cyclodextrins are those having water solubility of at least about 10 g in 100 ml of water at room temperature, preferably at least about 20 g in 100 ml of water, more preferably at least about 25 g in 100 ml of water at room temperature.
- the availability of solubilized, uncomplexed cyclodextrins is essential for effective and efficient odor control performance. Solubilized, water-soluble cyclodextrin can exhibit more efficient odor control performance than non-water-soluble cyclodextrin when deposited onto surfaces, especially fabric.
- Examples of preferred water-soluble cyclodextrin derivatives suitable for use herein are hydroxypropyl alpha-cyclodextrin, methylated alpha-cyclodextrin, methylated beta-cyclodextrin, hydroxyethyl beta-cyclodextrin, and hydroxypropyl beta-cyclodextrin.
- Hydroxyalkyl cyclodextrin derivatives preferably have a degree of substitution of from about 1 to about 14, more preferably from about 1.5 to about 7, wherein the total number of OR groups per cyclodextrin is defined as the degree of substitution.
- Methylated cyclodextrin derivatives typically have a degree of substitution of from about 1 to about 18, preferably from about 3 to about 16.
- a known methylated beta-cyclodextrin is heptakis-2,6-di-O-methyl- ⁇ cyclodextrin, commonly known as DIMEB, in which each glucose unit has about 2 methyl groups with a degree of substitution of about 14.
- DIMEB heptakis-2,6-di-O-methyl- ⁇ cyclodextrin
- a preferred, more commercially available, methylated beta-cyclodextrin is a randomly methylated beta-cyclodextrin, commonly known as RAMEB, having different degrees of substitution, normally of about 12.6.
- RAMEB is more preferred than DIMEB, since DIMEB affects the surface activity of the preferred surfactants more than RAMEB.
- the preferred cyclodextrins are available, e.g., from Cerestar USA, Inc. and Wacker Chemicals (USA
- cyclodextrins absorb odors more broadly by complexing with a wider range of odoriferous molecules having a wider range of molecular sizes.
- the cyclodextrins is alpha-cyclodextrin and its derivatives thereof, gamma-cyclodextrin and its derivatives thereof, and/or derivatised beta-cyclodextrin, more preferably a mixture of alpha-cyclodextrin, or an alpha-cyclodextrin derivative, and derivatised beta-cyclodextrin, even more preferably a mixture of derivatised alpha-cyclodextrin and derivatised beta-cyclodextrin, most preferably a mixture of hydroxypropyl alpha-cyclodextrin and hydroxypropyl beta-cyclodextrin, and/or a mixture of methylated alpha-cycl
- perfume is used to indicate any odoriferous material that is subsequently released into the aqueous rinse bath solution and/or onto fabrics contacted therewith.
- the perfume will most often be liquid at ambient temperatures.
- a wide variety of chemicals are known for perfume uses, including materials such as aldehydes, ketones, and esters. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfumes.
- the perfumes herein can be relatively simple in their compositions or can comprise highly sophisticated complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor.
- Typical perfumes can comprise, for example, woody/earthy bases containing exotic materials such as sandalwood, civet and patchouli oil.
- the perfumes can be of a light floral fragrance, e.g. rose extract, violet extract, and lilac.
- the perfumes can also be formulated to provide desirable fruity odors, e.g. lime, lemon, and orange.
- so-called “designer fragrances” that are typically applied directly to the skin may be used in the compositions of the present invention.
- the perfumes may be selected for an aromatherapy effect, such as providing a relaxing or invigorating mood.
- any material that exudes a pleasant or otherwise desirable odor can be used as a perfume active in the compositions of the present invention.
- Mixtures of the optional odor control agents described above are desirable, especially when the mixture provides control over a broader range of odors.
- Another optional, but preferred, ingredient is a liquid carrier.
- the liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost, relative availability, safety, and environmental compatibility.
- the level of water in the liquid carrier is preferably at least about 50%, most preferably at least about 60%, by weight of the carrier.
- Mixtures of water and low molecular weight, e.g., ⁇ about 200, organic solvent, e.g., lower alcohols such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid.
- Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
- a soil release agent may optionally be incorporated into the compositions.
- a soil release agent is a polymer.
- One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
- the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. Descriptions of such copolymers and their uses are provided in U.S. Pat. No. 3,959,230 to Hays, issued May 25, 1976 and U.S. Pat. No. 3,893,929 to Basadur issued Jul. 8, 1975.
- Another preferred soil release polymer is a crystallizable polyester with repeating units of ethylene terephthalate containing from about 10% to about 15% by weight of ethylene terephthalate units together with from about 10% to about 50% by weight of polyoxyethylene terephthalate units that are derived from a polyoxyethylene glycol of average molecular weight of from about 300 to about 6,000.
- the molar ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in such a crystallizable polymeric compound is between about 2:1 and about 6:1.
- Examples of this polymer include the commercially available materials Zelcon 4780® and Zelcon 5126 (from Dupont) and Milease T® (from ICI). See also U.S. Pat. No. 4,702,857, issued Oct. 27, 1987 to Gosselink.
- each X can be a suitable capping group, with each X typically being selected from the group consisting of H, and alkyl or acyl groups containing from about 1 to about 4 carbon atoms.
- p is selected for water solubility and generally is from about 6 to about 113, preferably from about 20 to about 50.
- u is critical to formulation in a liquid composition having a relatively high ionic strength. There should be very little material in which u is greater than 10. Furthermore, there should be at least about 20%, preferably at least about 40%, of material in which u ranges from about 3 to about 5.
- the R 14 moieties are essentially 1,4-phenylene moieties.
- the term “the R 14 moieties are essentially 1,4-phenylene moieties” refers to compounds where the R 14 moieties consist entirely of 1,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkylene moieties, alkenylene moieties, or mixtures thereof.
- Arylene and alkarylene moieties which can be partially substituted for 1,4-phenylene include 1,3-phenylene, 1,2-phenylene, 1,8-naphthylene, 1,4-naphthylene, 2,2-biphenylene, 4,4-biphenylene, and mixtures thereof.
- Alkylene and alkenylene moieties which can be partially substituted include 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexamethylene, 1,7-heptamethylene, 1,8-octamethylene, 1,4-cyclohexylene, and mixtures thereof.
- the degree of partial substitution with moieties other than 1,4-phenylene should be such that the soil release properties of the compound are not adversely affected to any great extent.
- the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties.
- compounds where the R 14 comprise from about 50% to about 100% 1,4-phenylene moieties (from 0% to about 50% moieties other than 1,4-phenylene) have adequate soil release activity.
- polyesters made with a 40:60 mole ratio of isophthalic (1,3-phenylene) to terephthalic (1,4-phenylene) acid have adequate soil release activity.
- the R 14 moieties consist entirely of (i.e., comprise about 100%) 1,4-phenylene moieties, i.e., each R 14 moiety is 1,4-phenylene.
- suitable ethylene or substituted ethylene moieties include ethylene, 1,2-propylene, 1,2-butylene, 1,2-hexylene, 3-methoxy-1,2-propylene, and mixtures thereof.
- the R 15 moieties are essentially ethylene moieties, 1,2-propylene moieties, or mixtures thereof. Inclusion of a greater percentage of ethylene moieties tends to improve the soil release activity of compounds.
- 1,2-propylene moieties tends to improve the water solubility of compounds. Therefore, the use of 1,2-propylene moieties or a similar branched equivalent is desirable for incorporation of any substantial part of the soil release polymer where the fabric care composition will be added to a laundry solution containing fabric softening actives. Preferably, from about 75% to about 100%, are 1,2-propylene moieties.
- the value for each p is at least about 6, and preferably is at least about 10.
- the value for each n usually ranges from about 12 to about 113.
- the value for each p is in the range of from about 12 to about 43.
- Polymeric soil release actives useful in the present invention may also include cellulosic derivatives such as hydroxyether cellulosic polymers, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C 1 -C 4 alkyl and C 4 hydroxyalkyl cellulose; see U.S. Pat. No. 4,000,093, issued Dec. 28, 1976 to Nicol, et al.
- Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C 1 -C 6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
- poly(vinyl ester) e.g., C 1 -C 6 vinyl esters
- poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
- Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units.
- the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps.
- a particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
- Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- a crystalline-reducing stabilizer preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- compositions of the present invention may also contain soil release and anti-redeposition agents such as water-soluble ethoxylated amines, most preferably ethoxylated tetraethylenepentamine.
- soil release and anti-redeposition agents such as water-soluble ethoxylated amines, most preferably ethoxylated tetraethylenepentamine.
- Exemplary ethoxylated amines are further described in U.S. Pat. No. 4,597,898, VanderMeer, issued Jul. 1, 1986.
- a preferred composition of the present invention comprises from about 0.1%, preferably from about 5%, more preferably form about 10% to about 80%, preferably to about 50%, more preferably to about 25% by weight, of a hydrophobic polyamine dispersant having the formula:
- R, R 1 and B are suitably described in U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996 incorporated herein by reference, and w, x, and y have values which provide for a backbone prior to substitution of preferably at least about 1200 daltons, more preferably 1800 daltons.
- R 1 units are preferably alkyleneoxy units having the formula:
- R′ is methyl or ethyl
- m and n are preferably from about 0 to about 50, provided the average value of alkoxylation provided by m+n is at least about 0.5.
- antimicrobial preservative can be added to the compositions of the present invention, especially if the stabilizing agent is made of cellulose.
- the cellulose materials can make a prime breeding ground for certain microorganisms, especially when in aqueous compositions. This drawback can lead to the problem of storage stability of the solutions for any significant length of time. Contamination by certain microorganisms with subsequent microbial growth can result in an unsightly and/or malodorous solution. Because microbial growth in solutions is highly objectionable when it occurs, it is highly preferable to include an antimicrobial preservative, which is effective for inhibiting and/or regulating microbial growth in order to increase storage stability of the composition.
- a broad spectrum preservative e.g., one that is effective on both bacteria (both gram positive and gram negative) and fungi.
- a limited spectrum preservative e.g., one that is only effective on a single group of microorganisms, e.g., fungi, can be used in combination with a broad spectrum preservative or other limited spectrum preservatives with complimentary and/or supplementary activity.
- a mixture of broad spectrum preservatives can also be used.
- aminocarboxylate chelators such as those described hereinbefore, can be used alone or as potentiators in conjunction with other preservatives.
- chelators which include, e.g., ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, and other aminocarboxylate chelators, and mixtures thereof, and their salts, and mixtures thereof, can increase preservative effectiveness against Gram-negative bacteria, especially Pseudomonas species.
- EDTA ethylenediaminetetraacetic acid
- hydroxyethylenediaminetriacetic acid hydroxyethylenediaminetriacetic acid
- diethylenetriaminepentaacetic acid diethylenetriaminepentaacetic acid
- other aminocarboxylate chelators and mixtures thereof, and their salts, and mixtures thereof, can increase preservative effectiveness against Gram-negative bacteria, especially Pseudomonas species.
- Antimicrobial preservatives useful in the present invention include biocidal compounds, i.e., substances that kill microorganisms, or biostatic compounds, i.e., substances that inhibit and/or regulate the growth of microorganisms.
- biocidal compounds i.e., substances that kill microorganisms
- biostatic compounds i.e., substances that inhibit and/or regulate the growth of microorganisms.
- Well known preservatives such as short chain alkyl esters of p-hydroxybenzoic acid, commonly known as parabens; N-(4-chlorophenyl)-N′-(3,4-dichlorophenyl) urea, also known as 3,4,4′-trichlorocarbanilide or triclocarban; 2,4,4′-trichloro-2′-hydroxy diphenyl ether, commonly known as triclosan are useful preservative in the present invention.
- Still other preferred preservatives are the water-soluble preservatives, i.e. those that have a solubility in water of at least about 0.3 g per 100 ml of water, i.e., greater than about 0.3% at room temperature, preferably greater than about 0.5% at room temperature.
- the preservative in the present invention is included at an effective amount.
- effective amount means a level sufficient to prevent spoilage, or prevent growth of inadvertently added microorganisms, for a specific period of time.
- the preservative is not being used to kill microorganisms on the surface onto which the composition is deposited in order to eliminate odors produced by microorganisms. Instead, it is preferably being used to prevent spoilage of the solution in order to increase the shelf-life of the composition.
- Preferred levels of preservative are from about 0.0001% to about 0.5%, more preferably from about 0.0002% to about 0.2%, most preferably from about 0.0003% to about 0.1%, by weight of the usage composition.
- the preservative can be any organic preservative material which will not cause damage to fabric appearance, e.g., discoloration, coloration, bleaching.
- Preferred water-soluble preservatives include organic sulfur compounds, halogenated compounds, cyclic organic nitrogen compounds, low molecular weight aldehydes, quaternary ammonium compounds, dehydroacetic acid, phenyl and phenolic compounds, and mixtures thereof.
- Non-limiting examples of preferred water-soluble preservatives for use in the present invention can be found in U.S. Pat. No. 5,714,137, incorporated hereinbefore by reference, as well as co-pending application PCT/US 98/12154 pages 29 to 36.
- Preferred water-soluble preservatives for use in the present invention are organic sulfur compounds.
- organic sulfur compounds suitable for use in the present invention are:
- a preferred preservative is an antimicrobial, organic preservative containing 3-isothiazolone groups. This class of compounds is disclosed in U.S. Pat. No. 4,265,899, Lewis et al., issued May 5, 1981, and incorporated herein by reference.
- a preferred preservative is a water-soluble mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one, more preferably a mixture of about 77% 5-chloro-2-methyl-4-isothiazolin-3-one and about 23% 2-methyl-4-isothiazolin-3-one, a broad spectrum preservative available as a about 1.5% aqueous solution under the trade name Kathon® CG by Rohm and Haas Company.
- Kathon® When Kathon® is used as the preservative in the present invention it is present at a level of from about 0.0001% to about 0.01%, preferably from about 0.0002% to about 0.005%, more preferably from about 0.0003% to about 0.003%, most preferably from about 0.0004% to about 0.002%, by weight of the composition.
- isothiazolins include 1,2-benzisothiazolin-3-one, available under the trade name Proxel® products; and 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, available under the trade name Promexal®. Both Proxel and Promexal are available from Zeneca. They have stability over a wide pH range (i.e., 4-12). Neither contain active halogen and are not formaldehyde releasing preservatives.
- Proxel and Promexal are effective against typical Gram negative and positive bacteria, fungi and yeasts when used at a level from about 0.001% to about 0.5%, preferably from about 0.005% to about 0.05%, and most preferably from about 0.01% to about 0.02% by weight of the usage composition.
- Another preferred organic sulfur preservative is sodium pyrithione, with water solubility of about 50%.
- sodium pyrithione is typically present at a level of from about 0.0001% to about 0.01%, preferably from about 0.0002% to about 0.005%, more preferably from about 0.0003% to about 0.003%, by weight of the usage composition.
- compositions containing, antimicrobial materials e.g., antibacterial halogenated compounds, quaternary compounds, phenolic compounds and metallic salts, and preferably quaternary compounds.
- antimicrobial materials e.g., antibacterial halogenated compounds, quaternary compounds, phenolic compounds and metallic salts, and preferably quaternary compounds.
- a typical disclosure of these antimicrobial can be found in International Patent Application No. PCT/US 98/12154 pages 17 to 20.
- Some of the more robust antimicrobial halogenated compounds which can function as disinfectants/sanitizers as well as finish product preservatives (vide infra), and that are useful in the compositions of the present invention include 1,1′-hexamethylene bis(5-(p-chlorophenyl)biguanide), commonly known as chlorhexidine, and its salts, e.g., with hydrochloric, acetic and gluconic acids.
- the digluconate salt is highly water-soluble, about 70% in water, and the diacetate salt has a solubility of about 1.8% in water.
- Other useful biguanide compounds include Cosmoci® CQ®, and Vantocil® IB that include poly (hexamethylene biguanide) hydrochloride.
- Other useful cationic antimicrobial agents include the bis-biguanide alkanes.
- Usable water soluble salts of the above are chlorides, bromides, sulfates, alkyl sulfonates such as methyl sulfonate and ethyl sulfonate, phenylsulfonates such as p-methylphenyl sulfonates, nitrates, acetates, gluconates, and the like.
- Examples of suitable bis biguanide compounds are chlorhexidine; 1,6-bis-(2-ethylhexylbiguanidohexane)dihydrochloride; 1,6-di-(N 1 ,N 1′ -phenyldiguanido-N 5 ,N 5′ )-hexane tetrahydrochloride; 1,6-di-(N 1 ,N 1′ -phenyl-N 1 ,N 1′ -methyldiguanido-N 5 ,N 5′ )-hexane dihydrochloride; 1,6-di(N 1 ,N 1′ -o-chlorophenyldiguanido-N 5 ,N 5′ )-hexane dihydrochloride; 1,6di(N 1 ,N 1′ -2,6-dichlorophenyldiguanido-N 5 ,N 5′ )hexane dihydrochloride; 1,6di(
- Preferred antimicrobials from this group are 1,6-di-(N 1 ,N 1′ -phenyldiguanido-N 5 ,N 5′ )-hexane tetrahydrochloride; 1,6-di(N 1 ,N 1′ -o-chlorophenyldiguanido-N 5 ,N 5′ )-hexane dihydrochloride; 1,6-di(N 1 ,N 1′ -2,6-dichlorophenyldiguanido-N 5 ,N 5′ )hexane dihydrochloride; 1,6-di(N 1 ,N 1′ -2,4-dichlorophenyldiguanido-N 5 ,N 5′ )hexane tetrahydrochloride; 1,6-di[N 1 ,N 1′ -.alpha.-(p-chlorophenyl) ethyldiguanido-N 5
- a wide range of quaternary compounds can also be used as antimicrobial actives for the compositions of the present invention.
- useful quaternary compounds include: (1) benzalkonium chlorides and/or substituted benzalkonium chlorides such as commercially available Barquat® (available from Lonza), Maquat® (available from Mason), Variquat® (available from Goldschmidt), and Hyamine® (available from Lonza); (2) di(C 6 -C 14 )alkyl di short chain (C 1-4 alkyl and/or hydroxyalkyl) quaternary such as Bardac® products of Lonza, (3) N-(3-chloroallyl) hexaminium chlorides such as Dowicide® and Dowicil® available from Dow; (4) benzethonium chloride such as Hyamine® 1622 from Rohm & Haas; (5) methylbenzethonium chloride represented by Hyamine® 10 ⁇ supplied by Rohm & Haas, (6) cety
- dialkyl quaternary compounds examples include di(C 8 -C 12 )dialkyl dimethyl ammonium chloride, such as didecyldimethylammonium chloride (Bardac 22), and dioctyldimethylammonium chloride (Bardac 2050).
- Surfactants when added to the antimicrobials tend to provide improved antimicrobial action. This is especially true for the siloxane surfactants, and especially when the siloxane surfactants are combined with the chlorhexidine antimicrobial actives.
- bactericides used in the compositions and articles of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon CG/ICP®.
- metallic salts are known for their antimicrobial effects. These metallic salts may be selected from the group consisting of copper salts, zinc salts, and mixtures thereof.
- Copper salts have some antimicrobial benefits. Specifically, cupric abietate acts as a fungicide, copper acetate acts as a mildew inhibitor, cupric chloride acts as a fungicide, copper lactate acts as a fungicide, and copper sulfate acts as a germicide. Copper salts also possess some malodor control abilities. For instance, U.S. Pat. No. 3,172,817, Leupold, et al., describes deodorizing compositions for treating disposable articles, comprising at least slightly water-soluble salts of acylacetone, including copper salts and zinc salts.
- the present invention composition may also include optional components conventionally used in textile treatment compositions, for example: brighteners, photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines, perfumes, chlorine scavengers, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, and mixtures thereof.
- brighteners photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines, perfumes, chlorine scavengers, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, and mixtures thereof.
- photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthal
- composition of the invention may take a variety of physical forms including liquid, liquid-gel, paste-like, foam in either aqueous or non-aqueous form, powder, granular and tablet forms.
- a preferred form of the composition is a liquid form.
- the composition may also be dispensed with dispensing means such as a sprayer or aerosol dispenser.
- the composition can be used in a so-called rinse process, where a composition as defined hereinabove, is first diluted in an aqueous rinse bath solution. Subsequently, the laundered fabrics which have been washed with a detergent liquor and optionally rinsed in a first inefficient rinse step (“inefficient” in the sense that residual detergent and/or soil may be carried over with the fabrics), are placed in the rinse solution with the diluted composition.
- a first inefficient rinse step (“inefficient” in the sense that residual detergent and/or soil may be carried over with the fabrics)
- the composition may also be incorporated into the aqueous bath once the fabrics have been immersed therein.
- agitation is applied to the fabrics in the rinse bath solution causing the suds to collapse, and residual soils and surfactant is to be removed.
- the fabrics can then be optionally wrung before drying.
- a method for rinsing fabrics which comprises the steps of contacting fabrics, previously washed in a detergent liquor, with a composition of the invention.
- the present invention provides for the use of a composition of the present invention to impart fabric softness to fabrics that have been washed in a high suds detergent solution, while providing in the rinse a reduction of suds or foaming and without the creation of undesirable flocs.
- This rinse process may be performed manually in basin or bucket, in a non-automated washing machine, or in an automated washing machine.
- hand washing is performed, the laundered fabrics are removed from the detergent liquor and wrung out.
- the composition of the invention is then added to fresh water and the fabrics are then, directly or after an optional inefficient first rinse step, rinsed in the water containing the composition according to the conventional rinsing habit.
- the fabrics are then dried using conventional means.
- Examples 1, 2 and 3 exemplify the invention, while examples 4 and 5 do not pass the floc formation test (ex. 4) or the suds reduction test (ex. 5).
- Example 1 Example 2
- Example 3 Example 4
- Example 5 Rewoquat V3282, 5 6.5 6 5.5
- Ex Goldschmidt (1) LF-DEEDMAC (2) — — 8 — — HCl 0.02 0.01 0.02 0.01 0.01 Perfume 0.8 0.9 0.9 1.1 0.25 Neodol 91-8, 1 0.5 — 0.5 — Ex Shell Silicone Emulsion 0.75 — 0.75 — — SE39, Ex Wacker Silicone emulsion — 2.0 — 2.0 — MP10,
- Dodecyl trimethyl — 4 — — 4.0 ammonium chloride Water Balance Balance Balance Balance Balance Balance Balance Balance Balance Balance
- Floc formation is evaluated according to the following test method: 750 grams of a dodecylbenzenesulfonic acid, sodium salt (technical grade, supplied by Aldrich under the catalog number 28,995-7) solution at about 0.02% (using water at 20°-25° C. and 12 US gpg hardness) is added to a 1 liter cylindrical jar (with a diameter to height ratio of approx. 5 to 8). The jar is closed hermetically and shaken vigorously during 15 seconds to generate about 3 cm of foam on top of the solution.
- the sieve is subsequently manually lifted out of the tray (kept horizontically) and inspected for the presence of flocs.
- the test solution is being defined as being “substantially free” from flocs if the total number of visible flocs retained on the sieve is less than 50.
- the test solution is being defmed as being “free” from flocs if the number of visible flocs retained is less than 10.
- the filtrate is collected in an identical 1 literjar.
- the suds reduction property of the hand composition is another essential feature of the invention. Suds reduction is defined according to the following test method: 750 grams of a dodecylbenzenesulfonic acid, sodium salt (technical grade, supplied by Aldrich under the catalog number 28,995-7) solution at about 0.02% (using water at 20°-25° C. and 12 US gpg hardness) is added to a 1 liter cylindrical jar (with a diameter to height ratio of approx. 5 to 8). This solution serves as reference. Both the reference solution and the filtrate obtained from the Floc Formation Test (see above) are shaken vigorously for about 15 seconds. This generates about 3 cm of foam on top of the reference solution.
- Suitable compositions are those that have a suds reduction over the reference of about at least about 90%, preferably of at least about 95% and most preferably of at least about 99%. 99% is where all the foam disappeared apart from the optional presence of a white film or some scattered air bubbles that may partially cover the surface of the solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
There is provided a rinse added composition for the conditioning of fabric in a rinse, whereby the composition comprises a fabric softener active, a suds suppressing system and a surfactant scavenger, characterized in that the composition has a suds reduction value of at least about 90% and is free from visible flocs when used in the presence of residual detergent surfactant.
Description
- The present invention relates to rinse-added fabric conditioning compositions for fabrics, in particular, compositions for use during the hand rinsing of fabrics as well as the rinsing of fabrics in top loaded non-automated washing machines and automated washing machines after the fabrics have been laundered with a detergent composition. The compositions of the present invention are particularly adapted for use in rinsing fabrics that have been washed in a high suds forming detergent composition and where a portion of that detergent composition is carried over with the fabrics into the rinse.
- Nowadays, the trends for washing is by using a washing machine whereby the laundry detergent and the softening composition are dispensed from the washing machine via two separate compartments, thereby ensuring the automated release of the detergent at the beginning of the washing process and the release of the softening composition in the rinse process, usually the last rinse process.
- In most countries under development, the consumer's washing habit is to wash their garments with either a non-automatic top loaded washing machine (i.e apparatus which comprises two separated cubicles, one for washing or rinsing, and one for spinning), or a basin or bucket. The washing in basins or buckets involves a manually operated process with the multiple cumbersome steps of wetting the fabrics, washing with detergent, wringing, and rinsing thoroughly. Similarly, in non-automatic top loaded washing machines, washing requires placing the fabrics with detergent in the cubicle containing water and providing agitation. The fabrics are then removed from the cubicle containing the detergent liquor, placed in the spinning cubicle where they are spun to remove the major portion of detergent and soils. The detergent liquor is removed from the other cubicle and is replaced with fresh water. The fabrics are transferred back for rinsing. The steps of spinning and rinsing are often repeated several times to obtain acceptably rinsed fabrics.
- A unique aspect of washing-by-hand, and/or washing in non-automatic top loaded washing machine, is the high detergent to water ratio and/or the high fabric to water ratio. Indeed, fabrics treated with such detergent compositions usually carry residual detergent to the rinse step. Compared to modern (automatic) washing machines, this problem of detergent carry over is even more acute with manual washing and/or washing in non-automatic top loaded washing machine, as it is due to the poor efficiency of the spinning and/or wringing in between the wash and the rinse steps.
- The use of high suds forming detergent compositions and the incidence of hand and non-automated washing of fabrics, in general, is not constrained to any particular geographical region. Although certain areas having limited access to modern appliances have a higher prevalence of hand and non-automated washing, the need to hand-wash, including rinsing, at least certain items of clothing appears universal. For instance, there are still many garments, especially those manufactured from “fine fabric” material (i.e. silk) or those which comprise “soft woven” material (i.e. woolen knitted sweaters) that need to be “laundered by hand”. Likewise, the laundering of “delicates” and “personal” items also typically requires hand-washing to prevent damage thereto.
- Conventional detergent products which are currently used for the hand laundering and/or top loading non-automatic washing machine treatments are the so called “High Suds Detergents”. One commonly known feature of these detergent products is that a significant amount of suds appears on top of the wash solution upon agitation. A problem encountered by the consumer is that a significant portion of these suds is carried over into the rinse solution, requiring cumbersome removal by successive rinsing and spinning/wringing with water. Consequently, the hand rinsing of fabric and its drawback of excessive foam is something consumers are familiar with.
- The use of a fabric conditioning composition in conjunction with such detergent compositions can create additional problems. Indeed, fabric softener actives may interact with the residual detergent surfactants like anionic surfactants, present in the rinse solution. As a result, poorly soluble flocs form that then float on top of the rinse solution. It is speculated that the presence of flocs arises from the water-insolubility of the softener compound and/or the interaction of the softener compound with the anionic detergent liquor. Notably, the formation of such flocs is particularly troublesome where a high suds forming detergent composition is used to launder the fabrics during the wash cycle.
- In addition, softener compounds tend to form a slightly cloudy or turbid rinse bath solution. The clarity of the rinse solution is often perceived by the consumer as a signal of when the fabrics are completely rinsed. In other words, the more turbid the rinse solution, the more rinses the consumer will perform. It is therefore a concern that the use of a fabric conditioning composition that gives a cloudy rinse bath solution may mislead consumers to engage in excessive rinsing of their fabrics.
- There is a further problem with the use of fabric conditioning compositions in conjunction with such detergents, in that the interaction between the softener active and the residual detergent surfactant leads to a markedly reduced end effect. Fabrics treated with conventional conditioning compositions in the presence of residual detergent surfactants do not have the preferred soft hand that is typically delivered by the fabric conditioning composition, when used in the absence of surfactant. Not to be limited by theory, but it is believed that the interaction between softener active and detergent surfactant reduces the efficiency of said softener active.
- Accordingly, there is a need for a fabric conditioning composition that will reduce the formation of suds, provide a clear rinse solution and deliver the soft hand typical for the fabric conditioning composition used in the absence of detergent surfactant, when the composition is applied in a rinse solution under detergent carry over conditions. Further, there is a need for processes or compositions that will relieve or ease the burden of the hand and non-automated washing while enabling the consumer to enjoy the benefits of using fabric conditioning compositions in combination with high suds forming detergent compositions. Therefore, there is a need for an effective rinsing composition for use in the hand treatment of fabrics while simultaneously providing softness to the treated fabrics.
- The present invention provides a fabric treatment composition comprising a fabric softener active, a suds suppressing system and a surfactant scavenger, characterized in that the composition has a suds reduction value of at least about 90%, does not form flocs and delivers a soft hand feel to the fabrics when added to a rinse solution containing residual detergent surfactant. The compositions of the present invention preferably comprise a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients.
- The present invention provides for the use of a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients in a rinse solution to impart softness to the treated fabrics and reduce suds formation in the rinse solution.
- The present invention further provides for the use of a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients in a rinse solution to reduce the formation of flocs in the rinse solution.
- The present invention further provides for the use of a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients to rinse fabrics washed in a high suds forming detergent composition.
- In a process aspect of the invention, there is provided a method for rinsing laundered fabrics which comprises the step of contacting fabrics previously washed in an aqueous detergent liquor, with a rinse solution containing a composition of the invention.
- In yet a further process aspect of the present invention, there is provided a method for reducing the volume of water consumed in a laundering operation in which a fabric conditioning composition is utilized, the method comprising the steps of washing the fabrics in an aqueous detergent solution, removing a major portion of the aqueous detergent solution, whether through draining, spinning, wringing, partial rinsing or otherwise, and rinsing the washed fabrics in a rinse solution comprising water and a fabric conditioning composition of the present invention, wherein during this rinsing step residual detergent and soil are removed from the fabrics and the fabrics are conditioned.
- In a further embodiment of the present invention there is provided an article of manufacture comprising a fabric conditioning composition comprising a fabric softening active, a suds suppression agent, a surfactant scavenger and optional adjunct ingredients; a container for the fabric conditioning composition; and a set of instructions associated with the container, said instructions comprising an instruction to the consumer that laundered fabrics may be rinsed and conditioned in a single rinse solution without the need for extensive rinsing prior to this conditioning step.
- All percentages, ratios and proportions herein are by weight, unless otherwise specified. All temperatures are in degrees Celsius (° C) unless otherwise specified. All documents cited are incorporated herein by reference in their entireties. Citation of any reference is not an admission regarding any determination as to its availability as prior art to the claimed invention.
- As used herein, the term “alkyl” means a hydrocarbyl moiety, which is straight or branched, saturated or unsaturated. Unless otherwise specified, alkyl moieties are preferably saturated or unsaturated with double bonds, preferably with one or two double bonds. Included in the term “alkyl” is the alkyl portion of acyl groups.
- As used herein, “comprising” means that other steps and other ingredients which do not affect the end result can be added. This term encompasses the terms “consisting of” and “consisting essentially of”.
- As used herein, the term “fabric article” means any fabric, fabric-containing, or fabric-like item that is laundered, conditioned, or treated on a regular, or irregular basis. Non-limiting examples of a fabric article include clothing, curtains, bed linens, wall hangings, textiles, cloth, etc. Preferably, the fabric article is a woven article, and more preferably, the fabric article is a woven article such as clothing. Furthermore, the fabric article may be made of natural and artificial materials, such as cotton, nylon, rayon, wool, silk, polycotton, polyester, etc.
- As used herein, the term “laundry residue” means any material that may be present either on the fabrics or in the wash liquor during the wash cycle of the laundering process and that is carried over with the laundered fabrics into the rinse bath solution. Thus, “laundry residue” includes but is not limited to, residual soils, particulate matter, detergent surfactants, detergent builders, bleaching agents, metal ions, lipids, enzymes and any other materials that may have been present in the wash cycle solution. Furthermore, excess laundry liquor may be squeezed, wrung, or spun out of a fabric to remove excess laundry residue, prior to adding the fabric to the rinse bath solution. However, such laundry residue is not completely removed (i.e., rinsed out of the fabric with water) prior to adding the fabric to a rinse bath solution. Preferably, laundry residue includes “surfactant residue”, which means a surfactant material that may be present either on the fabrics or in the wash liquor during the wash cycle of the laundering process and that is carried over with the laundered fabrics into the rinse bath solution. Surfactant residue is removably-attached to the fabric surface and/or fabric fibers via hydrophobic/electrostatic attractions, calcium bridging, and/or other types of weak, non-covalent bonds.
- As used herein, “rinse bath solution” is the solution used to rinse the fabrics subsequent to their washing. The rinse bath solution may be used in an automated or non-automated washing machine, or in the case of hand washing, may be used in a simple container such as a basin or bucket. The rinse bath solution is initially water before the laundered fabrics and accompanying laundry residue and/or the rinse-added fabric treatment composition are introduced.
- As used in the following description and claims, “visible precipitates” or “flocs” refers to flocculated matter which is generally opaque in nature. Although not necessarily solid or compact, such flocs are sufficiently large to be noticeable by the unaided eye, typically, not less than about 0.4 mm when measured along their shortest axis.
- A preferred embodiment of the present invention provides a rinse added fabric conditioning composition comprising a fabric softener active, a suds suppressing system and a surfactant scavenger, characterized in that the composition has a suds reduction value of at least about 90%, does not form flocs and delivers a soft hand to the fabrics when added to a rinse solution containing surfactant residue.
- A. Fabric Softener Active
- Typical levels of incorporation of the softening compound (active) in the softening composition are from about 1% to about 90%, preferably from about 1% to about 70%, more preferably from about 1% to about 40%, and even more preferably between about 2% and about 25%, by weight of the composition.
- The softening compounds can be selected from cationic, nonionic, and/or amphoteric compounds. Typical of the cationic softening compounds are the quaternary ammonium compounds or amine precursors thereof as defined hereinafter.
- 1. Preferred Fabric Softening Active Compounds
- A first preferred type of fabric softening active comprises, as the principal active, compounds of the formula
- {R4-m—N+—[(CH2)n—Y—R1]m}X− (1)
- wherein each R substituent is either hydrogen, a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C2-3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4, preferably 2; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—MR—; the sum of carbons in each R1, plus one when Y is —O—(O)C— or —NR—C(O)—, is C12-C22, preferably C14-C20, with each R1 being a hydrocarbyl, or substituted hydrocarbyl group, and X− can be any softener-compatible anion, preferably, chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate, more preferably chloride or methyl sulfate;
- A second type of preferred fabric softening active has the general formula:
- [R3N+CH2CH(YR1)(CH2YR1)]X−
- wherein each Y, R, R1, and X− have the same meanings as before. Such compounds include those having the formula:
- [CH3]3N(+)[CH2CH(CH2O(O)CR1)O(O)CR1]Cl(−) (2)
- wherein each R is a methyl or ethyl group and preferably each R1 is in the range of C15 to C19. As used herein, when the diester is specified, it can include the monoester that is present.
- These types of agents and general methods of making them are disclosed in U.S. Pat. No. 4,137,180, Naik et al., issued Jan. 30, 1979, which is incorporated herein by reference. An example of a preferred DEQA (2) is the “propyl” ester quaternary ammonium fabric softener active having the formula 1,2-di(acyloxy)-3-trimethylammoniopropane chloride.
- A third type of preferred fabric softening active has the formula:
- [R4-m—N+—R1 m]X− (3)
- wherein each R, R1, and X− have the same meanings as before.
-
- wherein each R, R1, and A− have the definitions given above; each R2 is a C1-6 alkylene group, preferably an ethylene group; and G is an oxygen atom or an —NR— group;
-
- wherein R1, R2 and G are defined as above.
- A sixth type of preferred fabric softening active are condensation reaction products of fatty acids with dialkylenetriamines in, e.g., a molecular ratio of about 2:1, said reaction products containing compounds of the formula:
- R1—(O)—NH—R2—NH—R3—NH—C(O)—R1 (6)
- wherein R1, R2 are defined as above, and each R3 is a C1-6 alkylene group, preferably an ethylene group and wherein the reaction products may optionally be quaternized by the additional of an alkylating agent such as dimethyl sulfate. Such quaternized reaction products are described in additional detail in U.S. Pat. No. 5,296,622, issued Mar. 22, 1994 to Uphues et al., which is incorporated herein by reference;
- A seventh type of preferred fabric softening active has the formula:
- [R1—C(O)—NR—R2—N(R)2—R3—NR—C(O)—R1]+A− (7)
- wherein R, R1, R2, R3 and A− are defined as above;
- An eighth type of preferred fabric softening active are reaction products of fatty acid with hydroxyalkylalkylenediamines in a molecular ratio of about 2:1, said reaction products containing compounds of the formula:
- R1—C(O)—NH—R2—N(R3OH)—C(O)—R1 (8)
- wherein R1, R2 and R3 are defined as above;
-
- wherein R, R1, R2, and A− are defined as above.
- Non-limiting examples of compound (1) are N,N-bis(stearoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(tallowoyl-oxy-ethyl) N,N-dimethyl ammonium chloride, N,N-bis(stearoyl-oxy-ethyl) N-(2 hydroxyethyl) N-methyl ammonium methylsulfate.
- Non-limiting examples of compound (2) is 1,2 di (stearoyl-oxy) 3 trimethyl ammoniumpropane chloride.
- Non-limiting examples of Compound (3) are dialkylenedimethylammonium salts such as dicanoladimethylammonium chloride, di(hard)tallowdimethylammonium chloride dicanoladimethylammonium methylsulfate,. An example of commercially available dialkylenedimethylammonium salts usable in the present invention is dioleyldimethylammonium chloride available from Witco Corporation under the trade name Adogen® 472 and dihardtallow dimethylammonium chloride available from Akzo Nobel Arquad 2HT75.
- A non-limiting example of Compound (4) is 1-methyl-1-stearoylamidoethyl-2-stearoylimidazolinium methylsulfate wherein R1 is an acyclic aliphatic C15-C17 hydrocarbon group, R2 is an ethylene group, G is a NH group, R5 is a methyl group and A− is a methyl sulfate anion, available commercially from the Witco Corporation under the trade name Varisoft®.
- A non-limiting example of Compound (5) is 1-tallowylamidoethyl-2-tallowylimidazoline wherein R1 is an acyclic aliphatic C15-C17 hydrocarbon group, R2 is an ethylene group, and G is a NH group.
- A non-limiting example of Compound (6) is the reaction products of fatty acids with diethylenetriamine in a molecular ratio of about 2:1, said reaction product mixture containing N,N″-dialkyldiethylenetriamine with the formula:
- R1—C(O)—NH—CH2CH2—NH—CH2CH2—NH—C(O)—R1
- wherein R1—C(O) is an alkyl group of a commercially available fatty acid derived from a vegetable or animal source, such as Emersol® 223LL or Emersol® 7021, available from Henkel Corporation, and R2 and R3 are divalent ethylene groups.
- A non-limiting example of Compound (7) is a difatty amidoamine based softener having the formula:
- [R1—C(O)—NH—CH2CH2—N(CH3)(CH2CH2OH)—CH2CH2NH—C(O)—R1]+CH3SO4 −
- wherein R1—C(O) is an alkyl group, available commercially from the Witco Corporation e.g. under the trade name Varisoft® 222LT.
- An example of Compound (8) is the reaction products of fatty acids with N-2-hydroxyethylethylenediamine in a molecular ratio of about 2:1, said reaction product mixture containing a compound of the formula:
- R1—C(O)—NH—CH2CH2—N(CH2CH2OH)—C(O)—R1
- wherein R1—C(O) is an alkyl group of a commercially available fatty acid derived from a vegetable or animal source, such as Emersol® 223LL or Emersol® 7021, available from Henkel Corporation.
-
- wherein R1 is derived from fatty acid, and the compound is available from Witco Company.
- It will be understood that combinations of softener actives disclosed above are suitable for use in this invention.
- In the cationic nitrogenous salts herein, the anion A−, which is any softener compatible anion, provides electrical neutrality. Most often, the anion used to provide electrical neutrality in these salts is from a strong acid, especially a halide, such as chloride, bromide, or iodide. However, other anions can be used, such as methylsulfate, ethylsulfate, acetate, formate, sulfate, carbonate, and the like. Chloride and methylsulfate are preferred herein as anion A. The anion can also, but less preferably, carry a double charge in which case A− represents half a group.
- B. Suds Suppressing System
- In a preferred embodiment of the invention, the reduction of the suds is achieved by use of a suds suppressing system. The suds suppressing system is preferably present at a level of from about 0.01% to about 10%, more preferably from about 0.02% to about 5%, most preferably from about 0.05% to about 2% by weight of the composition. Such suds suppressing systems are even more desired components of the compositions of the invention when the detergent liquor is made of detergent which comprises a surfactant system that comprises high foaming surfactant, such as the conventional C11-C18 alkyl benzene sulfonates (“LAS”).
- A wide variety of materials may be used as suds suppressers, and suds suppressers are well known to those skilled in the art. See, for example, Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
- Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, alcohol antifoam compounds like 2-alkyl alcanol antifoam compounds, fatty acids, paraffin antifoam compounds, and mixtures thereof.
- By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
- Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term “silicone” as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types like the polyorganosiloxane oils, such as polydimethyl-siloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed or fused onto the silica. Silicone suds suppressers are well known in the art and are, for example, disclosed in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo et al and European Patent Application No. 89307851.9, published Feb. 7, 1990, by Starch, M. S. Other silicone suds suppressers are disclosed in U.S. Pat. No. 3,455,839 which relates to compositions and processes for defoaming aqueous solutions by incorporating therein small amounts of polydimethylsiloxane fluids. Mixtures of silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526. Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Pat. No. 3,933,672, Bartolotta et al, and in U.S. Pat. No. 4,652,392, Baginski et al, issued Mar. 24, 1987.
- Examples of suitable silicone antifoam compounds are the combinations of polyorganosiloxane with silica particles commercially available from Dow Corning, Wacker Chemie and General Electric.
- Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in U.S. Pat. No. 2,954,347, issued Sep. 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressing system typically have hydrocarbyl chains of about 10 to about 24 carbon atoms, preferably about 12 to about 18 carbon atoms like the tallow amphopolycarboxyglycinate commercially available under the trade name TAPAC. Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
- Other suitable antifoam compounds include, for example, high molecular weight hydrocarbons such as paraffin, light petroleum odorless hydrocarbons, fatty esters (e.g. fatty acid triglycerides, glyceryl derivatives, polysorbates), fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, and Li) phosphates and phosphate esters, and nonionic polyhydroxyl derivatives. The hydrocarbons, such as paraffin and haloparaffin, can be utilized in liquid form. The liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about −40° C. and about 5° C., and a minimum boiling point not less than about 110° C. (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100° C. Hydrocarbon suds suppressers are described, for example, in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo et al. The hydrocarbons, thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms. The term “paraffin”, as used in this suds suppresser discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
- Copolymers of ethylene oxide and propylene oxide, particularly the mixed ethoxylated/propoxylated fatty alcohols with an alkyl chain length of from about 10 to about 16 carbon atoms, a degree of ethoxylation of from about 3 to about 30 and a degree of propoxylation of from about 1 to about 10, are also suitable antifoam compounds for use herein.
- Other suds suppressers useful herein comprise the secondary alcohols (e.g., 2-alkyl alkanols as described in DE 40 21 265) and mixtures of such alcohols with silicone oils, such as the silicones disclosed in U.S. Pat. No. 4,798,679, 4,075,118 and EP 150,872. The secondary alcohols include the C6-C16 alkyl alcohols having a C1-C16 chain like the 2-Hexyldecanol commercially available under the trade name ISOFOL16, 2-Octyldodecanol commercially available under the tradename ISOFOL20, and 2-butyl octanol, which is available under the trademark ISOFOL 12 from Condea. A preferred alcohol is 2-butyl octanol, which is available from Condea under the trademark ISOFOL 12. Mixtures of secondary alcohols are available under the trademark ISALCHEM 123 from Enichem. Mixed suds suppressers typically comprise mixtures of alcohol to silicone at a weight ratio of about 1:5 to about 5:1.
- Other suitable antifoams, described in the literature such as in Hand Book of Food Additives, ISBN 0-566-07592-X, p. 804, are selected from dimethicone, poloxamer, polypropyleneglycol, tallow derivatives, and mixtures thereof.
- Preferred among the suds suppressing systems described above are the silicone antifoams, in particular the combinations of polyorganosiloxane with silica particles.
- The preferred surfactant scavengers of the present invention preferably include monoalkyl quaternary ammonium compounds and amine precursors thereof, polyvinyl amines, polyquaternary ammonium compounds and amine precursors thereof.
- 1. Monoalkyl Quaternary Ammonium Compounds
- A preferred composition of the present invention comprises at least about 0.5%, preferably from about 0.5% to about 5%, more preferably from about 1% to about 20% by weight, of a scavenger having the formula:
- a) A first type of scavenger having the general formula:
- {R3—N+—[(CH2)n—Y—R1}X−
- wherein each R substituent is independently either hydrogen, a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C2-3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; each n is from 1 to about 4, preferably 2; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—NR—; the sum of carbons in each R1, plus one when Y is —O—(O)C— or —NR—C(O)—, is C8-C22, preferably C8-C20, with each R1 being a hydrocarbyl, or substituted hydrocarbyl group, and X− can be any softener-compatible anion, preferably, chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate, more preferably chloride or methyl sulfate;
- b) A second type of scavenger having the general formula:
- [R3N+CH2CH(YR1)(CH2YR1)]X−
- wherein each Y, R, R1, and X− have the same meanings as before and wherein one YR1═OH. Such compounds include those having the formula:
- [CH3]3N(+)[CH2CH(CH2OH)O(O)CR1]Cl(−)
- or
- [CH3]3N(+)[CH2CH(CH2O(O)C R1)OH]Cl(−)
- wherein each R is a methyl or ethyl group and preferably each R1 is in the range of C7 to C19.
- c) scavengers having the formula:
- [R3—N+—R1]X−
-
- wherein each R, R1 and A− have the definitions given above; each R2 is a C1-6 alkylene group, preferably an ethylene group; and G is an oxygen atom or an —NR— group.
-
- wherein each R, R1 and A− have the definitions given above; each R2 is a C1-6 alkylene group, preferably an ethylene group; and K is an OH or an —NR2 group.
-
- wherein R, R1, R2 and G are defined as above;
-
- wherein R1,R2 and K are defined as above.
- f) reaction products of fatty acids with dialkylenetriamines in, e.g., a molecular ratio of about 1:1, said reaction products containing compounds of the formula:
- R1—C(O)—NH—R2—NH—R3—NH—(O)—R
- wherein R, R1, R2 are defined as above, and each R3 is a C1-6 alkylene group, preferably an ethylene group such as diethylenetriamine or N-hydroxyethyl ethylenediamine. Such reaction products may optionally be quaternized by addition of an alkylation agent such as dimethyl sulfate. Quaternized reaction products are described in additional detail in U.S. Pat. No. 5,296,622, issued Mar. 22, 1994 to Uphues et al., which is incorporated herein by reference;
- g) scavenger having the formula:
- [R1—C(O)—NR—R2—N(R)2—R3—NR—C(O)—R]+A−
- wherein R, R1, R2, R3 and A− are defined as above;
- h) the reaction product of fatty acid with hydroxyalkylalkylenediamines in a molecular ratio of about 1:1, said reaction products containing compounds of the formula:
- R1—C(O)—NH—R2—N(R3OH)—C(O)—R
- wherein R, R1, R2 and R3 are defined as above;
-
- wherein R, R1, R2, and A− are defined as above.
- Where the fabric softener used in the compositions of the present invention is a dialkyl substituted quaternary ammonium compound and the surfactant scavenger is a monoalkyl quaternary ammonium compound, it is preferred that the fabric softening active and surfactant scavenger be prepared together from the same starting materials via standard reaction chemistry. Where the fabric softening active is a reaction product of fatty acids and oligamines, the mole ratio of fatty acid to amine is less than about 2:1, preferably between about 1.6:1 to about 0.8:1, and more preferably between about 1.6:1 and about 1:1, to obtain a mixture of mono- and dialkyl substituted compounds. More generally, by selecting a monoalkyl quaternary ammonium compound that is a variant of the fabric softening active compound, the final composition is less likely to experience phase separation. Not to be bound by theory, but it has been observed that the monoalkyl quaternary ammonium compound can have a tendency to form micelles in the finished product. By selecting a monoalkyl quaternary ammonium compound that is compatible with or a variant of the fabric softening active, the tendency of the monoalkyl quaternary ammonium compound to form micelles and thereby induce separation is significantly reduced. Therefore, it is preferred that the fabric softening actives and surfactant scavengers used in the compositions of the present invention be synthesized in a common reaction from the same starting materials.
- It will be understood that all combinations of scavenger structures disclosed above are suitable for use in this invention.
- In the cationic nitrogenous salts herein, the anion A−, which is any softener compatible anion, provides electrical neutrality. Most often, the anion used to provide electrical neutrality in these salts is from a strong acid, especially a halide, such as chloride, bromide, or iodide. However, other anions can be used, such as methylsulfate, ethylsulfate, acetate, formate, sulfate, carbonate, and the like. Chloride and methylsulfate are preferred herein as anion A. The anion can also, but less preferably, carry a double charge in which case A− represents half a group.
- 2. Polyvinyl Amines
-
- wherein y is from about 3 to about 10,000, preferably from about 10 to about 5,000, more preferably from about 20 to about 500. Polyvinyl amines suitable for use in the present invention are available from BASF.
- Optionally, one or more of the polyvinyl amine backbone —NH2 unit hydrogens can be substituted by an acyl group having the formula —(C(O)—R)— where R is as defined as above or an alkyleneoxy unit having the formula:
- —(R1O)XR2
-
- wherein x has the value of from about 1 to about 50. Substitutions such as the above are represented by the abbreviated formula PO—EOx—. However, more than one propyleneoxy unit can be incorporated into the alkyleneoxy substituent.
- 3. Poly-Quaternary Ammonium Compounds and Amine Precursors Thereof
-
- wherein R is substituted or unsubstituted C2-C12 alkylene, substituted or unsubstituted C2-C12 hydroxyalkylene; each R1 is independently C1-C4 alkyl, C1-C4 hydroxyalkyl or hydrogen, each R2 is independently C1-C22 alkyl, C3-C22 alkenyl, hydrogen, R5—Y—(CH2)m—, wherein R5 is C1-C22 alkyl, C3-C22 alkenyl, and mixtures thereof; m is from 1 to about 6; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—MR—; X is an anion.
- Preferably R is ethylene or propylene; R1 is methyl or ethyl, more preferably methyl; at least one R2 is preferably C1-C4 alkyl, more preferably methyl. Preferably at least one R2 is C11-C22 alkyl, C11-C22 alkenyl, and mixtures thereof.
- The formulator may similarly choose R2 to be a R5—Y—(CH2)m— moiety wherein R5 is an alkyl moiety having from 1 to 22 carbon atoms, preferably the alkyl moiety when taken together with the Y unit is an acyl unit derived preferably from a source of triglyceride selected from the group consisting of tallow, (partially) hydrogenated tallow, lard, (partially) hydrogenated lard, vegetable oils and/or (partially) hydrogenated vegetable oils, such as, coconut oil, palm oil, canola oil, safflower oil, peanut oil, sunflower oil, corn oil, soybean oil, tall oil, rice bran oil, etc. and mixtures thereof.
-
- wherein R1 is methyl, one R2 units is methyl and the other R2 unit is R5—Y—(CH2)m-wherein R5—Y— is an oleoyl unit and m is equal to 2.
-
- wherein X− is a softener compatible anion, preferably the anion of a strong acid, for example, chloride, bromide, methylsulfate, ethylsulfate, sulfate, nitrate and mixtures thereof, more preferably chloride and methyl sulfate.
- In a preferred embodiment of the present invention, the surfactant scavenger is the monoalkyl variant of the softener active present. The surfactant scavenger and softener active are prepared from the same starting materials via standard reaction chemistry by adjusting the ratio fatty acid to amine to obtain the preferred mixture of monoalkylsubstituted (scavenger) and dialkylsubstituted (softener active) compounds. Non-limiting examples of such compounds are the reaction products of fatty acid with methyl diethanolamine in a ratio between about 2:1 and about 1:1, quatemized with methyl chloride, resulting in a mixture of N,N-bis(stearoyl-oxy-ethyl) N,N-dimethyl ammonium chloride and N-(stearoyl-oxy-ethyl) N,-hydroxyethyl N,N dimethyl ammonium chloride. This compound is referred to as LF-DEEDMAC.
- D. Optional Adjunct Ingredients
- 1. Dispersing Agents
- The fabric conditioning compositions of the present invention may comprise an optional dispersant for suspending materials in the rinse and inhibiting their deposition on the laundered fabrics. Dispersing agents can advantageously be utilized at levels from about 0% to about 7%, more preferably from about 0.1% to about 5%, and even more preferably from about 0.2% to about 3% by weight, in the compositions described herein. Preferably, the optional dispersing agent will be substantially water soluble.
- Suitable nonionic surfactants to serve as the dispersing agent include addition products of ethylene oxide and, optionally, propylene oxide, with fatty alcohols, fatty acids, fatty amines, etc. They are referred to herein as ethoxylated fatty alcohols, ethoxylated fatty acids, and ethoxylated fatty amines. Any of the ethoxylated materials of the particular type described hereinafter can be used as the nonionic surfactant. Suitable compounds are surfactants of the general formula:
- R1—Y—(C2H4O)Z—C2H4OH
- wherein R1 is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups, and primary, secondary and branched chain alkyl- and alkenyl substituted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of from about 8 to about 20, preferably from about 9 to about 18 carbon atoms. In the general formula for the ethoxylated nonionic surfactants herein Y is typically —O—, —C(O)O—, preferably —O—, and in which R1, when present, have the meanings given hereinbefore, and z is preferably at least about 4, more preferably about 7 to about 25.
- Also suited are compounds having the general formula:
- R1O(CH(R2)CH2O)x(CH2CH2O)yR3 or R1O(CH2CH2O)x(CH(R2)CH2O)yR3
- wherein R1 is defined as above; R2 is a C1-C3 alkyl unit; and R3 is hydrogen or C1-C3 alkyl. The individual alkoxy monomers can be arranged blockwise or randomly. Non-limiting examples are the Plurafac surfactants from BASF.
- Also suited as dispersing agent are the so-called Propyleneoxide/ethyleneoxide block copolymers, having the following general structure:
- HO(CH2CH2O)x(CH(CH3)CH2O)y(CH2CH2O)zH
- Non-limiting examples are the Pluronic PE compounds from BASF.
- 2. Stabilizers
- In the presence of antifoam materials made of silicone, it is preferred to use a component that will provide a good stabilization of the silicone antifoam and hence of the composition. Typical levels of stabilizing agents are of from about 0.01% to about 20%, preferably from about 0.05% to about 8%, more preferably from about 0.1% to about 6% by weight of the composition.
- Suitable stabilizing agents to be used herein include synthetic and naturally occurring polymers. Suitable stabilizing agents for use herein include xanthan gum or derivatives thereof, alginate or a derivative thereof, polysaccharide polymers such as substituted cellulose materials like ethoxylated cellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose and mixtures thereof. Xanthan gum is a particularly preferred stabilizer.
- Preferred stabilizing agents for use in the compositions of the invention are xanthan gum or derivatives thereof sold by the Kelco Division of Merck under the trade names KELTROL®, KELZAN AR®, KELZAN D35®, KELZAN S®, KELZAN XZ® and the like.
- Polymeric soil release agents are also useful in the present invention as stabilizing agents. These include cellulosic derivatives such as hydroxyether cellulosic polymers, ethoxylated cellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Pat. No. 4,000,093, issued Dec. 28, 1976 to Nicol, et al.
- 3. pH Control Agents
- The pH of the compositions may be adjusted by the use of various pH acidification agents. Preferred acidification agents include inorganic and organic acids including, for example, carboxylate acids, such as citric and succinic acids, Highly preferred acidification agents are inorganic acids such as hydrochloric acid and phosphoric acid. Such acidification agents will be used at levels needed to adjust the pH of the composition to a preferred level. Typically, the level of the acidification agent will be about 0.01% to about 0.02% by weight of the composition.
- 4. Metal Ion Control Agents
- Heavy metal ion (HMI) sequestrants are useful components herein for optimum whiteness and HMI control. By heavy metal ion sequestrants it is meant components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they bind heavy metal ions such as iron, manganese and copper. These compounds are even more desired when the water is a tap water of low quality and consequently that which comprises a high level of HMI.
- Heavy metal ion sequestrants are preferably present at a level of from about 0.005% to about 20%, more preferably from about 0.1% to about 10%, most preferably from about 0.2% to about 5% by weight of the compositions.
- Heavy metal ion sequestrants, which are acidic in nature, having for example phosphonic acid or carboxylic acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof. Preferably any salts/complexes are water soluble. The molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least about 1:1.
- Suitable heavy metal ion sequestrants for use herein include the organo aminophosphonates, such as the amino alkylene poly (alkylene phosphonates) and nitrilo trimethylene phosphonates. Preferred organo aminophosphonates are diethylene triamine penta (methylene phosphonate) and hexamethylene diamine tetra (methylene phosphonate).
- Other suitable heavy metal ion sequestrants for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, or ethylenediamine disuccinic acid. A further suitable material is ethylenediamine-N,N′-disuccinic acid (EDDS), most preferably present in the form of its S,S isomer, which is preferred for its biodegradability profile. Still other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EPA 317 542 and EPA 399 133.
- 5. Colorants & Brighteners
- a) Dyes
- The compositions of the present invention may optionally contain a dye or other colorant to improve the aesthetics of the composition. When present, a dye will preferably comprise less than about 0.005% by weight of the composition, and even more preferably less than about 0.002%. Dyes are well known in the art and are available from a variety of commercial sources.
- b) Brighteners
- Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiphene-5,5-dioxide, azoles, 5-and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in “The Production and Application of Fluorescent Brightening Agents”, M. Zahradnik, Published by John Wiley & Sons, New York (1982).
- Specific examples of optical brighteners which are useful in the present compositions are those identified in U.S. Pat. No. 4,790,856, issued to Wixon on Dec. 13, 1988. These brighteners include the PHORWHITE series of brighteners from Verona. Other brighteners disclosed in this reference include: Tinopal UNPA, Tinopal CBS and Tinopal 5BM; available from Ciba-Geigy; Artic White CC and Artic White CWD, available from Hilton-Davis, located in Italy; the 2-(4-stryl-phenyl)-2H-napthol[1,2-d]triazoles; 4,4′-bis-(1,2,3-triazol-2-yl)-stil- benes; 4,4′-bis(stryl)bisphenyls; and the aminocoumarins. Specific examples of these brighteners include 4-methyl-7-diethyl- amino coumarin; 1,2-bis(-venzimidazol-2-yl)ethylene; 1,3-diphenyl-phrazolines; 2,5-bis(benzoxazol-2-yl)thiophene; 2-stryl-napth-[1,2-d]oxazole; and 2-(stilbene-4-yl)-2H-naphtho- [1,2-d]triazole. See also U.S. Pat. No. 3,646,015, issued Feb. 29, 1972 to Hamilton. Anionic brighteners are preferred herein.
-
- wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
- When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4′,-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2′-stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the trade name Tinopal-UNPA-GX® by Ciba-Geigy Corporation. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the rinse added compositions herein.
- When in the above formula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4′-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yl)amino]2,2′-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX® by Ciba-Geigy Corporation.
- When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4′-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2′-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX® by Ciba Geigy Corporation.
- 6. Odor Control Agent
- Materials for use in odor control may be of the type disclosed in U.S. Pat. Nos. 5,534,165; 5,578,563; 5,663,134; 5,668,097; 5,670,475; and 5,714,137, Trinh et al. issued Jul. 9, 1996; Nov. 26, 1996; Sep. 2, 1997; Sep. 16, 1997; Sep. 23, 1997; and Feb. 3, 1998 respectively, all of said patents being incorporated herein by reference. Such compositions can contain several different optional odor control agents.
- a) Pro-perfumes
- A pro-perfume may be useful in order to mask malodor. A pro-perfume is defined as a perfume precursor that releases a desirable odor and/or perfume molecule through the breaking of a chemical bond. Typically to form a pro-perfume, a desired perfume raw material is chemically linked with a carrier, preferably a slightly volatile or a sparingly volatile carrier. The combination results in a less volatile and more hydrophobic pro-perfume which results in increased deposition onto the fabric article. The perfume is then released by breaking the bond between the perfume raw material and the carrier either through a change in pH (e.g., due to perspiration during wear), air moisture, heat, enzymatic action and/or sunlight during storage or line drying. Thus, malodor is effectively masked by the release of the perfume raw material.
- A perfume raw material for use in pro-perfumes are typically saturated or unsaturated, volatile compounds which contain an alcohol, an aldehyde, and/or a ketone group. The perfume raw materials useful herein include any fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flowers, herbs, leaves, roots, barks, wood, blossoms or plants), artificial (i.e., a mixture of different nature oils or oil constituents) and synthetic (i.e., synthetically produced) odoriferous substances. Such materials are often accompanied by auxiliary materials, such as fixatives, extenders, stabilizers and solvents. These auxiliaries are also included within the meaning of “perfume”, as used herein. Typically, perfumes are complex mixtures of a plurality of organic compounds.
- b) Cyclodextrin
- As used herein, the term “cyclodextrin” includes any of the known cyclodextrins such as unsubstituted cyclodextrins containing from six to twelve glucose units, especially, alpha-cyclodextrin, beta-cyclodextrin, gamma-cyclodextrin and/or their derivatives and/or mixtures thereof. The alpha-cyclodextrin consists of six glucose units, the beta-cyclodextrin consists of seven glucose units, and the gamma-cyclodextrin consists of eight glucose units arranged in donut-shaped rings. The specific coupling and conformation of the glucose units give the cyclodextrins rigid, conical molecular structures with hollow interiors of specific volumes. The “lining” of each internal cavity is formed by hydrogen atoms and glycosidic bridging oxygen atoms; therefore, this surface is fairly hydrophobic. The unique shape and physical-chemical properties of the cavity enable the cyclodextrin molecules to absorb (form inclusion complexes with) organic molecules or parts of organic molecules which can fit into the cavity. Many odorous molecules can fit into the cavity including many malodorous molecules and perfume molecules. Therefore, cyclodextrins, and especially mixtures of cyclodextrins with different size cavities, can be used to control odors caused by a broad spectrum of organic odoriferous materials, which may, or may not, contain reactive functional groups.
- The complexing between cyclodextrin and odorous molecules occurs rapidly in the presence of water. However, the extent of the complex formation also depends on the polarity of the absorbed molecules. In an aqueous solution, strongly hydrophilic molecules (those which are highly water-soluble) are only partially absorbed, if at all. Therefore, cyclodextrin does not complex effectively with some very low molecular weight organic amines and acids when they are present at low levels. As the water is being removed however, e.g., the fabric is being dried off, some low molecular weight organic amines and acids have more affinity and will complex with the cyclodextrins more readily.
- Cyclodextrins that are useful in the present invention are highly water-soluble such as, alpha-cyclodextrin and/or derivatives thereof, gamma-cyclodextrin and/or derivatives thereof, derivatised beta-cyclodextrins, and/or mixtures thereof. The derivatives of cyclodextrin consist mainly of molecules wherein some of the OH groups are converted to OR groups. Cyclodextrin derivatives include, e.g., those with short chain alkyl groups such as methylated cyclodextrins, and ethylated cyclodextrins, wherein R is a methyl or an ethyl group; those with hydroxyalkyl substituted groups, such as hydroxypropyl cyclodextrins and/or hydroxyethyl cyclodextrins, wherein R is a —CH2—CH(OH)—CH3 or a −CH2CH2—OH group; branched cyclodextrins such as maltose-bonded cyclodextrins; cationic cyclodextrins such as those containing 2-hydroxy-3-(dimethylamino)propyl ether, wherein R is CH2—CH(OH)—CH2—N(CH3)2 which is cationic at low pH; quaternary ammonium, e.g., 2-hydroxy-3-(trimethylammonio)propyl ether chloride groups, wherein R is CH2—CH(OH)—CH2—N+(CH3)3C−; anionic cyclodextrins such as carboxymethyl cyclodextrins, cyclodextrin sulfates, and cyclodextrin succinylates; amphoteric cyclodextrins such as carboxymethyl/quaternary ammonium cyclodextrins; cyclodextrins wherein at least one glucopyranose unit has a 3-6-anhydro-cyclomalto structure, e.g., the mono-3-6-anhydrocyclodextrins, as disclosed in “Optimal Performances with Minimal Chemical Modification of Cyclodextrins”, F. Diedaini-Pilard and B. Perly, The 7th International Cyclodextrin Symposium Abstracts, April 1994, p. 49, said references being incorporated herein by reference; and mixtures thereof. Other cyclodextrin derivatives are disclosed in U.S. Pat. Nos.: 3,426,011; 3,453,257; 3,453,258; 3,453,259; 3,453,260; 3,459,731; 3,553,191; 3,565,887; 4,535,152; 4,616,008; 4,678,598; 4,638,058; and 4,746,734.
- Highly water-soluble cyclodextrins are those having water solubility of at least about 10 g in 100 ml of water at room temperature, preferably at least about 20 g in 100 ml of water, more preferably at least about 25 g in 100 ml of water at room temperature. The availability of solubilized, uncomplexed cyclodextrins is essential for effective and efficient odor control performance. Solubilized, water-soluble cyclodextrin can exhibit more efficient odor control performance than non-water-soluble cyclodextrin when deposited onto surfaces, especially fabric.
- Examples of preferred water-soluble cyclodextrin derivatives suitable for use herein are hydroxypropyl alpha-cyclodextrin, methylated alpha-cyclodextrin, methylated beta-cyclodextrin, hydroxyethyl beta-cyclodextrin, and hydroxypropyl beta-cyclodextrin. Hydroxyalkyl cyclodextrin derivatives preferably have a degree of substitution of from about 1 to about 14, more preferably from about 1.5 to about 7, wherein the total number of OR groups per cyclodextrin is defined as the degree of substitution. Methylated cyclodextrin derivatives typically have a degree of substitution of from about 1 to about 18, preferably from about 3 to about 16. A known methylated beta-cyclodextrin is heptakis-2,6-di-O-methyl-βcyclodextrin, commonly known as DIMEB, in which each glucose unit has about 2 methyl groups with a degree of substitution of about 14. A preferred, more commercially available, methylated beta-cyclodextrin is a randomly methylated beta-cyclodextrin, commonly known as RAMEB, having different degrees of substitution, normally of about 12.6. RAMEB is more preferred than DIMEB, since DIMEB affects the surface activity of the preferred surfactants more than RAMEB. The preferred cyclodextrins are available, e.g., from Cerestar USA, Inc. and Wacker Chemicals (USA), Inc.
- It is also preferable to use a mixture of cyclodextrins. Such mixtures absorb odors more broadly by complexing with a wider range of odoriferous molecules having a wider range of molecular sizes. Preferably at least a portion of the cyclodextrins is alpha-cyclodextrin and its derivatives thereof, gamma-cyclodextrin and its derivatives thereof, and/or derivatised beta-cyclodextrin, more preferably a mixture of alpha-cyclodextrin, or an alpha-cyclodextrin derivative, and derivatised beta-cyclodextrin, even more preferably a mixture of derivatised alpha-cyclodextrin and derivatised beta-cyclodextrin, most preferably a mixture of hydroxypropyl alpha-cyclodextrin and hydroxypropyl beta-cyclodextrin, and/or a mixture of methylated alpha-cyclodextrin and methylated beta-cyclodextrin.
- c) Perfume
- As used herein the term “perfume” is used to indicate any odoriferous material that is subsequently released into the aqueous rinse bath solution and/or onto fabrics contacted therewith. The perfume will most often be liquid at ambient temperatures. A wide variety of chemicals are known for perfume uses, including materials such as aldehydes, ketones, and esters. More commonly, naturally occurring plant and animal oils and exudates comprising complex mixtures of various chemical components are known for use as perfumes. The perfumes herein can be relatively simple in their compositions or can comprise highly sophisticated complex mixtures of natural and synthetic chemical components, all chosen to provide any desired odor. Typical perfumes can comprise, for example, woody/earthy bases containing exotic materials such as sandalwood, civet and patchouli oil. The perfumes can be of a light floral fragrance, e.g. rose extract, violet extract, and lilac. The perfumes can also be formulated to provide desirable fruity odors, e.g. lime, lemon, and orange. Further, it is anticipated that so-called “designer fragrances” that are typically applied directly to the skin may be used in the compositions of the present invention. Likewise, the perfumes may be selected for an aromatherapy effect, such as providing a relaxing or invigorating mood. As such, any material that exudes a pleasant or otherwise desirable odor can be used as a perfume active in the compositions of the present invention.
- d) Mixtures Thereof
- Mixtures of the optional odor control agents described above are desirable, especially when the mixture provides control over a broader range of odors.
- 7. Solvents
- Another optional, but preferred, ingredient is a liquid carrier. The liquid carrier employed in the instant compositions is preferably at least primarily water due to its low cost, relative availability, safety, and environmental compatibility. The level of water in the liquid carrier is preferably at least about 50%, most preferably at least about 60%, by weight of the carrier. Mixtures of water and low molecular weight, e.g., <about 200, organic solvent, e.g., lower alcohols such as ethanol, propanol, isopropanol or butanol are useful as the carrier liquid. Low molecular weight alcohols include monohydric, dihydric (glycol, etc.) trihydric (glycerol, etc.), and higher polyhydric (polyols) alcohols.
- 8. Soil Release Polymers
- A soil release agent may optionally be incorporated into the compositions. Preferably, such a soil release agent is a polymer. One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. The molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. Descriptions of such copolymers and their uses are provided in U.S. Pat. No. 3,959,230 to Hays, issued May 25, 1976 and U.S. Pat. No. 3,893,929 to Basadur issued Jul. 8, 1975.
- Another preferred soil release polymer is a crystallizable polyester with repeating units of ethylene terephthalate containing from about 10% to about 15% by weight of ethylene terephthalate units together with from about 10% to about 50% by weight of polyoxyethylene terephthalate units that are derived from a polyoxyethylene glycol of average molecular weight of from about 300 to about 6,000. The molar ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in such a crystallizable polymeric compound is between about 2:1 and about 6:1. Examples of this polymer include the commercially available materials Zelcon 4780® and Zelcon 5126 (from Dupont) and Milease T® (from ICI). See also U.S. Pat. No. 4,702,857, issued Oct. 27, 1987 to Gosselink.
-
- in which each X can be a suitable capping group, with each X typically being selected from the group consisting of H, and alkyl or acyl groups containing from about 1 to about 4 carbon atoms. p is selected for water solubility and generally is from about 6 to about 113, preferably from about 20 to about 50. u is critical to formulation in a liquid composition having a relatively high ionic strength. There should be very little material in which u is greater than 10. Furthermore, there should be at least about 20%, preferably at least about 40%, of material in which u ranges from about 3 to about 5.
- The R14 moieties are essentially 1,4-phenylene moieties. As used herein, the term “the R14 moieties are essentially 1,4-phenylene moieties” refers to compounds where the R14 moieties consist entirely of 1,4-phenylene moieties, or are partially substituted with other arylene or alkarylene moieties, alkylene moieties, alkenylene moieties, or mixtures thereof. Arylene and alkarylene moieties which can be partially substituted for 1,4-phenylene include 1,3-phenylene, 1,2-phenylene, 1,8-naphthylene, 1,4-naphthylene, 2,2-biphenylene, 4,4-biphenylene, and mixtures thereof. Alkylene and alkenylene moieties which can be partially substituted include 1,2-propylene, 1,4-butylene, 1,5-pentylene, 1,6-hexamethylene, 1,7-heptamethylene, 1,8-octamethylene, 1,4-cyclohexylene, and mixtures thereof.
- For the R14 moieties, the degree of partial substitution with moieties other than 1,4-phenylene should be such that the soil release properties of the compound are not adversely affected to any great extent. Generally the degree of partial substitution which can be tolerated will depend upon the backbone length of the compound, i.e., longer backbones can have greater partial substitution for 1,4-phenylene moieties. Usually, compounds where the R14 comprise from about 50% to about 100% 1,4-phenylene moieties (from 0% to about 50% moieties other than 1,4-phenylene) have adequate soil release activity. For example, polyesters made with a 40:60 mole ratio of isophthalic (1,3-phenylene) to terephthalic (1,4-phenylene) acid have adequate soil release activity. However, because most polyesters used in fiber making comprise ethylene terephthalate units, it is usually desirable to minimize the degree of partial substitution with moieties other than 1,4-phenylene for best soil release activity. Preferably, the R14 moieties consist entirely of (i.e., comprise about 100%) 1,4-phenylene moieties, i.e., each R14 moiety is 1,4-phenylene.
- For the R15 moieties, suitable ethylene or substituted ethylene moieties include ethylene, 1,2-propylene, 1,2-butylene, 1,2-hexylene, 3-methoxy-1,2-propylene, and mixtures thereof. Preferably, the R15 moieties are essentially ethylene moieties, 1,2-propylene moieties, or mixtures thereof. Inclusion of a greater percentage of ethylene moieties tends to improve the soil release activity of compounds.
- Surprisingly, inclusion of a greater percentage of 1,2-propylene moieties tends to improve the water solubility of compounds. Therefore, the use of 1,2-propylene moieties or a similar branched equivalent is desirable for incorporation of any substantial part of the soil release polymer where the fabric care composition will be added to a laundry solution containing fabric softening actives. Preferably, from about 75% to about 100%, are 1,2-propylene moieties.
- The value for each p is at least about 6, and preferably is at least about 10. The value for each n usually ranges from about 12 to about 113. Typically the value for each p is in the range of from about 12 to about 43.
- A more complete disclosure of soil release agents is contained in U.S. Pat. No.: 4,018,569, Trinh, Gosselink and Rattinger, issued Apr. 4, 1989; U.S. Pat. No. 4,661,267, Decker, Konig, Straathof, and Gosselink, issued Apr. 28, 1987; U.S. Pat. No. 4,702,857, Gosselink, issued Oct. 27, 1987; U.S. Pat. No. 4,711,730, Gosselink and Diehl, issued Dec. 8, 1987; U.S. Pat. No. 4,749,596, Evans, Huntington, Stewart, Wolf, and Zimmerer, issued Jun. 7, 1988; U.S. Pat. No. 4,808,086, Evans, Huntington, Stewart, Wolf, and Zimmerer, issued Feb. 24, 1989; 4,818,569, Trinh, Gosselink, and Rattinger, issued Apr. 4, 1989; U.S. Pat. No. 4,877,896, Maldonado, Trinh, and Gosselink, issued Oct. 31, 1989; U.S. Pat. No. 4,956,447, Gosselink et al., issues Sept. 11, 1990; U.S. Pat. No. 4,968,451, Scheibel and Gosselink, issued Nov. 6, 1990; and U.S. Pat. No. 4,976,879, Maldonado, Trinh, and Gosselink, issued Dec. 11, 1990.
- Polymeric soil release actives useful in the present invention may also include cellulosic derivatives such as hydroxyether cellulosic polymers, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Pat. No. 4,000,093, issued Dec. 28, 1976 to Nicol, et al.
- Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C1-C6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones. See European Patent Application 0 219 048, published Apr. 22, 1987 by Kud, et al. Commercially available soil release agents of this kind include the SOKALAN type of material, e.g., SOKALAN HP-22, available from BASF (Germany).
- Still another preferred soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy-1,2-propylene units. The repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps. A particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy-1,2-propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end-cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate. Said soil release agent also comprises from about 0.5% to about 20%, by weight of the oligomer, of a crystalline-reducing stabilizer, preferably selected from the group consisting of xylene sulfonate, cumene sulfonate, toluene sulfonate, and mixtures thereof.
- The compositions of the present invention may also contain soil release and anti-redeposition agents such as water-soluble ethoxylated amines, most preferably ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Pat. No. 4,597,898, VanderMeer, issued Jul. 1, 1986.
- An hydrophobic dispersant is particularly suited for giving optimised stain removal benefit on clay. Accordingly, a preferred composition of the present invention comprises from about 0.1%, preferably from about 5%, more preferably form about 10% to about 80%, preferably to about 50%, more preferably to about 25% by weight, of a hydrophobic polyamine dispersant having the formula:
- wherein R, R1 and B are suitably described in U.S. Pat. No. 5,565,145 Watson et al., issued Oct. 15, 1996 incorporated herein by reference, and w, x, and y have values which provide for a backbone prior to substitution of preferably at least about 1200 daltons, more preferably 1800 daltons. R1 units are preferably alkyleneoxy units having the formula:
- —(CH2CHR'O)m(CH2CH2O)nH
- wherein R′ is methyl or ethyl, m and n are preferably from about 0 to about 50, provided the average value of alkoxylation provided by m+n is at least about 0.5.
- 9. Preservatives
- Optionally, but preferably, antimicrobial preservative can be added to the compositions of the present invention, especially if the stabilizing agent is made of cellulose. Indeed, the cellulose materials can make a prime breeding ground for certain microorganisms, especially when in aqueous compositions. This drawback can lead to the problem of storage stability of the solutions for any significant length of time. Contamination by certain microorganisms with subsequent microbial growth can result in an unsightly and/or malodorous solution. Because microbial growth in solutions is highly objectionable when it occurs, it is highly preferable to include an antimicrobial preservative, which is effective for inhibiting and/or regulating microbial growth in order to increase storage stability of the composition.
- It is preferable to use a broad spectrum preservative, e.g., one that is effective on both bacteria (both gram positive and gram negative) and fungi. A limited spectrum preservative, e.g., one that is only effective on a single group of microorganisms, e.g., fungi, can be used in combination with a broad spectrum preservative or other limited spectrum preservatives with complimentary and/or supplementary activity. A mixture of broad spectrum preservatives can also be used. In some cases where a specific group of microbial contaminants is problematic (such as Gram negatives), aminocarboxylate chelators, such as those described hereinbefore, can be used alone or as potentiators in conjunction with other preservatives. These chelators which include, e.g., ethylenediaminetetraacetic acid (EDTA), hydroxyethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, and other aminocarboxylate chelators, and mixtures thereof, and their salts, and mixtures thereof, can increase preservative effectiveness against Gram-negative bacteria, especially Pseudomonas species.
- Antimicrobial preservatives useful in the present invention include biocidal compounds, i.e., substances that kill microorganisms, or biostatic compounds, i.e., substances that inhibit and/or regulate the growth of microorganisms. Well known preservatives such as short chain alkyl esters of p-hydroxybenzoic acid, commonly known as parabens; N-(4-chlorophenyl)-N′-(3,4-dichlorophenyl) urea, also known as 3,4,4′-trichlorocarbanilide or triclocarban; 2,4,4′-trichloro-2′-hydroxy diphenyl ether, commonly known as triclosan are useful preservative in the present invention.
- Still other preferred preservatives are the water-soluble preservatives, i.e. those that have a solubility in water of at least about 0.3 g per 100 ml of water, i.e., greater than about 0.3% at room temperature, preferably greater than about 0.5% at room temperature.
- The preservative in the present invention is included at an effective amount. The term “effective amount” as herein defined means a level sufficient to prevent spoilage, or prevent growth of inadvertently added microorganisms, for a specific period of time. In other words, the preservative is not being used to kill microorganisms on the surface onto which the composition is deposited in order to eliminate odors produced by microorganisms. Instead, it is preferably being used to prevent spoilage of the solution in order to increase the shelf-life of the composition. Preferred levels of preservative are from about 0.0001% to about 0.5%, more preferably from about 0.0002% to about 0.2%, most preferably from about 0.0003% to about 0.1%, by weight of the usage composition.
- The preservative can be any organic preservative material which will not cause damage to fabric appearance, e.g., discoloration, coloration, bleaching. Preferred water-soluble preservatives include organic sulfur compounds, halogenated compounds, cyclic organic nitrogen compounds, low molecular weight aldehydes, quaternary ammonium compounds, dehydroacetic acid, phenyl and phenolic compounds, and mixtures thereof. Non-limiting examples of preferred water-soluble preservatives for use in the present invention can be found in U.S. Pat. No. 5,714,137, incorporated hereinbefore by reference, as well as co-pending application PCT/US 98/12154 pages 29 to 36.
- Preferred water-soluble preservatives for use in the present invention are organic sulfur compounds. Some non-limiting examples of organic sulfur compounds suitable for use in the present invention are:
- a) 3-Isothiazolone Compounds
- A preferred preservative is an antimicrobial, organic preservative containing 3-isothiazolone groups. This class of compounds is disclosed in U.S. Pat. No. 4,265,899, Lewis et al., issued May 5, 1981, and incorporated herein by reference. A preferred preservative is a water-soluble mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one, more preferably a mixture of about 77% 5-chloro-2-methyl-4-isothiazolin-3-one and about 23% 2-methyl-4-isothiazolin-3-one, a broad spectrum preservative available as a about 1.5% aqueous solution under the trade name Kathon® CG by Rohm and Haas Company.
- When Kathon® is used as the preservative in the present invention it is present at a level of from about 0.0001% to about 0.01%, preferably from about 0.0002% to about 0.005%, more preferably from about 0.0003% to about 0.003%, most preferably from about 0.0004% to about 0.002%, by weight of the composition.
- Other isothiazolins include 1,2-benzisothiazolin-3-one, available under the trade name Proxel® products; and 2-methyl-4,5-trimethylene-4-isothiazolin-3-one, available under the trade name Promexal®. Both Proxel and Promexal are available from Zeneca. They have stability over a wide pH range (i.e., 4-12). Neither contain active halogen and are not formaldehyde releasing preservatives. Both Proxel and Promexal are effective against typical Gram negative and positive bacteria, fungi and yeasts when used at a level from about 0.001% to about 0.5%, preferably from about 0.005% to about 0.05%, and most preferably from about 0.01% to about 0.02% by weight of the usage composition.
- b) Sodium Pyrithione
- Another preferred organic sulfur preservative is sodium pyrithione, with water solubility of about 50%. When sodium pyrithione is used as the preservative in the present invention it is typically present at a level of from about 0.0001% to about 0.01%, preferably from about 0.0002% to about 0.005%, more preferably from about 0.0003% to about 0.003%, by weight of the usage composition.
- Mixtures of the preferred organic sulfur compounds can also be used as the preservative in the present invention.
- 10. Antimicrobial Agents
- Sanitization of fabrics can be achieved through the use of compositions containing, antimicrobial materials, e.g., antibacterial halogenated compounds, quaternary compounds, phenolic compounds and metallic salts, and preferably quaternary compounds. A typical disclosure of these antimicrobial can be found in International Patent Application No. PCT/US 98/12154 pages 17 to 20.
- a) Biguanides
- Some of the more robust antimicrobial halogenated compounds which can function as disinfectants/sanitizers as well as finish product preservatives (vide infra), and that are useful in the compositions of the present invention include 1,1′-hexamethylene bis(5-(p-chlorophenyl)biguanide), commonly known as chlorhexidine, and its salts, e.g., with hydrochloric, acetic and gluconic acids. The digluconate salt is highly water-soluble, about 70% in water, and the diacetate salt has a solubility of about 1.8% in water.
- Other useful biguanide compounds include Cosmoci® CQ®, and Vantocil® IB that include poly (hexamethylene biguanide) hydrochloride. Other useful cationic antimicrobial agents include the bis-biguanide alkanes. Usable water soluble salts of the above are chlorides, bromides, sulfates, alkyl sulfonates such as methyl sulfonate and ethyl sulfonate, phenylsulfonates such as p-methylphenyl sulfonates, nitrates, acetates, gluconates, and the like.
- Examples of suitable bis biguanide compounds are chlorhexidine; 1,6-bis-(2-ethylhexylbiguanidohexane)dihydrochloride; 1,6-di-(N1,N1′-phenyldiguanido-N5,N5′)-hexane tetrahydrochloride; 1,6-di-(N1,N1′-phenyl-N1,N1′-methyldiguanido-N5,N5′)-hexane dihydrochloride; 1,6-di(N1,N1′-o-chlorophenyldiguanido-N5,N5′)-hexane dihydrochloride; 1,6di(N1,N1′-2,6-dichlorophenyldiguanido-N5,N5′)hexane dihydrochloride; 1,6-di[N1,N1′-.beta.-(p-methoxyphenyl) diguanido-N5,N5′]-hexane dihydrochloride; 1,6-di(N1,N1′-.alpha.-methyl-.beta.-phenyldiguanido-N5,N5′)-hexane dihydrochloride; 1,6-di(N1,N1′-p-nitrophenyldiguanido-N5,N5′)hexane dihydrochloride;.omega.:.omega.′-di-(N1,N1′-phenyldiguanido-N5,N5′)-di-n-propylether dihydrochloride; omega:omega′-di(N1,N1′-p-chlorophenyldiguanido-N5,N5′)-di-n-propylether tetrahydrochloride; 1,6-di(N1,N1′-2,4-dichlorophenyldiguanido-N5,N5′)hexane tetrahydrochloride; 1,6-di(N1,N1′-p-methylphenyldiguanido-N5,N5′)hexane dihydrochloride; 1,6-di(N1,N1′-2,4,5-trichlorophenyldiguanido-N5,N5′)hexane tetrahydrochloride; 1,6-di[N1,N1′-.alpha.-(p-chlorophenyl) ethyldiguanido-N5,N5′] hexane dihydrochloride;.omega.:.omega.′di(N1, N1′-p-chlorophenyldiguanido-N5,N5′)m-xylene dihydrochloride; 1,12-di(N1,N1′-p-chlorophenyldiguanido-N5,N5′) dodecane dihydrochloride; 1,10-di(N1,N1′-phenyldiguanido-N5,N5′)-decane tetrahydrochloride; 1,12-di(N1,N1′-phenyldiguanido-N5,N5′) dodecane tetrahydrochloride; 1,6-di(N1,N1′-o-chlorophenyldiguanido-N5,N5′) hexane dihydrochloride; 1,6-di(N1,N1′-p-chlorophenyldiguanido-N5,N5′)-hexane tetrahydrochloride; ethylene bis (1-tolyl biguanide); ethylene bis (p-tolyl biguanide); ethylene bis(3,5-dimethylphenyl biguanide); ethylene bis(p-tert-amylphenyl biguanide); ethylene bis(nonylphenyl biguanide); ethylene bis (phenyl biguanide); ethylene bis (N-butylphenyl biguanide); ethylene bis (2,5-diethoxyphenyl biguanide); ethylene bis(2,4-dimethylphenyl biguanide); ethylene bis(o-diphenylbiguanide); ethylene bis(mixed amyl naphthyl biguanide); N-butyl ethylene bis(phenylbiguanide); trimethylene bis(o-tolyl biguanide); N-butyl trimethylene bis(phenyl biguanide); and the corresponding pharmaceutically acceptable salts of all of the above such as the acetates; gluconates; hydrochlorides; hydrobromides; citrates; bisulfites; fluorides; polymaleates; N-coconutalkylsarcosinates; phosphites; hypophosphites; perfluorooctanoates; silicates; sorbates; salicylates; maleates; tartrates; fumarates; ethylenediaminetetraacetates; iminodiacetates; cinnamates; thiocyanates; arginates; pyromellitates; tetracarboxybutyrates; benzoates; glutarates; monofluorophosphates; and perfluoropropionates, and mixtures thereof. Preferred antimicrobials from this group are 1,6-di-(N1,N1′-phenyldiguanido-N5,N5′)-hexane tetrahydrochloride; 1,6-di(N1,N1′-o-chlorophenyldiguanido-N5,N5′)-hexane dihydrochloride; 1,6-di(N1,N1′-2,6-dichlorophenyldiguanido-N5,N5′)hexane dihydrochloride; 1,6-di(N1,N1′-2,4-dichlorophenyldiguanido-N5,N5′)hexane tetrahydrochloride; 1,6-di[N1,N1′-.alpha.-(p-chlorophenyl) ethyldiguanido-N5,N5′] hexane dihydrochloride;.omega.:.omega.′di(N1, N1′-p-chlorophenyldiguanido-N5,N5′)m-xylene dihydrochloride; 1,12-di(N1,N1 ′-p-chlorophenyldiguanido-N5,N5′) dodecane dihydrochloride; 1,6-di(N1,N1′-o-chlorophenyldiguanido-N5,N5′) hexane dihydrochloride; 1,6-di(N1,N1′-p-chlorophenyldiguanido-N5,N5′)-hexane tetrahydrochloride; and mixtures thereof; more preferably, 1,6-di(N1,N1′-o-chlorophenyldiguanido-N5,N5′)-hexane dihydrochloride; 1,6-di(N1,N1′-2,6-dichlorophenyldiguanido-N5,N5′)hexane dihydrochloride; 1,6-di(N1,N1 ′-2,4-dichlorophenyldiguanido-N5,N5′)hexane tetrahydrochloride; 1,6-di[N1,N1′-.alpha.-(p-chlorophenyl) ethyldiguanido-N5,N5′] hexane dihydrochloride;.omega.:.omega.′di(N1, N1′-p-chlorophenyldiguanido-N5,N5′)m-xylene dihydrochloride; 1,12-di(N1,N1′-p-chlorophenyldiguanido-N5,N5′) dodecane dihydrochloride; 1,6-di(N1,N1′-o-chlorophenyldiguanido-N5,N5′) hexane dihydrochloride; 1,6-di(N1,N1′-p-chlorophenyldiguanido-N5,N5′)-hexane tetrahydrochloride; and mixtures thereof. As stated hereinbefore, the bis biguanide of choice is chlorhexidine its salts, e.g., digluconate, dihydrochloride, diacetate, and mixtures thereof.
- b) Quaternary Compounds
- A wide range of quaternary compounds can also be used as antimicrobial actives for the compositions of the present invention. Non-limiting examples of useful quaternary compounds include: (1) benzalkonium chlorides and/or substituted benzalkonium chlorides such as commercially available Barquat® (available from Lonza), Maquat® (available from Mason), Variquat® (available from Goldschmidt), and Hyamine® (available from Lonza); (2) di(C6-C14)alkyl di short chain (C1-4 alkyl and/or hydroxyalkyl) quaternary such as Bardac® products of Lonza, (3) N-(3-chloroallyl) hexaminium chlorides such as Dowicide® and Dowicil® available from Dow; (4) benzethonium chloride such as Hyamine® 1622 from Rohm & Haas; (5) methylbenzethonium chloride represented by Hyamine® 10× supplied by Rohm & Haas, (6) cetylpyridinium chloride such as Cepacol chloride available from of Merrell Labs. Examples of the preferred dialkyl quaternary compounds are di(C8-C12)dialkyl dimethyl ammonium chloride, such as didecyldimethylammonium chloride (Bardac 22), and dioctyldimethylammonium chloride (Bardac 2050).
- Surfactants, when added to the antimicrobials tend to provide improved antimicrobial action. This is especially true for the siloxane surfactants, and especially when the siloxane surfactants are combined with the chlorhexidine antimicrobial actives.
- Examples of bactericides used in the compositions and articles of this invention include glutaraldehyde, formaldehyde, 2-bromo-2-nitro-propane-1,3-diol sold by Inolex Chemicals, located in Philadelphia, Pennsylvania, under the trade name Bronopol®, and a mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one sold by Rohm and Haas Company under the trade name Kathon CG/ICP®.
- c) Metallic Salts
- Many metallic salts are known for their antimicrobial effects. These metallic salts may be selected from the group consisting of copper salts, zinc salts, and mixtures thereof.
- Copper salts have some antimicrobial benefits. Specifically, cupric abietate acts as a fungicide, copper acetate acts as a mildew inhibitor, cupric chloride acts as a fungicide, copper lactate acts as a fungicide, and copper sulfate acts as a germicide. Copper salts also possess some malodor control abilities. For instance, U.S. Pat. No. 3,172,817, Leupold, et al., describes deodorizing compositions for treating disposable articles, comprising at least slightly water-soluble salts of acylacetone, including copper salts and zinc salts.
- 11. Other Optionals
- The present invention composition may also include optional components conventionally used in textile treatment compositions, for example: brighteners, photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines, perfumes, chlorine scavengers, colorants; surfactants; anti-shrinkage agents; fabric crisping agents; spotting agents; germicides; fungicides; anti-oxidants such as butylated hydroxy toluene, anti-corrosion agents, and mixtures thereof.
- The composition of the invention may take a variety of physical forms including liquid, liquid-gel, paste-like, foam in either aqueous or non-aqueous form, powder, granular and tablet forms. For better dispersibility, a preferred form of the composition is a liquid form. When in a liquid form, the composition may also be dispensed with dispensing means such as a sprayer or aerosol dispenser.
- The composition can be used in a so-called rinse process, where a composition as defined hereinabove, is first diluted in an aqueous rinse bath solution. Subsequently, the laundered fabrics which have been washed with a detergent liquor and optionally rinsed in a first inefficient rinse step (“inefficient” in the sense that residual detergent and/or soil may be carried over with the fabrics), are placed in the rinse solution with the diluted composition. Of course, the composition may also be incorporated into the aqueous bath once the fabrics have been immersed therein. Following that step, agitation is applied to the fabrics in the rinse bath solution causing the suds to collapse, and residual soils and surfactant is to be removed. The fabrics can then be optionally wrung before drying.
- Accordingly, there is provided a method for rinsing fabrics, which comprises the steps of contacting fabrics, previously washed in a detergent liquor, with a composition of the invention. Likewise, the present invention provides for the use of a composition of the present invention to impart fabric softness to fabrics that have been washed in a high suds detergent solution, while providing in the rinse a reduction of suds or foaming and without the creation of undesirable flocs.
- This rinse process may be performed manually in basin or bucket, in a non-automated washing machine, or in an automated washing machine. When hand washing is performed, the laundered fabrics are removed from the detergent liquor and wrung out. The composition of the invention is then added to fresh water and the fabrics are then, directly or after an optional inefficient first rinse step, rinsed in the water containing the composition according to the conventional rinsing habit. The fabrics are then dried using conventional means.
- Examples 1, 2 and 3 exemplify the invention, while examples 4 and 5 do not pass the floc formation test (ex. 4) or the suds reduction test (ex. 5).
Example 1 Example 2 Example 3 Example 4 Example 5 Rewoquat V3282, 5 6.5 6 5.5 Ex Goldschmidt (1) LF-DEEDMAC (2) — — 8 — — HCl 0.02 0.01 0.02 0.01 0.01 Perfume 0.8 0.9 0.9 1.1 0.25 Neodol 91-8, 1 0.5 — 0.5 — Ex Shell Silicone Emulsion 0.75 — 0.75 — — SE39, Ex Wacker Silicone emulsion — 2.0 — 2.0 — MP10, Ex Dow Corning N-Cocoyl, N,N 3 — — — — dimethyl, N- hydroxylethyl ammonium chloride Dodecyl trimethyl — 4 — — 4.0 ammonium chloride Water Balance Balance Balance Balance Balance - The absence of floc formation in a rinse solution containing residual anionic surfactant is an essential feature of the invention. Floc formation is evaluated according to the following test method: 750 grams of a dodecylbenzenesulfonic acid, sodium salt (technical grade, supplied by Aldrich under the catalog number 28,995-7) solution at about 0.02% (using water at 20°-25° C. and 12 US gpg hardness) is added to a 1 liter cylindrical jar (with a diameter to height ratio of approx. 5 to 8). The jar is closed hermetically and shaken vigorously during 15 seconds to generate about 3 cm of foam on top of the solution.
- Following this, 5 grams of the composition to be tested is poured on the surface of the foamed solution. The solution in the beaker is then manually stirred for 30 seconds at the rate of 100 rpm (with a 20 cm long, 0.5 cm plastic spatula). One minute after the stirring the solution is poured evenly over the surface of a USA Standard testing sieve (ASTM E11 specification No. 40, 35 mesh Tyler equivalent, opening 425 micron, sieve diameter 8 inch) which has been placed in a collecting tray. The dimensions of this tray are such that at the wires of the sieve are at least 1 cm below the surface of the liquid in the tray once the full 750 grams of test solution has been added. The sieve is subsequently manually lifted out of the tray (kept horizontically) and inspected for the presence of flocs. The test solution is being defined as being “substantially free” from flocs if the total number of visible flocs retained on the sieve is less than 50. The test solution is being defmed as being “free” from flocs if the number of visible flocs retained is less than 10. The filtrate is collected in an identical 1 literjar.
- The suds reduction property of the hand composition is another essential feature of the invention. Suds reduction is defined according to the following test method: 750 grams of a dodecylbenzenesulfonic acid, sodium salt (technical grade, supplied by Aldrich under the catalog number 28,995-7) solution at about 0.02% (using water at 20°-25° C. and 12 US gpg hardness) is added to a 1 liter cylindrical jar (with a diameter to height ratio of approx. 5 to 8). This solution serves as reference. Both the reference solution and the filtrate obtained from the Floc Formation Test (see above) are shaken vigorously for about 15 seconds. This generates about 3 cm of foam on top of the reference solution. The remaining presence of foam on the test solution is assessed visually, 15 seconds after the shaking has finished. Suitable compositions are those that have a suds reduction over the reference of about at least about 90%, preferably of at least about 95% and most preferably of at least about 99%. 99% is where all the foam disappeared apart from the optional presence of a white film or some scattered air bubbles that may partially cover the surface of the solution.
Product Made by Free from flocs Suds reduction Suavitel Fresco primavera, Colgate No 73% 1 Liter bottle, Mexico, code 0161MH311E Comfort Vitality, Unilever No 33% 750 ml bottle, UK code 0259015PS6 Downy Aroma del Bosque, P&G No 67% 1 L bottle, Mexico code 02170300 Silan Tender Rose, Henkel No 87% 6 L bottle, Belgium code 8101820 Silan Sensations Cool Henkel No 43% Breeze, 2 L bottle, Belgium code 50294B21 Robijn Morgenfris, Unilever No 67% 1 L bottle, Belgium code 25.10.00 PZ4 Comfort Easy Iron, Unilever No 50% 750 ml bottle, UK code 91721913PS6 Ultra Soupline Fraicheur, Colgate No 83% 1 L Refill, France code 0340FR13120 Lenor Spring Awakening, P&G No 73% 1 L Bottle, UK code 02380303B8 Quanto Ultra NaturFrisch, Benckiser No 47% 1 L Refill, Germany code 9435F1 Lenor Spring Awakening, P&G No 83% 500 ml Refill, Czech Republic code 0146272321 Mimosin, Unilever No 60% 3 L bottle, Spain code 026610 15AD Example 1 Yes 99% Example 2 Yes 99% Example 3 Yes 99% Example 4 No 99% Example 5 Yes 80% - The influence of the presence of anionic surfactant in the rinse solution on the softness performance delivered by the test composition is evaluated according to the following method:
- To a first 1 liter cylindrical jar (with a diameter to height ratio of approx. 5 to 8) 400 grams of demineralised water is added, to a second identical jar 400 grams of a dodecylbenzenesulfonic acid, sodium salt (technical grade, supplied by Aldrich under the catalog number 28,995-7) solution at about 0.02% (using demineralised water at 20°-25° C.) is added. To the second jar an amount of test composition is added such that the level of fabric softener active (as defined here above) in the final solution is in the range of about 0.02% to about 0.04%. To the first jar the same test composition is added, at about 75% of the level which has been added into the second jar.
- One piece of cotton terry fabric (at least 3 times washed at about 60 degrees using a commercial detergent), about 40 grams in weight, is added to both jars. The jars are shaken on an orbital shaker (at 200 rpm) for about 5 minutes. Following this the fabrics are removed from the jar and wrung out until they contain about their own weight of water. The fabric treated in the first jar is denoted “Reference”, the fabric treated in the second jar is denoted “Test”. The fabrics are line dried over night and their hand is evaluated by an expert panel consisting of 2 judges, who are asked to express their preference for either the Test fabric or the Reference fabric. This test is repeated 10 times (yielding 20 comparisons in total). Suitable compositions are those for which the Test fabric is not rated significantly lower in softness compared to the Reference fabric (i.e. less than 15 comparisons out of 20 are in favor of the Reference product).
- Downy Aroma Del Bosque (P&G, Mexico), Suavitel Fresca Primavera (Colgate, Mexico) and Example 3 fail this test. Examples 1 & 2 pass this test.
Claims (29)
1. A rinse added fabric conditioning composition comprising:
a fabric softener active;
a suds suppressing system; and
a surfactant scavenger, characterized in that the composition has a suds reduction value of at least about 90% when the composition is dispensed in a rinse bath solution comprising residual detergent surfactant.
2. The composition according to claim 1 , characterized in that the composition has a suds reduction value of at least about 95%.
3. The composition according to claim 2 , wherein the suds reduction value is at least about 99%.
4. The composition according to claim 1 , wherein the surfactant scavenger is present in an effective amount to ensure the rinse solution is substantially free from visible flocs when the composition is dispensed in a rinse bath solution comprising residual detergent surfactant.
5. The composition according to claim 4 , wherein the surfactant scavenger is present in an effective amount to ensure the rinse solution is free from visible flocs when the composition is dispensed in a rinse bath solution comprising residual detergent surfactant.
6. The composition according to claim 1 , wherein the surfactant scavenger is present in an effective amount to ensure softness robustness when the composition is used in the presence of residual detergent surfactant.
7. The composition according to claim 1 , wherein said fabric softening active is selected from the group of:
(a) softener actives with the general formula:
{R4-m—N+—[(CH2)—Y—R1]m}X−
wherein each R substituent is either hydrogen, a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C2-3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; each m is 2 or 3; each n is from 1 to about 4, preferably 2; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—MR—; the sum of carbons in each R1, plus one when Y is —O—(O)C— or —NR—C(O)—, is C12-C22, preferably C14-C20, with each R1 being a hydrocarbyl, or substituted hydrocarbyl group, and X− can be any softener-compatible anion, preferably, chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate, more preferably chloride or methyl sulfate;
(b) softener actives with the general formula:
[R3N+CH2CH(YR1)(CH2YR1)]X−
wherein each Y, R, R1, and X− have the same meanings as recited above; and
(c) softener actives having the formula:
[R4-m—N+—R1 m]X−
wherein each R, R1, and X− have the same meanings as recited above;
(d) condensation products of fatty acids and oligoamines, wherein the molar ratio fatty acid to oligoamine is about 2:1, and optionally wherein said condensation products are quaternized by addition of an alkylating agent; and
(e) mixtures thereof.
8. The composition according to claim 1 , wherein the fabric softener active is between about 1% and about 90%, preferably between about 1% and about 70%, more preferably between about 1% and about 40% and even more preferably between about 2% and about 25% of the composition.
9. The composition according to claim 1 , wherein the surfactant scavenger is selected from:
(a) scavengers having the general formula:
{R3—N+—[(CH2)n—Y—R1}X−
wherein each R substituent is either hydrogen, a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C2-3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; each n is from 1 to about 4, preferably 2; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—NR—; the sum of carbons in each R1, plus one when Y is —O—(O)C— or —NR—C(O)—, is C8-C22, preferably C8-C20, with each R1 being a hydrocarbyl, or substituted hydrocarbyl group, and X− can be any softener-compatible anion, preferably, chloride, bromide, methylsulfate, ethylsulfate, sulfate, and nitrate, more preferably chloride or methyl sulfate;
(b) scavengers having the general formula:
[R3N+CH2CH(YR1)(CH2YR1)]X−
wherein each Y, R, R1, and X− have the same meanings as before and wherein one YR1═OH. Such compounds include those having the formula:
[CH3]3N(+)[CH2CH(CH2OH)O(O)CR1]Cl(−)
or
[CH3]3 N(+)[CH2CH(CH2O(0)C R1)OH]Cl(−)
wherein each R is a methyl or ethyl group and preferably each R1 is in the range of C7 to C19.
(c) scavengers having the formula:
[R3—N+—R1]X−
wherein each R, R1, and X have the same meanings as before.
(d) condensation products of fatty acids and oligoamines, wherein the molar ratio of fatty acid to oligoamine is between about 2:1 and about 1:1, preferably between about 1.6:1 and 0.8:1 and optionally, wherein said condensation products are quaternized by addition of an alkylating agent;
(e) scavengers having the formula:
wherein y is from about 3 to about 10,000, preferably from about 10 to about 5,000, more preferably from about 20 to about 500; optionally, one or more of the polyvinyl amine backbone —NH2 unit hydrogens can be substituted by an acyl group having the formula —C(O)—R)— where R is either hydrogen, a short chain C1-C6, preferably C1-C3 alkyl or hydroxyalkyl group, e.g., methyl, ethyl, propyl, hydroxyethyl, and the like, poly (C2-3 alkoxy), preferably polyethoxy, benzyl, or mixtures thereof; or where the hydrogens are substituted by an alkyleneoxy unit having the formula:
—(R1O)XR2
wherein R1 is C2-C4 alkylene, R2 is hydrogen, C1-C4 alkyl, and mixtures thereof; x is from 1 to 50;
(f) scavengers having the formula:
wherein R is substituted or unsubstituted C2-C12 alkylene, or substituted or unsubstituted C2-C12 hydroxyalkylene, and preferably, ethylene or propylene; each R1 is independently C1-C4 alkyl, C1-C4 hydroxyalkyl or hydrogen, and preferably methyl or ethyl; each R2 is independently C1-C22 alkyl, C3-C22 alkenyl, hydrogen, R5—Y—(CH2)m—, wherein R5 is C1-C22 alkyl, C3-C22 alkenyl, and mixtures thereof;
m is from 1 to about 6; each Y is —O—(O)C—, —C(O)—O—, —NR—C(O)—, or —C(O)—MR—; X is an anion; and optionally but preferably at least one R2 is preferably C1-C4 alkyl, more preferably methyl; and optionally, but preferably at least one R2 is C11-C22 alkyl, C11-C22 alkenyl, and mixtures thereof; and
(g) mixtures thereof.
10. A composition according to claim 7 , wherein the surfactant scavenger is a monoalkyl variant of the fabric softener active.
11. A composition according to claim 7 , wherein said surfactant scavenger and fabric softener active are reaction products of a reaction of a fatty acid and a oligoamine wherein the molar ratio of fatty acid to amine is less than about 2:1.
12. A composition according to claim 11 , the molar ratio of fatty acid to amine is in the range of about 1.6:1 to about 1:1.
13. The composition according to claim 1 , further comprising a dispersing agent.
14. The composition according to claim 13 , wherein said dispersing agent is a surfactant having a general formula selected from the group consisting of:
a) R1—Y—(C2H4O)z—C2H4OH
wherein R1 is selected from the group consisting of primary, secondary and branched chain alkyl and/or acyl and/or acyl hydrocarbyl groups; primary, secondary and branched chain alkenyl hydrocarbyl groups, and primary, secondary and branched chain alkyl and alkenyl substituted phenolic hydrocarbyl groups; said hydrocarbyl groups having a hydrocarbyl chain length of from 8 to 20, preferably from 9 to 18 carbon atoms; wherein Y is —O— or —C(O)O—, and z is preferably at least 4, and more preferably 7-25.
b) R1O(CH(R2)CH2O)x(CH2CH2O)yR3 or R1O(CH2CH2O)x(CH(R2)CH2O)yR3
wherein R1 is defined as above, R2 is a C1-C3 alkyl unit, R3 is hydrogen or C1-C3 alkyl; and
c) HO(CH2CH2O)x (CH(CH3)CH2O)y (CH2CH2O)zH.
15. A composition according to claim 1 , wherein the suds suppressing system is a silicone antifoam compound, alcohol antifoam compound, fatty acid, and paraffin antifoam compound, poloxamer, polypropyleneglycol, dimethicone, tallow derivative, light petroleum hydrocarbons, fatty ester, fatty acid esters of monovalent alcohols, aliphatic C18-C40 ketones, N-alkylated amino triazines, bis stearic acid amide, monostearyl phosphate, phosphate ester and nonionic polyhydroxyl derivatives, and mixtures thereof.
16. A composition according to claim 1 , wherein the composition further comprises a stabilizing agent.
17. The composition of claim 16 , wherein the stabilizing agent is a xanthan gum or derivatives thereof, alginate or a derivative thereof, guar type polysaccharides or derivative thereof, polysaccharide polymers such as substituted cellulose materials like ethoxylated cellulose, carboxymethylcellulose, hydroxymethylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose and mixtures thereof.
18. The composition according to claim 1 , further comprising one or more adjuncts ingredients, said adjunct ingredients comprising pH control aids, metal ion control aids, colorants, brighteners, odor control agents, solvents, soil releasing agents, preservatives, antimicrobial agents and mixtures thereof.
19. A fabric softening composition comprising
a fabric softener active that is a dialkyl substituted quaternary ammonium compound; and
a surfactant scavenger that is a monoalkyl variant of the fabric softening active, wherein the fabric softening active and surfactant scavenger are prepared together from the same starting materials.
20. The composition of claim 19 , wherein the fabric softening active is a reaction product of a fatty acid and an oligoamine or an aminopolyol, the molar ratio of fatty acid to oligoamine or aminopolyol is less than about 2:1 and is preferably between about 1.6:1 and about 0.8:1 to obtain a mixture of mono- and dialkyl substituted compounds.
21. The fabric softening composition of claim 19 , wherein the quaternary ammonium compounds are substituted with ester groups.
22. A composition according to claim 19 , that is free from visible flocs when dispensed in a laundry rinse solution comprising residual detergent surfactant.
23. A composition according to claim 19 , further comprising a suds suppressing system, characterized in that the composition has a suds reduction value of at least about 90% when dispensed in a laundry rinse solution comprising residual detergent surfactant.
24. A method of rinsing fabrics and delivering softness and freshness to the fabrics in a single step, by contacting the fabrics, previously contacted with an aqueous detergent liquor, with a composition according to claim 1 .
25. A method for reducing the formation of suds in a rinse solution and imparting softness to fabrics rinsed in that solution, the method comprising the step of contacting the fabrics, previously contacted with an aqueous detergent liquor, with a composition according to claim 1 .
26. A method for reducing the formation of suds in a rinse solution and imparting softness to fabrics rinsed in that solution, the method comprising the step of:
contacting the fabrics, previously contacted with an aqueous detergent liquor, with a fabric softening composition comprising a fabric softener active, a suds suppressing system, and a surfactant scavenger.
27. The method of claim 26 , wherein the fabrics are contacted with the composition in a first rinse cycle following the washing of the fabrics.
28. The method of claim 26 , wherein the fabrics are contacted with the composition in a hand rinse.
29. A method for reducing the volume of water consumed in a laundering operation in which a fabric conditioning composition is utilized, the method comprising the steps of:
washing the fabrics in an aqueous detergent solution;
removing a major portion of the aqueous detergent solution; and
rinsing the washed fabrics in a single rinse solution comprising water and a fabric conditioning composition of the present invention, wherein during this rinsing step residual detergent and soil are removed from the fabrics and the fabrics are conditioned.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/090,911 US20030060390A1 (en) | 2001-03-07 | 2002-03-05 | Rinse-added fabric conditioning composition for use where residual detergent is present |
US11/210,975 US20060019867A1 (en) | 2001-03-07 | 2005-08-24 | Rinse-added fabric conditioning composition for use where residual detergent is present |
US11/243,551 US20060030516A1 (en) | 2001-03-07 | 2005-10-05 | Rinse-added fabric conditioning composition for use where residual detergent is present |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27392901P | 2001-03-07 | 2001-03-07 | |
US29344601P | 2001-05-24 | 2001-05-24 | |
US29417801P | 2001-05-29 | 2001-05-29 | |
US10/090,911 US20030060390A1 (en) | 2001-03-07 | 2002-03-05 | Rinse-added fabric conditioning composition for use where residual detergent is present |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/210,975 Continuation US20060019867A1 (en) | 2001-03-07 | 2005-08-24 | Rinse-added fabric conditioning composition for use where residual detergent is present |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030060390A1 true US20030060390A1 (en) | 2003-03-27 |
Family
ID=27402611
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/090,911 Abandoned US20030060390A1 (en) | 2001-03-07 | 2002-03-05 | Rinse-added fabric conditioning composition for use where residual detergent is present |
US11/210,975 Abandoned US20060019867A1 (en) | 2001-03-07 | 2005-08-24 | Rinse-added fabric conditioning composition for use where residual detergent is present |
US11/243,551 Abandoned US20060030516A1 (en) | 2001-03-07 | 2005-10-05 | Rinse-added fabric conditioning composition for use where residual detergent is present |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/210,975 Abandoned US20060019867A1 (en) | 2001-03-07 | 2005-08-24 | Rinse-added fabric conditioning composition for use where residual detergent is present |
US11/243,551 Abandoned US20060030516A1 (en) | 2001-03-07 | 2005-10-05 | Rinse-added fabric conditioning composition for use where residual detergent is present |
Country Status (11)
Country | Link |
---|---|
US (3) | US20030060390A1 (en) |
EP (1) | EP1370634B1 (en) |
JP (1) | JP2004525271A (en) |
CN (1) | CN100345953C (en) |
AT (1) | ATE297456T1 (en) |
BR (1) | BR0207909A (en) |
CA (1) | CA2439512A1 (en) |
DE (1) | DE60204549T2 (en) |
MA (1) | MA26000A1 (en) |
MX (1) | MXPA03008101A (en) |
WO (1) | WO2002072745A1 (en) |
Cited By (90)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050170994A1 (en) * | 2003-10-31 | 2005-08-04 | Casado-Dominguez Arturo L. | Fabric care compositions comprising aminosilicone |
US20060019867A1 (en) * | 2001-03-07 | 2006-01-26 | Demeyere Hugo J M | Rinse-added fabric conditioning composition for use where residual detergent is present |
US20060030504A1 (en) * | 2003-02-10 | 2006-02-09 | Josef Penninger | Detergents or cleaning agents comprising a water-soluble building block system and a cellulose derivative with dirt dissolving properties |
US20060035804A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Use of cellulose derivatives as foam regulators |
US20060035806A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Increase in the water absorption capacity of textiles |
US20060035805A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergent comprising cotton-active soil release-capable cellulose derivative |
US20060035801A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergents or cleaning compositions comprising water-soluble builder system and soil release-capable cellulose derivative |
US20060046950A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by cellulose derivative and hygroscopic polymer |
US20060046951A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by a combination of cellulose derivatives |
WO2006113658A2 (en) | 2005-04-18 | 2006-10-26 | The Procter & Gamble Company | Dilute fabric care compositions comprising thickeners and fabric care compositions for use in the presence of anionic carry-over |
US20070054835A1 (en) * | 2005-08-31 | 2007-03-08 | The Procter & Gamble Company | Concentrated fabric softener active compositions |
WO2008021892A1 (en) | 2006-08-08 | 2008-02-21 | The Procter & Gamble Company | Fabric enhancers comprising nano-sized lamellar vesicle |
US20080132437A1 (en) * | 2006-12-05 | 2008-06-05 | The Procter & Gamble Company | Fabric care compositions for softening, static control and fragrance benefits |
US20090042765A1 (en) * | 2007-08-08 | 2009-02-12 | Yonas Gizaw | Fabric enhancers comprising nano-sized lamellar vesicle |
EP2053119A1 (en) | 2007-10-26 | 2009-04-29 | The Procter and Gamble Company | Fabric softening compositions having improved stability upon storage |
EP2055351A1 (en) | 2007-10-29 | 2009-05-06 | The Procter and Gamble Company | Compositions with durable pearlescent aesthetics |
US20090181877A1 (en) * | 2008-01-11 | 2009-07-16 | Mcginnis Jerry Keith | Method of shipping and preparing laundry actives |
US20090203571A1 (en) * | 2008-02-08 | 2009-08-13 | Evonik Goldschmidt Corp. | Rinse aid compositions with improved characteristics |
US20090229057A1 (en) * | 2008-03-14 | 2009-09-17 | Billiauw Jan Julian Marie-Louise | Low sudsing hand washing liquid laundry detergent |
WO2009148801A1 (en) * | 2008-06-06 | 2009-12-10 | The Procter & Gamble Company | Hand fabric laundering method |
WO2009148800A1 (en) * | 2008-06-06 | 2009-12-10 | The Procter & Gamble Company | Hand fabric laundering system |
US20100064243A1 (en) * | 2008-09-05 | 2010-03-11 | Schuyler Buck | Method and system for manipulating groups of data representations of a graphical display |
EP2196527A1 (en) | 2008-12-10 | 2010-06-16 | The Procter and Gamble Company | Fabric softening compositions comprising silicone comprising compounds |
WO2011011247A1 (en) | 2009-07-20 | 2011-01-27 | The Procter & Gamble Company | Liquid fabric enhancer composition comprising a di-hydrocarbyl complex |
WO2011094374A1 (en) | 2010-01-29 | 2011-08-04 | The Procter & Gamble Company | Novel linear polydimethylsiloxane-polyether copolymers with amino and/or quaternary ammonium groups and use thereof |
US20110188784A1 (en) * | 2010-01-29 | 2011-08-04 | Denome Frank William | Water-soluble film having blend of pvoh polymers, and packets made therefrom |
WO2011094681A1 (en) | 2010-02-01 | 2011-08-04 | The Procter & Gamble Company | Fabric softening compositions |
WO2011100500A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2011100405A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
WO2011100411A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2011100420A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
US20110237490A1 (en) * | 2010-03-26 | 2011-09-29 | Darren Franklin King | Methods of making fabric softener |
WO2011123284A1 (en) | 2010-04-01 | 2011-10-06 | The Procter & Gamble Company | Heat stable fabric softener |
WO2011123733A1 (en) | 2010-04-01 | 2011-10-06 | The Procter & Gamble Company | Heat stable fabric softener |
WO2011123606A1 (en) | 2010-04-01 | 2011-10-06 | The Procter & Gamble Company | Fabric softener |
WO2012005859A2 (en) | 2010-06-30 | 2012-01-12 | General Electric Company | System and method for generating and storing transient integrated organic rankine cycle energy |
US8507425B2 (en) | 2010-06-29 | 2013-08-13 | Evonik Degussa Gmbh | Particulate fabric softener comprising ethylenediamine fatty acid amides and method of making |
US8563499B2 (en) | 2010-04-01 | 2013-10-22 | Evonik Degussa Gmbh | Fabric softener active composition |
US8569224B2 (en) | 2010-04-01 | 2013-10-29 | Evonik Degussa Gmbh | Fabric softener active composition |
WO2014015090A1 (en) | 2012-07-20 | 2014-01-23 | The Procter & Gamble Company | Water-soluble pouch coated with a composition comprising silica flow aid |
EP2708589A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
EP2708592A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
EP2708588A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
US8883713B2 (en) | 2012-01-30 | 2014-11-11 | Evonik Industries Ag | Fabric softener active composition |
US8883712B2 (en) | 2010-04-28 | 2014-11-11 | Evonik Degussa Gmbh | Fabric softening composition |
EP2803719A1 (en) | 2013-05-14 | 2014-11-19 | The Procter & Gamble Company | Cleaning composition |
WO2014186183A1 (en) | 2013-05-14 | 2014-11-20 | The Procter & Gamble Company | Pouch comprising a cleaning composition |
US8957009B2 (en) | 2010-01-29 | 2015-02-17 | Evonik Degussa Gmbh | Linear polydimethylsiloxane-polyether copolymers having amino and/or quaternary ammonium groups and use thereof |
WO2015054067A1 (en) | 2013-10-07 | 2015-04-16 | Monosol Llc | Water-soluble delayed release capsules, related methods, and related articles |
WO2015132207A1 (en) * | 2014-03-05 | 2015-09-11 | Dow Corning Corporation | Foam control agents |
US9150782B2 (en) | 2013-12-06 | 2015-10-06 | Monosol, Llc | Fluorescent tracer for water-soluble films, related methods, and related articles |
WO2016061026A1 (en) | 2014-10-13 | 2016-04-21 | Monosol, Llc | Water-soluble polyvinyl alcohol film with plasticizer blend, related methods, and related articles |
WO2016061069A2 (en) | 2014-10-13 | 2016-04-21 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
WO2016061025A1 (en) | 2014-10-13 | 2016-04-21 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
US9441187B2 (en) | 2012-05-07 | 2016-09-13 | Evonik Degussa Gmbh | Fabric softener active composition and method for making it |
WO2016160116A1 (en) | 2015-03-27 | 2016-10-06 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
WO2016172699A1 (en) | 2015-04-24 | 2016-10-27 | International Flavors & Fragrances Inc. | Delivery systems and methods of preparing the same |
US9670437B2 (en) | 2013-10-07 | 2017-06-06 | Monosol, Llc | Water-soluble delayed release capsules, related methods, and related articles |
EP3192566A1 (en) | 2016-01-15 | 2017-07-19 | International Flavors & Fragrances Inc. | Polyalkoxy-polyimine adducts for use in delayed release of fragrance ingredients |
WO2017143174A1 (en) | 2016-02-18 | 2017-08-24 | International Flavors & Fragrances Inc. | Polyurea capsule compositions |
WO2017180883A1 (en) | 2016-04-13 | 2017-10-19 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
WO2017184606A2 (en) | 2016-04-18 | 2017-10-26 | Monosol, Llc | Perfume microcapsules and related film and dtergent compositions |
EP3300794A2 (en) | 2016-09-28 | 2018-04-04 | International Flavors & Fragrances Inc. | Microcapsule compositions containing amino silicone |
US10011806B2 (en) | 2013-11-05 | 2018-07-03 | Evonik Degussa Gmbh | Method for making a tris-(2-hydroxyethyl)-methylammonium methylsulfate fatty acid ester |
US10113137B2 (en) | 2014-10-08 | 2018-10-30 | Evonik Degussa Gmbh | Fabric softener active composition |
EP3425036A1 (en) | 2017-05-30 | 2019-01-09 | International Flavors & Fragrances Inc. | Branched polyethyleneimine microcapsules |
US10202227B2 (en) | 2016-08-01 | 2019-02-12 | Monosol, Llc | Plasticizer blend for chlorine stability of water-soluble films |
US10240114B2 (en) | 2014-10-13 | 2019-03-26 | The Procter & Gamble Company | Articles comprising water-soluble polyvinyl alcohol blend film and related methods |
US10336973B2 (en) | 2014-10-13 | 2019-07-02 | The Procter & Gamble Company | Articles comprising water-soluble polyvinyl alcohol film with plasticizer blend and related methods |
WO2019213347A1 (en) | 2018-05-02 | 2019-11-07 | Monosol, Llc | Water-soluble polyvinyl alcohol film, related methods, and related articles |
WO2019212722A1 (en) | 2018-05-02 | 2019-11-07 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
WO2019212723A1 (en) | 2018-05-02 | 2019-11-07 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
US10537868B2 (en) | 2015-07-02 | 2020-01-21 | Givaudan S.A. | Microcapsules |
WO2020131956A1 (en) | 2018-12-18 | 2020-06-25 | International Flavors & Fragrances Inc. | Hydroxyethyl cellulose microcapsules |
US10808210B2 (en) | 2013-03-15 | 2020-10-20 | Monosol, Llc | Water-soluble film for delayed release |
WO2020219930A1 (en) | 2019-04-24 | 2020-10-29 | Monosol, Llc | Nonwoven water dispersible article for unit dose packaging |
US20210115356A1 (en) * | 2018-03-02 | 2021-04-22 | Conopco, Inc., D/B/A Unilever | Laundry method |
EP3919044A1 (en) | 2020-06-04 | 2021-12-08 | International Flavors & Fragrances Inc. | Composition and method for improving fragrance intensity with isopropyl myristate |
EP4124383A1 (en) | 2021-07-27 | 2023-02-01 | International Flavors & Fragrances Inc. | Biodegradable microcapsules |
EP4209264A1 (en) | 2016-09-16 | 2023-07-12 | International Flavors & Fragrances Inc. | Microcapsule compositions stabilized with viscosity control agents |
WO2023150317A1 (en) | 2022-02-04 | 2023-08-10 | Monosol, Llc | High clarity water-soluble films and methods of making same |
US11787967B2 (en) | 2020-07-13 | 2023-10-17 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for inks, paints, and adhesives |
US11857515B2 (en) | 2020-07-13 | 2024-01-02 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for use in healthcare products |
EP4302869A1 (en) | 2022-07-06 | 2024-01-10 | International Flavors & Fragrances Inc. | Biodegradable protein and polysaccharide-based microcapsules |
WO2024012468A1 (en) | 2022-07-13 | 2024-01-18 | Evonik Operations Gmbh | A fabric softener active composition for preparing a transparent fabric softener composition |
US11897834B2 (en) | 2020-07-09 | 2024-02-13 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants |
EP4375401A2 (en) | 2020-06-02 | 2024-05-29 | Monosol, LLC | Water soluble fibers with post process modifications and articles containing same |
US12071578B2 (en) | 2020-07-13 | 2024-08-27 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for electronics products |
US12071588B2 (en) | 2020-07-13 | 2024-08-27 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for oil and gas production |
EP4438132A2 (en) | 2016-07-01 | 2024-10-02 | International Flavors & Fragrances Inc. | Stable microcapsule compositions |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7392953B2 (en) * | 2005-03-10 | 2008-07-01 | Mil. Digital Labeling, Inc. | Programmable digital labels |
GB0512423D0 (en) * | 2005-06-17 | 2005-07-27 | Unilever Plc | Fabric conditioning composition and use |
PL1981959T3 (en) * | 2006-02-10 | 2011-03-31 | Unilever Nv | Fabric conditioner compositions |
US7405187B2 (en) | 2006-06-01 | 2008-07-29 | The Procter & Gamble Company | Concentrated perfume compositions |
DE602006021410D1 (en) * | 2006-07-06 | 2011-06-01 | Clariant Brazil S A | Liquid fabric softener composition |
DE602006005232D1 (en) * | 2006-07-06 | 2009-04-02 | Clariant Brazil S A | Concentrated esterquat composition |
EP1939273A1 (en) * | 2006-12-28 | 2008-07-02 | Kao Corporation, S.A. | Non-rinse fabric softener |
US20100305019A1 (en) * | 2009-06-01 | 2010-12-02 | Lapinig Daniel Victoria | Hand Fabric Laundering System |
RS56349B1 (en) | 2010-03-26 | 2017-12-29 | Liquid Vanity Aps | Laundry detergent |
WO2012052349A1 (en) | 2010-10-22 | 2012-04-26 | Unilever Plc | Improvements relating to fabric conditioners |
ES2533707T3 (en) | 2010-12-03 | 2015-04-14 | Unilever N.V. | Tissue conditioners |
WO2013029904A1 (en) | 2011-09-01 | 2013-03-07 | Unilever Plc | Improvements relating to fabric conditioners |
JP6453244B2 (en) | 2013-02-15 | 2019-01-16 | ローディア オペレーションズ | Fabric softener |
US9740828B2 (en) | 2013-03-13 | 2017-08-22 | SMRxT Inc. | Medicine container with an orientation sensor |
WO2015074692A1 (en) | 2013-11-20 | 2015-05-28 | Rhodia Operations | Fabric softener composition |
WO2016043695A1 (en) | 2014-09-15 | 2016-03-24 | Damiani Teresa R | Lighting apparatus for tobacco-based products |
MX2017010934A (en) | 2015-02-25 | 2018-01-23 | Procter & Gamble | Fibrous structures comprising a surface softening composition. |
CN106190631A (en) * | 2016-07-05 | 2016-12-07 | 林恒 | A kind of environment friendly laundry liquid |
CN110382677A (en) | 2016-12-29 | 2019-10-25 | 高露洁-棕榄公司 | Home care compositions |
JP2018121689A (en) * | 2017-01-30 | 2018-08-09 | 花王株式会社 | Absorbent pad for hair washing |
US20180371365A1 (en) * | 2017-06-21 | 2018-12-27 | The Procter & Gamble Company | Fabric softener compositions |
BR112020005927A2 (en) * | 2017-10-05 | 2020-10-06 | Basf Se | aqueous foam-forming composition, foam, washing process, and laundry detergent |
WO2023022822A1 (en) * | 2021-08-19 | 2023-02-23 | Arxada Ag | Fabric softening and sanitizing composition and method of use |
US20240343995A1 (en) | 2021-12-06 | 2024-10-17 | Reckitt Benckiser Health Limited | Laundry sanitizing and softening composition |
CN116084156A (en) * | 2022-12-12 | 2023-05-09 | 上海尚贤新材料有限公司 | Efficient rinsing liquid and application thereof in jean fabric rinsing process |
Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3637495A (en) * | 1966-08-01 | 1972-01-25 | Henkel & Cie Gmbh | Agent for the posttreatment of laundry |
US3644204A (en) * | 1967-08-14 | 1972-02-22 | Henkel & Cie Gmbh | Agent for the post-treatment of washed laundry |
US3656353A (en) * | 1969-12-08 | 1972-04-18 | Westinghouse Air Brake Co | Vehicle speed sensor |
US3888391A (en) * | 1974-09-12 | 1975-06-10 | Procter & Gamble | Dispenser for rinse-water additive |
US3904359A (en) * | 1972-09-07 | 1975-09-09 | Colgate Palmolive Co | Post-wash fabric treating method |
US3915633A (en) * | 1972-09-21 | 1975-10-28 | Colgate Palmolive Co | Complexing acid pre-wash composition and method |
US3974076A (en) * | 1974-01-11 | 1976-08-10 | The Procter & Gamble Company | Fabric softener |
US4179382A (en) * | 1977-11-21 | 1979-12-18 | The Procter & Gamble Company | Textile conditioning compositions containing polymeric cationic materials |
US4360437A (en) * | 1980-01-11 | 1982-11-23 | The Proctor & Gamble Company | Concentrated textile treatment compositions and method for preparing them |
US4438009A (en) * | 1981-08-14 | 1984-03-20 | S. C. Johnson & Son, Inc. | Low solvent laundry pre-spotting composition |
US4595527A (en) * | 1984-09-25 | 1986-06-17 | S. C. Johnson & Son, Inc. | Aqueous laundry prespotting composition |
US4648987A (en) * | 1985-02-13 | 1987-03-10 | The Clorox Company | Thickened aqueous prewash composition |
US4678596A (en) * | 1986-05-01 | 1987-07-07 | Rohm And Haas Company | Rinse aid formulation |
US4732694A (en) * | 1983-08-27 | 1988-03-22 | The Procter & Gamble Company | Suds suppressor compositions and their use in detergent compositions |
US4738792A (en) * | 1986-06-20 | 1988-04-19 | Ertle Raymond T | Laundry pre-spotter method |
US4814095A (en) * | 1986-12-03 | 1989-03-21 | Henkel Kommanditgesellschaft Auf Aktien | After-wash treatment preparation based on layer silicate |
US4818242A (en) * | 1985-12-03 | 1989-04-04 | Hoffmann's Starkefabriken Ag | Laundry care product for final rinse: aqueous mixture of cationic silicone oil, cationic fatty acid condensate and cationic film-former |
US4828750A (en) * | 1987-12-02 | 1989-05-09 | Colgate-Polmolive Company | Fabric rinse composition to remove surfactant residues |
US4855072A (en) * | 1985-03-28 | 1989-08-08 | The Procter & Gamble Company | Liquid fabric softener |
US5183850A (en) * | 1990-01-03 | 1993-02-02 | Bayer Aktiengesellschaft | Graft polymers and their use as flameproofing agents |
US5273677A (en) * | 1992-03-20 | 1993-12-28 | Olin Corporation | Rinse aids comprising ethoxylated-propoxylated surfactant mixtures |
US5589099A (en) * | 1993-04-20 | 1996-12-31 | Ecolab Inc. | Low foaming rinse agents comprising ethylene oxide/propylene oxide block copolymer |
US5612410A (en) * | 1994-05-30 | 1997-03-18 | Dow Corning Toray Silicone Co., Ltd. | Silicone foam control compositions |
US5670476A (en) * | 1991-04-30 | 1997-09-23 | The Procter & Gamble Company | Fabric softening compositions containing mixtures of substituted imidazoline fabric softener materials and highly ethoxylated curd dispersant |
US5686376A (en) * | 1995-01-12 | 1997-11-11 | The Procter & Gamble Company | Chelating agents for improved color fidelity |
US5931172A (en) * | 1997-06-12 | 1999-08-03 | S. C. Johnson & Son, Inc. | Method of cleaning drains utilizing foaming composition |
US5965505A (en) * | 1994-04-13 | 1999-10-12 | The Procter & Gamble Company | Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system |
US5979469A (en) * | 1994-10-06 | 1999-11-09 | Xomed Surgical Products, Inc. | Method for rinsing a high density sponge |
US6004604A (en) * | 1997-08-14 | 1999-12-21 | Ch20 Incorporated | Method of treating produce |
US6004922A (en) * | 1996-05-03 | 1999-12-21 | The Procter & Gamble Company | Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents |
US6077317A (en) * | 1996-01-25 | 2000-06-20 | Lever Brothers Company, Division Of Conopco, Inc. | Prewash stain remover composition with siloxane based surfactant |
US6169063B1 (en) * | 1997-04-04 | 2001-01-02 | The Procter & Gamble Company | Low sudsing granular detergent composition containing optimally selected levels of a foam control agent and enzymes |
US6174854B1 (en) * | 1993-12-23 | 2001-01-16 | Ciba Specialty Chemicals Corporation | Composition for the treatment of textiles |
US6195825B1 (en) * | 1996-06-24 | 2001-03-06 | Wastewater Resources Inc. | Laundry wash-cycle water recovery system |
US6302968B1 (en) * | 1994-04-19 | 2001-10-16 | Ecolab Inc. | Precarboxylic acid rinse method |
US6350560B1 (en) * | 2000-08-07 | 2002-02-26 | Shipley Company, L.L.C. | Rinse composition |
US6410501B1 (en) * | 1999-07-26 | 2002-06-25 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Fabric conditioning concentrate |
US20020111285A1 (en) * | 2000-06-22 | 2002-08-15 | Price Kenneth Nathan | Rinse-added fabric treatment composition, kit containing such, and method of use therefor |
US6484734B1 (en) * | 1999-07-14 | 2002-11-26 | Ecolab Inc. | Multi-step post detergent treatment method |
US20030062066A1 (en) * | 2001-08-10 | 2003-04-03 | Eastman Kodak Company | Clean-in-place method for cleaning solution delivery systemes/lines |
US20030104963A1 (en) * | 2001-08-16 | 2003-06-05 | The Procter & Gamble Company | Clear fabric conditioner with alkyleneoxide substituted cationic charge booster |
US6593287B1 (en) * | 1999-12-08 | 2003-07-15 | The Procter & Gamble Company | Compositions including ether-capped poly(oxyalkylated) alcohol surfactants |
US20030209257A1 (en) * | 2000-06-30 | 2003-11-13 | Hebert Shirley A. | Closed loop cleaning system |
US20030216280A1 (en) * | 2002-05-16 | 2003-11-20 | The Procter & Gamble Company | Fabric conditioning composition comprising agent for enhancing the appearance of the rinse solution |
US20030216282A1 (en) * | 2002-05-16 | 2003-11-20 | The Procter & Gamble Company | Rinse-added fabric treatment composition, product containing same and methods and uses thereof |
US6939844B2 (en) * | 1996-09-19 | 2005-09-06 | The Procter & Gamble Company | Concentrated, preferably biodegradable, quaternary ammonium fabric softener compositions containing cationic polymers and process for preparation |
US7264678B2 (en) * | 2000-06-14 | 2007-09-04 | The Procter & Gamble Company | Process for cleaning a surface |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US525245A (en) * | 1894-08-28 | Office | ||
GB1576326A (en) * | 1976-06-04 | 1980-10-08 | Procter & Gamble | Textile treating compositions |
EP0008830A1 (en) * | 1978-09-09 | 1980-03-19 | THE PROCTER & GAMBLE COMPANY | Suds-suppressing compositions and detergents containing them |
EP0018039B2 (en) * | 1979-04-21 | 1988-08-24 | THE PROCTER & GAMBLE COMPANY | Fabric softening composition |
FR2482636A1 (en) * | 1980-05-14 | 1981-11-20 | Lesieur Cotelle Et Associes Sa | CONCENTRATED SOFTENING COMPOSITION FOR TEXTILE FIBERS |
GB8619153D0 (en) * | 1986-08-06 | 1986-09-17 | Unilever Plc | Fabric conditioning composition |
US4885102A (en) * | 1987-07-17 | 1989-12-05 | Kao Corporation | Cloth-softening liquid composition containing quaternary ammonium compound and a polyether derivative or cationic surfactant polymer |
US4978471A (en) * | 1988-08-04 | 1990-12-18 | Dow Corning Corporation | Dispersible silicone wash and rinse cycle antifoam formulations |
US4863620A (en) * | 1988-10-18 | 1989-09-05 | The Procter & Gamble Company | Acidic liquid fabric softener with yellow color that changes to blue upon dilution |
JPH02139480A (en) * | 1988-11-21 | 1990-05-29 | Kao Corp | Softening finishing agent |
US5482635A (en) * | 1989-06-19 | 1996-01-09 | Lever Brothers Company | Fabric conditioner with deodorant perfume composition |
US5183580A (en) * | 1990-11-27 | 1993-02-02 | Lever Brothers Company, Division Of Conopco Inc. | Liquid fabric conditioner containing fabric softener and green colorant |
ES2104850T3 (en) * | 1991-11-08 | 1997-10-16 | Quest Int | PERFUME COMPOSITION. |
US5591705A (en) * | 1991-12-03 | 1997-01-07 | The Procter & Gamble Company | Rinse-active foam control particles |
ATE144245T1 (en) * | 1991-12-31 | 1996-11-15 | Stepan Europe | QUATERNARY AMMONIUM SURFACTANTS, METHOD FOR THEIR PRODUCTION, BASES AND THEIR DISPENSIVE PLASTICIZERS |
US5252245A (en) * | 1992-02-07 | 1993-10-12 | The Clorox Company | Reduced residue hard surface cleaner |
US5288417A (en) * | 1992-07-06 | 1994-02-22 | Lever Brothers Company, Division Of Conopco, Inc. | Fabric conditioning compositions and process for making them |
DE4405702A1 (en) * | 1994-02-23 | 1995-08-24 | Witco Surfactants Gmbh | Highly concentrated aqueous fabric softener with improved storage stability |
HU221140B1 (en) * | 1994-04-07 | 2002-08-28 | Unilever Nv | Fabric softening composition |
US5670472A (en) * | 1994-04-19 | 1997-09-23 | Witco Corporation | Biodegradable ester diquaternary compounds and compositions containing them |
US5491240A (en) * | 1994-09-29 | 1996-02-13 | Witco Corporation | Quaternary compound of a tertiary amine and methyl chloride |
DE4439570A1 (en) * | 1994-11-05 | 1996-05-09 | Henkel Kgaa | Laundry after-treatment agent |
US5686023A (en) * | 1995-04-27 | 1997-11-11 | Witco Corporation | C7 -C12 diol and diol alkoxylates as coupling agents for surfactant formulations |
US5674832A (en) * | 1995-04-27 | 1997-10-07 | Witco Corporation | Cationic compositions containing diol and/or diol alkoxylate |
US5916863A (en) * | 1996-05-03 | 1999-06-29 | Akzo Nobel Nv | High di(alkyl fatty ester) quaternary ammonium compound from triethanol amine |
US5972869A (en) * | 1996-12-17 | 1999-10-26 | Colgate-Palmolive Co | Mildly acidic laundry detergent composition providing improved protection of fine fabrics during washing and enhanced rinsing in hand wash |
US6032968A (en) * | 1997-02-28 | 2000-03-07 | Chattin Hydro-Cycle, Inc. | Hydraulic transmission for bicycles |
US5964939A (en) * | 1997-07-03 | 1999-10-12 | Lever Brothers Company Division Of Conopco, Inc. | Dye transfer inhibiting fabric softener compositions |
EP0990695A1 (en) * | 1998-09-30 | 2000-04-05 | Witco Surfactants GmbH | Fabric softener with dye transfer inhibiting properties |
US6376456B1 (en) * | 1998-10-27 | 2002-04-23 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Wrinkle reduction laundry product compositions |
DE19855366A1 (en) * | 1998-12-01 | 2000-06-08 | Witco Surfactants Gmbh | Low-concentration, highly viscous aqueous fabric softener |
HUP0201648A3 (en) * | 1999-05-21 | 2004-03-01 | Unilever Nv | Fabric softening composition its preparation and process for fabric softening |
CA2439512A1 (en) * | 2001-03-07 | 2002-09-19 | The Procter & Gamble Company | Rinse-added fabric conditioning composition for use where residual detergent is present |
-
2002
- 2002-03-05 CA CA002439512A patent/CA2439512A1/en not_active Abandoned
- 2002-03-05 DE DE60204549T patent/DE60204549T2/en not_active Expired - Lifetime
- 2002-03-05 JP JP2002571801A patent/JP2004525271A/en active Pending
- 2002-03-05 WO PCT/US2002/006740 patent/WO2002072745A1/en active IP Right Grant
- 2002-03-05 EP EP02719131A patent/EP1370634B1/en not_active Expired - Lifetime
- 2002-03-05 MX MXPA03008101A patent/MXPA03008101A/en active IP Right Grant
- 2002-03-05 BR BR0207909-7A patent/BR0207909A/en not_active Application Discontinuation
- 2002-03-05 US US10/090,911 patent/US20030060390A1/en not_active Abandoned
- 2002-03-05 AT AT02719131T patent/ATE297456T1/en not_active IP Right Cessation
- 2002-03-05 CN CNB028059476A patent/CN100345953C/en not_active Expired - Fee Related
-
2003
- 2003-08-07 MA MA27268A patent/MA26000A1/en unknown
-
2005
- 2005-08-24 US US11/210,975 patent/US20060019867A1/en not_active Abandoned
- 2005-10-05 US US11/243,551 patent/US20060030516A1/en not_active Abandoned
Patent Citations (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3637495A (en) * | 1966-08-01 | 1972-01-25 | Henkel & Cie Gmbh | Agent for the posttreatment of laundry |
US3644204A (en) * | 1967-08-14 | 1972-02-22 | Henkel & Cie Gmbh | Agent for the post-treatment of washed laundry |
US3656353A (en) * | 1969-12-08 | 1972-04-18 | Westinghouse Air Brake Co | Vehicle speed sensor |
US3904359A (en) * | 1972-09-07 | 1975-09-09 | Colgate Palmolive Co | Post-wash fabric treating method |
US3915633A (en) * | 1972-09-21 | 1975-10-28 | Colgate Palmolive Co | Complexing acid pre-wash composition and method |
US3974076A (en) * | 1974-01-11 | 1976-08-10 | The Procter & Gamble Company | Fabric softener |
US3888391A (en) * | 1974-09-12 | 1975-06-10 | Procter & Gamble | Dispenser for rinse-water additive |
US4179382A (en) * | 1977-11-21 | 1979-12-18 | The Procter & Gamble Company | Textile conditioning compositions containing polymeric cationic materials |
US4360437A (en) * | 1980-01-11 | 1982-11-23 | The Proctor & Gamble Company | Concentrated textile treatment compositions and method for preparing them |
US4438009A (en) * | 1981-08-14 | 1984-03-20 | S. C. Johnson & Son, Inc. | Low solvent laundry pre-spotting composition |
US4732694A (en) * | 1983-08-27 | 1988-03-22 | The Procter & Gamble Company | Suds suppressor compositions and their use in detergent compositions |
US4595527A (en) * | 1984-09-25 | 1986-06-17 | S. C. Johnson & Son, Inc. | Aqueous laundry prespotting composition |
US4648987A (en) * | 1985-02-13 | 1987-03-10 | The Clorox Company | Thickened aqueous prewash composition |
US4855072A (en) * | 1985-03-28 | 1989-08-08 | The Procter & Gamble Company | Liquid fabric softener |
US4818242A (en) * | 1985-12-03 | 1989-04-04 | Hoffmann's Starkefabriken Ag | Laundry care product for final rinse: aqueous mixture of cationic silicone oil, cationic fatty acid condensate and cationic film-former |
US4678596A (en) * | 1986-05-01 | 1987-07-07 | Rohm And Haas Company | Rinse aid formulation |
US4738792A (en) * | 1986-06-20 | 1988-04-19 | Ertle Raymond T | Laundry pre-spotter method |
US4814095A (en) * | 1986-12-03 | 1989-03-21 | Henkel Kommanditgesellschaft Auf Aktien | After-wash treatment preparation based on layer silicate |
US4828750A (en) * | 1987-12-02 | 1989-05-09 | Colgate-Polmolive Company | Fabric rinse composition to remove surfactant residues |
US5183850A (en) * | 1990-01-03 | 1993-02-02 | Bayer Aktiengesellschaft | Graft polymers and their use as flameproofing agents |
US5670476A (en) * | 1991-04-30 | 1997-09-23 | The Procter & Gamble Company | Fabric softening compositions containing mixtures of substituted imidazoline fabric softener materials and highly ethoxylated curd dispersant |
US5273677A (en) * | 1992-03-20 | 1993-12-28 | Olin Corporation | Rinse aids comprising ethoxylated-propoxylated surfactant mixtures |
US5589099A (en) * | 1993-04-20 | 1996-12-31 | Ecolab Inc. | Low foaming rinse agents comprising ethylene oxide/propylene oxide block copolymer |
US6174854B1 (en) * | 1993-12-23 | 2001-01-16 | Ciba Specialty Chemicals Corporation | Composition for the treatment of textiles |
US6398982B1 (en) * | 1993-12-23 | 2002-06-04 | Ciba Specialty Chemicals Corporation | Composition for the treatment textiles |
US5965505A (en) * | 1994-04-13 | 1999-10-12 | The Procter & Gamble Company | Detergents containing a heavy metal sequestrant and a delayed release peroxyacid bleach system |
US6302968B1 (en) * | 1994-04-19 | 2001-10-16 | Ecolab Inc. | Precarboxylic acid rinse method |
US5612410A (en) * | 1994-05-30 | 1997-03-18 | Dow Corning Toray Silicone Co., Ltd. | Silicone foam control compositions |
US5979469A (en) * | 1994-10-06 | 1999-11-09 | Xomed Surgical Products, Inc. | Method for rinsing a high density sponge |
US5686376A (en) * | 1995-01-12 | 1997-11-11 | The Procter & Gamble Company | Chelating agents for improved color fidelity |
US6077317A (en) * | 1996-01-25 | 2000-06-20 | Lever Brothers Company, Division Of Conopco, Inc. | Prewash stain remover composition with siloxane based surfactant |
US6004922A (en) * | 1996-05-03 | 1999-12-21 | The Procter & Gamble Company | Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents |
US6195825B1 (en) * | 1996-06-24 | 2001-03-06 | Wastewater Resources Inc. | Laundry wash-cycle water recovery system |
US6939844B2 (en) * | 1996-09-19 | 2005-09-06 | The Procter & Gamble Company | Concentrated, preferably biodegradable, quaternary ammonium fabric softener compositions containing cationic polymers and process for preparation |
US6169063B1 (en) * | 1997-04-04 | 2001-01-02 | The Procter & Gamble Company | Low sudsing granular detergent composition containing optimally selected levels of a foam control agent and enzymes |
US5931172A (en) * | 1997-06-12 | 1999-08-03 | S. C. Johnson & Son, Inc. | Method of cleaning drains utilizing foaming composition |
US6004604A (en) * | 1997-08-14 | 1999-12-21 | Ch20 Incorporated | Method of treating produce |
US20030111097A1 (en) * | 1999-07-14 | 2003-06-19 | Ecolab Inc. | Multi-step post detergent treatment method |
US6484734B1 (en) * | 1999-07-14 | 2002-11-26 | Ecolab Inc. | Multi-step post detergent treatment method |
US6694989B2 (en) * | 1999-07-14 | 2004-02-24 | Ecolab Inc. | Multi-step post detergent treatment method |
US6410501B1 (en) * | 1999-07-26 | 2002-06-25 | Unilever Home & Personal Care Usa, Division Of Conopco, Inc. | Fabric conditioning concentrate |
US6593287B1 (en) * | 1999-12-08 | 2003-07-15 | The Procter & Gamble Company | Compositions including ether-capped poly(oxyalkylated) alcohol surfactants |
US7264678B2 (en) * | 2000-06-14 | 2007-09-04 | The Procter & Gamble Company | Process for cleaning a surface |
US20020111285A1 (en) * | 2000-06-22 | 2002-08-15 | Price Kenneth Nathan | Rinse-added fabric treatment composition, kit containing such, and method of use therefor |
US20030209257A1 (en) * | 2000-06-30 | 2003-11-13 | Hebert Shirley A. | Closed loop cleaning system |
US6350560B1 (en) * | 2000-08-07 | 2002-02-26 | Shipley Company, L.L.C. | Rinse composition |
US20030062066A1 (en) * | 2001-08-10 | 2003-04-03 | Eastman Kodak Company | Clean-in-place method for cleaning solution delivery systemes/lines |
US20030104963A1 (en) * | 2001-08-16 | 2003-06-05 | The Procter & Gamble Company | Clear fabric conditioner with alkyleneoxide substituted cationic charge booster |
US20030216282A1 (en) * | 2002-05-16 | 2003-11-20 | The Procter & Gamble Company | Rinse-added fabric treatment composition, product containing same and methods and uses thereof |
US20030216280A1 (en) * | 2002-05-16 | 2003-11-20 | The Procter & Gamble Company | Fabric conditioning composition comprising agent for enhancing the appearance of the rinse solution |
Cited By (145)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060030516A1 (en) * | 2001-03-07 | 2006-02-09 | Demeyere Hugo J M | Rinse-added fabric conditioning composition for use where residual detergent is present |
US20060019867A1 (en) * | 2001-03-07 | 2006-01-26 | Demeyere Hugo J M | Rinse-added fabric conditioning composition for use where residual detergent is present |
US7375072B2 (en) | 2003-02-10 | 2008-05-20 | Henkel Kommanditgesellschaft Auf Aktien | Bleach-containing laundry detergents or cleaning compositions comprising water-soluble builder system and soil release-capable cellulose derivative |
US7316995B2 (en) | 2003-02-10 | 2008-01-08 | Henkel Kommanditgesellschaft Auf Aktien | Detergents or cleaning agents comprising a water-soluble building block system and a cellulose derivative with dirt dissolving properties |
US20060035804A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Use of cellulose derivatives as foam regulators |
US20060035805A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergent comprising cotton-active soil release-capable cellulose derivative |
US20060035801A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergents or cleaning compositions comprising water-soluble builder system and soil release-capable cellulose derivative |
US20060046950A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by cellulose derivative and hygroscopic polymer |
US20060046951A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by a combination of cellulose derivatives |
US20060035806A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Increase in the water absorption capacity of textiles |
US20060030504A1 (en) * | 2003-02-10 | 2006-02-09 | Josef Penninger | Detergents or cleaning agents comprising a water-soluble building block system and a cellulose derivative with dirt dissolving properties |
US20050170994A1 (en) * | 2003-10-31 | 2005-08-04 | Casado-Dominguez Arturo L. | Fabric care compositions comprising aminosilicone |
US20060252668A1 (en) * | 2005-04-18 | 2006-11-09 | Frankenbach Gayle M | Dilute fabric care compositions comprising thickners and fabric care compositions for use in the presence of anionic carry-over |
EP2093277A1 (en) | 2005-04-18 | 2009-08-26 | The Procter & Gamble Company | Dilute fabric care compositions comprising thickeners and fabric care compositions for use in the presence of anionic carry-over |
WO2006113658A2 (en) | 2005-04-18 | 2006-10-26 | The Procter & Gamble Company | Dilute fabric care compositions comprising thickeners and fabric care compositions for use in the presence of anionic carry-over |
US20110219730A1 (en) * | 2005-08-31 | 2011-09-15 | Corona Iii Alessandro | Concentrated fabric softener active compositions |
US20070054835A1 (en) * | 2005-08-31 | 2007-03-08 | The Procter & Gamble Company | Concentrated fabric softener active compositions |
WO2008021892A1 (en) | 2006-08-08 | 2008-02-21 | The Procter & Gamble Company | Fabric enhancers comprising nano-sized lamellar vesicle |
WO2008021893A1 (en) * | 2006-08-08 | 2008-02-21 | The Procter & Gamble Company | Fabric enhancing compositions comprising nano-sized particles and anionic detergent carry over tollerance |
US20080132437A1 (en) * | 2006-12-05 | 2008-06-05 | The Procter & Gamble Company | Fabric care compositions for softening, static control and fragrance benefits |
US7749952B2 (en) * | 2006-12-05 | 2010-07-06 | The Procter & Gamble Company | Fabric care compositions for softening, static control and fragrance benefits |
US20090042765A1 (en) * | 2007-08-08 | 2009-02-12 | Yonas Gizaw | Fabric enhancers comprising nano-sized lamellar vesicle |
EP2053119A1 (en) | 2007-10-26 | 2009-04-29 | The Procter and Gamble Company | Fabric softening compositions having improved stability upon storage |
EP2055351A1 (en) | 2007-10-29 | 2009-05-06 | The Procter and Gamble Company | Compositions with durable pearlescent aesthetics |
US20090181877A1 (en) * | 2008-01-11 | 2009-07-16 | Mcginnis Jerry Keith | Method of shipping and preparing laundry actives |
US8080513B2 (en) | 2008-01-11 | 2011-12-20 | The Procter & Gamble Company | Method of shipping and preparing laundry actives |
US8361953B2 (en) | 2008-02-08 | 2013-01-29 | Evonik Goldschmidt Corporation | Rinse aid compositions with improved characteristics |
US20090203571A1 (en) * | 2008-02-08 | 2009-08-13 | Evonik Goldschmidt Corp. | Rinse aid compositions with improved characteristics |
US20090229057A1 (en) * | 2008-03-14 | 2009-09-17 | Billiauw Jan Julian Marie-Louise | Low sudsing hand washing liquid laundry detergent |
WO2009148801A1 (en) * | 2008-06-06 | 2009-12-10 | The Procter & Gamble Company | Hand fabric laundering method |
WO2009148800A1 (en) * | 2008-06-06 | 2009-12-10 | The Procter & Gamble Company | Hand fabric laundering system |
US20100064243A1 (en) * | 2008-09-05 | 2010-03-11 | Schuyler Buck | Method and system for manipulating groups of data representations of a graphical display |
EP2196527A1 (en) | 2008-12-10 | 2010-06-16 | The Procter and Gamble Company | Fabric softening compositions comprising silicone comprising compounds |
WO2011011247A1 (en) | 2009-07-20 | 2011-01-27 | The Procter & Gamble Company | Liquid fabric enhancer composition comprising a di-hydrocarbyl complex |
US8188027B2 (en) | 2009-07-20 | 2012-05-29 | The Procter & Gamble Company | Liquid fabric enhancer composition comprising a di-hydrocarbyl complex |
US20110190190A1 (en) * | 2010-01-29 | 2011-08-04 | Frank Schubert | Novel Linear Polydimethylsiloxane-Polyether Copolymers with Amino and/or Quaternary Ammonium Groups and Use Thereof |
US8957009B2 (en) | 2010-01-29 | 2015-02-17 | Evonik Degussa Gmbh | Linear polydimethylsiloxane-polyether copolymers having amino and/or quaternary ammonium groups and use thereof |
US20110189413A1 (en) * | 2010-01-29 | 2011-08-04 | Monosol, Llc | Water-soluble film having blend of pvoh polymers, and packets made therefrom |
WO2011094690A1 (en) | 2010-01-29 | 2011-08-04 | The Procter & Gamble Company | Improved water-soluble film having blend of pvoh polymers, and packets made therefrom |
US20110186468A1 (en) * | 2010-01-29 | 2011-08-04 | Denome Frank William | Water-soluble film having improved dissolution and stress properties, and packets made therefrom |
US20110188784A1 (en) * | 2010-01-29 | 2011-08-04 | Denome Frank William | Water-soluble film having blend of pvoh polymers, and packets made therefrom |
US8158572B2 (en) | 2010-01-29 | 2012-04-17 | The Procter & Gamble Company | Linear polydimethylsiloxane-polyether copolymers with amino and/or quaternary ammonium groups and use thereof |
WO2011094687A1 (en) | 2010-01-29 | 2011-08-04 | The Procter & Gamble Company | Water-soluble film having improved dissolution and stress properties, and packets made therefrom |
US9133329B2 (en) | 2010-01-29 | 2015-09-15 | Monosol Llc | Water-soluble film having blend of PVOH polymers, and packets made therefrom |
US20110186467A1 (en) * | 2010-01-29 | 2011-08-04 | Monosol, Llc | Water-soluble film having improved dissolution and stress properties, and packets made therefrom |
US8697624B2 (en) | 2010-01-29 | 2014-04-15 | The Procter & Gamble Company | Water-soluble film having blend of PVOH polymers, and packets made therefrom |
WO2011094374A1 (en) | 2010-01-29 | 2011-08-04 | The Procter & Gamble Company | Novel linear polydimethylsiloxane-polyether copolymers with amino and/or quaternary ammonium groups and use thereof |
US8905236B2 (en) | 2010-01-29 | 2014-12-09 | Monosol, Llc | Water-soluble film having improved dissolution and stress properties, and packets made therefrom |
US8276756B2 (en) | 2010-01-29 | 2012-10-02 | The Procter & Gamble Company | Water-soluble film having improved dissolution and stress properties, and packets made therefrom |
US8389462B2 (en) | 2010-02-01 | 2013-03-05 | The Procter & Gamble Company | Fabric softening compositions |
WO2011094681A1 (en) | 2010-02-01 | 2011-08-04 | The Procter & Gamble Company | Fabric softening compositions |
WO2011100420A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
WO2011100411A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
WO2011100405A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising crosslinked polyglycerol esters |
WO2011100500A1 (en) | 2010-02-12 | 2011-08-18 | The Procter & Gamble Company | Benefit compositions comprising polyglycerol esters |
US20110237490A1 (en) * | 2010-03-26 | 2011-09-29 | Darren Franklin King | Methods of making fabric softener |
WO2011119796A1 (en) | 2010-03-26 | 2011-09-29 | The Procter & Gamble Company | Methods of making fabric softener |
US8461096B2 (en) | 2010-03-26 | 2013-06-11 | The Procter & Gamble Company | Methods of making fabric softener |
WO2011123606A1 (en) | 2010-04-01 | 2011-10-06 | The Procter & Gamble Company | Fabric softener |
US8461097B2 (en) | 2010-04-01 | 2013-06-11 | The Procter & Gamble Company | Fabric softener |
US8183199B2 (en) | 2010-04-01 | 2012-05-22 | The Procter & Gamble Company | Heat stable fabric softener |
US8563499B2 (en) | 2010-04-01 | 2013-10-22 | Evonik Degussa Gmbh | Fabric softener active composition |
US8569224B2 (en) | 2010-04-01 | 2013-10-29 | Evonik Degussa Gmbh | Fabric softener active composition |
WO2011123284A1 (en) | 2010-04-01 | 2011-10-06 | The Procter & Gamble Company | Heat stable fabric softener |
WO2011123733A1 (en) | 2010-04-01 | 2011-10-06 | The Procter & Gamble Company | Heat stable fabric softener |
US8883712B2 (en) | 2010-04-28 | 2014-11-11 | Evonik Degussa Gmbh | Fabric softening composition |
US8507425B2 (en) | 2010-06-29 | 2013-08-13 | Evonik Degussa Gmbh | Particulate fabric softener comprising ethylenediamine fatty acid amides and method of making |
WO2012005859A2 (en) | 2010-06-30 | 2012-01-12 | General Electric Company | System and method for generating and storing transient integrated organic rankine cycle energy |
US8883713B2 (en) | 2012-01-30 | 2014-11-11 | Evonik Industries Ag | Fabric softener active composition |
US9441187B2 (en) | 2012-05-07 | 2016-09-13 | Evonik Degussa Gmbh | Fabric softener active composition and method for making it |
US9290727B2 (en) | 2012-07-20 | 2016-03-22 | The Procter & Gamble Company | Water-soluble pouch coated with a composition comprising silica flow aid |
WO2014015090A1 (en) | 2012-07-20 | 2014-01-23 | The Procter & Gamble Company | Water-soluble pouch coated with a composition comprising silica flow aid |
WO2014043422A1 (en) | 2012-09-14 | 2014-03-20 | The Procter & Gamble Company | Fabric care composition |
EP2708589A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
WO2014043080A1 (en) | 2012-09-14 | 2014-03-20 | The Procter & Gamble Company | Fabric care composition |
WO2014043086A1 (en) | 2012-09-14 | 2014-03-20 | The Procter & Gamble Company | Process to introduce hydrophobic antibacterial compound in an aqueous composition |
WO2014043075A1 (en) | 2012-09-14 | 2014-03-20 | The Procter & Gamble Company | Fabric care composition |
US9328319B2 (en) | 2012-09-14 | 2016-05-03 | The Procter & Gamble Company | Fabric care composition |
EP2708588A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
EP2708593A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
EP2708590A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Process to introduce hydrophobic antibacterial compound in an aqueous composition |
CN104619820A (en) * | 2012-09-14 | 2015-05-13 | 宝洁公司 | Fabric care composition |
US9127240B2 (en) | 2012-09-14 | 2015-09-08 | The Procter & Gamble Company | Process to introduce hydrophobic antibacterial compound in an aqueous composition |
EP2708592A1 (en) | 2012-09-14 | 2014-03-19 | The Procter & Gamble Company | Fabric care composition |
US10808210B2 (en) | 2013-03-15 | 2020-10-20 | Monosol, Llc | Water-soluble film for delayed release |
EP2803719A1 (en) | 2013-05-14 | 2014-11-19 | The Procter & Gamble Company | Cleaning composition |
WO2014186183A1 (en) | 2013-05-14 | 2014-11-20 | The Procter & Gamble Company | Pouch comprising a cleaning composition |
US9670437B2 (en) | 2013-10-07 | 2017-06-06 | Monosol, Llc | Water-soluble delayed release capsules, related methods, and related articles |
WO2015054067A1 (en) | 2013-10-07 | 2015-04-16 | Monosol Llc | Water-soluble delayed release capsules, related methods, and related articles |
US9670440B2 (en) | 2013-10-07 | 2017-06-06 | Monosol, Llc | Water-soluble delayed release capsules, related methods, and related articles |
US10011806B2 (en) | 2013-11-05 | 2018-07-03 | Evonik Degussa Gmbh | Method for making a tris-(2-hydroxyethyl)-methylammonium methylsulfate fatty acid ester |
US9150782B2 (en) | 2013-12-06 | 2015-10-06 | Monosol, Llc | Fluorescent tracer for water-soluble films, related methods, and related articles |
WO2015132207A1 (en) * | 2014-03-05 | 2015-09-11 | Dow Corning Corporation | Foam control agents |
US10113137B2 (en) | 2014-10-08 | 2018-10-30 | Evonik Degussa Gmbh | Fabric softener active composition |
US10336973B2 (en) | 2014-10-13 | 2019-07-02 | The Procter & Gamble Company | Articles comprising water-soluble polyvinyl alcohol film with plasticizer blend and related methods |
WO2016061069A2 (en) | 2014-10-13 | 2016-04-21 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
WO2016061025A1 (en) | 2014-10-13 | 2016-04-21 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
US11168289B2 (en) | 2014-10-13 | 2021-11-09 | Monosol, Llc | Water-soluble polyvinyl alcohol film with plasticizer blend, related methods, and related articles |
US10513588B2 (en) | 2014-10-13 | 2019-12-24 | Monosol, Llc | Water-soluble polyvinyl alcohol film with plasticizer blend, related methods, and related articles |
US10913832B2 (en) | 2014-10-13 | 2021-02-09 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
US10844183B2 (en) | 2014-10-13 | 2020-11-24 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
WO2016061026A1 (en) | 2014-10-13 | 2016-04-21 | Monosol, Llc | Water-soluble polyvinyl alcohol film with plasticizer blend, related methods, and related articles |
US10240114B2 (en) | 2014-10-13 | 2019-03-26 | The Procter & Gamble Company | Articles comprising water-soluble polyvinyl alcohol blend film and related methods |
US10526479B2 (en) | 2014-10-13 | 2020-01-07 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
EP3845583A2 (en) | 2015-03-27 | 2021-07-07 | Monosol, LLC | Water soluble film, packets employing the film, and methods of making and using same |
WO2016160116A1 (en) | 2015-03-27 | 2016-10-06 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
US10815346B2 (en) | 2015-03-27 | 2020-10-27 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
US11459433B2 (en) | 2015-03-27 | 2022-10-04 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
WO2016172699A1 (en) | 2015-04-24 | 2016-10-27 | International Flavors & Fragrances Inc. | Delivery systems and methods of preparing the same |
US10537868B2 (en) | 2015-07-02 | 2020-01-21 | Givaudan S.A. | Microcapsules |
EP3192566A1 (en) | 2016-01-15 | 2017-07-19 | International Flavors & Fragrances Inc. | Polyalkoxy-polyimine adducts for use in delayed release of fragrance ingredients |
WO2017143174A1 (en) | 2016-02-18 | 2017-08-24 | International Flavors & Fragrances Inc. | Polyurea capsule compositions |
WO2017180883A1 (en) | 2016-04-13 | 2017-10-19 | Monosol, Llc | Water soluble film, packets employing the film, and methods of making and using same |
WO2017184606A2 (en) | 2016-04-18 | 2017-10-26 | Monosol, Llc | Perfume microcapsules and related film and dtergent compositions |
US11352468B2 (en) | 2016-04-18 | 2022-06-07 | Monosol, Llc | Perfume microcapsules and related film and detergent compositions |
EP4438132A2 (en) | 2016-07-01 | 2024-10-02 | International Flavors & Fragrances Inc. | Stable microcapsule compositions |
US10202227B2 (en) | 2016-08-01 | 2019-02-12 | Monosol, Llc | Plasticizer blend for chlorine stability of water-soluble films |
EP4209264A1 (en) | 2016-09-16 | 2023-07-12 | International Flavors & Fragrances Inc. | Microcapsule compositions stabilized with viscosity control agents |
EP3300794A2 (en) | 2016-09-28 | 2018-04-04 | International Flavors & Fragrances Inc. | Microcapsule compositions containing amino silicone |
EP3425036A1 (en) | 2017-05-30 | 2019-01-09 | International Flavors & Fragrances Inc. | Branched polyethyleneimine microcapsules |
US11814607B2 (en) * | 2018-03-02 | 2023-11-14 | Conopco, Inc. | Laundry additive composition comprising a soil release polymer/silicone mixture |
US20210115356A1 (en) * | 2018-03-02 | 2021-04-22 | Conopco, Inc., D/B/A Unilever | Laundry method |
WO2019212722A1 (en) | 2018-05-02 | 2019-11-07 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
US11193092B2 (en) | 2018-05-02 | 2021-12-07 | Monosol, Llc | Water-soluble polyvinyl alcohol film, related methods, and related articles |
US11407866B2 (en) | 2018-05-02 | 2022-08-09 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
US11453754B2 (en) | 2018-05-02 | 2022-09-27 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
WO2019212723A1 (en) | 2018-05-02 | 2019-11-07 | Monosol, Llc | Water-soluble polyvinyl alcohol blend film, related methods, and related articles |
WO2019213347A1 (en) | 2018-05-02 | 2019-11-07 | Monosol, Llc | Water-soluble polyvinyl alcohol film, related methods, and related articles |
WO2020131956A1 (en) | 2018-12-18 | 2020-06-25 | International Flavors & Fragrances Inc. | Hydroxyethyl cellulose microcapsules |
WO2020219930A1 (en) | 2019-04-24 | 2020-10-29 | Monosol, Llc | Nonwoven water dispersible article for unit dose packaging |
EP4442872A2 (en) | 2020-06-02 | 2024-10-09 | Monosol, LLC | Water soluble fibers with post process modifications and articles containing same |
EP4375401A2 (en) | 2020-06-02 | 2024-05-29 | Monosol, LLC | Water soluble fibers with post process modifications and articles containing same |
EP3919044A1 (en) | 2020-06-04 | 2021-12-08 | International Flavors & Fragrances Inc. | Composition and method for improving fragrance intensity with isopropyl myristate |
US11897834B2 (en) | 2020-07-09 | 2024-02-13 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants |
US11787967B2 (en) | 2020-07-13 | 2023-10-17 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for inks, paints, and adhesives |
US11857515B2 (en) | 2020-07-13 | 2024-01-02 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for use in healthcare products |
US12071588B2 (en) | 2020-07-13 | 2024-08-27 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for oil and gas production |
US12071578B2 (en) | 2020-07-13 | 2024-08-27 | Advansix Resins & Chemicals Llc | Branched amino acid surfactants for electronics products |
EP4124383A1 (en) | 2021-07-27 | 2023-02-01 | International Flavors & Fragrances Inc. | Biodegradable microcapsules |
WO2023009514A1 (en) | 2021-07-27 | 2023-02-02 | International Flavors & Fragrances Inc. | Biodegradable microcapsules |
WO2023150317A1 (en) | 2022-02-04 | 2023-08-10 | Monosol, Llc | High clarity water-soluble films and methods of making same |
WO2024010814A1 (en) | 2022-07-06 | 2024-01-11 | International Flavors & Fragrances Inc. | Biodegradable microcapsules comprising beta-1-4 non-ionic polysaccharide |
EP4302869A1 (en) | 2022-07-06 | 2024-01-10 | International Flavors & Fragrances Inc. | Biodegradable protein and polysaccharide-based microcapsules |
WO2024011447A1 (en) * | 2022-07-13 | 2024-01-18 | Evonik Operations Gmbh | A fabric softener active composition for preparing a transparent fabric softener composition |
WO2024012468A1 (en) | 2022-07-13 | 2024-01-18 | Evonik Operations Gmbh | A fabric softener active composition for preparing a transparent fabric softener composition |
Also Published As
Publication number | Publication date |
---|---|
MA26000A1 (en) | 2003-12-31 |
MXPA03008101A (en) | 2003-12-12 |
EP1370634B1 (en) | 2005-06-08 |
US20060030516A1 (en) | 2006-02-09 |
CN100345953C (en) | 2007-10-31 |
BR0207909A (en) | 2004-07-27 |
US20060019867A1 (en) | 2006-01-26 |
CN1494585A (en) | 2004-05-05 |
ATE297456T1 (en) | 2005-06-15 |
JP2004525271A (en) | 2004-08-19 |
EP1370634A1 (en) | 2003-12-17 |
DE60204549T2 (en) | 2006-03-23 |
DE60204549D1 (en) | 2005-07-14 |
CA2439512A1 (en) | 2002-09-19 |
WO2002072745A1 (en) | 2002-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1370634B1 (en) | Rinse-added fabric conditioning composition for use where residual detergent is present | |
EP1292662B1 (en) | Rinse-added fabric treatment composition | |
CZ20023831A3 (en) | Fabric softening composition containing agent effective against unpleasant odors | |
ZA200504579B (en) | Fabric softening composition containing esterquat with specific ester distribution and sequestrant | |
EP2294168B1 (en) | Improvements relating to fabric conditioners | |
WO2006133791A2 (en) | Fabric conditioning composition and use | |
JP2005524787A (en) | Fabric finishing composition comprising an agent for improving the appearance of a rinsing solution | |
AU7592300A (en) | Treatment compositions for fabrics | |
AU2003297264B2 (en) | Concentrated fabric softening composition containing esterquat with specific ester distribution and an electrolyte | |
AU2004220707B2 (en) | Treatment compositions for fabrics | |
MXPA05009365A (en) | Fabric conditioning composition and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PROCTER & GAMBLE COMPANY, THE, OHIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEMEYERE, HUGO JEAN MARIE;DECIEROQ, MARC JOHAN;CAUWBERGHS, SERGE GABRIEL PIERRE ROGER;AND OTHERS;REEL/FRAME:012769/0592;SIGNING DATES FROM 20020308 TO 20020415 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |