US20030040238A1 - Multi-layer coating system for jacquard woven airbags - Google Patents
Multi-layer coating system for jacquard woven airbags Download PDFInfo
- Publication number
- US20030040238A1 US20030040238A1 US10/268,536 US26853602A US2003040238A1 US 20030040238 A1 US20030040238 A1 US 20030040238A1 US 26853602 A US26853602 A US 26853602A US 2003040238 A1 US2003040238 A1 US 2003040238A1
- Authority
- US
- United States
- Prior art keywords
- airbag
- layer
- coating
- inflation
- silicone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 56
- 239000011248 coating agent Substances 0.000 title claims abstract description 49
- 229920002635 polyurethane Polymers 0.000 claims abstract description 16
- 239000004814 polyurethane Substances 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims description 8
- 230000000717 retained effect Effects 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 230000014759 maintenance of location Effects 0.000 claims 2
- 239000004744 fabric Substances 0.000 abstract description 50
- 239000000463 material Substances 0.000 abstract description 34
- 229920001296 polysiloxane Polymers 0.000 abstract description 26
- 230000000903 blocking effect Effects 0.000 abstract description 14
- 229920002050 silicone resin Polymers 0.000 abstract description 11
- 238000003860 storage Methods 0.000 abstract description 11
- 239000000203 mixture Substances 0.000 abstract description 9
- -1 ethylene, propylene, acrylates Chemical class 0.000 abstract description 8
- 239000004952 Polyamide Substances 0.000 abstract description 7
- 229920002647 polyamide Polymers 0.000 abstract description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000008199 coating composition Substances 0.000 abstract description 5
- 229920005989 resin Polymers 0.000 abstract description 5
- 239000011347 resin Substances 0.000 abstract description 5
- 230000007774 longterm Effects 0.000 abstract description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract description 3
- 230000002787 reinforcement Effects 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 239000000454 talc Substances 0.000 abstract description 3
- 229910052623 talc Inorganic materials 0.000 abstract description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 abstract description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 abstract description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 abstract description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 abstract description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 229920001519 homopolymer Polymers 0.000 abstract description 2
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 2
- 239000011147 inorganic material Substances 0.000 abstract description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 abstract description 2
- 229920001567 vinyl ester resin Polymers 0.000 abstract description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 11
- 230000032683 aging Effects 0.000 description 9
- 229920000058 polyacrylate Polymers 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 6
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 239000003063 flame retardant Substances 0.000 description 5
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229920001084 poly(chloroprene) Polymers 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 229920005549 butyl rubber Polymers 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000013101 initial test Methods 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 239000004447 silicone coating Substances 0.000 description 3
- 229920002379 silicone rubber Polymers 0.000 description 3
- 239000002562 thickening agent Substances 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920006370 Kynar Polymers 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229920001973 fluoroelastomer Polymers 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920004439 Aclar® Polymers 0.000 description 1
- 229920003270 Cymel® Polymers 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- RREGISFBPQOLTM-UHFFFAOYSA-N alumane;trihydrate Chemical compound O.O.O.[AlH3] RREGISFBPQOLTM-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000007755 gap coating Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00605—Production of reflex reflectors
- B29D11/00615—Production of reflex reflectors moulded by partially embedding reflective elements, e.g. glass beads, into the surface of a support, e.g. to make prefabricated road markings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/28—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
- B32B27/283—Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/18—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
- D06N3/183—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials the layers are one next to the other
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/18—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials
- D06N3/186—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with two layers of different macromolecular materials one of the layers is on one surface of the fibrous web and the other layer is on the other surface of the fibrous web
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R2021/0002—Type of accident
- B60R2021/0018—Roll-over
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/235—Inflatable members characterised by their material
- B60R2021/23504—Inflatable members characterised by their material characterised by material
- B60R2021/23509—Fabric
- B60R2021/23514—Fabric coated fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/23—Inflatable members
- B60R21/231—Inflatable members characterised by their shape, construction or spatial configuration
- B60R21/232—Curtain-type airbags deploying mainly in a vertical direction from their top edge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2139—Coating or impregnation specified as porous or permeable to a specific substance [e.g., water vapor, air, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2861—Coated or impregnated synthetic organic fiber fabric
- Y10T442/2893—Coated or impregnated polyamide fiber fabric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/30—Woven fabric [i.e., woven strand or strip material]
Definitions
- This invention relates to novel airbag coating compositions comprising at least two separate and distinct layers.
- the first layer (base coat), being in contact with the airbag surface, comprises a composition of at least one coating material which may comprise up to 30% by parts of the total amount of material in the first layer of a silicone resin which provides excellent adhesion, excellent tensile strength, and overall lower cost than standard silicone airbag coating materials.
- the second layer being a coating for the first layer, provides excellent reinforcement and blocking characteristics to permit effective potential long-term storage and optimum use upon the occurrence of a collision.
- Such a second layer is preferably a silicone material but may also be selected from the group consisting of homopolymer and coplymer resins based on ethylene, propylene, acrylates, methacrylates, vinyl esters, acrylic acid, methacrylic acid, polyurethanes, polyamides, and inorganic materials such as talc, silica, silicate, calcium carbonate, alumina, and the like.
- This two-layer system permits excellent strength and blocking properties to prevent undesired adhesion between portions of the target airbag when stored as well as to prevent seam combing at relatively low cost due to the inexpensive basecoat materials and the relatively low amount required for the topcoat.
- An airbag fabric coated with this inventive multi-layer system is also contemplated within this invention.
- Airbags for motor vehicles are known and have been used for a substantial period of time. These devices are installed on the driver and passenger side of automobiles and, in the event of a collision, are rapidly inflated with gas, to act as an energy absorbing barrier between the driver or passenger and the steering wheel or dashboard of the automobile.
- curtain-type airbags comprising a plurality of pillows formed from stitched areas of the bag article (to protect passengers during roll-over and side impact collision events), there is now a greater emphasis on providing such curtain-type airbags which will retain their inflation pressure for extended period after deployment, and will perform if and when necessary even upon storage of a long duration (years for example).
- Such pillowed fabrics thus comprise seams which control the shape and size of the inflated cushion. Upon inflation of such specific airbag cushions, pressure may be applied in great force, particularly on the seams, during an inflation in response to a collision event.
- the inventive two-layer coating system does provide the necessary strength, durability, permeability, and reliability to the airbag industry, particularly for large-scale production of heavily stitched/seamed curtain-type airbags.
- silicones and chloroprene have been the predominant coatings utilized in the airbag industry traditionally, as noted above, it has been determined that these coatings exhibit certain shortcomings which actually make them undesirable as the sole coatings present on target fabrics.
- silicones are very expensive and act as natural fiber lubricants.
- Silicone elastomers are very flexible which permits facilitation of folding of coated airbags for long-term storage in airbag modules.
- silicones possess poor tensile strength and poor tear resistance. As such, these compounds do not provide the best overall strength to prevent shifting of seam yarns, and certainly are not cost-effective selections for this purpose.
- Chloroprene (Neoprene) degrades very easily and thus does not exhibit sufficient aging stability. Furthermore, thicker coatings of such rubber compounds are required to reduce the air permeability to an acceptable level which can result in higher costs, although neoprene is not as expensive as the aforementioned silicones. Also, neither of these two traditional coating materials permits a single application over the entire airbag fabric in order to provide both air permeability characteristics over the non-stitched (and thus plain fabric) portion with effective adhesion for the individual fibers within the seamed areas. Lastly, most polyurethanes, etc., which provide the desired high tensile strength characteristics in the base coat are also highly tacky at elevated temperatures and thus do not provide beneficial anti-blocking properties. Thus, it is imperative to coat such excellent base coat components with a second layer comprising compounds exhibiting excellent blocking characteristics.
- an object of the invention has been to provide excellent strength and adhesion to the seam yarns (or yarns at cut edges of the target fabric) while simultaneously allowing for low adhesion (anti-blocking) as well as desirable low air permeability over the target airbag fabric, all at a relatively low cost.
- Another object of the invention has been to provide a coating system or composition which is easy to apply to target airbag fabrics as well.
- this invention provides a coating system (i.e., composition) for airbag fabrics comprising at least two layers wherein the first layer is in contact with at least a portion of the airbag fabric and is at least one coating material comprising no more than about 30% by total parts of said first layer material of a silicone resin and the second layer is a coating for at least a portion of said first layer and is at least one material providing sufficient blocking characteristics for the first layer material selected from the group consisting of at least one non-silicone compound and at least one silicone compound.
- the first layer material must possess certain properties critical to properly seal a woven seam at high pressure.
- this layer must be comprised of a coating material exhibiting a tensile strength of greater than 600 psi, preferably greater than 800 psi, and most preferably greater than 1,000 psi, with an elongation at break of between about 100 and 600% of its original length.
- the first layer thus may be comprised of one or more of polyurethanes, polyacrylates, polyamides, butyl rubbers, hydrogenated nitrile rubbers, ethylene-vinyl acetate copolymers, and the like. Potentially preferred are polyamides, polyurethanes, polyacrylates, and mixtures thereof.
- first layer materials also are generally available at lower cost than the standard silicone resins and rubbers which possess the desired tensile strength and elongation characteristics noted above.
- the add-on weight of this first layer over the target fabric is from about 0.1 to about 2.0 ounces per square yard, preferably this add-on weight is from about 0.5 to about 1.2, more preferably from about 0.6 to about 0.9.
- the first layer materials may be present in water dispersions/emulsions or in organic solvent solutions in order to provide better seam combing resistance to the resultant treated airbag fabric. Such emulsions and solutions are also easy to handle and apply to the target fabric surface. This first layer surprisingly works synergistically with the second layer to provide the desired properties.
- the first layer may also comprise up to about 30% by weight of the total amount, in parts, of the first layer, of a silicone resin.
- a silicone resin may be utilized to modify conventional rubbers to improve their weatherability (aging stability).
- such resins are known to be added to ethylene-propylene-diene monomer (EPDM) rubber to provide such weatherability improvements.
- EPDM ethylene-propylene-diene monomer
- this silicone resin is utilized in the first layer, it is present in an amount of from about 5 to about 12% by total parts of the first layer material. An amount in excess of 30% by total parts deleteriously affects the ability of the first layer to perform as needed.
- Any well known silicone resin may be utilized within the first layer, including those listed below for the second layer material.
- One non-limiting example of a potentially preferred silicone resin for use in this first layer is a silicone resin known and marketed under the name Dow Corning® Fabric Coating 61.
- the second layer must possess, at the very least, good blocking properties to permit full, instantaneous inflation of the airbag when necessary after long duration storage within an airbag module. Furthermore, said second layer may also preferably provide reinforcement for the first layer. Silicones (such as polydimethylsiloxane and other silicone resins which are to be avoided in large quantities within the first layer) provide particularly good performance regarding this requirement.
- the add-on weight of the second layer necessary to effectuate proper blocking properties for the first layer is much lower than the standard add-on weight for such silicone compounds on curtain-type airbag fabrics, the costs associated with this two-layer system (when a silicone is used as the topcoat) is dramatically lower than for past coating compositions. Furthermore, the costs associated with the first layer non-silicone components are also much lower than for the silicone resins, rubbers, and the like, traditionally used in airbag coating applications. Thus, the overall costs of the inventive coating system is, again, much lower than for silicones used alone to provide any similar strength and air permeability characteristics to the plain fabric.
- a non-silicone compound or polymer may be used as the topcoat (second layer) for this inventive coating system as long as that non-silicone provides an effective blocking characteristic benefit for the first layer.
- any resins or compounds with melting/softening point above 100° C. can be used as the topcoat material to provide anti-blocking characteristics.
- Polyacrylates, ethylene-vinyl acetates, ethylene-methyl acrylates, polyurethane and the like, with high melting/softening points or crosslinking structures provide such beneficial antiblocking stability, which, again, would, upon utilization, reduce the overall costs of the inventive coating system by eliminating the need for expensive silicones.
- the non-silicone second layer would be added in an amount of from about 0.1 to about 2.5 ounces per square yard, preferably, from about 0.2 to about 1.5.
- potentially preferred materials include a polyurethane, available from Stahl USA, Peabody Mass., under the tradename Ru 40-350 (40% solids); polyacrylates, (a) available from Rohm & Haas, under the tradename Rhoplex® E-358 (60% solids), and (b) available from Para-chem Southern, Inc., Greenville, S.C., under the tradename Pyropoly AC 2000®; a polyamide dispersion marketed under the trade designation MICROMID® 632 hpl by Union Camp Corporation which is believed to have a place of business in Wayne, N.J.; other polyurethane resins, Witcobond® 253 (35% solids), from Witco, and Sancure, from BFGoodrich, Cleveland, Ohio; hydrogenated NBR, such as Chemisat® LCD-7335X (40% solids), from Goodyear Chemical, Akron, Ohio; and butyl rubber, such as Butyl rubber latex BL-100, from Lord Corporation.
- Ru 40-350 50% solids
- mixtures or combinations of non-silicone materials may also be utilized such as a dispersion of polyurethane and polyacrylate, as merely an example.
- a dispersion of polyurethane and polyacrylate as merely an example.
- Potentially preferred compositions are noted below including dispersions comprising polyurethane and polyacrylate.
- the ratio of polyurethane to polyacrylate should be in an amount of from about 0.1:1 to about 10:1; preferably from about 1:1 to about 8:1; more preferably from about 2:1 to about 5:1; and most preferably from about 2:1 to about 2.5:1.
- the substrate across which the elastomeric resin coatings are applied to form the airbag base fabric in accordance with the present invention is preferably a plain woven fabric formed from yarns comprising polyamide or polyester fibers. Such yarn preferably has a linear density of about 100 denier to about 630 denier. Such yarns are preferably formed from multiple filaments wherein the filaments have linear densities of about 6 denier per filaments or less and most preferably about 4 denier per filament or less.
- Such substrate fabrics are preferably woven using jacquard looms or possibly through the utilization of fluid jet weaving machines as disclosed in U.S. Pat. Nos. 5,503,197 and 5,421,378 to Bower et al. (incorporated herein by reference).
- the fabric substrate with applied coating system will hereinafter be referred to as an airbag base fabric.
- Other possible components present within either of the two layers (or both) composition are thickeners, antioxidants, flame retardants, curing agents, coalescent agents, adhesion promoters, and colorants.
- Any well known thickener for polyurethanes and/or polyacrylates may be utilized in this invention.
- One potentially preferred thickener is marketed under the trade designation NATROSOL® 250HHXR by the Aqualon division of Hercules Corporation which is believed to have a place of business at Wilmington, Del.
- a flame retardant is also preferably added to the compounded mix.
- Any well known airbag flame retardant may be used (including aluminum trihydrate, as merely one example).
- One potentially preferred flame retardant is DE-83R marketed by Great Lakes Chemical.
- One other potentially preferred compound to be added to the first layer material is a fluoroelastomer.
- a fluoroelastomer is selected from the group consisting of fluoropolymers and fluoromonomer-containing copolymers. Such compounds have shown improved aging performance for the first layer materials (such as with polyurethanes).
- fluoropolymers and/or fluoromonomer-containing copolymers include those with excellent aging stability such as, without limitation, polytetrafluoroethylene (Teflon® from DuPOnt), polyvinylidenefluoride (Kynar® from Elf Atochem, Inc.), polychloro-trifluoroethylene (Aclar® from Allied Signal), copolymer of vinylidenefluoride and hexafluoropropylene, copolymer of vinylidenefluoride and methylmethacrylate, copolymer of tetrafluoroethylene and vinylidenefluoride, and the like.
- Such a compound may be present in the first layer material in an amount of from 0 to about 30% of the total amount of parts in the first layer; preferably from about 1 to about 20%; more preferably from about 5 to about 15%.
- the first layer is coated across the fabric substrate and dried to form a thin coating film(at a temperature preferably at about 320° F. for about 2 minutes; lower or higher temperatures, as well as correspondingly shorter or greater times may also be used).
- the second layer (possessing a similar viscosity to facilitate application in a large-scale procedure) is then applied in the same manner over at least a portion (preferably all) of the second layer.
- the second layer is then dried and cured as well (at a temperature of about 380° F. for about 2 minutes for the preferred silicone materials; again, differing temperatures and times may be followed). This discrepancy in temperatures required for drying and curing is yet another improvement over the utilization of silicone materials alone since lower temperatures are required (translating into safety improvements and lower energy costs) for the first layer at least.
- the coating applications are performed through any standard coating procedures such as, and not limited to, scrape coating, transfer roll coating, cast coating and fixed-gap coating. These terms includes, and are not limited to, knife-over-gap table, floating knife, knife-over-foam pad, knife-over-roll, slot die methods, to name a few different method types.
- the resultant airbag base fabric is substantially impermeable to air when measured according to ASTM Test D737, “Air Permeability of Textile Fabrics,” standards.
- Such airbag fabrics must pass certain tests in order to be utilized within restraint systems.
- One such test is called, as alluded to above, a blocking test which indicates the force required to separate two portions of coated fabric from one another after prolonged storage in contact with each other (such as an airbag is stored).
- Laboratory analysis for blocking entails pressing together coated sides of two 2 inch by 2 inch swatches of airbag fabric at 5 psi at 100° C. for 7 days. If the force required to pull the two swatches apart after this time is greater than 50 grams per square yard, or the time required to separate the fabrics utilizing a 50 gram weight suspended from the bottom fabric layer is greater than 10 seconds, the coating fails the blocking test.
- the lower the required separating shear force the more favorable the coating.
- Another test which the specific coated fabric must pass is the oven aging test.
- Such a test also simulates the storage of an airbag fabric over a long period of time upon exposure at high temperatures and actually is used to analyze alterations of various different fabric properties after such a prolonged storage in a hot ventilated oven (>100° C.) for 2 or more weeks.
- this test was used basically to analyze the air permeability of the coated fabric after storage under a pressure of about 125 Pascals.
- Airbag fabrics generally should exhibit an air permeability level of less than about 0.2 cfm at 125 Pa. Again, the lower the air permeability, the better the coating.
- the multi-layer coating system of this invention provides a coated fabric which passes both the blocking test and oven aging test with very low air permeability.
- This unexpectedly beneficial multi-layer system thus provides an airbag fabric which will easily inflate after prolonged storage and will remain inflated for a sufficient amount of time to ensure an optimum level of safety within a restraint system.
- the less coating composition required the less expensive the final product.
- the less coating composition required will translate into a decrease in the packaging volume of the airbag fabric within an airbag device. This benefit thus improves the packability for the airbag fabric.
- the substrate fabric is preferably a woven nylon material.
- such substrate fabric will be formed from fibers of nylon 6,6 woven on a jacquard loom. It has been found that such polyamide materials exhibit particularly good adhesion and maintenance of resistance to hydrolysis when used in combination with the coating according to the present invention.
- the first layer was applied using a floating knife with a dry coating weight of about 0.8 ounces per square yard on each side of a Jacquard woven side impact curtain-type nylon 6,6 airbag fabric (with pillows stitched within the fabric). This layer was immediately dried at 320° F. for about 2 minutes.
- the second layer was then applied using a knife-over-gap table method with an add-on weight of about 1.0 ounces per square yard on each side of the airbag over the first layer. This coating was then cured at about 38° F. for about 2 minutes.
- the resultant coated airbag was then rapidly inflated for testing by pressurizing the bag using a 6.7 liter 100 psi nitrogen gas tank, generating about 30 psi initial peak bag pressure.
- the pressure drop over time was then recorded as a measure of bag leakage. In 10 seconds, the pressure dropped from 30 to 7 psi, showing excellent air permeability.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Air Bags (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Novel airbag coating compositions comprising at least two separate and distinct layers are provided. The first layer (base coat), being in contact with the airbag surface, comprises a composition of at least one coating material which may comprise up to 30% by parts of the total amount of material in the first layer of a silicone resin which provides excellent adhesion, excellent tensile strength, and overall lower cost than standard silicone airbag coating materials. The second layer, being a coating for the first layer, provides excellent reinforcement and blocking characteristics to permit effective potential long-term storage and optimum use upon the occurrence of a collision. Such a second layer (topcoat) is preferably a silicone material but may also be selected from the group consisting of homopolymer and coplymer resins based on ethylene, propylene, acrylates, methacrylates, vinyl esters, acrylic acid, methacrylic acid, polyurethanes, polyamides, and inorganic materials such as talc, silica, silicate, calcium carbonate, alumina, and the like. This two-layer system permits excellent strength and blocking properties to prevent undesired adhesion between portions of the target airbag when stored as well as to prevent seam combing at relatively low cost due to the materials and the relatively low amount required for the topcoat. An airbag fabric coated with this inventive two-layer system is also contemplated within this invention.
Description
- This application is a continuation of co-pending application Ser. No. 09/501,035, which is a continuation-in-part of U.S. patent application Ser. No. 09/350,620, filed Jul. 7, 1999, now U.S. Pat. No. 6,177,366, which is a continuation-in-part of U.S. patent application Ser. No. 09/335,257, filed on Jun. 17, 1999, now U.S. Pat. No. 6,177,365, all herein incorporated by reference.
- This invention relates to novel airbag coating compositions comprising at least two separate and distinct layers. The first layer (base coat), being in contact with the airbag surface, comprises a composition of at least one coating material which may comprise up to 30% by parts of the total amount of material in the first layer of a silicone resin which provides excellent adhesion, excellent tensile strength, and overall lower cost than standard silicone airbag coating materials. The second layer, being a coating for the first layer, provides excellent reinforcement and blocking characteristics to permit effective potential long-term storage and optimum use upon the occurrence of a collision. Such a second layer (topcoat) is preferably a silicone material but may also be selected from the group consisting of homopolymer and coplymer resins based on ethylene, propylene, acrylates, methacrylates, vinyl esters, acrylic acid, methacrylic acid, polyurethanes, polyamides, and inorganic materials such as talc, silica, silicate, calcium carbonate, alumina, and the like. This two-layer system permits excellent strength and blocking properties to prevent undesired adhesion between portions of the target airbag when stored as well as to prevent seam combing at relatively low cost due to the inexpensive basecoat materials and the relatively low amount required for the topcoat. An airbag fabric coated with this inventive multi-layer system is also contemplated within this invention.
- Airbags for motor vehicles are known and have been used for a substantial period of time. These devices are installed on the driver and passenger side of automobiles and, in the event of a collision, are rapidly inflated with gas, to act as an energy absorbing barrier between the driver or passenger and the steering wheel or dashboard of the automobile.
- With the advent of new curtain-type airbags comprising a plurality of pillows formed from stitched areas of the bag article (to protect passengers during roll-over and side impact collision events), there is now a greater emphasis on providing such curtain-type airbags which will retain their inflation pressure for extended period after deployment, and will perform if and when necessary even upon storage of a long duration (years for example). Such pillowed fabrics thus comprise seams which control the shape and size of the inflated cushion. Upon inflation of such specific airbag cushions, pressure may be applied in great force, particularly on the seams, during an inflation in response to a collision event. These stitched areas or seams thus must retain their strength upon inflation, thereby setting forth the requirement that the individual yarns at such seams will not slip (i.e., “comb-out”) easily (which would result in the leakage air at too great a rate to afford sufficient protection), particularly upon inflation of the airbag. With such an expansion in stitching/seam requirements as compared with traditional driver-side and passenger-side airbags, the areas for potential air leakage have also increased dramatically.
- In the past, coatings have been applied to fabrics, intended for use in automotive airbags, to resist the unwanted permeation of air through the fabric and, to a lesser extent, to protect the fabric from detriment by the hot gases used to inflate the bags. Polychloroprene was the polymer of choice in the early development of this product, but the desire to decrease the folded size of the completed airbag, and the tendency of polychloroprene to degrade, with exposure to heat, to release the components of hydrochloric acid (thereby potentially degrading the fabric component as well as releasing hazardous chemicals), has led to the almost universal acceptance of silicone (polydimethylsiloxane or similar materials) as a more suitable coating. In the quest for the most compact folded size possible, coating levels of polymer have dropped from around 2.5 ounces per square yard of fabric, to levels approaching 0.5 ounces per square yard.
- New developments in airbag technology, particularly newer designs being placed in the sides of the passenger compartment (as noted above), have introduced the requirement that the bags hold pressure longer under use. This, and the evolution of the lower coating levels of silicone polymer, have begun to highlight the effect that, when a sewn seam is put under stress, a naturally lubricating silicone coating may allow the yarns from which the fabric is constructed to shift. This shifting can lead to leakage of the inflating gas through the new pores formed from the shifting yarns, or, in drastic cases, cause the seam to fail. Since the airbag must retain its integrity during a collision event, in order to sufficiently protect the driver or passenger, there is a great need to provide coatings which provide both effective permeability characteristics and sufficient restriction of yarn shifting for the airbag to function properly, if and when necessary. Furthermore, such airbags must also exhibit excellent blocking characteristics, as noted above, to permit full, instantaneous inflation of the airbag itself upon the occurrence of a collision. In recent years, silicone coatings have been utilized to provide such desired permeability and strength characteristics. However, the relative cost of such coating materials (such as polydimethylsiloxane) is sufficiently high that new, more inexpensive alternatives are being sought. Thus, there exists a need for providing good adhesion and a strong bond between the individual yarns (in order to effectuate long-term rigidity of the fibers to prevent unraveling) at cut edges or at seams while simultaneously providing aging stability and excellent low air permeability characteristics. Such a necessary improvement has not been afforded the airbag industry within the prior art. However, the inventive two-layer coating system does provide the necessary strength, durability, permeability, and reliability to the airbag industry, particularly for large-scale production of heavily stitched/seamed curtain-type airbags.
- Although silicones and chloroprene have been the predominant coatings utilized in the airbag industry traditionally, as noted above, it has been determined that these coatings exhibit certain shortcomings which actually make them undesirable as the sole coatings present on target fabrics. For example, silicones are very expensive and act as natural fiber lubricants. Silicone elastomers are very flexible which permits facilitation of folding of coated airbags for long-term storage in airbag modules. However, compared with other elastomers, silicones possess poor tensile strength and poor tear resistance. As such, these compounds do not provide the best overall strength to prevent shifting of seam yarns, and certainly are not cost-effective selections for this purpose. Chloroprene (Neoprene) degrades very easily and thus does not exhibit sufficient aging stability. Furthermore, thicker coatings of such rubber compounds are required to reduce the air permeability to an acceptable level which can result in higher costs, although neoprene is not as expensive as the aforementioned silicones. Also, neither of these two traditional coating materials permits a single application over the entire airbag fabric in order to provide both air permeability characteristics over the non-stitched (and thus plain fabric) portion with effective adhesion for the individual fibers within the seamed areas. Lastly, most polyurethanes, etc., which provide the desired high tensile strength characteristics in the base coat are also highly tacky at elevated temperatures and thus do not provide beneficial anti-blocking properties. Thus, it is imperative to coat such excellent base coat components with a second layer comprising compounds exhibiting excellent blocking characteristics.
- Thus, an object of the invention has been to provide excellent strength and adhesion to the seam yarns (or yarns at cut edges of the target fabric) while simultaneously allowing for low adhesion (anti-blocking) as well as desirable low air permeability over the target airbag fabric, all at a relatively low cost. Another object of the invention has been to provide a coating system or composition which is easy to apply to target airbag fabrics as well.
- Accordingly, this invention provides a coating system (i.e., composition) for airbag fabrics comprising at least two layers wherein the first layer is in contact with at least a portion of the airbag fabric and is at least one coating material comprising no more than about 30% by total parts of said first layer material of a silicone resin and the second layer is a coating for at least a portion of said first layer and is at least one material providing sufficient blocking characteristics for the first layer material selected from the group consisting of at least one non-silicone compound and at least one silicone compound. In particular, the first layer material must possess certain properties critical to properly seal a woven seam at high pressure. Thus, this layer must be comprised of a coating material exhibiting a tensile strength of greater than 600 psi, preferably greater than 800 psi, and most preferably greater than 1,000 psi, with an elongation at break of between about 100 and 600% of its original length. The first layer thus may be comprised of one or more of polyurethanes, polyacrylates, polyamides, butyl rubbers, hydrogenated nitrile rubbers, ethylene-vinyl acetate copolymers, and the like. Potentially preferred are polyamides, polyurethanes, polyacrylates, and mixtures thereof. Furthermore, these first layer materials also are generally available at lower cost than the standard silicone resins and rubbers which possess the desired tensile strength and elongation characteristics noted above. The add-on weight of this first layer over the target fabric is from about 0.1 to about 2.0 ounces per square yard, preferably this add-on weight is from about 0.5 to about 1.2, more preferably from about 0.6 to about 0.9. The first layer materials may be present in water dispersions/emulsions or in organic solvent solutions in order to provide better seam combing resistance to the resultant treated airbag fabric. Such emulsions and solutions are also easy to handle and apply to the target fabric surface. This first layer surprisingly works synergistically with the second layer to provide the desired properties.
- As noted above, the first layer may also comprise up to about 30% by weight of the total amount, in parts, of the first layer, of a silicone resin. Such a component may be utilized to modify conventional rubbers to improve their weatherability (aging stability). For example, such resins are known to be added to ethylene-propylene-diene monomer (EPDM) rubber to provide such weatherability improvements. Preferably, if this silicone resin is utilized in the first layer, it is present in an amount of from about 5 to about 12% by total parts of the first layer material. An amount in excess of 30% by total parts deleteriously affects the ability of the first layer to perform as needed. Any well known silicone resin may be utilized within the first layer, including those listed below for the second layer material. One non-limiting example of a potentially preferred silicone resin for use in this first layer is a silicone resin known and marketed under the name Dow Corning® Fabric Coating 61.
- The second layer must possess, at the very least, good blocking properties to permit full, instantaneous inflation of the airbag when necessary after long duration storage within an airbag module. Furthermore, said second layer may also preferably provide reinforcement for the first layer. Silicones (such as polydimethylsiloxane and other silicone resins which are to be avoided in large quantities within the first layer) provide particularly good performance regarding this requirement. Since the add-on weight of the second layer necessary to effectuate proper blocking properties for the first layer (from about 0.1 to about 2.5 ounces per square yard as well, preferably from about 0.2 to about 1.5) is much lower than the standard add-on weight for such silicone compounds on curtain-type airbag fabrics, the costs associated with this two-layer system (when a silicone is used as the topcoat) is dramatically lower than for past coating compositions. Furthermore, the costs associated with the first layer non-silicone components are also much lower than for the silicone resins, rubbers, and the like, traditionally used in airbag coating applications. Thus, the overall costs of the inventive coating system is, again, much lower than for silicones used alone to provide any similar strength and air permeability characteristics to the plain fabric. Also, a non-silicone compound or polymer may be used as the topcoat (second layer) for this inventive coating system as long as that non-silicone provides an effective blocking characteristic benefit for the first layer. Potentially, any resins or compounds with melting/softening point above 100° C. can be used as the topcoat material to provide anti-blocking characteristics. Polyacrylates, ethylene-vinyl acetates, ethylene-methyl acrylates, polyurethane and the like, with high melting/softening points or crosslinking structures, provide such beneficial antiblocking stability, which, again, would, upon utilization, reduce the overall costs of the inventive coating system by eliminating the need for expensive silicones. Other materials that may be used for the second layers, for examples, are talc, calcium stearate, silica, calcium carbonate, polypropylenes and high density polyethylene. In such an event, the non-silicone second layer would be added in an amount of from about 0.1 to about 2.5 ounces per square yard, preferably, from about 0.2 to about 1.5.
- With regard to the first layer, potentially preferred materials include a polyurethane, available from Stahl USA, Peabody Mass., under the tradename Ru 40-350 (40% solids); polyacrylates, (a) available from Rohm & Haas, under the tradename Rhoplex® E-358 (60% solids), and (b) available from Para-chem Southern, Inc., Greenville, S.C., under the tradename Pyropoly AC 2000®; a polyamide dispersion marketed under the trade designation MICROMID® 632 hpl by Union Camp Corporation which is believed to have a place of business in Wayne, N.J.; other polyurethane resins, Witcobond® 253 (35% solids), from Witco, and Sancure, from BFGoodrich, Cleveland, Ohio; hydrogenated NBR, such as Chemisat® LCD-7335X (40% solids), from Goodyear Chemical, Akron, Ohio; and butyl rubber, such as Butyl rubber latex BL-100, from Lord Corporation. As noted above, mixtures or combinations of non-silicone materials may also be utilized such as a dispersion of polyurethane and polyacrylate, as merely an example. Potentially preferred compositions are noted below including dispersions comprising polyurethane and polyacrylate. Preferably, in such an instance, the ratio of polyurethane to polyacrylate should be in an amount of from about 0.1:1 to about 10:1; preferably from about 1:1 to about 8:1; more preferably from about 2:1 to about 5:1; and most preferably from about 2:1 to about 2.5:1.
- The substrate across which the elastomeric resin coatings are applied to form the airbag base fabric in accordance with the present invention is preferably a plain woven fabric formed from yarns comprising polyamide or polyester fibers. Such yarn preferably has a linear density of about 100 denier to about 630 denier. Such yarns are preferably formed from multiple filaments wherein the filaments have linear densities of about 6 denier per filaments or less and most preferably about 4 denier per filament or less. Such substrate fabrics are preferably woven using jacquard looms or possibly through the utilization of fluid jet weaving machines as disclosed in U.S. Pat. Nos. 5,503,197 and 5,421,378 to Bower et al. (incorporated herein by reference). The fabric substrate with applied coating system will hereinafter be referred to as an airbag base fabric. Other possible components present within either of the two layers (or both) composition are thickeners, antioxidants, flame retardants, curing agents, coalescent agents, adhesion promoters, and colorants. Any well known thickener for polyurethanes and/or polyacrylates may be utilized in this invention. One potentially preferred thickener is marketed under the trade designation NATROSOL® 250HHXR by the Aqualon division of Hercules Corporation which is believed to have a place of business at Wilmington, Del. Also, in order to meet Federal Motor Vehicle Safety Standard 302 flame retardant requirements for the automotive industry, a flame retardant is also preferably added to the compounded mix. Any well known airbag flame retardant may be used (including aluminum trihydrate, as merely one example). One potentially preferred flame retardant is DE-83R marketed by Great Lakes Chemical.
- One other potentially preferred compound to be added to the first layer material is a fluoroelastomer. Such a fluoroelastomer is selected from the group consisting of fluoropolymers and fluoromonomer-containing copolymers. Such compounds have shown improved aging performance for the first layer materials (such as with polyurethanes). Particularly preferred fluoropolymers and/or fluoromonomer-containing copolymers include those with excellent aging stability such as, without limitation, polytetrafluoroethylene (Teflon® from DuPOnt), polyvinylidenefluoride (Kynar® from Elf Atochem, Inc.), polychloro-trifluoroethylene (Aclar® from Allied Signal), copolymer of vinylidenefluoride and hexafluoropropylene, copolymer of vinylidenefluoride and methylmethacrylate, copolymer of tetrafluoroethylene and vinylidenefluoride, and the like. Such a compound may be present in the first layer material in an amount of from 0 to about 30% of the total amount of parts in the first layer; preferably from about 1 to about 20%; more preferably from about 5 to about 15%.
- Once compounding is complete (and the preferably resultant dispersion possess a viscosity of about 8,000 centipoise), the first layer is coated across the fabric substrate and dried to form a thin coating film(at a temperature preferably at about 320° F. for about 2 minutes; lower or higher temperatures, as well as correspondingly shorter or greater times may also be used). The second layer (possessing a similar viscosity to facilitate application in a large-scale procedure) is then applied in the same manner over at least a portion (preferably all) of the second layer. The second layer is then dried and cured as well (at a temperature of about 380° F. for about 2 minutes for the preferred silicone materials; again, differing temperatures and times may be followed). This discrepancy in temperatures required for drying and curing is yet another improvement over the utilization of silicone materials alone since lower temperatures are required (translating into safety improvements and lower energy costs) for the first layer at least.
- The coating applications are performed through any standard coating procedures such as, and not limited to, scrape coating, transfer roll coating, cast coating and fixed-gap coating. These terms includes, and are not limited to, knife-over-gap table, floating knife, knife-over-foam pad, knife-over-roll, slot die methods, to name a few different method types. The resultant airbag base fabric is substantially impermeable to air when measured according to ASTM Test D737, “Air Permeability of Textile Fabrics,” standards.
- Such airbag fabrics must pass certain tests in order to be utilized within restraint systems. One such test is called, as alluded to above, a blocking test which indicates the force required to separate two portions of coated fabric from one another after prolonged storage in contact with each other (such as an airbag is stored). Laboratory analysis for blocking entails pressing together coated sides of two 2 inch by 2 inch swatches of airbag fabric at 5 psi at 100° C. for 7 days. If the force required to pull the two swatches apart after this time is greater than 50 grams per square yard, or the time required to separate the fabrics utilizing a 50 gram weight suspended from the bottom fabric layer is greater than 10 seconds, the coating fails the blocking test. Clearly, the lower the required separating shear force, the more favorable the coating.
- Another test which the specific coated fabric must pass is the oven aging test. Such a test also simulates the storage of an airbag fabric over a long period of time upon exposure at high temperatures and actually is used to analyze alterations of various different fabric properties after such a prolonged storage in a hot ventilated oven (>100° C.) for 2 or more weeks. For the purposes of this invention, this test was used basically to analyze the air permeability of the coated fabric after storage under a pressure of about 125 Pascals. Airbag fabrics generally should exhibit an air permeability level of less than about 0.2 cfm at 125 Pa. Again, the lower the air permeability, the better the coating.
- Surprisingly, it has been discovered that the multi-layer coating system of this invention provides a coated fabric which passes both the blocking test and oven aging test with very low air permeability. This unexpectedly beneficial multi-layer system thus provides an airbag fabric which will easily inflate after prolonged storage and will remain inflated for a sufficient amount of time to ensure an optimum level of safety within a restraint system. Furthermore, it goes without saying that the less coating composition required, the less expensive the final product. Additionally, the less coating composition required will translate into a decrease in the packaging volume of the airbag fabric within an airbag device. This benefit thus improves the packability for the airbag fabric.
- As previously indicated, the substrate fabric is preferably a woven nylon material. In the most preferred embodiment such substrate fabric will be formed from fibers of nylon 6,6 woven on a jacquard loom. It has been found that such polyamide materials exhibit particularly good adhesion and maintenance of resistance to hydrolysis when used in combination with the coating according to the present invention.
- In order to further describe the present invention the following nonlimiting examples are set forth. These examples are provided for the sole purpose of illustrating some preferred embodiments of the invention and are not to be construed as limiting the scope of the invention in any manner.
-
Component Amount First Layer Ru 40-350 (40% solids) 100 parts Rhoplex ® E-32NP 10 parts Dow Corning ® fabric coating 61 10 parts Natrosol ® 250 HHXR 1.5 parts Water 15 parts - The first layer (base coating) was applied using a floating knife with a dry coating weight of about 0.8 ounces per square yard on each side of a Jacquard woven side impact curtain-type nylon 6,6 airbag fabric (with pillows stitched within the fabric). This layer was immediately dried at 320° F. for about 2 minutes. The second layer (topcoat) was then applied using a knife-over-gap table method with an add-on weight of about 1.0 ounces per square yard on each side of the airbag over the first layer. This coating was then cured at about 38° F. for about 2 minutes.
- The resultant coated airbag was then rapidly inflated for testing by pressurizing the bag using a 6.7 liter 100 psi nitrogen gas tank, generating about 30 psi initial peak bag pressure. The pressure drop over time was then recorded as a measure of bag leakage. In 10 seconds, the pressure dropped from 30 to 7 psi, showing excellent air permeability.
- Furthermore, after storage in an oven kept at about 107° C. for about 2 weeks (to simulate an accepted aging test for airbag fabrics), the coated airbag inflated properly and without obstruction and retained approximately the same leakage rate as the initial test after production.
-
Component Amount First Layer Ru 40-350 (40% solids) 100 parts Rhoplex ® E-32NP 10 parts Kynar ® 2501-20 9 parts Natrosol ® 250 HHXR 1.5 parts Water 15 parts - The layers were applied and the resultant bag was tested in the same manner as described in EXAMPLE 1, above. The initial testing for leakage showed a pressure drop of from 30 psi to about 12 psi in 10 seconds. The aged bag retained approximately the same leakage rate.
-
Component Amount First Layer Ru 40-350 (40% solids) 45 parts Rhoplex ® E-358 (60% solids) 21 parts Natrosol ® 250 HHXR 1.6 parts Water 2 parts Second Layer Pyropoly AC 2000 30 parts Amsperse ® FR 51 37 parts Cymel M-3 3 parts Natrosol ® 250 HHXR 1 part Water 1 part - This system was applied and the resultant airbag was tested in the same manner as described in EXAMPLE 1, above. The second layer, however, had a dry coating weight of 0.6 ounces per square yard. The initial testing for leakage showed a pressure drop of from 30 psi to about 8 psi in 10 seconds. The aged bag showed a leakage rate of from about 30 to about 6 psi in 10 seconds.
- The same type of airbag was then treated solely with the second layer from EXAMPLE 1, above with an add-on weight of about 2 ounces per square yard on each side of the airbag. The bag was then tested for pressure drop in the same manner as above and was found to drop from 30 to 0 psi in 2 seconds. Clearly, the air permeability of EXAMPLEs 1-3 were dramatically greater than this comparative test even after aging.
- There are, of course, many alternative embodiments and modifications of the present invention which are intended to be included within the spirit and scope of the following claims.
Claims (9)
1. A Jacquard woven side impact curtain-type airbag to which a coating system has been applied, wherein said coating system comprises at least two layers, and wherein at least one of said layers comprises at least one polyurethane.
2. A Jacquard woven side impact curtain-type airbag which exhibits, upon inflation to a peak initial pressure of 30 psi using a 6.7 liter compressed nitrogen gas tank to 12 volumes of gas, a gas retention of at least 1 psi at a point in time at least 10 seconds subsequent to inflation at said peak initial pressure; wherein said airbag is coated with a coating present at an add-on weight of at most 3.0 ounces per square yard.
3. The airbag of claim 2 wherein said airbag retains at least 6 psi of retained inflation gas at least 10 seconds subsequent to inflation at said peak initial pressure.
4. A Jacquard woven side impact curtain-type airbag to which a coating system has been applied, wherein said coating system comprises at least two layers;
wherein at least one of said layers comprises polyurethane; and
wherein said airbag exhibits, upon inflation to a peak initial pressure of 30 psi, a gas retention of a least 1 psi at a point in time at least 10 seconds subsequent to inflation at said peak initial pressure.
5. The airbag of claim 4 wherein said airbag retains at least 6 psi of retained inflation gas at least 10 seconds subsequent to inflation at said peak initial pressure.
6. The airbag of claim 1 wherein said at least one layer of coating comprising polyurethane is applied to said airbag in an add-on weight of from about 0.3 to about 2.5 ounces/square yard.
7. The airbag of claim 1 wherein said at least one layer of coating comprising polyurethane is applied to said airbag in an add-on weight of from about 0.6 to about 1.5 ounces/square yard.
8. The airbag of claim 7 wherein the aggregate add-on weight of said coating system applied to said airbag is from about 0.6 to about 3.0 ounces/square yard.
9. The side impact curtain-type airbag of claim 8 wherein the aggregate add-on weight of said coating system applied to said airbag is from about 0.6 to about 1.8 ounces/square yard.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/268,536 US20030040238A1 (en) | 1999-06-17 | 2002-10-08 | Multi-layer coating system for jacquard woven airbags |
US11/223,617 US7501359B2 (en) | 1999-06-17 | 2005-09-09 | Multi-layer coating system for jacquard woven airbags |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/335,257 US6177365B1 (en) | 1999-06-17 | 1999-06-17 | Two-layered coating system for airbag fabrics |
US09/350,620 US6177366B1 (en) | 1999-06-17 | 1999-07-09 | Two-layer coating system for airbag fabrics |
US50103500A | 2000-02-09 | 2000-02-09 | |
US10/268,536 US20030040238A1 (en) | 1999-06-17 | 2002-10-08 | Multi-layer coating system for jacquard woven airbags |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US50103500A Continuation | 1999-06-17 | 2000-02-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/223,617 Continuation US7501359B2 (en) | 1999-06-17 | 2005-09-09 | Multi-layer coating system for jacquard woven airbags |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030040238A1 true US20030040238A1 (en) | 2003-02-27 |
Family
ID=27407046
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/268,536 Abandoned US20030040238A1 (en) | 1999-06-17 | 2002-10-08 | Multi-layer coating system for jacquard woven airbags |
US11/223,617 Expired - Fee Related US7501359B2 (en) | 1999-06-17 | 2005-09-09 | Multi-layer coating system for jacquard woven airbags |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/223,617 Expired - Fee Related US7501359B2 (en) | 1999-06-17 | 2005-09-09 | Multi-layer coating system for jacquard woven airbags |
Country Status (9)
Country | Link |
---|---|
US (2) | US20030040238A1 (en) |
EP (1) | EP1115811A4 (en) |
JP (1) | JP2003526557A (en) |
CN (1) | CN1323831C (en) |
AU (1) | AU5617300A (en) |
BR (1) | BR0006933A (en) |
CA (1) | CA2340940A1 (en) |
MX (1) | MXPA01001742A (en) |
WO (1) | WO2000078895A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060267324A1 (en) * | 2005-05-24 | 2006-11-30 | Trw Automotive Safety Systems Gmbh | Gas bag |
US20080075903A1 (en) * | 2006-09-22 | 2008-03-27 | Ramesh Keshavaraj | Multilayer film dry lamination of airbag fabrics |
US20100253047A1 (en) * | 2007-12-28 | 2010-10-07 | Kolon Industries, Inc. | Inflatable fabrics and an air-bag |
US8088695B1 (en) * | 2001-12-03 | 2012-01-03 | Stuart Press | Fabric material and process for preparing same |
US20150210240A1 (en) * | 2012-08-28 | 2015-07-30 | Toray Industries, Inc. | Coated fabric and method for producing same |
EP3530802A4 (en) * | 2016-10-21 | 2020-07-01 | Toyobo Co., Ltd. | Silicone-coated fabric |
EP3530803A4 (en) * | 2016-10-21 | 2020-07-08 | Toyobo Co., Ltd. | Silicon-coated fabric |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1349751A4 (en) * | 2001-01-09 | 2007-05-02 | Kolon Inc | A side curtain typed airbag, and a process of preparing for the same |
WO2004109008A1 (en) * | 2003-06-04 | 2004-12-16 | Dow Corning Corporation | Silicone/polyurethane coated fabrics |
DE10326757A1 (en) | 2003-06-13 | 2005-01-13 | Bst Berger Safety Textiles Gmbh & Co. Kg | Method for producing an airbag |
WO2006009072A1 (en) * | 2004-07-16 | 2006-01-26 | Asahi Kasei Chemicals Corporation | Base cloth for hollow-woven air bag and method for production thereof |
DE102005061351A1 (en) * | 2005-12-21 | 2007-07-05 | Bst Safety Textiles Gmbh | Production method for woven fabric of air bag of personnel restraint system in motor vehicles, involves preparing warp thread sheet of different yarn qualities with warp thread |
DE102006021082A1 (en) * | 2006-05-05 | 2007-11-15 | Bst Safety Textiles Gmbh | Suture construction for a tissue |
US7543843B2 (en) * | 2006-08-10 | 2009-06-09 | Milliken & Company | Airbag coatings made with hybrid resin compositions |
US9079558B2 (en) * | 2009-01-16 | 2015-07-14 | Global Safety Textiles, Llc | Coated airbag |
AU2015204268B2 (en) * | 2009-03-09 | 2017-03-02 | Bioatla, Llc | Mirac Proteins |
CN104674561B (en) | 2009-11-12 | 2018-05-15 | 道康宁公司 | coated fabric product |
WO2011060238A1 (en) * | 2009-11-12 | 2011-05-19 | Dow Corning Corporation | Coated fabric products |
DE102010027085A1 (en) * | 2010-07-13 | 2012-01-19 | Autoliv Development Ab | air bag |
KR102068260B1 (en) * | 2014-12-30 | 2020-01-20 | 코오롱인더스트리 주식회사 | Fabric for Airbag and Method for Manufacturing The Same |
GB2549428B (en) | 2015-01-06 | 2021-12-08 | Lawter Inc | Polyamide resins for coating of sand or ceramic proppants used in hydraulic fracturing |
US10308208B2 (en) | 2015-02-20 | 2019-06-04 | International Textile Group, Inc. | Airbag made from a fabric substrate coated on an exterior side and on an opposite interior side |
BR112018009095A2 (en) | 2015-11-06 | 2019-02-19 | Invista Textiles Uk Ltd | cloths, articles, airbags and method of forming a cloth |
WO2018180695A1 (en) * | 2017-03-27 | 2018-10-04 | 東洋紡株式会社 | Silicone-coated fabric |
CN111304803B (en) | 2017-05-02 | 2021-09-03 | 英威达纺织(英国)有限公司 | Low permeability and high strength woven fabrics and methods of making same |
MX2020003165A (en) | 2017-09-29 | 2022-04-05 | Invista Textiles Uk Ltd | Airbags and methods for production of airbags. |
FR3082776B1 (en) * | 2018-06-25 | 2020-06-12 | Serge Ferrari Sas | COATED TEXTILE FOR PROTECTION ELEMENT IN INDUSTRIAL MEDIA |
WO2020081280A1 (en) * | 2018-10-17 | 2020-04-23 | Dow Global Technologies Llc | A coating composition, a coated fabric, a method of making a coated fabric, and an article made from the coated fabric |
JP7152011B2 (en) * | 2018-10-22 | 2022-10-12 | 中興化成工業株式会社 | Composite seat and airbag |
CN109972259B (en) * | 2019-04-29 | 2021-02-23 | 广东溢达纺织有限公司 | Yarn selecting method for woven fabric weaving and woven fabric weaving method |
CN111058296A (en) * | 2019-12-31 | 2020-04-24 | 成都海蓉特种纺织品有限公司 | Anti-adhesion fabric for speed reducer and preparation process thereof |
CN112878067B (en) * | 2021-01-09 | 2022-07-05 | 深圳浩淼服装有限公司 | Waterproof cotton fabric coating agent and preparation method thereof |
CN114855467A (en) * | 2022-05-13 | 2022-08-05 | 雁翔和泰(深圳)科技有限公司 | Balloon silk cloth composite material and manufacturing method thereof, fire balloon and fire balloon |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3705645A (en) * | 1971-04-30 | 1972-12-12 | Rohm & Haas | Inflatable flexible container and fabric for making it |
US4217256A (en) * | 1978-02-10 | 1980-08-12 | Henkel Corporation | Polyamide adhesive for bonding fabrics |
US4921735A (en) * | 1987-11-03 | 1990-05-01 | Klaus Bloch | Air bag for motor vehicles |
US4994225A (en) * | 1988-06-28 | 1991-02-19 | Uniroyal Plastics Company, Inc. | Production of passive restraint device |
US5110666A (en) * | 1991-05-06 | 1992-05-05 | Reeves Brothers, Inc. | Coated fabric structure for air bag applications |
US5208097A (en) * | 1991-10-31 | 1993-05-04 | Dow Corning Toray Silicone Co., Ltd. | Base fabric for air bag |
US5399402A (en) * | 1992-01-23 | 1995-03-21 | Shin-Etsu Chemical Co., Ltd. | Air bag coating composition and air bag |
US5421378A (en) * | 1994-03-30 | 1995-06-06 | Milliken Research Corporation | Airbag weaving on a water-jet loom using yarns |
US5503197A (en) * | 1994-03-30 | 1996-04-02 | Milliken Research Corporation | Method for producing high weave density airbag fabric on a water-jet loom using unsized yarns |
US5529837A (en) * | 1994-02-28 | 1996-06-25 | Shin-Etsu Chemical Co., Ltd. | Silicone coated base material and air bag base material |
US5788270A (en) * | 1995-02-20 | 1998-08-04 | Autoliv Development Ab | Side impact and roll over inflatable head protector |
US6177365B1 (en) * | 1999-06-17 | 2001-01-23 | Milliken & Company | Two-layered coating system for airbag fabrics |
US6239046B1 (en) * | 1999-06-07 | 2001-05-29 | Bradford Industries, Inc. | Polysiloxane coated fabrics for use in air bags |
US20010005660A1 (en) * | 1999-06-17 | 2001-06-28 | Shulong Li | Low permeability side curtain airbag cushions having extremely low coating levels |
US20010009829A1 (en) * | 1999-06-17 | 2001-07-26 | Sollars John A. | Low permeability airbag cushionshaving film coatings of extremely low thickness |
US20010042980A1 (en) * | 1997-12-19 | 2001-11-22 | Sollars John A. | Inflatable airbag and method of making the same |
US20020122908A1 (en) * | 2000-08-30 | 2002-09-05 | Shulong Li | Abrasion and/or puncture resistant fabrics, airbag cushions, and methods |
US6455449B1 (en) * | 1999-09-03 | 2002-09-24 | Bradford Industries, Inc. | Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems |
US6458724B1 (en) * | 1999-06-07 | 2002-10-01 | Bradford Industries, Inc. | Coated multi-layered woven textile fabrics for use in air-holding vehicle restraint system |
US20020140218A1 (en) * | 2001-03-29 | 2002-10-03 | Beasley Alonzo W. | One-piece woven airbag |
US20020145276A1 (en) * | 1999-06-07 | 2002-10-10 | Veiga Manuel J. | Laminated textile fabrics for use in air holding vehicle restraint systems |
US6595244B1 (en) * | 1999-09-24 | 2003-07-22 | Milliken & Company | Inflatable fabrics having woven attachment points between fabric panels |
US6734123B2 (en) * | 1999-06-07 | 2004-05-11 | Bradford Industries, Inc. | Polyurethane coated fabrics for use in air-holding vehicle restraint systems |
US6740607B2 (en) * | 1999-06-07 | 2004-05-25 | Bradford Industries, Inc. | Substrate with stretch and heat sealing properties to make a multidirectional restraint module design |
US6753275B2 (en) * | 1999-06-07 | 2004-06-22 | Bradford Industries, Inc. | Laminated multi-layered woven textile fabrics for use in air holding vehicle restraint systems |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4489127A (en) * | 1983-07-13 | 1984-12-18 | Dow Corning Corporation | Flexible silicone resin coated fabric |
US4632860A (en) * | 1984-03-02 | 1986-12-30 | D'antonio | Waterproof breathable fabric |
JPH0692218B2 (en) * | 1987-12-11 | 1994-11-16 | 旭化成工業株式会社 | Shock absorbing bag and manufacturing method thereof |
US4876138A (en) * | 1988-03-01 | 1989-10-24 | Bailey Linda F | Synthetic leather-like material |
US4977016B1 (en) * | 1988-10-28 | 1998-03-03 | Stern & Stern Ind Inc | Low permeability fabric and method of making same |
JPH02289343A (en) * | 1989-04-28 | 1990-11-29 | Toyoda Gosei Co Ltd | Preparation of rubber-fiber composite |
JPH037337A (en) * | 1989-06-05 | 1991-01-14 | Tomoegawa Paper Co Ltd | Base cloth for air bag and air bag |
JPH0439036A (en) * | 1990-06-04 | 1992-02-10 | Ashimori Ind Co Ltd | Composite and its manufacture |
JP2932666B2 (en) * | 1990-10-22 | 1999-08-09 | タカタ株式会社 | Airbag |
EP0508372B1 (en) * | 1991-04-09 | 1996-02-28 | Shin-Etsu Chemical Co., Ltd. | Siloxane coating composition for air bag |
JPH0557735A (en) * | 1991-09-04 | 1993-03-09 | Nippon Plast Co Ltd | Air bag cover and manufacture thereof |
JP2590649B2 (en) * | 1991-10-01 | 1997-03-12 | 信越化学工業株式会社 | Airbag coating agent and airbag |
JPH0623861A (en) * | 1992-07-07 | 1994-02-01 | Dainippon Printing Co Ltd | Air bag and production thereof |
JPH07291069A (en) * | 1994-04-26 | 1995-11-07 | Takata Kk | Air bag |
US5436079A (en) * | 1994-05-06 | 1995-07-25 | E. I. Du Pont De Nemours And Company | Gasoline resistant coated multilayer plastic substrate |
WO1995030793A1 (en) * | 1994-05-06 | 1995-11-16 | W.L. Gore & Associates, Inc. | Three-dimensional seamless waterproof breathable flexible composite articles |
FR2733574B1 (en) * | 1995-04-27 | 1997-07-18 | Aerazur | MATERIAL FOR THE PRODUCTION OF INFLATABLE STRUCTURES OR FLEXIBLE VOLUMES INTENDED TO CONTAIN GASES, AND METHOD FOR MAKING SUCH STRUCTURES OR SUCH VOLUMES |
EP0761868A3 (en) * | 1995-09-06 | 1998-10-07 | Milliken Research Corporation | Coated airbag fabric |
ES2187621T3 (en) * | 1995-09-18 | 2003-06-16 | Toray Industries | BASE FABRIC FOR AIRBAG, MANUFACTURING PROCEDURE AND AIRBAG. |
DE19630854C1 (en) * | 1996-07-31 | 1997-07-24 | Daimler Benz Ag | Head-protecting curtain in motor vehicle |
JPH1044903A (en) * | 1996-08-06 | 1998-02-17 | Takata Kk | Resin air bag |
US5753751A (en) * | 1996-10-24 | 1998-05-19 | General Electric Company | Process for preparing self-curable alkenyl hydride siloxane copolymers and coating composition |
FR2757546B1 (en) * | 1996-12-20 | 1999-04-09 | Aerazur | SILICONE-COATED FABRIC FOR THE MANUFACTURE OF INFLATABLE SAFETY BAGS, PROCESS FOR OBTAINING SAME, AND INFLATABLE SAFETY BAG THUS OBTAINED |
GB9705524D0 (en) * | 1997-03-18 | 1997-05-07 | Dow Corning | Coated textile fabrics |
JP3704897B2 (en) * | 1997-07-14 | 2005-10-12 | タカタ株式会社 | Silicone-modified thermoplastic polyurethane resin airbag |
US6073961A (en) * | 1998-02-20 | 2000-06-13 | Breed Automotive Technology, Inc. | Inflatable side airbag curtain module |
US6037279A (en) * | 1998-03-11 | 2000-03-14 | Dow Corning Limited | Coated textile fabrics |
DE19824601C2 (en) | 1998-06-02 | 2003-04-03 | Breed Automotive Tech | Air bag with compensation volume |
AU4578099A (en) * | 1998-06-17 | 2000-01-05 | Milliken & Company | Polyurethane/polyacrylate dispersion coating for airbag fabrics |
US6177366B1 (en) * | 1999-06-17 | 2001-01-23 | Milliken & Company | Two-layer coating system for airbag fabrics |
-
2000
- 2000-06-15 JP JP2001505644A patent/JP2003526557A/en not_active Ceased
- 2000-06-15 CA CA 2340940 patent/CA2340940A1/en not_active Abandoned
- 2000-06-15 CN CNB00801700XA patent/CN1323831C/en not_active Expired - Fee Related
- 2000-06-15 AU AU56173/00A patent/AU5617300A/en not_active Abandoned
- 2000-06-15 MX MXPA01001742A patent/MXPA01001742A/en unknown
- 2000-06-15 BR BR0006933A patent/BR0006933A/en not_active IP Right Cessation
- 2000-06-15 WO PCT/US2000/016565 patent/WO2000078895A1/en active Application Filing
- 2000-06-15 EP EP00941467A patent/EP1115811A4/en not_active Withdrawn
-
2002
- 2002-10-08 US US10/268,536 patent/US20030040238A1/en not_active Abandoned
-
2005
- 2005-09-09 US US11/223,617 patent/US7501359B2/en not_active Expired - Fee Related
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3705645A (en) * | 1971-04-30 | 1972-12-12 | Rohm & Haas | Inflatable flexible container and fabric for making it |
US4217256A (en) * | 1978-02-10 | 1980-08-12 | Henkel Corporation | Polyamide adhesive for bonding fabrics |
US4921735A (en) * | 1987-11-03 | 1990-05-01 | Klaus Bloch | Air bag for motor vehicles |
US4994225A (en) * | 1988-06-28 | 1991-02-19 | Uniroyal Plastics Company, Inc. | Production of passive restraint device |
US5110666A (en) * | 1991-05-06 | 1992-05-05 | Reeves Brothers, Inc. | Coated fabric structure for air bag applications |
US5208097A (en) * | 1991-10-31 | 1993-05-04 | Dow Corning Toray Silicone Co., Ltd. | Base fabric for air bag |
US5399402A (en) * | 1992-01-23 | 1995-03-21 | Shin-Etsu Chemical Co., Ltd. | Air bag coating composition and air bag |
US5529837A (en) * | 1994-02-28 | 1996-06-25 | Shin-Etsu Chemical Co., Ltd. | Silicone coated base material and air bag base material |
US5421378A (en) * | 1994-03-30 | 1995-06-06 | Milliken Research Corporation | Airbag weaving on a water-jet loom using yarns |
US5503197A (en) * | 1994-03-30 | 1996-04-02 | Milliken Research Corporation | Method for producing high weave density airbag fabric on a water-jet loom using unsized yarns |
US5788270A (en) * | 1995-02-20 | 1998-08-04 | Autoliv Development Ab | Side impact and roll over inflatable head protector |
US20010042980A1 (en) * | 1997-12-19 | 2001-11-22 | Sollars John A. | Inflatable airbag and method of making the same |
US6239046B1 (en) * | 1999-06-07 | 2001-05-29 | Bradford Industries, Inc. | Polysiloxane coated fabrics for use in air bags |
US6458724B1 (en) * | 1999-06-07 | 2002-10-01 | Bradford Industries, Inc. | Coated multi-layered woven textile fabrics for use in air-holding vehicle restraint system |
US20020145276A1 (en) * | 1999-06-07 | 2002-10-10 | Veiga Manuel J. | Laminated textile fabrics for use in air holding vehicle restraint systems |
US6734123B2 (en) * | 1999-06-07 | 2004-05-11 | Bradford Industries, Inc. | Polyurethane coated fabrics for use in air-holding vehicle restraint systems |
US6740607B2 (en) * | 1999-06-07 | 2004-05-25 | Bradford Industries, Inc. | Substrate with stretch and heat sealing properties to make a multidirectional restraint module design |
US6753275B2 (en) * | 1999-06-07 | 2004-06-22 | Bradford Industries, Inc. | Laminated multi-layered woven textile fabrics for use in air holding vehicle restraint systems |
US20010005660A1 (en) * | 1999-06-17 | 2001-06-28 | Shulong Li | Low permeability side curtain airbag cushions having extremely low coating levels |
US20010009829A1 (en) * | 1999-06-17 | 2001-07-26 | Sollars John A. | Low permeability airbag cushionshaving film coatings of extremely low thickness |
US6177365B1 (en) * | 1999-06-17 | 2001-01-23 | Milliken & Company | Two-layered coating system for airbag fabrics |
US6455449B1 (en) * | 1999-09-03 | 2002-09-24 | Bradford Industries, Inc. | Coated multi-denier mixed fabrics for use in inflatable vehicle restraint systems |
US6595244B1 (en) * | 1999-09-24 | 2003-07-22 | Milliken & Company | Inflatable fabrics having woven attachment points between fabric panels |
US20020122908A1 (en) * | 2000-08-30 | 2002-09-05 | Shulong Li | Abrasion and/or puncture resistant fabrics, airbag cushions, and methods |
US20020140218A1 (en) * | 2001-03-29 | 2002-10-03 | Beasley Alonzo W. | One-piece woven airbag |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8088695B1 (en) * | 2001-12-03 | 2012-01-03 | Stuart Press | Fabric material and process for preparing same |
US20060267324A1 (en) * | 2005-05-24 | 2006-11-30 | Trw Automotive Safety Systems Gmbh | Gas bag |
US7951437B2 (en) | 2006-09-22 | 2011-05-31 | Milliken & Company | Multilayer film dry lamination of airbag fabrics |
US20110203732A1 (en) * | 2006-09-22 | 2011-08-25 | Ramesh Keshavaraj | Method of multilayer film dry lamination of airbag fabrics |
US8007630B1 (en) | 2006-09-22 | 2011-08-30 | Milliken & Company | Method of multilayer film dry lamination of airbag fabrics |
US20080075903A1 (en) * | 2006-09-22 | 2008-03-27 | Ramesh Keshavaraj | Multilayer film dry lamination of airbag fabrics |
US20100253047A1 (en) * | 2007-12-28 | 2010-10-07 | Kolon Industries, Inc. | Inflatable fabrics and an air-bag |
US20150210240A1 (en) * | 2012-08-28 | 2015-07-30 | Toray Industries, Inc. | Coated fabric and method for producing same |
US9878684B2 (en) * | 2012-08-28 | 2018-01-30 | Toray Industries, Inc. | Coated fabric and method for producing same |
EP3530802A4 (en) * | 2016-10-21 | 2020-07-01 | Toyobo Co., Ltd. | Silicone-coated fabric |
EP3530803A4 (en) * | 2016-10-21 | 2020-07-08 | Toyobo Co., Ltd. | Silicon-coated fabric |
US10760210B2 (en) | 2016-10-21 | 2020-09-01 | Toyobo Co., Ltd. | Silicone-coated fabric |
US11376827B2 (en) | 2016-10-21 | 2022-07-05 | Toyobo Co., Ltd. | Silicone-coated fabric |
Also Published As
Publication number | Publication date |
---|---|
US7501359B2 (en) | 2009-03-10 |
US20060014456A1 (en) | 2006-01-19 |
EP1115811A4 (en) | 2008-10-01 |
CA2340940A1 (en) | 2000-12-28 |
WO2000078895A1 (en) | 2000-12-28 |
MXPA01001742A (en) | 2004-12-06 |
CN1323831C (en) | 2007-07-04 |
AU5617300A (en) | 2001-01-09 |
CN1320149A (en) | 2001-10-31 |
JP2003526557A (en) | 2003-09-09 |
EP1115811A1 (en) | 2001-07-18 |
BR0006933A (en) | 2001-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7501359B2 (en) | Multi-layer coating system for jacquard woven airbags | |
US6177366B1 (en) | Two-layer coating system for airbag fabrics | |
US6177365B1 (en) | Two-layered coating system for airbag fabrics | |
US6169043B1 (en) | Polyurethane/polyacrylate dispersion coating for airbag fabrics | |
US5945186A (en) | Airbag fabric coated with a porosity blocking cross-linked elastomeric resin | |
US6444594B1 (en) | Airbag coatings providing improved thermal resistance | |
US6576574B2 (en) | Airbag coatings comprising microspheres providing improved thermal resistance | |
EP1289801A1 (en) | Low permeability airbag cushions having extremely low silicone-based coating levels | |
JP4597447B2 (en) | Low permeability airbag cushion with very low coating level | |
US6673728B1 (en) | Low permeability, high strength timing fabric for utilization within airbag inflation modules | |
MXPA00005201A (en) | Airbag fabric coated with a porosity blocking cross-linked elastomeric resin | |
MXPA00001630A (en) | Polyurethane/polyacrylate dispersion coating for airbag fabrics | |
MXPA01001745A (en) | Low permeability airbag cushions having extremely low coating levels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MILLIKEN & COMPANY, SOUTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, SHULONG;REEL/FRAME:015358/0105 Effective date: 20040519 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |