US20030032874A1 - Sensor head for use with implantable devices - Google Patents

Sensor head for use with implantable devices Download PDF

Info

Publication number
US20030032874A1
US20030032874A1 US09/916,711 US91671101A US2003032874A1 US 20030032874 A1 US20030032874 A1 US 20030032874A1 US 91671101 A US91671101 A US 91671101A US 2003032874 A1 US2003032874 A1 US 2003032874A1
Authority
US
United States
Prior art keywords
region
domain
sensor head
electrode
electrochemically reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/916,711
Inventor
Rathbun Rhodes
Mark Tapsak
James Brauker
Mark Shults
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexcom Inc
Original Assignee
Dexcom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexcom Inc filed Critical Dexcom Inc
Priority to US09/916,711 priority Critical patent/US20030032874A1/en
Assigned to DEXCOM, INC. reassignment DEXCOM, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRAUKER, JAMES H., TAPSAK, MARK A., RHODES, RATHBUN, SHULTS, MARK C.
Publication of US20030032874A1 publication Critical patent/US20030032874A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes electrical and mechanical details of in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply

Abstract

The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to novel sensor heads utilized with implantable devices, devices including these sensor heads and methods for determining analyte levels using these implantable devices. More particularly, the invention relates to sensor heads, implantable devices including these sensor heads and methods for monitoring glucose levels in a biological fluid using these devices. [0001]
  • BACKGROUND OF THE INVENTION
  • Amperometric electrochemical sensors require a counter electrode to balance the current generated by the species being measured at the working electrode. In the case of a glucose oxidase based glucose sensor, the species being measured at the working electrode is H[0002] 2O2. Glucose oxidase catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction:
  • Glucose+O2→Gluconate+H2O2
  • Because for each glucose molecule metabolized, there is a proportional change in the product H[0003] 2O2, one can monitor the change in H2O2 to determine glucose concentration. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2, or other reducible species at the counter electrode. In vivo glucose concentration may vary from about one hundred times or more that of the oxygen concentration. Consequently, oxygen becomes a limiting reactant in the electrochemical reaction and when insufficient oxygen is provided to the sensor, the sensor will be unable to accurately measure glucose concentration. Those skilled in the art have come to interpret oxygen limitations resulting in depressed function as being a problem of availability of oxygen to the enzyme.
  • As shown in FIG. 1, the sensor head [0004] 10 includes a working electrode 21 (anode), counter electrode 22 (cathode), and reference electrode 20 which are affixed to the head by both brazing 26 the electrode metal to the ceramic and potting with epoxy 28. The working electrode 21 (anode) and counter-electrode 22 (cathode) of a glucose oxidase-based glucose sensor head 10 require oxygen in different capacities. Prior art teaches an enzyme-containing membrane that resides above an amperometric electrochemical sensor. In FIG. 1, region 32 includes an immobilized enzyme, i.e. glucose oxidase. Within the enzyme layer above the working electrode 21, oxygen is required for the production of H2O2 from glucose. The H2O2 produced from the glucose oxidase reaction further reacts at surface 21 a of working electrode 21 and produces two electrons. The products of this reaction are two protons (2H+), two electrons (2e), and one oxygen molecule (O2) (Fraser, D. M. “An Introduction to In Vivo Biosensing: Progress and problems.” In “Biosensors and the Body,” D. M. Fraser, ed., 1997, pp. 1-56 John Wiley and Sons, New York). In theory, the oxygen concentration near the working electrode 21, which is consumed during the glucose oxidase reaction, is replenished by the second reaction at the working electrode. Therefore, the net consumption of oxygen is zero. In practice, neither all of the H2O2 produced by the enzyme diffuses to the working electrode surface nor does all of the oxygen produced at the electrode diffuse to the enzyme domain.
  • With further reference to FIG. 1, the counter electrode [0005] 22 utilizes oxygen as an electron acceptor. The most likely reducible species for this system are oxygen or enzyme generated peroxide (Fraser, D. M. supra). There are two main pathways by which oxygen may be consumed at the counter electrode 22. These are a four-electron pathway to produce hydroxide and a two-electron pathway to produce hydrogen peroxide. The two-electron pathway is shown in FIG. 1. Oxygen is further consumed above the counter electrode by the glucose oxidase in region 32. Due to the oxygen consumption by both the enzyme and the counter electrode, there is a net consumption of oxygen at the surface 22 a of the counter electrode. Theoretically, in the domain of the working electrode there is significantly less net loss of oxygen than in the region of the counter electrode. In addition, there is a close correlation between the ability of the counter electrode to maintain current balance and sensor function. Taken together, it appears that counter electrode function becomes limited before the enzyme reaction becomes limited when oxygen concentration is lowered.
  • Those practicing in the field of implantable glucose oxidase sensors have focused on improving sensor function by increasing the local concentration of oxygen in the region of the working electrode. (Fraser, D. M. supra). [0006]
  • We have observed that in some cases, loss of glucose oxidase sensor function may not be due to a limitation of oxygen in the enzyme layer near the working electrode, but may instead be due to a limitation of oxygen at the counter electrode. In the presence of increasing glucose concentrations, a higher peroxide concentration results, thereby increasing the current at the working electrode. When this occurs, the counter electrode limitation begins to manifest itself as this electrode moves to increasingly negative voltages in the search for reducible species. When a sufficient supply of reducible species, such as oxygen, are not available, the counter electrode voltage reaches a circuitry limit of −0.6V resulting in compromised sensor function (see FIG. 3). [0007]
  • FIG. 3 shows simultaneous measurement of counter-electrode voltage and sensor output to glucose levels from a glucose sensor implanted subcutaneously in a canine host. It can be observed that as glucose levels increase, the counter electrode voltage decreases. When the counter electrode voltage reaches −0.6V, the signal to noise ratio increases significantly. This reduces the accuracy of the device. FIG. 4 shows a further example of another glucose sensor in which the counter-electrode reaches the circuitry limit. Again, once the counter electrode reaches −0.6V, the sensitivity and/or signal to noise ratio of the device is compromised. In both of these examples, glucose levels reached nearly 300 mg/dl. However, in FIG. 3 the sensor showed a greater than three-fold higher current output than the sensor in FIG. 4. These data suggest that there may be a limitation of reducible species at the counter electrode, which may limit the sensitivity of the device as the glucose levels increase. In contrast, FIG. 5 shows a glucose sensor in which the counter electrode voltage did not reach −0.6V. In FIG. 5 it can be observed that the sensor was able to maintain a current balance between the working and counter electrodes, thereby enabling accurate measurements throughout the course of the experiment. The results shown in FIGS. 3, 4 and [0008] 5 led the present inventors to postulate that by keeping the counter electrode from reaching the circuitry limit, one could maintain sensitivity and accuracy of the device.
  • Two approaches have been utilized by others to relieve the counter electrode limitation described above. The first approach involves the widening of the potential range over which the counter electrode can move in the negative direction to avoid reaching circuitry limitations. Unfortunately, this approach increases undesirable products that are produced at lower potentials. One such product, hydrogen, may form at the counter electrode, which may then diffuse back to the working electrode. This may contribute to additional current resulting in erroneously high glucose concentration readings. Additionally, at these increasingly negative potentials, the probability of passivating or poisoning the counter electrode greatly increases. This effectively reduces the counter electrode surface area requiring a higher current density at the remaining area to maintain current balance. Furthermore, increased current load increases the negative potentials eventually resulting in electrode failure. [0009]
  • The second approach is utilizing the metal case of the device as a counter electrode (see U.S. Pat. No. 4,671,288, Gough or U.S. Pat. No. 5,914,026, Blubaugh). This provides an initial excess in surface area which is expected to serve the current balancing needs of the device over its lifetime. However, when the counter electrode reaction is a reduction reaction, as in Blubaugh, the normally present metal oxide layer will be reduced to bare metal over time leaving the surface subject to corrosion, poisoning, and eventual cascade failure. This problem is magnified when considering the various constituents of the body fluid that the metal casing is exposed to during in vivo use. To date, there has been no demonstration of long-term performance of such a device with this counter electrode geometry. [0010]
  • Consequently, there is a need for a sensor that will provide accurate analyte measurements, that reduces the potential for cascade failure due to increasing negative potentials, corrosion and poisoning, and that will function effectively and efficiently in low oxygen concentration environments. [0011]
  • SUMMARY OF THE INVENTION
  • In one aspect of the present invention, a sensor head for use in a device that measures the concentration of an analyte in a biological fluid is provided that includes a nonconductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, and further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. [0012]
  • In another aspect of the present invention, a sensor head for use in an implantable analyte measuring device is provided which includes the same sensor head components as those described above. [0013]
  • The sensor heads of the present invention include a multi-region membrane that controls the number of species that are able to reach the surface of the electrodes. In particular, such a membrane allows the passage of desired substrate molecules (e.g. oxygen and glucose) and rejects other larger molecules that may interfere with accurate detection of an analyte. The sensor heads of the present invention also provide a larger counter electrode reactive surface that balances the current between the working and counter electrodes, thereby minimizing negative potential extremes that may interfere with accurate analyte detection. [0014]
  • In another aspect of the present invention, an implantable device for measuring an analyte in a biological fluid is provided including at least one of the sensor heads described above. In still another aspect of the present invention, a method of monitoring glucose levels is disclosed which includes the steps of providing a host, and an implantable device as provided above and implanting the device in the host. [0015]
  • Further encompassed by the invention is a method of measuring glucose in a biological fluid including the steps of providing a host and a implantable device described above, which includes a sensor head capable of accurate continuous glucose sensing; and implanting the device in the host. [0016]
  • The sensor head, membrane architectures, devices and methods of the present invention allow for the collection of continuous information regarding desired analyte levels (e.g. glucose). Such continuous information enables the determination of trends in glucose levels, which can be extremely important in the management of diabetic patients. [0017]
  • Definitions [0018]
  • In order to facilitate an understanding of the present invention, a number of terms are defined below. [0019]
  • The term “sensor head” refers to the region of a monitoring device responsible for the detection of a particular analyte. The sensor head generally comprises a non-conductive body, a working electrode (anode), a reference electrode and a counter electrode (cathode) passing through and secured within the body forming an electrochemically reactive surface at one location on the body and an electronic connective means at another location on the body, and a multi-region membrane affixed to the body and covering the electrochemically reactive surface. The counter electrode has a greater electrochemically reactive surface area than the working electrode. During general operation of the sensor a biological sample (e.g., blood or interstitial fluid) or a portion thereof contacts (directly or after passage through one or more membranes or domains) an enzyme (e.g., glucose oxidase); the reaction of the biological sample (or portion thereof) results in the formation of reaction products that allow a determination of the analyte (e.g. glucose) level in the biological sample. In preferred embodiments of the present invention, the multi-region membrane further comprises an enzyme domain, and an electrolyte phase (i.e., a free-flowing liquid phase comprising an electrolyte-containing fluid described further below). [0020]
  • The term “analyte” refers to a substance or chemical constituent in a biological fluid (e.g., blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. A preferred analyte for measurement by the sensor heads, devices and methods of the present invention is glucose. [0021]
  • The term “electrochemically reactive surface” refers to the surface of an electrode where an electrochemical reaction takes place. In the case of the working electrode, the hydrogen peroxide produced by the enzyme catalyzed reaction of the analyte being detected reacts creating a measurable electronic current (e.g. detection of glucose analyte utilizing glucose oxidase produces H[0022] 2O2 peroxide as a by product, H2O2 reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2) which produces the electronic current being detected). In the case of the counter electrode, a reducible species, e.g. O2 is reduced at the electrode surface in order to balance the current being generated by the working electrode.
  • The term “electronic connection” refers to any electronic connection known to those in the art that may be utilized to interface the sensor head electrodes with the electronic circuitry of a device such as mechanical (e.g., pin and socket) or soldered. [0023]
  • The term “domain” refers to regions of the membrane of the present invention that may be layers, uniform or non-uniform gradients (e.g. anisotropic) or provided as portions of the membrane. [0024]
  • The term “multi-region membrane” refers to a permeable membrane that may be comprised of two or more domains and constructed of biomaterials of a few microns thickness or more which are permeable to oxygen and may or may not be permeable to glucose. One of the the membranes may be placed over the sensor body to keep host cells (e.g., macrophages) from gaining proximity to, and thereby damaging, the enzyme membrane or forming a barrier cell layer and interfering with the transport of analyte across the tissue-device interface. [0025]
  • The phrase “distant from” refers to the spatial relationship between various elements in comparison to a particular point of reference. For example, some embodiments of a biological fluid measuring device comprise a multi-region membrane that may be comprised of a number of domains. If the electrodes of the sensor head are deemed to be the point of reference, and one of the multi-region membrane domains is positioned farther from the electrodes, than that domain is distant from the electrodes. [0026]
  • The term “oxygen antenna domain” and the like refers to a domain composed of a material that has higher oxygen solubility than aqueous media so that it concentrates oxygen from the biological fluid surrounding the biointerface membrane. The domain can then act as an oxygen reservoir during times of minimal oxygen need and has the capacity to provide on demand a higher oxygen gradient to facilitate oxygen transport across the membrane. This enhances function in the enzyme reaction domain and at the counter electrode surface when glucose conversion to hydrogen peroxide in the enzyme domain consumes oxygen from the surrounding domains. Thus, this ability of the oxygen antenna domain to apply a higher flux of oxygen to critical domains when needed improves overall sensor function. [0027]
  • The term “solid portions” and the like refer to a material having a structure that may or may not have an open-cell configuration but in either case prohibits whole cells from traveling through or residing within the material. [0028]
  • The term “substantial number” refers to the number of cavities or solid portions having a particular size within a domain in which greater than 50 percent of all cavities or solid portions are of the specified size, preferably greater than 75 percent and most preferably greater than 90 percent of the cavities or solid portions have the specified size. [0029]
  • The term “co-continuous” and the like refers to a solid portion wherein an unbroken curved line in three dimensions exists between any two points of the solid portion. [0030]
  • The term “host” refers to both humans and animals. [0031]
  • The term “accurately” means, for example, 90% of measured glucose values are within the “A” and “B” region of a standard Clarke error grid when the sensor measurements are compared to a standard reference measurement. It is understood that like any analytical device, calibration, calibration validation and recalibration are required for the most accurate operation of the device. [0032]
  • The phrase “continuous glucose sensing” refers to the period in which monitoring of plasma glucose concentration is continuously performed, for example, about every 10 minutes. [0033]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 Illustration of thermodynamically favored reactions at the working electrode and counter electrode at the desired voltage potentials. [0034]
  • FIG. 2A depicts a cross-sectional exploded view of a sensor head of the present invention wherein the multi-region membrane comprises three regions. [0035]
  • FIG. 2B depicts a cross-sectional exploded view of a sensor head of the present invention wherein a portion of the second membrane region does not cover the working electrode. [0036]
  • FIG. 2C depicts a cross-sectional exploded view of a sensor head of the present invention which includes two distinct regions, wherein the region adjacent the electrochemically reactive surfaces includes a portion positioned over the counter electrode which corresponds to a silicone domain. [0037]
  • FIG. 2D depicts a cross-sectional exploded view of a sensor head of the present invention wherein an active enzyme of the immobilized enzyme domain is positioned only over the working electrode. [0038]
  • FIG. 2E depicts a cross-sectional exploded view of a sensor head of the present invention wherein the enzyme positioned over the counter electrode has been inactivated. [0039]
  • FIG. 2F depicts a cross-sectional exploded view of a sensor head of the present invention wherein the membrane region containing immobilized enzyme is positioned only over the working electrode. [0040]
  • FIG. 3 Illustration of an implantable glucose sensor's ability to measure glucose concentration during an infusion study in a canine when the counter electrode voltage drops to the electronic circuitry limit at approximately 0.75 hours wherein the sensor current output reaches 2.50 nA. [0041]
  • FIG. 4 Illustration of an implantable glucose sensor's ability to measure glucose concentration during an infusion study in a canine when the counter electrode voltage drops to the electronic circuitry limit after 0.5 hours wherein the sensor current output reaches 0.50 nA. [0042]
  • FIG. 5 Illustration of an implantable glucose sensor's ability to measure glucose concentration during an infusion study in a canine when the counter electrode voltage is maintained above the electronic circuitry limit. [0043]
  • FIG. 6A shows a schematic representation of a cylindrical analyte measuring device including a sensor head according to the present invention. [0044]
  • FIG. 6B is an exploded view of the sensor head of the device shown in FIG. 6A. [0045]
  • FIG. 7 Graphical representation of the function of a device of the present invention utilizing the multi-region membrane architecture of FIG. 2B in vitro at 400 mg/dL glucose. [0046]
  • FIG. 8 depicts a cross-sectional exploded view of the electrode and membrane regions of a prior sensor device where the electrochemical reactive surface of the counter electrode is substantially equal to the surface area of the working electrode. [0047]
  • FIG. 9 Graphical representation of the counter electrode voltage as a function of oxygen concentration at 400 mg/dL glucose for sensor devices including the membrane shown in FIG. 8.[0048]
  • DETILED DESCRIPTION OF THE INVENTION
  • In a preferred embodiment, the sensor heads, devices and methods of the present invention may be used to determine the level of glucose or other analytes in a host. The level of glucose is a particularly important measurement for individuals having diabetes in that effective treatment depends on the accuracy of this measurement. [0049]
  • The present invention increases the effectiveness of counter electrode function by a method that does not depend on increasing the local concentration of oxygen. In a preferred embodiment, the counter electrode has an electrochemical reactive surface area greater than twice the surface area of the working electrode thereby substantially increasing the electrodes ability to utilize oxygen as a substrate. Further enhancement of the counter electrode's activity may be achieved if the electrode were made of gold. In a second preferred embodiment, the counter electrode has a textured surface, with surface topography that increases the surface area of the electrode while the diameter of the electrode remains constant. In a third preferred embodiment, the proximity of the glucose oxidase enzyme to the counter electrode may be decreased. Since the enzyme depletes oxygen locally, the counter electrode would best be situated at a location distant from the enzyme. This could be achieved by depleting the enzyme from or inactivating the enzyme located in the region near and over the counter electrode by methods known to those skilled in the art such as laser ablation, or chemical ablation. Alternatively, the membrane could be covered with an additional domain where glucose is selectively blocked from the area over the counter electrode. [0050]
  • In particular, the present invention reduces the potential for electrode poisoning by positioning all electrodes underneath a multi-region membrane so that there is control of the species reaching the electrode surfaces. These membranes allow passage of dissolved oxygen to support the counter electrode reactions at reasonable negative potentials while rejecting larger molecules which when reduced would coat the surface of the counter electrode eventually leading to cascade failure. The positioning of the counter electrode underneath the membrane assures that all currents are passing through the same conductive media, thereby reducing voltage losses due to membrane or solution resistance. In addition, the counter electrode will be able to collect enough species for the balancing current while minimizing the need to move towards negative potential extremes. [0051]
  • Although the description that follows is primarily directed at glucose monitoring sensor heads, devices and methods for their use, the sensor heads, devices and methods of the present invention are not limited to glucose measurement. Rather, the devices and methods may be applied to detect and quantitate other analytes present in biological fluids (including, but not limited to, amino acids and lactate), especially those analytes that are substrates for oxidase enzymes [see, e.g., U.S. Pat. No. 4,703,756 to Gough et al., hereby incorporated by reference]. [0052]
  • I. Nature of the Foreign Body Capsule [0053]
  • Devices and probes that are implanted into subcutaneous tissue will almost always elicit a foreign body capsule (FBC) as part of the body's response to the introduction of a foreign material. Therefore, implantation of a glucose sensor results in an acute inflammatory reaction followed by building of fibrotic tissue. Ultimately, a mature FBC comprising primarily a vascular fibrous tissue forms around the device (Shanker and Greisler, Inflammation and Biomaterials in Greco R S, ed. Implantation Biology: The Host Response and Biomedical Devices, pp68-80, CRC Press (1994)). [0054]
  • In general, the formation of a FBC has precluded the collection of reliable, continuous information, reportedly because of poor vascularization (Updike, S. J. et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from inside a Subcutaneous Foreign Body Capsule (FBC)” in “Biosensors and the Body,” D. M. Fraser, ed., 1997, pp. 117-38, John Wiley and Sons, New York). Thus, those skilled in the art have previously attempted to minimize FBC formation by, for example, using a short-lived needle geometry or sensor coatings to minimize the foreign body. [0055]
  • In contrast to the prior art, the teachings of the present invention recognize that FBC formation is the dominant event surrounding long-term implantation of any sensor and must be managed to support, rather than hinder or block, sensor performance. It has been observed that during the early periods following implantation of an analyte sensing device, particularly a glucose sensing device, that glucose sensors function well. However, after a few days to two or more weeks of implantation, these device lose their function. [0056]
  • We have observed that this lack of sensor function is most likely due to cells (barrier cells) that associate with the outer surface of the device and physically block the transport of glucose into the device (i.e. form a a barrier cell layer). Increased vascularization would not be expected to overcome this blockage. The present invention contemplates the use of particular biointerface membrane architectures that interfere with barrier cell layer formation on the membrane's surface. The present invention also contemplates the use of these membranes with a variety of implantable devices (e.g. analyte measuring devices particularly glucose measuring devices). [0057]
  • II. The Sensor Head [0058]
  • In one embodiment of the sensor head of the invention, the body is made of a non-conductive material such as ceramic, glass, or polymer. [0059]
  • In a preferred embodiment, the sensor head interface region may include several different layers and/or membranes that cover and protect the electrodes of an implantable analyte-measuring device. The characteristics of these layers and/or membranes are now discussed in more detail. The layers and/or membranes prevent direct contact of the biological fluid sample with the electrodes, while permitting selected substances (e.g., analytes) of the fluid to pass therethrough for reaction in an enzyme rich domain with subsequent electrochemical reaction of formed products at the electrodes. [0060]
  • It is well known in the art that electrode surfaces exposed to a wide range of biological molecules may suffer poisoning of catalytic activity and possible corrosion that could result in failure. However, utilizing the unique multi-region membrane architectures of the present invention, the active electrochemical surfaces of the sensor electrodes are preserved, retaining activity for extended periods of time in vivo. By limiting access to the electrochemically reactive surface of the electrodes to a small number of molecular species such as, for example, molecules having a molecular weight of about 34 Daltons (the molecular weight of peroxide) or less, only a small subset of the many molecular species present in biological fluids are permitted to contact the sensor. Use of such membranes has enabled sustained function of devices for over one year in vivo. [0061]
  • A. Multi-Region Membrane [0062]
  • The multi-region membrane is constructed of two or more regions. The multi-region membrane may be provided in a number of different architectures. In one architecture, the multi-region membrane includes a first region distant from the electrochemically reactive surfaces, a second region less distant from the electrochemically reactive surfaces and a third region adjacent to the electrochemically reactive surfaces. The first region includes a cell disruptive domain distant from the electrochemically reactive surfaces and a cell impermeable domain less distant from the electrochemically reactive surfaces. The second region is a glucose exclusion domain and the third region includes a resistance domain distant from the electrochemically reactive surfaces, an immobilized enzyme domain less distant from the electrochemically reactive surfaces, an interference domain less distant from the electrochemically reactive surfaces than the immobilized enzyme domain and a hydrogel domain adjacent to the electrochemically reactive surfaces. [0063]
  • In another architecture, the multi-region membrane includes a first region distant from the electrochemically reactive surfaces and a further region less distant from the electrochemically reactive surfaces. The first region includes a cell disruptive domain and a cell impermeable domain as described above. The “further region” includes a resistance domain, immobilized enzyme domain, interference domain, and hydrogel domain and serves as the equivalent of the “third region” described above. In certain embodiments of the sensor head, the multi-region membrane further includes an oxygen antenna domain. Each of these domains will now be described in further detail. [0064]
  • i. Cell Disruptive Domain [0065]
  • The domain of the multi-region membrane positioned most distal to the electrochemically reactive surfaces corresponds to the cell disruptive domain. This domain includes a material that supports tissue in-growth and may be vascularized. The cell disruptive domain prevents formation of the barrier cell layer on the surface of the membrane, which as described above, blocks the transport of glucose into the sensor device. A useful cell disruptive domain is described in a U.S. application entitled “Membrane for use with Implantable Devices” which was filed on the same day as the present application. The cell disruptive domain may be composed of an open-cell configuration having cavities and solid portions. Cells may enter into the cavities, however, they can not travel through or wholly exist within the solid portions. The cavities allow most substances to pass through, including, e.g., macrophages. [0066]
  • The open-cell configuration yields a co-continuous solid domain that contains greater than one cavity in three dimensions substantially throughout the entirety of the membrane. In addition, the cavities and cavity interconnections may be formed in layers having different cavity dimensions. [0067]
  • A linear line can be used to define a dimension across a cavity or solid portion the length of which is the distance between two points lying at the interface of the cavity and solid portion. In this way, a substantial number of the cavities are not less than 20 microns in the shortest dimension and not more than 1000 microns in the longest dimension. Preferably, a substantial number of the cavities are not less than 25 microns in the shortest dimension and not more than 500 microns in the longest dimension. [0068]
  • Furthermore, the solid portion has not less than 5 microns in a substantial number of the shortest dimensions and not more than 2000 microns in a substantial number of the longest dimensions. Preferably, the solid portion is not less than 10 microns in a substantial number of the shortest dimensions and not more than 1000 microns in a substantial number of the longest dimensions and most preferably, not less than 10 microns in a substantial number of the shortest dimensions and not more than 400 microns in a substantial number of the longest dimensions. [0069]
  • The solid portion may be made of polytetrafluoroethylene or polyethylene-cotetrafluoroethylene, for example. Preferably, the solid portion includes polyurethanes or block copolymers and, most preferably, includes silicone. [0070]
  • When non-woven fibers are utilized as the solid portion of the present invention, the non-woven fibers may be greater than 5 microns in the shortest dimension. Preferably, the non-woven fibers are about 10 microns in the shortest dimension and most preferably, the non-woven fibers are greater than or equal to 10 microns in the shortest dimension. [0071]
  • The non-woven fibers may be constructed of polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyurethanes, cellulosic polymers, polysulfones, and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers (block copolymers are discussed in U.S. Pat. Nos. 4,803,243 and 4,686,044, hereby incorporated by reference). Preferably, the non-woven fibers are comprised of polyolefins or polyester or polycarbonates or polytetrafluoroethylene. [0072]
  • A subset of the cell disruptive domain is the oxygen antenna domain. This domain can act as an oxygen reservoir during times of minimal oxygen need and has the capacity to provide on demand a higher oxygen gradient to facilitate oxygen transport across the membrane. This domain may be composed of a material such as silicone, that has higher oxygen solubility than aqueous media so that it concentrates oxygen from the biological fluid surrounding the biointerface membrane. This enhances function in the enzyme reaction domain and at the counter electrode surface when glucose conversion to hydrogen peroxide in the enzyme domain consumes oxygen from the surrounding domains. Thus, this ability of the oxygen antenna domain to apply a higher flux of oxygen to critical domains when needed improves overall sensor function. Preferably, this domain is composed of silicone and has a thickness of about 100 microns [0073]
  • The thickness of the cell disruptive domain is usually not less than about 20 microns and not more than about 2000 microns. [0074]
  • ii. Cell Impermeable Domain [0075]
  • The cell impermeable of the first region is positioned less distal to the electrochemically reactive surfaces than the cell disruptive domain of the same region. This domain is impermeable to host cells, such as macrophages. Cell impermeable domains are described in U.S. Pat. No. 6,001,067, herein incorporated by reference, and in copending, commonly owned U.S. application entitled “Membrane for use with Implantable Devices”, Ser. No. ______, filed on even date herewith. The inflammatory response that initiates and sustains a FBC is associated with disadvantages in the practice of sensing analytes. Inflammation is associated with invasion of inflammatory response cells (e.g. macrophages) which have the ability to overgrow at the interface and form barrier cell layers, which may block transport of glucose across the biointerface membrane. These inflammatory cells may also biodegrade many artificial biomaterials (some of which were, until recently, considered nonbiodegradable). When activated by a foreign body, tissue macrophages degranulate, releasing from their cytoplasmic myeloperoxidase system hypochlorite (bleach) and other oxidative species. Hypochlorite and other oxidative species are known to break down a variety of polymers, including ether based polyurethanes, by a phenomenon referred to as environmental stress cracking. Alternatively, polycarbonate based polyurethanes are believed to be resistant to environmental stress cracking and have been termed biodurable. In addition, because hypochlorite and other oxidizing species are short-lived chemical species in vivo, biodegradation will not occur if macrophages are kept a sufficient distance from the enzyme active membrane. [0076]
  • The present invention contemplates the use of cell impermeable biomaterials of a few microns thickness or more (i.e., a cell impermeable domain) in most of its membrane architectures. This domain of the biointerface membrane is permeable to oxygen and may or may not be permeable to glucose and is constructed of biodurable materials (e.g. for period of several years in vivo) that are impermeable by host cells (e.g. macrophages) such as for example polymer blends of polycarbonate based polyurethane and PVP. [0077]
  • The thickness of the cell impermeable domain is not less than about 10 microns and not more than about 100 microns. [0078]
  • iii. Glucose Exclusion Domain [0079]
  • The glucose exclusion domain includes a thin, hydrophobic membrane that is non-swellable and blocks diffusion of glucose while being permeable to oxygen. The glucose exclusion domain serves to allow analytes and other substances that are to be measured or utilized by the sensor to pass through, while preventing passage of other substances. Preferably, the glucose exclusion domain is constructed of a material such as, for example, silicone. [0080]
  • The glucose exclusion domain has a preferred thickness not less than about 130 microns, more preferably not less than about 5 and not more than about 75 microns and most preferably not less than 15 microns and not more than about 50 microns. [0081]
  • iv. Resistance Domain [0082]
  • In one embodiment of the sensor head the “third region” or “further region” of the multi-region membrane includes a resistance domain. When present, the resistance domain is located more distal to the electrochemically reactive surfaces relative to other domains in this region. As described in further detail below, the resistance domain controls the flux of oxygen and glucose to the underlying enzyme domain. There is a molar excess of glucose relative to the amount of oxygen in samples of blood. Indeed, for every free oxygen molecule in extra-cellular fluid, there are typically more than 100 glucose molecules present [Updike et al., Diabetes Care 5:207-21(1982)]. However, an immobilized enzyme-based sensor using oxygen (O[0083] 2) as cofactor must be supplied with oxygen in non-rate-limiting excess in order to respond linearly to changes in glucose concentration, while not responding to changes in oxygen tension. More specifically, when a glucose-monitoring reaction is oxygen-limited, linearity is not achieved above minimal concentrations of glucose. Without a semipermeable membrane over the enzyme domain, linear response to glucose levels can be obtained only up to about 40 mg/dL; however, in a clinical setting, linear response to glucose levels are desirable up to at least about 500 mg/dL.
  • The resistance domain includes a semipermeable membrane that controls the flux of oxygen and glucose to the underlying enzyme domain (i.e., limits the flux of glucose), rendering the necessary supply of oxygen in non-rate-limiting excess. As a result, the upper limit of linearity of glucose measurement is extended to a much higher value than that which could be achieved without the resistance domain. The devices of the present invention contemplate resistance domains including polymer membranes with oxygen-to-glucose permeability ratios of approximately 200: 1; as a result, one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix [Rhodes et al., Anal. Chem., 66:1520-1529 (1994)]. [0084]
  • In preferred embodiments, the resistance domain is constructed of a polyurethane urea/polyurethane-block-polyethylene glycol blend and has a thickness of not more than about 45 microns, more preferably not less than about 15 microns, and not more than about 40 microns and, most preferably, not less than about 20 microns, and not more than about 35 microns. [0085]
  • v. Immobilized Enzyme Domain [0086]
  • When the resistance domain is combined with the cell-impermeable domain, it is the immobilized enzyme domain which corresponds to the outermost domain of the “third region” or “further region”, i.e. it is located more distal to the electrochemically reactive surfaces as compared to the other domains in this region. In one embodiment, the enzyme domain includes glucose oxidase. In addition to glucose oxidase, the present invention contemplates the use of a domain impregnated with other oxidases, e.g., galactose oxidase or uricase, For an enzyme-based electrochemical glucose sensor to perform well, the sensor's response must neither be limited by enzyme activity nor cofactor concentration. Because enzymes, including glucose oxidase, are subject to deactivation as a function of ambient conditions, this behavior needs to be accounted for in constructing sensors for long-term use. [0087]
  • Preferably, the domain is constructed of aqueous dispersions of colloidal polyurethane polymers including the enzyme. Preferably, the coating has a thickness of not less than about 2.5 microns and not more than about 12.5 microns, preferably about 6.0 microns. [0088]
  • vi. Interference Domain [0089]
  • The interference domain in the “third region” or “further region” is located less distant from the electrochemically reactive surfaces than the immobilized enzyme domain in this same region. It includes a thin membrane that can limit diffusion of molecular weight species greater than 34 kD. The interference domain serves to allow analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances, including potentially interfering substances. The interference domain is preferably constructed of a polyurethane. [0090]
  • The interference domain has a preferred thickness of not more than about 5 microns, more preferably not less than about 0.1 microns, and not more than about 5 microns and, most preferably, not less than about 0.5 microns, and not more than about 3 microns. [0091]
  • vii. Hydrogel Domain [0092]
  • The hydrogel domain is located adjacent to the electrochemically reactive surfaces. To ensure electrochemical reaction, the hydrogel domain includes a semipermeable coating that maintains hydrophilicity at the electrode region of the sensor interface. The hydrogel domain enhances the stability of the interference domain of the present invention by protecting and supporting the membrane that makes up the interference domain. Furthermore, the hydrogel domain assists in stabilizing operation of the device by overcoming electrode start-up problems and drifting problems caused by inadequate electrolyte. The buffered electrolyte solution contained in the hydrogel domain also protects against pH-mediated damage that may result from the formation of a large pH gradient between the hydrophobic interference domain and the electrode (or electrodes) due to the electrochemical activity of the electrode(s). [0093]
  • Preferably, the hydrogel domain includes a flexible, water-swellable, substantially solid gel-like film having a “dry film” thickness of not less than about 2.5 microns and not more than about 12.5 microns; preferably, the thickness is about 6.0 microns. “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation onto the surface of the membrane by standard coating techniques [0094]
  • Suitable hydrogel domains are formed of a curable copolymer of a urethane polymer and a hydrophilic film-forming polymer. Particularly preferred coatings are formed of a polyurethane polymer having anionic carboxylate functional groups and non-ionic hydrophilic polyether segments, which is crosslinked in the present of polyvinylpyrrolidone and cured at a moderate temperature of about 50° C. [0095]
  • B. Electrolyte Phase [0096]
  • The electrolyte phase is a free-fluid phase including a solution containing at least one compound, usually a soluble chloride salt, that conducts electric current. The electrolyte phase flows over the electrodes and is in contact with the hydrogel domain. The devices of the present invention contemplate the use of any suitable electrolyte solution, including standard, commercially available solutions. [0097]
  • Generally speaking, the electrolyte phase should have the same or less osmotic pressure than the sample being analyzed. In preferred embodiments of the present invention, the electrolyte phase includes normal saline. [0098]
  • C. Membrane Architectures [0099]
  • Prior art teaches that an enzyme containing membrane that resides above an amperometric electrochemical sensor can possess the same architecture throughout the electrode surfaces. However, the function of converting glucose into hydrogen peroxide by glucose oxidase may only by necessary above the working electrode. In fact, it may be beneficial to limit the conversion of glucose into hydrogen peroxide above the counter electrode. Therefore, the present invention contemplates a number of membrane architectures that include a multi-region membrane wherein the regions include at least one domain. [0100]
  • Referring now to FIG. 2A, which shows one desired embodiment of the general architecture of a three region membrane, first region [0101] 33 is permeable to oxygen and glucose and includes a cell disruptive domain distant from the electrodes and a cell impermeable domain less distant from the electrodes. The second region 31 is permeable to oxygen and includes a glucose exclusion domain and region three 32 includes a resistance domain, distant from the electrochemically reactive surfaces, an immobilized enzyme domain less distant from the electrochemically reactive surfaces, an interference domain less distant from the electrochemically reactive surfaces than the immobilized enzyme and a hydrogel domain adjacent to the electrochemically reactive surfaces. The multi-region membrane is positioned over the sensor interface 30 of the non-conductive body 10, covering the working electrode 21, the reference electrode 20 and the counter electrode 22. The electrodes are brazed to the sensor head and back filled with epoxy 28.
  • In FIG. 2B, the glucose exclusion domain has been positioned over the electrochemically reactive surfaces such that it does not cover the working electrode [0102] 21. To illustrate this, a hole 35 has been created in the second region 31 and positioned directly above the working electrode 21. In this way, glucose is blocked from entering the underlying enzyme membrane above the counter electrode 22 and O2 is conserved above the counter electrode because it is not being consumed by the glucose oxidation reaction. The glucose-blocking domain is made of a material that allows sufficient O2 to pass to the counter electrode. The glucose-blocking domain may be made of a variety of materials such as silicone or silicone containing copolymers. Preferably, the glucose-blocking domain is made of silicone.
  • In FIG. 2C, the multi-region membrane is shown as being constructed of two regions: a first region [0103] 33 which includes a cell disruptive domain and a cell impermeable domain; and a further region 32. Region 32 is defined herein as including an enzyme immobilized domain, interference domain, and hydrogel domain and may also include a resistance domain. Region 32 is referred to as the “third region” in embodiments where the multi-region membrane includes three regions. In the embodiment shown, a silicone domain plug 36 positioned over the counter electrode 22 in order to eliminate the consumption of O2 above the counter electrode by the oxidation of glucose with glucose oxidase. The enzyme immobilized domain can be fabricated as previously described, then a hole punched into the domain. The silicone domain plug 36 may be cut to fit the hole, and then adhered into place, for example, with silicone adhesive (e.g., MED-1511, NuSil, Carpinteria, Calif.).
  • In FIG. 2D, the immobilized enzyme domain of the multi-region membrane can be fabricated such that active enzyme [0104] 37 is positioned only above the working electrode 21. In this architecture, the immobilized enzyme domain may be prepared so that the glucose oxidase only exists above the working electrode 21. During the preparation of the multi-region membrane, the immobilized enzyme domain coating solution can be applied as a circular region similar to the diameter of the working electrode. This fabrication can be accomplished in a variety of ways such as screen printing or pad printing. Preferably, the enzyme domain is pad printed during the enzyme membrane fabrication with equipment as available from Pad Print Machinery of Vermont (Manchester, Vt.). These architectures eliminate the consumption of O2 above the counter electrode 22 by the oxidation of glucose with glucose oxidase.
  • In FIG. 2E, the immobilized enzyme of the multi-region membrane in region [0105] 32 may be deactivated 38 except for the area covering the working electrode 21. In some of the previous membrane architectures, the glucose oxidase is distributed homogeneously throughout the immobilized enzyme domain. However, the active enzyme need only reside above the working electrode. Therefore, the enzyme may be deactivated 38 above the counter 22 and reference 20 electrodes by irradiation. A mask that covers the working electrode 21, such as those used for photolithography can be placed above the membrane. In this way, exposure of the masked membrane to ultraviolet light deactivates the glucose oxidase in all regions except that covered by the mask.
  • FIG. 2F shows an architecture in which the third region [0106] 32 which includes immobilized enzyme only resides over the working electrode 21. In this architecture, consumption of O2 above the counter electrode 22 by the oxidation of glucose with glucose oxidase is eliminated.
  • D. The Electrode Assembly [0107]
  • The electrode assembly of this invention comprises a non-conductive body and three electrodes affixed within the body having electrochemically reactive surfaces at one location on the body and an electronic connection means at another location on the body and may be used in the manner commonly employed in the making of amperometric measurements. A sample of the fluid being analyzed is placed in contact with a reference electrode, e.g., silver/silver-chloride, a working electrode which is preferably formed of platinum, and a counter electrode which is preferably formed of gold or platinum. The electrodes are connected to a galvanometer or polarographic instrument and the current is read or recorded upon application of the desired D.C. bias voltage between the electrodes. [0108]
  • The ability of the present device electrode assembly to accurately measure the concentration of substances such as glucose over a broad range of concentrations in fluids including undiluted whole blood samples enables the rapid and accurate determination of the concentration of those substances. That information can be employed in the study and control of metabolic disorders including diabetes. [0109]
  • The present invention contemplates several structural architectures that effectively increase the electrochemically reactive surface of the counter electrode. In one embodiment, the diameter of wire used to create the counter electrode is at least twice the diameter of the working electrode. In this architecture, it is preferable that the electrochemically reactive surface of the counter electrode be not less than about 2 and not more than about 100 times the surface area of the working electrode. More preferably, the electrochemically reactive surface of the counter electrode is not less than about 2 and not more than about 50, not less than about 2 and not more than about 25 or not less than about 2 and not more than about 10 times the surface area of the working electrode. In another embodiment, the electrochemically reactive surface is larger that the wire connecting this surface to the sensor head. In this architecture, the electrode could have a cross-sectional view that resembles a “T”. The present invention contemplates a variety of configurations of the electrode head that would provide a large reactive surface, while maintaining a relatively narrow connecting wire. Such configurations could be prepared by micromachining with techniques such as reactive ion etching, wet chemical etching and focused ion beam machining as available from Norsam Technologies (Santa Fe, N. Mex.). [0110]
  • In another embodiment, the diameter of the counter electrode is substantially similar to the working electrode; however, the surface of the counter electrode has been modified to increase the surface area such that it has at least twice the surface area of the working electrode. More specifically the counter electrodes surface may be textured, effectively increasing its surface area without significantly increasing its diameter. This may be accomplished by a variety of methods known to those skilled in the art including, such as acid etching. The electrochemically reactive surface may be provided in a variety of shapes and sizes (e.g. round, triangular, square or free form) provided that it is at least twice the surface area of the working electrode. [0111]
  • In all of the architectures described, the electrodes are prepared from a 0.020″ diameter wire having the desired modified reactive surface. The electrodes are secured inside the non-conductive body by brazing. The counter electrode is preferably made of gold or platinum. [0112]
  • III. Analyte Measuring Device [0113]
  • A preferred embodiment of an analyte measuring device including a sensor head according to the present invention is shown in FIG. 6A. In this embodiment, a ceramic body [0114] 1 and ceramic head 10 houses the sensor electronics that include a circuit board 2, a microprocessor 3, a battery 4, and an antenna 5. Furthermore, the ceramic body 1 and head 10 possess a matching taper joint 6 that is sealed with epoxy. The electrodes are subsequently connected to the circuit board via a socket 8.
  • As indicated in detail in FIG. 6B, three electrodes protrude through the ceramic head [0115] 10, a platinum working electrode 21, a platinum counter electrode 22 and a silver/silver chloride reference electrode 20. Each of these is hermetically brazed 26 to the ceramic head 10 and further secured with epoxy 28. The sensing region 24 is covered with a multi-region membrane described above and the ceramic head 10 contains a groove 29 so that the membrane may be affixed into place with an o-ring.
  • IV. Experimental [0116]
  • The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof [0117]
  • In the preceding description and the experimental disclosure which follows, the following abbreviations apply: Eq and Eqs (equivalents); mEq (milliequivalents); M (molar); mM (millimolar) μM (micromolar); N (Normal); mol (moles); mmol (millimoles); μmol (micromoles); nmol (nanomoles); g (grams); mg (milligrams); μg (micrograms); Kg (kilograms); L (liters); mL (milliliters); dL (deciliters); μL (microliters); cm (centimeters); mm (millimeters); um (micrometers); nm (nanometers); h and hr (hours); min. (minutes); s and sec. (seconds); ° C. (degrees Centigrade); Astor Wax (Titusville, Pa.); BASF Wyandotte Corporation (Parsippany, N.J.); Data Sciences, Inc. (St. Paul, Minn.); DuPont (DuPont Co., Wilmington, Del.); Exxon Chemical (Houston, Tex.); GAF Corporation (New York, N.Y.); Markwell Medical (Racine, Wis.); Meadox Medical, Inc. (Oakland, N.J.); Mobay (Mobay Corporation, Pittsburgh, Pa.); NuSil Technologies (Carpenteria, Calif.) Sandoz (East Hanover, N.J.); and Union Carbide (Union Carbide Corporation; Chicago, Ill.). [0118]
  • EXAMPLE 1
  • Preparation of the Multi-region Membrane [0119]
  • A. Preparation of the First Region [0120]
  • The cell disruptive domain may be an ePTFE filtration membrane and the cell impermeable domain may then be coated on this domain layer. The cell impermeable domain was prepared by placing approximately 706 gm of dimethylacetamide (DMAC) into a 3L stainless steel bowl to which a polycarbonateurethane solution (1325 g, Chronoflex AR 25% solids in DMAC and 5100 cp) and polyvinylpyrrolidone (125 g, Plasdone K-90D) are added. The bowl was then fitted to a planetary mixer with a paddle type blade and the contents were stirred for 1 hour at room temperature. This solution was then coated on the cell disruptive domain by knife edge drawn at a gap of 0.006″ and dried at 60° C. for 24 hours. [0121]
  • Alternatively, the polyurethane polyvinylpyrrolidone solution prepared above can be coated onto a PET release liner using a knife over roll coating machine. This material is then dried at 305° F. for approximately 2 minutes. Next the ePTFE membrane is immersed in 50:50 (w/v) mixture of THF/DMAC and then placed atop the coated polyurethane polyvinylpyrrolidone material. Light pressure atop the assembly intimately embeds the ePTFE into the polyurethane polyvinylpyrrolidone. The membrane is then dried at 60° C. for 24 hours. [0122]
  • B. Preparation of the Glucose Exclusion Domain [0123]
  • An oxime cured silicone dispersion (NuSil Technologies, MED-6607) was cast onto a polypropylene sheet and cured at 40° C. for three days. [0124]
  • C. Preparation of the Third Region [0125]
  • The “third region” or “further region” includes a resistance domain, an immobilized enzyme domain, an interference domain and an hydrogel domain. The resistance domain was prepared by placing approximately 281 gm of dimethylacetamide into a 3 L stainless steel bowl to which a solution of polyetherurethaneurea (344 gm of Chronothane H, 29,750 cp at 25% solids in DMAC). To this mixture was added another polyetherurethaneurea (312 gm, Chronothane 1020, 6275 cp at 25% solids in DMAC.) The bowl was fitted to a planetary mixer with a paddle type blade and the contents were stirred for 30 minutes at room temperature. The resistance domain coating solutions produced is coated onto a PET release liner (Douglas Hansen Co., Inc. Minneapolis, Minn.) using a knife over roll set at a 0.012″ gap. This film is then dried at 305° F. The final film is approximately 0.0015″ thick. [0126]
  • The immobilized enzyme domain was prepared by placing 304 gm polyurethane latex (Bayhydrol 140AQ, Bayer, Pittsburgh, Pa.) into a 3 L stainless steel bowl to which 51 gm of pyrogen free water and 5.85 gm of glucose oxidase (Sigma type VII from [0127] Aspergillus niger) is added. The bowl was then fitted to a planetary mixer with a whisk type blade and the mixture was stirred for 15 minutes. Approximately 24 hr prior to coating a solution of glutaraldehyde (15.4 mL of a 2.5% solution in pyrogen free water) and 14 mL of pyrogen free water was added to the mixture. The solution was mixed by inverting a capped glass bottle by hand for about 3 minutes at room temperature. This mixture was then coated over the resistance domain with a #10 Mayer rod and dried above room temperature preferably at about 50° C.
  • The interference domain was prepared by placing 187 gm of tetrahydrofuran into a 500 mL glass bottle to which an 18.7 gm aliphatic polyetherurethane (Tecoflex SG-85A, Thermedics Inc., Woburn, Mass.) was added. The bottle was placed onto a roller at approximately 3 rpm within an oven set at 37° C. The mixture was allowed to roll for 24 hr. This mixture was coated over the dried enzyme domain using a flexible knife and dried above room temperature preferably at about 50° C. [0128]
  • The hydrogel domain was prepared by placing 388 gm of polyurethane latex (Bayhydrol 123, Bayer, Pittsburgh, Pa. in a 3 L stainless steel bowl to which 125 gm of pyrogen free water and 12.5 gm polyvinylpyrrolidone (Plasdone K-90D) was added. The bowl was then fitted to a planetary mixer with a paddle type blade and stirred for 1 hr at room temperature. Within 30 minutes of coating approximately 13.1 mL of carbodiimide (UCARLNK) was added and the solution was mixed by inverting a capped polyethylene jar by hand for about 3 min at room temperature. This mixture was coated over the dried interference domain with a #10 Mayer rod and dried above room temperature preferably at about 50° C. [0129]
  • In order to affix this multi-region membrane to a sensor head, it is first placed into buffer for about 2 minutes. It is then stretched over the nonconductive body of sensor head and affixed into place with an o-ring. [0130]
  • EXAMPLE 2
  • In vitro Evaluation of Sensor Devices [0131]
  • This example describes experiments directed at sensor function of several sensor devices contemplated by the present invention. [0132]
  • In vitro testing of the sensor devices was accomplished in a manner similar to that previously described. [Gilligan et al., Diabetes Care 17:882-887 (1994)]. Briefly, devices were powered on and placed into a polyethylene container containing phosphate buffer (450 ml, pH 7.30) at 37° C. The container was placed onto a shaker (Lab Line Rotator, model 1314) set to speed 2. The sensors were allowed to equilibrate for at least 30 minutes and their output value recorded. After this time, a glucose solution (9.2 ml of 100 mg/ml glucose in buffer) was added in order to raise the glucose concentration to 200 mg/dl within the container. The sensors were allowed to equilibrate for at least 30 minutes and their output value recorded. Again, a glucose solution (9.4 ml of 100 mg/ml glucose in buffer) was added in order to raise the glucose concentration to 400 mg/dl within the container. The sensors were allowed to equilibrate for at least 30 minutes and their output value recorded. In this way, the sensitivity of the sensor to glucose is given as the slope of sensor output versus glucose concentration. The container was then fitted with an O[0133] 2 meter (WTW, model Oxi-340) and a gas purge. A mixture of compressed air and nitrogen was used to decrease the O2 concentration. Sensor output was recorded at an ambient O2 level, then sensor output was recorded for the following O2 concentrations; 1 mg/L, 0.85 to 0.75 mg/L, 0.65 to 0.55 mg/L and 0.40 to 0.30 mg/L. In this way, the function of the sensor could be compared to its function at ambient O2.
  • Sensor devices like the one shown in FIGS. 6A and 6B, which included inventive sensor heads having a multi-region membrane with the architecture shown in FIG. 2B, were tested in vitro. Eight of these devices were fitted with membranes that possessed a 0.020″ diameter hole, four with a 0.0015″ thick polyurethane (Chronoflex AR, CardioTech International Inc.) and four with a 0.032″ thick silicone (MED-1511, NuSil Technologies Inc.). The hole was positioned above the working electrode and both membranes were secured to the device with an o-ring. Four control devices were also tested which were fitted with a multi-region membrane which lacked region [0134] 31 shown in FIB. 2B.
  • As discussed above, for oxygen to be consumed in the sensing region [0135] 32 above the electrodes, glucose is required. By placing region 31 shown in FIG. 2B, which includes a glucose blocking domain, above all areas other than above the working electrode 21, oxygen consumption in areas other than working electrode areas is limited. In contrast, by eliminating region 31 in the control devices, less overall oxygen becomes available to electrode surfaces due to the increased availability of glucose.
  • The devices were activated, placed into a 500 ml-polyethylene container with sodium phosphate buffered solution (300 ml, pH 7.3) and allowed to equilibrate. Each device's baseline value was recorded. Then 12 ml of glucose solution (100 mg/ml in sodium phosphate buffer) was added to the container so that the total glucose concentration became 400 mg/dL. After this, the container was covered and fitted with an oxygen sensor and a source of nitrogen and compressed air. In this way, the oxygen concentration was controlled with a gas sparge. A glucose value was recorded for each device at decreasing oxygen concentrations from ambient to approximately 0.1 mg/L. [0136]
  • FIG. 7 graphically represents the formation of a device of the present invention utilizing the multi-region membrane architecture in FIG. 2B in vitro. The data is expressed in percent Device Function at 400 mg/dL glucose vs. oxygen concentration. The percent function of the device is simply the device output at any given oxygen concentration divided by that device's output at ambient oxygen. The results from FIG. 7 indicate that inventive sensor devices containing the silicone membrane have better function at lower oxygen concentrations relative to both the control devices and the devices containing the polyurethane membrane. For example, at an oxygen concentration of about 0.5 mg/L, devices containing the silicone membrane are providing 100% output as compared to 80% output for the control devices. [0137]
  • EXAMPLE 3
  • The Effect of Varying the Size and Material of the Counter Electrode on Sensor Response and Accuracy [0138]
  • An in vitro testing procedure used in this example was similar to that described in Example 2. Six devices similar to the one shown in FIGS. 6A and 6B were fitted with the multi-region membrane described herein. Two of these tested devices were comparative devices that possessed Pt counter electrodes having a 0.020″ diameter; this diameter provided for an electrochemically reactive surface of the counter electrode which was substantially equal to the surface area of the working electrode, as schematically shown in FIG. 8. In FIG. 8, the electrode-membrane region includes two distinct regions, the compositions and functions of which have already been described. Region [0139] 32 includes an immobilized enzyme. Region 33 includes a cell disruptive domain and a cell impermeable domain. The top ends of electrodes 21 (working), 20 (reference) and 22 (counter) are in contact with an electrolyte phase 30, a free-flowing phase. Two other tested devices possessed Pt counter electrodes having a 0.060″ diameter. Finally, two additional devices possessed Au counter electrodes having a 0.060″ diameter. The 0.006″ diameter devices provided for an electrochemically reactive surface of the counter electrode which was approximately six times the surface area of the working electrode. Each of the devices including counter electrodes of 0.060″ diameter include a multi-region membrane above the electrode region which is similar to that shown in FIG. 8.
  • The devices were activated, placed into a 500 ml-polyethylene container with sodium phosphate buffered solution (300 ml, pH 7.3) and allowed to equilibrate. Each device's baseline value was recorded. Then 12ml of glucose solution (100 mg/ml in sodium phosphate buffer) was added to the container so that the total glucose concentration became 400 mg/dL. After this, the container was covered and fitted with an oxygen sensor and a source of nitrogen and compressed air. In this way, the oxygen concentration was controlled with a gas sparge. A counter electrode voltage was recorded for each device at decreasing oxygen concentrations from ambient to approximately 0.1 mg/L. [0140]
  • FIG. 9 graphically presents the counter electrode voltage as a function of oxygen concentration and 400 mg/dL glucose. This figure demonstrates that both the large Pt and Au counter electrode devices do not begin to reach the circuitry limits at low oxygen concentrations. Therefore, increased performance and accuracy can be obtained from a counter electrode that has an electrochemical reactive surface greater than the surface area of the working electrode. [0141]
  • The description and experimental materials presented above are intended to be illustrative of the present invention while not limiting the scope thereof. It will be apparent to those skilled in the art that variations and modifications can be made without departing from the spirit and scope of the present invention. [0142]

Claims (33)

What is claimed is:
1. A sensor head for use in an analyte measuring device comprising:
a) a non-conductive body;
b) a working electrode, a reference electrode and a counter electrode, wherein said electrodes pass through said non-conductive body forming an electrochemically reactive surface at one location on said body and an electronic connection at another location on said body, further wherein said electrochemical reactive surface of said counter electrode is greater than the surface area of said working electrode; and
c) a multi-region membrane affixed over said non-conductive body and covering said working electrode, reference electrode and counter electrode.
2. A sensor head for use in an implantable analyte measuring device comprising:
a) a non-conductive body;
b) a working electrode, a reference electrode and a counter electrode, wherein said electrodes pass through said non-conductive body forming an electrochemically reactive surface at one location on said body and an electronic connection at another location on said body, further wherein said electrochemical reactive surface of said counter electrode is greater than the surface area of said working electrode; and
c) a multi-region membrane affixed over said non-conductive body and covering said working electrode, reference electrode and counter electrode.
3. A sensor head according to claim 1 wherein said multi-region membrane comprises an oxygen antenna domain.
4. A sensor head according to claim 2 wherein said multi-region membrane comprises an oxygen antenna domain.
5. A sensor head according to claim 2 wherein said multi-region membrane comprises a first region distant from said electrochemically reactive surfaces, a second region less distant from said electrochemically reactive surfaces and a third region adjacent to said electrochemically reactive surfaces.
6. A sensor head according to claim 5 wherein said first region comprises a cell disruptive domain distant from said electrochemically reactive surfaces and a cell impermeable domain less distant from said electrochemically reactive surfaces.
7. A sensor head according to claim 5 wherein said second region is a glucose exclusion domain.
8. A sensor head according to claim 5 wherein said third region comprises an immobilized enzyme domain distant from said electrochemically reactive surfaces, an interference domain less distant from said electrochemically reactive surfaces than said immobilized enzyme domain and a hydrogel domain adjacent to said electrochemically reactive surfaces.
9. A sensor head according to claim 8 wherein said third region further comprises a resistance domain more distant from said electrochemically reactive surfaces than said immobilized enzyme domain.
10. A sensor head according to claim 5 wherein said first region is permeable to oxygen and glucose.
11. A sensor head according to claim 5 wherein said second region is permeable to oxygen and interferes with glucose transport across said membrane, further wherein said second region does not cover the working electrode.
12. A sensor head according to claim 2 wherein said multi-region membrane comprises a first region distant from said electrochemically reactive surfaces and a further region adjacent to said electrochemically reactive surfaces.
13. A sensor head according to claim 12 wherein said first region comprises a cell disruptive domain distant from said electrochemically reactive surfaces and a cell impermeable domain less distant from said electrochemically reactive surfaces.
14. A sensor head according to claim 12 wherein said further region comprises an immobilized enzyme domain distant from said electrochemically reactive surfaces, an interference domain less distant from said electrochemically reactive surfaces than said immobilized enzyme domain and a hydrogel domain adjacent to said electrochemically reactive surfaces.
15. A sensor head according to claim 14 wherein said further region further comprises a resistance domain more distant from said electrochemically reactive surfaces than said immobilized enzyme domain.
16. A sensor head according to claim 12 wherein said further region comprises a portion positioned over only said counter electrode that reduces the consumption of oxygen above said counter electrode.
17. A sensor head according to claim 16 wherein said portion of said further region comprises silicone.
18. A sensor head according to claim 14 wherein an active enzyme of the immobilized enzyme domain of said further region is positioned only over the working electrode.
19. A sensor head according to claim 14 wherein an inactive enzyme of the immobilized enzyme domain of said further region is positioned only over the reference electrode and the counter electrode.
20. A sensor head according to claim 14 wherein said further region is positioned only over said working electrode.
21. A sensor head according to claim 2 wherein said non-conductive body is made of ceramic or glass.
22. A sensor head according to claim 2 wherein said non-conductive body is made of plastic or polymer.
23. A sensor head according to claim 2 wherein said working electrode is made of platinum.
24. A sensor head according to claim 2 wherein said counter electrode is made of platinum or gold.
25. A sensor head according to claim 2 wherein said electrochemically reactive surface of said counter electrode is greater than or equal to about two times the surface area of the working electrode and is less than or equal to about 100 times the surface area of the working electrode.
26. A sensor head according to claim 2 wherein said electrode is greater than or equal to about two times the surface area of the working electrode and is less than or equal to about 50 times the surface area of the working electrode.
27. A sensor head according to claim 2 wherein said electrochemically reactive surface of said counter electrode is greater than or equal to about two times the surface area of the working electrode and is less than or equal to about 25 times the surface area of the working electrode.
28. A sensor head according to claim 2 wherein said electrochemically reactive surface of said counter electrode is greater than or equal to about two times the surface area of the working electrode and is less than or equal to about 10 times the surface area of the working electrode.
29. An implantable device for measuring an analyte in a biological fluid comprising at least one sensor head according to claim 2.
30. A method of monitoring glucose levels, comprising:
a) providing i) a host, and ii) an implantable device according to claim 29; and
b) implanting said device in said host.
31. A method according to claim 30 wherein said implanting is subcutaneous.
32. A method of measuring glucose in a biological fluid, comprising;
a) providing i) a host, and ii) an implantable device according to claim 29, said sensor head being capable of accurate continuous glucose sensing; and
b) implanting said device in said host.
33. A method according to claim 32, wherein said implanting is subcutaneous.
US09/916,711 2001-07-27 2001-07-27 Sensor head for use with implantable devices Abandoned US20030032874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/916,711 US20030032874A1 (en) 2001-07-27 2001-07-27 Sensor head for use with implantable devices

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US09/916,711 US20030032874A1 (en) 2001-07-27 2001-07-27 Sensor head for use with implantable devices
AU2002317584A AU2002317584A1 (en) 2001-07-27 2002-07-26 Sensor head for monitoring glucose for use with implantable devices
EP06112130A EP1669022A3 (en) 2001-07-27 2002-07-26 Sensor head for monitoring glucose for use with implantable devices
PCT/US2002/023903 WO2003011131A2 (en) 2001-07-27 2002-07-26 Sensor head for monitoring glucose for use with implantable devices
AT02748255T AT332666T (en) 2001-07-27 2002-07-26 Measuring head for glucose monitoring, applicable in implantable devices
JP2003516370A JP4295615B2 (en) 2001-07-27 2002-07-26 Sensor head for use with implantable devices
EP02748255A EP1411823B1 (en) 2001-07-27 2002-07-26 Sensor head for monitoring glucose for use with implantable devices
DE60213096T DE60213096D1 (en) 2001-07-27 2002-07-26 Measuring head for glucose monitoring, applicable in implantable devices
US11/021,162 US7471972B2 (en) 2001-07-27 2004-12-22 Sensor head for use with implantable devices
US12/260,017 US8509871B2 (en) 2001-07-27 2008-10-28 Sensor head for use with implantable devices
US13/943,622 US9328371B2 (en) 2001-07-27 2013-07-16 Sensor head for use with implantable devices
US15/059,086 US9804114B2 (en) 2001-07-27 2016-03-02 Sensor head for use with implantable devices
US15/720,329 US20180024086A1 (en) 2001-07-27 2017-09-29 Sensor head for use with implantable devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/021,162 Continuation US7471972B2 (en) 2001-07-27 2004-12-22 Sensor head for use with implantable devices

Publications (1)

Publication Number Publication Date
US20030032874A1 true US20030032874A1 (en) 2003-02-13

Family

ID=25437709

Family Applications (6)

Application Number Title Priority Date Filing Date
US09/916,711 Abandoned US20030032874A1 (en) 2001-07-27 2001-07-27 Sensor head for use with implantable devices
US11/021,162 Active 2023-11-22 US7471972B2 (en) 2001-07-27 2004-12-22 Sensor head for use with implantable devices
US12/260,017 Active 2025-02-15 US8509871B2 (en) 2001-07-27 2008-10-28 Sensor head for use with implantable devices
US13/943,622 Active 2021-08-30 US9328371B2 (en) 2001-07-27 2013-07-16 Sensor head for use with implantable devices
US15/059,086 Active US9804114B2 (en) 2001-07-27 2016-03-02 Sensor head for use with implantable devices
US15/720,329 Pending US20180024086A1 (en) 2001-07-27 2017-09-29 Sensor head for use with implantable devices

Family Applications After (5)

Application Number Title Priority Date Filing Date
US11/021,162 Active 2023-11-22 US7471972B2 (en) 2001-07-27 2004-12-22 Sensor head for use with implantable devices
US12/260,017 Active 2025-02-15 US8509871B2 (en) 2001-07-27 2008-10-28 Sensor head for use with implantable devices
US13/943,622 Active 2021-08-30 US9328371B2 (en) 2001-07-27 2013-07-16 Sensor head for use with implantable devices
US15/059,086 Active US9804114B2 (en) 2001-07-27 2016-03-02 Sensor head for use with implantable devices
US15/720,329 Pending US20180024086A1 (en) 2001-07-27 2017-09-29 Sensor head for use with implantable devices

Country Status (7)

Country Link
US (6) US20030032874A1 (en)
EP (2) EP1669022A3 (en)
JP (1) JP4295615B2 (en)
AT (1) AT332666T (en)
AU (1) AU2002317584A1 (en)
DE (1) DE60213096D1 (en)
WO (1) WO2003011131A2 (en)

Cited By (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030217966A1 (en) * 2002-05-22 2003-11-27 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20040186362A1 (en) * 2001-07-27 2004-09-23 Dexcom, Inc. Membrane for use with implantable devices
US20040199059A1 (en) * 2003-04-04 2004-10-07 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US20040254434A1 (en) * 2003-06-10 2004-12-16 Goodnow Timothy T. Glucose measuring module and insulin pump combination
US20050009126A1 (en) * 2003-06-12 2005-01-13 Therasense, Inc. Method and apparatus for providing power management in data communication systems
US20050013684A1 (en) * 2003-07-14 2005-01-20 Wu Kung Chris Single reticle transfer system
US20050027181A1 (en) * 2003-08-01 2005-02-03 Goode Paul V. System and methods for processing analyte sensor data
US20050054909A1 (en) * 2003-07-25 2005-03-10 James Petisce Oxygen enhancing membrane systems for implantable devices
US20050051427A1 (en) * 2003-07-23 2005-03-10 Brauker James H. Rolled electrode array and its method for manufacture
US20050051440A1 (en) * 2003-07-25 2005-03-10 Simpson Peter C. Electrochemical sensors including electrode systems with increased oxygen generation
US20050056552A1 (en) * 2003-07-25 2005-03-17 Simpson Peter C. Increasing bias for oxygen production in an electrode system
US20050090607A1 (en) * 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US20050103625A1 (en) * 2001-07-27 2005-05-19 Rathbun Rhodes Sensor head for use with implantable devices
US20050112169A1 (en) * 2003-05-21 2005-05-26 Dexcom, Inc. Porous membranes for use with implantable devices
US20050115832A1 (en) * 2003-07-25 2005-06-02 Simpson Peter C. Electrode systems for electrochemical sensors
WO2005057173A2 (en) 2003-12-08 2005-06-23 Dexcom, Inc. Systems and methods for improving electrochemical analyte sensors
US20050143635A1 (en) * 2003-12-05 2005-06-30 Kamath Apurv U. Calibration techniques for a continuous analyte sensor
US20050177036A1 (en) * 1997-03-04 2005-08-11 Shults Mark C. Device and method for determining analyte levels
US20050176136A1 (en) * 2003-11-19 2005-08-11 Dexcom, Inc. Afinity domain for analyte sensor
US20050182451A1 (en) * 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US20050197554A1 (en) * 2004-02-26 2005-09-08 Michael Polcha Composite thin-film glucose sensor
US20050203360A1 (en) * 2003-12-09 2005-09-15 Brauker James H. Signal processing for continuous analyte sensor
US20050238503A1 (en) * 2002-10-09 2005-10-27 Rush Benjamin M Variable volume, shape memory actuated insulin dispensing pump
US20050235732A1 (en) * 2002-10-09 2005-10-27 Rush Benjamin M Fluid delivery device with autocalibration
US20050239154A1 (en) * 2003-10-31 2005-10-27 Feldman Benjamin J A method of calibrating an analyte-measurement device, and associated methods, devices and systems
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US20050242479A1 (en) * 2004-05-03 2005-11-03 Petisce James R Implantable analyte sensor
US20050245795A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US20050251083A1 (en) * 2004-02-12 2005-11-10 Victoria Carr-Brendel Biointerface with macro-and micro-architecture
US20050287620A1 (en) * 1991-03-04 2005-12-29 Therasense, Inc. Method of determining analyte level using subcutaneous electrode
US20060015020A1 (en) * 2004-07-06 2006-01-19 Dexcom, Inc. Systems and methods for manufacture of an analyte-measuring device including a membrane system
US20060015024A1 (en) * 2004-07-13 2006-01-19 Mark Brister Transcutaneous medical device with variable stiffness
US20060020192A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060016700A1 (en) * 2004-07-13 2006-01-26 Dexcom, Inc. Transcutaneous analyte sensor
US20060118415A1 (en) * 1998-03-04 2006-06-08 Abbott Diabetes Care Inc. Electrochemical Analyte Sensor
US20060142651A1 (en) * 2004-07-13 2006-06-29 Mark Brister Analyte sensor
US20060198864A1 (en) * 2003-05-21 2006-09-07 Mark Shults Biointerface membranes incorporating bioactive agents
EP1701654A2 (en) * 2003-12-18 2006-09-20 Subq LLC Implantable biosensor and methods of use thereof
US20060224141A1 (en) * 2005-03-21 2006-10-05 Abbott Diabetes Care, Inc. Method and system for providing integrated medication infusion and analyte monitoring system
US20060253012A1 (en) * 2005-05-05 2006-11-09 Petisce James R Cellulosic-based resistance domain for an analyte sensor
US20060249381A1 (en) * 2005-05-05 2006-11-09 Petisce James R Cellulosic-based resistance domain for an analyte sensor
US20060257996A1 (en) * 2005-04-15 2006-11-16 Simpson Peter C Analyte sensing biointerface
US20060258761A1 (en) * 2002-05-22 2006-11-16 Robert Boock Silicone based membranes for use in implantable glucose sensors
US20060270923A1 (en) * 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US20070016381A1 (en) * 2003-08-22 2007-01-18 Apurv Kamath Systems and methods for processing analyte sensor data
US20070027385A1 (en) * 2003-12-05 2007-02-01 Mark Brister Dual electrode system for a continuous analyte sensor
US20070027384A1 (en) * 2003-12-05 2007-02-01 Mark Brister Dual electrode system for a continuous analyte sensor
US20070027381A1 (en) * 2005-07-29 2007-02-01 Therasense, Inc. Inserter and methods of use
US20070032717A1 (en) * 2003-12-05 2007-02-08 Mark Brister Dual electrode system for a continuous analyte sensor
US20070060814A1 (en) * 2005-08-30 2007-03-15 Abbott Diabetes Care, Inc. Analyte sensor introducer and methods of use
US20070093704A1 (en) * 2003-12-05 2007-04-26 Mark Brister Dual electrode system for a continuous analyte sensor
US20070173709A1 (en) * 2005-04-08 2007-07-26 Petisce James R Membranes for an analyte sensor
US20070179568A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Methods for detecting osteolytic conditions in the body
US20070176867A1 (en) * 2006-01-31 2007-08-02 Abbott Diabetes Care, Inc. Method and system for providing a fault tolerant display unit in an electronic device
US20070197890A1 (en) * 2003-07-25 2007-08-23 Robert Boock Analyte sensor
US20070203966A1 (en) * 2003-08-01 2007-08-30 Dexcom, Inc. Transcutaneous analyte sensor
US20070203407A1 (en) * 2006-02-28 2007-08-30 Abbott Diabetes Care, Inc. Analyte sensors and methods of use
US20070213611A1 (en) * 2003-07-25 2007-09-13 Simpson Peter C Dual electrode system for a continuous analyte sensor
US20070238998A1 (en) * 2006-04-11 2007-10-11 Sdgi Holdings, Inc. Volumetric measurement and visual feedback of tissues
US20070235331A1 (en) * 2003-07-25 2007-10-11 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US20070244379A1 (en) * 2002-05-22 2007-10-18 Robert Boock Silicone based membranes for use in implantable glucose sensors
US20070249922A1 (en) * 2005-12-28 2007-10-25 Abbott Diabetes Care, Inc. Medical Device Insertion
US20080004601A1 (en) * 2006-06-28 2008-01-03 Abbott Diabetes Care, Inc. Analyte Monitoring and Therapy Management System and Methods Therefor
US20080027287A1 (en) * 2002-04-22 2008-01-31 Rajiv Shah Methods and materials for stabilizing analyte sensors
US20080033254A1 (en) * 2003-07-25 2008-02-07 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US20080033268A1 (en) * 2005-12-28 2008-02-07 Abbott Diabetes Care, Inc. Method and Apparatus for Providing Analyte Sensor Insertion
US20080039702A1 (en) * 2006-08-09 2008-02-14 Abbott Diabetes Care, Inc. Method and System for Providing Calibration of an Analyte Sensor in an Analyte Monitoring System
US20080060955A1 (en) * 2003-07-15 2008-03-13 Therasense, Inc. Glucose measuring device integrated into a holster for a personal area network device
US20080071157A1 (en) * 2006-06-07 2008-03-20 Abbott Diabetes Care, Inc. Analyte monitoring system and method
WO2008041984A1 (en) * 2006-10-04 2008-04-10 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080083617A1 (en) * 2006-10-04 2008-04-10 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080097246A1 (en) * 2006-09-10 2008-04-24 Abbott Diabetes Care, Inc Method and System for Providing An Integrated Analyte Sensor Insertion Device and Data Processing Unit
US20080119710A1 (en) * 2006-10-31 2008-05-22 Abbott Diabetes Care, Inc. Medical devices and methods of using the same
US20080172205A1 (en) * 2006-10-26 2008-07-17 Abbott Diabetes Care, Inc. Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors
US20080199894A1 (en) * 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US20080201169A1 (en) * 2007-02-15 2008-08-21 Abbott Diabetes Care, Inc. Device and method for automatic data acquisition and/or detection
US20080214918A1 (en) * 2006-10-04 2008-09-04 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US20080255437A1 (en) * 2007-04-14 2008-10-16 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US20080256048A1 (en) * 2007-04-14 2008-10-16 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in medical communication system
US20080287762A1 (en) * 2007-05-14 2008-11-20 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080287764A1 (en) * 2003-11-19 2008-11-20 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US20080287763A1 (en) * 2007-05-14 2008-11-20 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080288180A1 (en) * 2007-05-14 2008-11-20 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080296155A1 (en) * 1997-03-04 2008-12-04 Dexcom, Inc. Low oxygen in vivo analyte sensor
US20080300476A1 (en) * 2007-05-31 2008-12-04 Abbott Diabetes Care, Inc. Insertion devices and methods
US20080306435A1 (en) * 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20080312841A1 (en) * 2007-05-14 2008-12-18 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080312845A1 (en) * 2007-05-14 2008-12-18 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080312842A1 (en) * 2007-05-14 2008-12-18 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20080319294A1 (en) * 2007-06-21 2008-12-25 Abbott Diabetes Care, Inc. Health management devices and methods
US20090005665A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090002179A1 (en) * 2007-06-28 2009-01-01 Abbott Diabetes Care, Inc. Signal converting cradle for medical condition monitoring and management system
US20090006034A1 (en) * 2007-05-14 2009-01-01 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090012377A1 (en) * 2007-06-27 2009-01-08 Abbott Diabetes Care, Inc. Method and structure for securing a monitoring device element
US20090033482A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090036760A1 (en) * 2007-07-31 2009-02-05 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20090054746A1 (en) * 2005-09-30 2009-02-26 Abbott Diabetes Care, Inc. Device for channeling fluid and methods of use
US20090054750A1 (en) * 2006-08-07 2009-02-26 Abbott Diabetes Care, Inc. Method and System for Providing Integrated Analyte Monitoring and Infusion System Therapy Management
US20090054745A1 (en) * 2006-08-07 2009-02-26 Abbott Diabetes Care, Inc. Method and System for Providing Data Management in Integrated Analyte Monitoring and Infusion System
US20090055149A1 (en) * 2007-05-14 2009-02-26 Abbott Diabetes Care, Inc. Method and system for determining analyte levels
US20090069649A1 (en) * 2006-10-25 2009-03-12 Abbott Diabetes Care, Inc. Method and System for Providing Analyte Monitoring
US20090068954A1 (en) * 2005-10-31 2009-03-12 Abbott Diabetes Care, Inc. Method and apparatus for providing data communication in data monitoring and management systems
US20090076359A1 (en) * 2006-03-31 2009-03-19 Abbott Diabetes Care, Inc. Analyte monitoring and management system and methods therefor
US20090076358A1 (en) * 2005-05-17 2009-03-19 Abbott Diabetes Care, Inc. Method and System for Providing Data Management in Data Monitoring System
US20090083003A1 (en) * 2003-04-28 2009-03-26 Reggiardo Christopher V Method and apparatus for providing peak detection circuitry for data communication systems
US20090088614A1 (en) * 2006-01-30 2009-04-02 Abbott Diabetes Care, Inc. On-body medical device securement
US20090105568A1 (en) * 2007-10-23 2009-04-23 Abbott Diabetes Care, Inc. Assessing Measures Of Glycemic Variability
US20090102678A1 (en) * 2006-02-28 2009-04-23 Abbott Diabetes Care, Inc. Analyte sensor transmitter unit configuration for a data monitoring and management system
US20090105571A1 (en) * 2006-06-30 2009-04-23 Abbott Diabetes Care, Inc. Method and System for Providing Data Communication in Data Management Systems
US20090105569A1 (en) * 2006-04-28 2009-04-23 Abbott Diabetes Care, Inc. Introducer Assembly and Methods of Use
US20090105658A1 (en) * 2005-12-28 2009-04-23 Abbott Diabetes Care, Inc. Infusion sets for the delivery of a therapeutic substance to a patient
US20090124878A1 (en) * 2003-08-22 2009-05-14 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20090124879A1 (en) * 2004-07-13 2009-05-14 Dexcom, Inc. Transcutaneous analyte sensor
US20090143659A1 (en) * 2003-08-01 2009-06-04 Dexcom, Inc. Analyte sensor
US20090143661A1 (en) * 2007-06-29 2009-06-04 Abbott Diabetes Care, Inc Analyte monitoring and management device and method to analyze the frequency of user interaction with the device
US20090164239A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Dynamic Display Of Glucose Information
US20090164190A1 (en) * 2007-12-19 2009-06-25 Abbott Diabetes Care, Inc. Physiological condition simulation device and method
US20090171269A1 (en) * 2006-06-29 2009-07-02 Abbott Diabetes Care, Inc. Infusion Device and Methods Therefor
US20090192745A1 (en) * 2003-08-01 2009-07-30 Dexcom, Inc. Systems and methods for processing sensor data
US20090192380A1 (en) * 2003-07-25 2009-07-30 Dexcom, Inc. Systems and methods for processing sensor data
US20090198118A1 (en) * 2008-01-31 2009-08-06 Abbott Diabetes Care, Inc. Analyte Sensor with Time Lag Compensation
US20090240128A1 (en) * 2008-02-21 2009-09-24 Dexcom, Inc. Systems and methods for blood glucose monitoring and alert delivery
US20090247855A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247857A1 (en) * 2008-03-28 2009-10-01 Abbott Diabetes Care, Inc. Analyte Sensor Calibration Management
US20090259118A1 (en) * 2008-03-31 2009-10-15 Abbott Diabetes Care Inc. Shallow Implantable Analyte Sensor with Rapid Physiological Response
US20090257911A1 (en) * 2008-04-10 2009-10-15 Abbott Diabetes Care Inc. Method and System for Sterilizing an Analyte Sensor
US20090299151A1 (en) * 2008-05-30 2009-12-03 Abbott Diabetes Care Inc. Method and Apparatus for Providing Glycemic Control
US20090300616A1 (en) * 2008-05-30 2009-12-03 Abbott Diabetes Care, Inc. Automated task execution for an analyte monitoring system
US20090320978A1 (en) * 2008-06-27 2009-12-31 Martinez Johnny C Sound-emitting wallet
US7651596B2 (en) 2005-04-08 2010-01-26 Dexcom, Inc. Cellulosic-based interference domain for an analyte sensor
US20100027169A1 (en) * 2008-07-30 2010-02-04 Arnold Knott Power distribution arrangement
US20100049024A1 (en) * 2004-01-12 2010-02-25 Dexcom, Inc. Composite material for implantable device
US20100057041A1 (en) * 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Closed Loop Control With Reference Measurement And Methods Thereof
US20100057040A1 (en) * 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Robust Closed Loop Control And Methods
US20100057057A1 (en) * 2008-08-31 2010-03-04 Abbott Diabetes Care, Inc. Closed Loop Control And Signal Attenuation Detection
US20100076293A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Monitor
US20100076283A1 (en) * 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US20100076288A1 (en) * 2003-04-04 2010-03-25 Brian Edmond Connolly Method and System for Transferring Analyte Test Data
US20100081909A1 (en) * 2008-09-30 2010-04-01 Abbott Diabetes Care, Inc. Optimizing Analyte Sensor Calibration
US20100082364A1 (en) * 2008-09-30 2010-04-01 Abbott Diabetes Care, Inc. Medical Information Management
US20100121167A1 (en) * 2008-11-10 2010-05-13 Abbott Diabetes Care Inc. Alarm Characterization for Analyte Monitoring Devices and Systems
US20100168541A1 (en) * 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
US20100168545A1 (en) * 2005-03-10 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7756561B2 (en) 2005-09-30 2010-07-13 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US20100179409A1 (en) * 2002-02-12 2010-07-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US20100179406A1 (en) * 2003-08-01 2010-07-15 DesCom, Inc. System and methods for processing analyte sensor data
US20100191085A1 (en) * 2009-01-29 2010-07-29 Abbott Diabetes Care, Inc. Method and Device for Providing Offset Model Based Calibration for Analyte Sensor
US7766829B2 (en) 2005-11-04 2010-08-03 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US7768387B2 (en) 2007-04-14 2010-08-03 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
EP2223710A1 (en) 2004-02-26 2010-09-01 DexCom, Inc. Integrated delivery device for continuous glucose sensor
US20100230285A1 (en) * 2009-02-26 2010-09-16 Abbott Diabetes Care Inc. Analyte Sensors and Methods of Making and Using the Same
US20100247775A1 (en) * 2009-03-31 2010-09-30 Abbott Diabetes Care Inc. Precise Fluid Dispensing Method and Device
US7811231B2 (en) 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US20100265073A1 (en) * 2009-04-15 2010-10-21 Abbott Diabetes Care Inc. Analyte Monitoring System Having An Alert
US20100274515A1 (en) * 2009-04-28 2010-10-28 Abbott Diabetes Care Inc. Dynamic Analyte Sensor Calibration Based On Sensor Stability Profile
US20100274107A1 (en) * 2008-03-28 2010-10-28 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US7826382B2 (en) 2008-05-30 2010-11-02 Abbott Diabetes Care Inc. Close proximity communication device and methods
US7860545B2 (en) 1997-03-04 2010-12-28 Dexcom, Inc. Analyte measuring device
US7860544B2 (en) 1998-04-30 2010-12-28 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US20110029269A1 (en) * 2009-07-31 2011-02-03 Abbott Diabetes Care Inc. Method and Apparatus for Providing Analyte Monitoring System Calibration Accuracy
US7885698B2 (en) 2006-02-28 2011-02-08 Abbott Diabetes Care Inc. Method and system for providing continuous calibration of implantable analyte sensors
US7883464B2 (en) 2005-09-30 2011-02-08 Abbott Diabetes Care Inc. Integrated transmitter unit and sensor introducer mechanism and methods of use
US7928850B2 (en) 2007-05-08 2011-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
EP2329770A1 (en) 2004-07-13 2011-06-08 DexCom, Inc. Transcutaneous analyte sensor
US7976778B2 (en) 2001-04-02 2011-07-12 Abbott Diabetes Care Inc. Blood glucose tracking apparatus
US7981034B2 (en) 2006-02-28 2011-07-19 Abbott Diabetes Care Inc. Smart messages and alerts for an infusion delivery and management system
US20110184258A1 (en) * 2010-01-28 2011-07-28 Abbott Diabetes Care Inc. Balloon Catheter Analyte Measurement Sensors and Methods for Using the Same
US20110191044A1 (en) * 2009-09-30 2011-08-04 Stafford Gary A Interconnect for on-body analyte monitoring device
US7996158B2 (en) 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US20110193704A1 (en) * 2009-08-31 2011-08-11 Abbott Diabetes Care Inc. Displays for a medical device
US20110213230A1 (en) * 2008-07-02 2011-09-01 Stefan Lindgren On-Line Measuring System of Body Substances
US8047811B2 (en) 2002-10-09 2011-11-01 Abbott Diabetes Care Inc. Variable volume, shape memory actuated insulin dispensing pump
US8066639B2 (en) 2003-06-10 2011-11-29 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
EP2407094A1 (en) 2006-02-22 2012-01-18 DexCom, Inc. Analyte sensor
US8103456B2 (en) 2009-01-29 2012-01-24 Abbott Diabetes Care Inc. Method and device for early signal attenuation detection using blood glucose measurements
US8112240B2 (en) 2005-04-29 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing leak detection in data monitoring and management systems
US8112138B2 (en) 2005-06-03 2012-02-07 Abbott Diabetes Care Inc. Method and apparatus for providing rechargeable power in data monitoring and management systems
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8123686B2 (en) 2007-03-01 2012-02-28 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US8133178B2 (en) 2006-02-22 2012-03-13 Dexcom, Inc. Analyte sensor
US8140142B2 (en) 2007-04-14 2012-03-20 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US8149117B2 (en) 2007-05-08 2012-04-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8155723B2 (en) 1997-03-04 2012-04-10 Dexcom, Inc. Device and method for determining analyte levels
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US8160670B2 (en) 2005-12-28 2012-04-17 Abbott Diabetes Care Inc. Analyte monitoring: stabilizer for subcutaneous glucose sensor with incorporated antiglycolytic agent
US8185181B2 (en) 2009-10-30 2012-05-22 Abbott Diabetes Care Inc. Method and apparatus for detecting false hypoglycemic conditions
US8216138B1 (en) 2007-10-23 2012-07-10 Abbott Diabetes Care Inc. Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration
US8226891B2 (en) 2006-03-31 2012-07-24 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US20120209097A1 (en) * 2003-09-30 2012-08-16 Andre Mang Sensor with increased biocompatibility
CN102725629A (en) * 2009-10-01 2012-10-10 美敦力迷你迈德公司 Analyte sensor apparatuses having interference rejection membranes and methods for making and using them
US8287454B2 (en) 1998-04-30 2012-10-16 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8368556B2 (en) 2009-04-29 2013-02-05 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8374668B1 (en) 2007-10-23 2013-02-12 Abbott Diabetes Care Inc. Analyte sensor with lag compensation
US8377031B2 (en) 2007-10-23 2013-02-19 Abbott Diabetes Care Inc. Closed loop control system with safety parameters and methods
US20130053666A1 (en) * 2011-08-26 2013-02-28 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8467972B2 (en) 2009-04-28 2013-06-18 Abbott Diabetes Care Inc. Closed loop blood glucose control algorithm analysis
US8483967B2 (en) 2009-04-29 2013-07-09 Abbott Diabetes Care Inc. Method and system for providing real time analyte sensor calibration with retrospective backfill
US8512243B2 (en) 2005-09-30 2013-08-20 Abbott Diabetes Care Inc. Integrated introducer and transmitter assembly and methods of use
US8512244B2 (en) 2006-06-30 2013-08-20 Abbott Diabetes Care Inc. Integrated analyte sensor and infusion device and methods therefor
US8515518B2 (en) 2005-12-28 2013-08-20 Abbott Diabetes Care Inc. Analyte monitoring
US8515517B2 (en) 2006-10-02 2013-08-20 Abbott Diabetes Care Inc. Method and system for dynamically updating calibration parameters for an analyte sensor
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US8548553B2 (en) 2003-08-01 2013-10-01 Dexcom, Inc. System and methods for processing analyte sensor data
WO2013152090A2 (en) 2012-04-04 2013-10-10 Dexcom, Inc. Transcutaneous analyte sensors, applicators therefor, and associated methods
US8560082B2 (en) 2009-01-30 2013-10-15 Abbott Diabetes Care Inc. Computerized determination of insulin pump therapy parameters using real time and retrospective data processing
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8571624B2 (en) 2004-12-29 2013-10-29 Abbott Diabetes Care Inc. Method and apparatus for mounting a data transmission device in a communication system
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583205B2 (en) 2008-03-28 2013-11-12 Abbott Diabetes Care Inc. Analyte sensor calibration management
US8579853B2 (en) 2006-10-31 2013-11-12 Abbott Diabetes Care Inc. Infusion devices and methods
US8593109B2 (en) 2006-03-31 2013-11-26 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
US8600681B2 (en) 2007-05-14 2013-12-03 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
WO2013184566A2 (en) 2012-06-05 2013-12-12 Dexcom, Inc. Systems and methods for processing analyte data and generating reports
US8612159B2 (en) 1998-04-30 2013-12-17 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8613892B2 (en) 2009-06-30 2013-12-24 Abbott Diabetes Care Inc. Analyte meter with a moveable head and methods of using the same
WO2014004460A1 (en) 2012-06-29 2014-01-03 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
US8622988B2 (en) 2008-08-31 2014-01-07 Abbott Diabetes Care Inc. Variable rate closed loop control and methods
WO2014011488A2 (en) 2012-07-09 2014-01-16 Dexcom, Inc. Systems and methods for leveraging smartphone features in continuous glucose monitoring
US8635046B2 (en) 2010-06-23 2014-01-21 Abbott Diabetes Care Inc. Method and system for evaluating analyte sensor response characteristics
US8652043B2 (en) 2001-01-02 2014-02-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8665091B2 (en) 2007-05-08 2014-03-04 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
WO2014052080A1 (en) 2012-09-28 2014-04-03 Dexcom, Inc. Zwitterion surface modifications for continuous sensors
US8710993B2 (en) 2011-11-23 2014-04-29 Abbott Diabetes Care Inc. Mitigating single point failure of devices in an analyte monitoring system and methods thereof
US8732188B2 (en) 2007-02-18 2014-05-20 Abbott Diabetes Care Inc. Method and system for providing contextual based medication dosage determination
US8734422B2 (en) 2008-08-31 2014-05-27 Abbott Diabetes Care Inc. Closed loop control with improved alarm functions
US8764657B2 (en) 2010-03-24 2014-07-01 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US20140194713A1 (en) * 2012-08-06 2014-07-10 Google Inc. Contact lenses having two-electrode electrochemical sensors
US8777853B2 (en) 2003-08-22 2014-07-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8798934B2 (en) 2009-07-23 2014-08-05 Abbott Diabetes Care Inc. Real time management of data relating to physiological control of glucose levels
US8834366B2 (en) 2007-07-31 2014-09-16 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor calibration
WO2014158327A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Advanced calibration for analyte sensors
WO2014158405A2 (en) 2013-03-14 2014-10-02 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
EP2796090A1 (en) 2006-10-04 2014-10-29 DexCom, Inc. Analyte sensor
EP2796093A1 (en) 2007-03-26 2014-10-29 DexCom, Inc. Analyte sensor
US8876755B2 (en) 2008-07-14 2014-11-04 Abbott Diabetes Care Inc. Closed loop control system interface and methods
US8924159B2 (en) 2008-05-30 2014-12-30 Abbott Diabetes Care Inc. Method and apparatus for providing glycemic control
US8930203B2 (en) 2007-02-18 2015-01-06 Abbott Diabetes Care Inc. Multi-function analyte test device and methods therefor
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8986208B2 (en) 2008-09-30 2015-03-24 Abbott Diabetes Care Inc. Analyte sensor sensitivity attenuation mitigation
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US9008743B2 (en) 2007-04-14 2015-04-14 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
WO2015156966A1 (en) 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
US9204827B2 (en) 2007-04-14 2015-12-08 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in medical communication system
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US9259175B2 (en) 2006-10-23 2016-02-16 Abbott Diabetes Care, Inc. Flexible patch for fluid delivery and monitoring body analytes
US20160077036A1 (en) * 2010-03-11 2016-03-17 Roche Diabetes Care, Inc. Method and fuel cell for electrochemical measurement of analyte concentration in vivo
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9317656B2 (en) 2011-11-23 2016-04-19 Abbott Diabetes Care Inc. Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof
US9320461B2 (en) 2009-09-29 2016-04-26 Abbott Diabetes Care Inc. Method and apparatus for providing notification function in analyte monitoring systems
US9326709B2 (en) 2010-03-10 2016-05-03 Abbott Diabetes Care Inc. Systems, devices and methods for managing glucose levels
US9339217B2 (en) 2011-11-25 2016-05-17 Abbott Diabetes Care Inc. Analyte monitoring system and methods of use
US9398882B2 (en) 2005-09-30 2016-07-26 Abbott Diabetes Care Inc. Method and apparatus for providing analyte sensor and data processing device
US9402544B2 (en) 2009-02-03 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US9402570B2 (en) 2011-12-11 2016-08-02 Abbott Diabetes Care Inc. Analyte sensor devices, connections, and methods
US9446194B2 (en) 2009-03-27 2016-09-20 Dexcom, Inc. Methods and systems for promoting glucose management
US9451910B2 (en) 2007-09-13 2016-09-27 Dexcom, Inc. Transcutaneous analyte sensor
US9451908B2 (en) 2006-10-04 2016-09-27 Dexcom, Inc. Analyte sensor
US9474475B1 (en) 2013-03-15 2016-10-25 Abbott Diabetes Care Inc. Multi-rate analyte sensor data collection with sample rate configurable signal processing
EP3092949A1 (en) 2011-09-23 2016-11-16 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US9521968B2 (en) 2005-09-30 2016-12-20 Abbott Diabetes Care Inc. Analyte sensor retention mechanism and methods of use
US9532737B2 (en) 2011-02-28 2017-01-03 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9572534B2 (en) 2010-06-29 2017-02-21 Abbott Diabetes Care Inc. Devices, systems and methods for on-skin or on-body mounting of medical devices
US9622691B2 (en) 2011-10-31 2017-04-18 Abbott Diabetes Care Inc. Model based variable risk false glucose threshold alarm prevention mechanism
US9636450B2 (en) 2007-02-19 2017-05-02 Udo Hoss Pump system modular components for delivering medication and analyte sensing at seperate insertion sites
US9675290B2 (en) 2012-10-30 2017-06-13 Abbott Diabetes Care Inc. Sensitivity calibration of in vivo sensors used to measure analyte concentration
US9743862B2 (en) 2011-03-31 2017-08-29 Abbott Diabetes Care Inc. Systems and methods for transcutaneously implanting medical devices
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9788771B2 (en) 2006-10-23 2017-10-17 Abbott Diabetes Care Inc. Variable speed sensor insertion devices and methods of use
US9795326B2 (en) 2009-07-23 2017-10-24 Abbott Diabetes Care Inc. Continuous analyte measurement systems and systems and methods for implanting them
US9907492B2 (en) 2012-09-26 2018-03-06 Abbott Diabetes Care Inc. Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US9980670B2 (en) 2002-11-05 2018-05-29 Abbott Diabetes Care Inc. Sensor inserter assembly
US10076285B2 (en) 2013-03-15 2018-09-18 Abbott Diabetes Care Inc. Sensor fault detection using analyte sensor data pattern comparison
US10092229B2 (en) 2010-06-29 2018-10-09 Abbott Diabetes Care Inc. Calibration of analyte measurement system
US10132793B2 (en) 2012-08-30 2018-11-20 Abbott Diabetes Care Inc. Dropout detection in continuous analyte monitoring data during data excursions
US10136816B2 (en) 2009-08-31 2018-11-27 Abbott Diabetes Care Inc. Medical devices and methods
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US10226207B2 (en) 2004-12-29 2019-03-12 Abbott Diabetes Care Inc. Sensor inserter having introducer
EP3536241A1 (en) 2011-04-08 2019-09-11 Dexcom, Inc. Systems and methods for processing and transmitting sensor data
US10433773B1 (en) 2013-03-15 2019-10-08 Abbott Diabetes Care Inc. Noise rejection methods and apparatus for sparsely sampled analyte sensor data
US10555695B2 (en) 2011-04-15 2020-02-11 Dexcom, Inc. Advanced analyte sensor calibration and error detection
US10561349B2 (en) 2016-03-31 2020-02-18 Dexcom, Inc. Systems and methods for display device and sensor electronics unit communication
US10653835B2 (en) 2007-10-09 2020-05-19 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
EP3654348A1 (en) 2012-11-07 2020-05-20 Dexcom, Inc. Systems and methods for managing glycemic variability
US10791928B2 (en) 2007-05-18 2020-10-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US10820841B2 (en) 2018-08-09 2020-11-03 Abbot Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080242961A1 (en) * 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US20090082693A1 (en) * 2004-12-29 2009-03-26 Therasense, Inc. Method and apparatus for providing temperature sensor module in a data communication system
EP1921980A4 (en) 2005-08-31 2010-03-10 Univ Virginia Improving the accuracy of continuous glucose sensors
EP1785085A1 (en) * 2005-11-12 2007-05-16 Boehringer Mannheim Gmbh Implantable electrode system, method and device for measuring the concentration of an analyte in a human or animal body
US20070227907A1 (en) * 2006-04-04 2007-10-04 Rajiv Shah Methods and materials for controlling the electrochemistry of analyte sensors
US9700252B2 (en) 2006-06-19 2017-07-11 Roche Diabetes Care, Inc. Amperometric sensor and method for its manufacturing
CA2654220A1 (en) * 2006-06-19 2007-12-27 F. Hoffmann-La Roche Ag Amperometric sensor and method for its manufacturing
US20080161666A1 (en) * 2006-12-29 2008-07-03 Abbott Diabetes Care, Inc. Analyte devices and methods
US7751864B2 (en) * 2007-03-01 2010-07-06 Roche Diagnostics Operations, Inc. System and method for operating an electrochemical analyte sensor
PL1972275T3 (en) * 2007-03-20 2016-04-29 Hoffmann La Roche System for in vivo measurement of an analyte concentration
US20100025238A1 (en) * 2008-07-31 2010-02-04 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
US8700114B2 (en) 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
JP5470010B2 (en) * 2008-12-22 2014-04-16 シスメックス株式会社 In vivo component measuring method and in vivo component measuring apparatus
US20100198033A1 (en) * 2009-02-05 2010-08-05 Peter Krulevitch Flexible indwelling biosensor, flexible indwelling biosensor insertion device, and related methods
US9357951B2 (en) 2009-09-30 2016-06-07 Dexcom, Inc. Transcutaneous analyte sensor
US9271671B2 (en) 2010-04-16 2016-03-01 Arkray, Inc. Sensor and method for removing interfering substance
JP5819183B2 (en) * 2011-02-03 2015-11-18 アークレイ株式会社 Analysis device, sensor inspection device, inspection method, and inspection program
CA2843008A1 (en) 2011-07-26 2013-01-31 Glysens Incorporated Tissue implantable sensor with hermetically sealed housing
WO2014110492A2 (en) * 2013-01-11 2014-07-17 Northeastern University Saliva glucose monitoring system
JP2014178143A (en) * 2013-03-13 2014-09-25 Dainippon Printing Co Ltd Concentration measurement sensor, concentration measurement sensor sheet, and manufacturing method thereof
US9761874B2 (en) 2013-12-30 2017-09-12 Verily Life Sciences Llc Fabrication methods for batteries
WO2016138176A1 (en) 2015-02-24 2016-09-01 Elira Therapeutics Llc Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US10765863B2 (en) 2015-02-24 2020-09-08 Elira, Inc. Systems and methods for using a transcutaneous electrical stimulation device to deliver titrated therapy
US10335302B2 (en) 2015-02-24 2019-07-02 Elira, Inc. Systems and methods for using transcutaneous electrical stimulation to enable dietary interventions
US10376145B2 (en) 2015-02-24 2019-08-13 Elira, Inc. Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch
US9956393B2 (en) 2015-02-24 2018-05-01 Elira, Inc. Systems for increasing a delay in the gastric emptying time for a patient using a transcutaneous electro-dermal patch
CA2984939A1 (en) 2015-05-14 2016-11-17 Abbott Diabetes Care Inc. Compact medical device inserters and related systems and methods
US10213139B2 (en) 2015-05-14 2019-02-26 Abbott Diabetes Care Inc. Systems, devices, and methods for assembling an applicator and sensor control device
US10780222B2 (en) 2015-06-03 2020-09-22 Pacific Diabetes Technologies Inc Measurement of glucose in an insulin delivery catheter by minimizing the adverse effects of insulin preservatives
US10660550B2 (en) 2015-12-29 2020-05-26 Glysens Incorporated Implantable sensor apparatus and methods
US10561353B2 (en) 2016-06-01 2020-02-18 Glysens Incorporated Biocompatible implantable sensor apparatus and methods
US10638962B2 (en) 2016-06-29 2020-05-05 Glysens Incorporated Bio-adaptable implantable sensor apparatus and methods
CN111278356A (en) * 2017-06-23 2020-06-12 博卡赛恩斯公司 Analyte sensor
US10638979B2 (en) 2017-07-10 2020-05-05 Glysens Incorporated Analyte sensor data evaluation and error reduction apparatus and methods

Citations (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4353888A (en) * 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
US4431004A (en) * 1981-10-27 1984-02-14 Bessman Samuel P Implantable glucose sensor
US4436094A (en) * 1981-03-09 1984-03-13 Evreka, Inc. Monitor for continuous in vivo measurement of glucose concentration
US4453537A (en) * 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
US4484987A (en) * 1983-05-19 1984-11-27 The Regents Of The University Of California Method and membrane applicable to implantable sensor
US4686044A (en) * 1979-08-13 1987-08-11 Akzo Nv Polycarbonate-polyether-copolymer membrane
US4703756A (en) * 1986-05-06 1987-11-03 The Regents Of The University Of California Complete glucose monitoring system with an implantable, telemetered sensor module
US4757022A (en) * 1986-04-15 1988-07-12 Markwell Medical Institute, Inc. Biological fluid measuring device
US4759828A (en) * 1987-04-09 1988-07-26 Nova Biomedical Corporation Glucose electrode and method of determining glucose
US4787398A (en) * 1985-04-08 1988-11-29 Garid, Inc. Glucose medical monitoring system
US4803243A (en) * 1986-03-26 1989-02-07 Shin-Etsu Chemical Co., Ltd. Block-graft copolymer
US4823808A (en) * 1987-07-06 1989-04-25 Clegg Charles T Method for control of obesity, overweight and eating disorders
US4871440A (en) * 1987-07-06 1989-10-03 Daiken Industries, Ltd. Biosensor
US4890620A (en) * 1985-09-20 1990-01-02 The Regents Of The University Of California Two-dimensional diffusion glucose substrate sensing electrode
US4902294A (en) * 1986-12-03 1990-02-20 Olivier Gosserez Implantable mammary prosthesis adapted to combat the formation of a retractile shell
US4994167A (en) * 1986-04-15 1991-02-19 Markwell Medical Institute, Inc. Biological fluid measuring device
US5165407A (en) * 1990-04-19 1992-11-24 The University Of Kansas Implantable glucose sensor
US5171689A (en) * 1984-11-08 1992-12-15 Matsushita Electric Industrial Co., Ltd. Solid state bio-sensor
US5190041A (en) * 1989-08-11 1993-03-02 Palti Yoram Prof System for monitoring and controlling blood glucose
US5314471A (en) * 1991-07-24 1994-05-24 Baxter International Inc. Tissue inplant systems and methods for sustaining viable high cell densities within a host
US5321414A (en) * 1990-03-01 1994-06-14 Her Majesty In Right Of Canada As Represented By The Minister Of Communications Dual polarization dipole array antenna
US5322063A (en) * 1991-10-04 1994-06-21 Eli Lilly And Company Hydrophilic polyurethane membranes for electrochemical glucose sensors
US5344454A (en) * 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5380536A (en) * 1990-10-15 1995-01-10 The Board Of Regents, The University Of Texas System Biocompatible microcapsules
US5384028A (en) * 1992-08-28 1995-01-24 Nec Corporation Biosensor with a data memory
US5391250A (en) * 1994-03-15 1995-02-21 Minimed Inc. Method of fabricating thin film sensors
US5390671A (en) * 1994-03-15 1995-02-21 Minimed Inc. Transcutaneous sensor insertion set
US5417395A (en) * 1993-06-30 1995-05-23 Medex, Inc. Modular interconnecting component support plate
US5421923A (en) * 1993-12-03 1995-06-06 Baxter International, Inc. Ultrasonic welding horn with sonics dampening insert
US5431160A (en) * 1989-07-19 1995-07-11 University Of New Mexico Miniature implantable refillable glucose sensor and material therefor
US5453278A (en) * 1991-07-24 1995-09-26 Baxter International Inc. Laminated barriers for tissue implants
US5462064A (en) * 1993-12-22 1995-10-31 International Medical Associates, Inc. Integrated system for biological fluid constituent analysis
US5469846A (en) * 1992-10-19 1995-11-28 Duquesne University Of The Holy Ghost Implantable non-enzymatic electrochemical glucose sensor
US5476094A (en) * 1992-02-11 1995-12-19 Eli Lilly And Company Acrylic copolymer membranes for biosensors
US5497772A (en) * 1993-11-19 1996-03-12 Alfred E. Mann Foundation For Scientific Research Glucose monitoring system
US5538511A (en) * 1994-04-01 1996-07-23 Minimed Inc. Indwelling catheter with stable enzyme coating
US5545223A (en) * 1990-10-31 1996-08-13 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5549675A (en) * 1994-01-11 1996-08-27 Baxter International, Inc. Method for implanting tissue in a host
US5569186A (en) * 1994-04-25 1996-10-29 Minimed Inc. Closed loop infusion pump system with removable glucose sensor
US5569462A (en) * 1993-09-24 1996-10-29 Baxter International Inc. Methods for enhancing vascularization of implant devices
US5575930A (en) * 1992-10-07 1996-11-19 Tietje-Girault; Jordis Method of making gas permeable membranes for amperometric gas electrodes
US5578463A (en) * 1985-08-29 1996-11-26 Genencor International, Inc. Heterologous polypeptides expressed in filamentous fungi, processes for making same, and vectors for making same
US5628890A (en) * 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
US5683562A (en) * 1994-09-14 1997-11-04 Avl Medical Instruments Ag Planar sensor for determining a chemical parameter of a sample
US5713888A (en) * 1990-10-31 1998-02-03 Baxter International, Inc. Tissue implant systems
US5741330A (en) * 1990-10-31 1998-04-21 Baxter International, Inc. Close vascularization implant material
US5777060A (en) * 1995-03-27 1998-07-07 Minimed, Inc. Silicon-containing biocompatible membranes
US5791344A (en) * 1993-11-19 1998-08-11 Alfred E. Mann Foundation For Scientific Research Patient monitoring system
US5807406A (en) * 1994-10-07 1998-09-15 Baxter International Inc. Porous microfabricated polymer membrane structures
US5964261A (en) * 1996-05-29 1999-10-12 Baxter International Inc. Implantation assembly
US5985129A (en) * 1989-12-14 1999-11-16 The Regents Of The University Of California Method for increasing the service life of an implantable sensor
US6001067A (en) * 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6119028A (en) * 1997-10-20 2000-09-12 Alfred E. Mann Foundation Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
US6122536A (en) * 1995-07-06 2000-09-19 Animas Corporation Implantable sensor and system for measurement and control of blood constituent levels
US6144869A (en) * 1998-05-13 2000-11-07 Cygnus, Inc. Monitoring of physiological analytes
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6180416B1 (en) * 1998-09-30 2001-01-30 Cygnus, Inc. Method and device for predicting physiological values
US6201980B1 (en) * 1998-10-05 2001-03-13 The Regents Of The University Of California Implantable medical sensor system
US6200772B1 (en) * 1997-08-23 2001-03-13 Sensalyse Holdings Limited Modified polyurethane membrane sensors and analytical methods
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6212416B1 (en) * 1995-11-22 2001-04-03 Good Samaritan Hospital And Medical Center Device for monitoring changes in analyte concentration
US6223080B1 (en) * 1998-04-29 2001-04-24 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors and different supply voltages
US6223083B1 (en) * 1999-04-16 2001-04-24 Medtronic, Inc. Receiver employing digital filtering for use with an implantable medical device
US6230059B1 (en) * 1999-03-17 2001-05-08 Medtronic, Inc. Implantable monitor
US6233471B1 (en) * 1998-05-13 2001-05-15 Cygnus, Inc. Signal processing for measurement of physiological analysis
US6254586B1 (en) * 1998-09-25 2001-07-03 Minimed Inc. Method and kit for supplying a fluid to a subcutaneous placement site
US6256522B1 (en) * 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
US6259937B1 (en) * 1997-09-12 2001-07-10 Alfred E. Mann Foundation Implantable substrate sensor
US6272364B1 (en) * 1998-05-13 2001-08-07 Cygnus, Inc. Method and device for predicting physiological values
US6272382B1 (en) * 1998-07-31 2001-08-07 Advanced Bionics Corporation Fully implantable cochlear implant system
US6299578B1 (en) * 1995-12-28 2001-10-09 Cygnus, Inc. Methods for monitoring a physiological analyte
US6326160B1 (en) * 1998-09-30 2001-12-04 Cygnus, Inc. Microprocessors for use in a device for predicting physiological values
US6329161B1 (en) * 1993-12-02 2001-12-11 Therasense, Inc. Subcutaneous glucose electrode
US6360888B1 (en) * 1999-02-25 2002-03-26 Minimed Inc. Glucose sensor package system

Family Cites Families (836)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1564641A (en) 1922-04-10 1925-12-08 Chicago Miniature Lamp Works Detector for wireless systems
US2402306A (en) 1943-10-07 1946-06-18 Turkel Henry Retaining guard guide for needles
US2719797A (en) 1950-05-23 1955-10-04 Baker & Co Inc Platinizing tantalum
US2830020A (en) 1956-10-01 1958-04-08 American Cyanamid Co Lubricating oils thickened with metal salts of cyanuric acid
US3220960A (en) 1960-12-21 1965-11-30 Wichterle Otto Cross-linked hydrophilic polymers and articles made therefrom
US3210578A (en) 1962-01-12 1965-10-05 Westinghouse Electric Corp Multispeed motor connector
US3381371A (en) 1965-09-27 1968-05-07 Sanders Associates Inc Method of constructing lightweight antenna
US3562352A (en) 1968-09-06 1971-02-09 Avco Corp Polysiloxane-polyurethane block copolymers
US3607329A (en) 1969-04-22 1971-09-21 Us Interior Cellulose acetate butyrate semipermeable membranes and their production
JPS4810633B1 (en) 1969-04-25 1973-04-05
USRE31916E (en) 1970-11-10 1985-06-18 Becton Dickinson & Company Electrochemical detection cell
US3933593A (en) * 1971-02-22 1976-01-20 Beckman Instruments, Inc. Rate sensing batch analysis method
US3746588A (en) 1971-03-29 1973-07-17 Aerojet General Co Sterilization of nitroparaffin-amine explosives
US3791871A (en) 1971-04-14 1974-02-12 Lockheed Aircraft Corp Electrochemical cell
CH559912A5 (en) 1971-09-09 1975-03-14 Hoffmann La Roche
GB1412983A (en) * 1971-11-30 1975-11-05 Debell & Richardson Method of producing porous plastic materials
US3943918A (en) 1971-12-02 1976-03-16 Tel-Pac, Inc. Disposable physiological telemetric device
US3775182A (en) 1972-02-25 1973-11-27 Du Pont Tubular electrochemical cell with coiled electrodes and compressed central spindle
GB1442303A (en) 1972-09-08 1976-07-14 Radiometer As Cell for electro-chemical analysis
DE2247608B2 (en) 1972-09-28 1976-07-08 Means and method for the enzymatic determination of glucose
US3929971A (en) 1973-03-30 1975-12-30 Research Corp Porous biomaterials and method of making same
US3826244A (en) 1973-07-20 1974-07-30 Us Health Education & Welfare Thumbtack microelectrode and method of making same
US4267145A (en) 1974-01-03 1981-05-12 E. I. Du Pont De Nemours And Company Process for preparing cold water-soluble films from PVA by melt extrusion
US3898984A (en) 1974-02-04 1975-08-12 Us Navy Ambulatory patient monitoring system
US4067322A (en) 1974-07-19 1978-01-10 Johnson Joseph H Disposable, pre-gel body electrodes
US3966580A (en) 1974-09-16 1976-06-29 The University Of Utah Novel protein-immobilizing hydrophobic polymeric membrane, process for producing same and apparatus employing same
US3957613A (en) 1974-11-01 1976-05-18 General Electric Company Miniature probe having multifunctional electrodes for sensing ions and gases
US3982530A (en) 1975-04-22 1976-09-28 Egon Storch Penial appliance
US4052754A (en) 1975-08-14 1977-10-11 Homsy Charles A Implantable structure
US3979274A (en) 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
CH591237A5 (en) * 1975-11-06 1977-09-15 Bbc Brown Boveri & Cie
US4040908A (en) 1976-03-12 1977-08-09 Children's Hospital Medical Center Polarographic analysis of cholesterol and other macromolecular substances
US4037563A (en) 1976-03-29 1977-07-26 John M. Pflueger Aquarium viewing window
US4024312A (en) 1976-06-23 1977-05-17 Johnson & Johnson Pressure-sensitive adhesive tape having extensible and elastic backing composed of a block copolymer
US4136250A (en) 1977-07-20 1979-01-23 Ciba-Geigy Corporation Polysiloxane hydrogels
JPS5921500B2 (en) 1978-01-28 1984-05-21 Toyo Boseki
NL7801867A (en) * 1978-02-20 1979-08-22 Philips Nv A device for transcutaneously measuring the partieele pressure of oxygen in blood.
US4172770A (en) 1978-03-27 1979-10-30 Technicon Instruments Corporation Flow-through electrochemical system analytical method
DE2820474C2 (en) 1978-05-10 1983-11-10 Fresenius Ag, 6380 Bad Homburg, De
US4259540A (en) * 1978-05-30 1981-03-31 Bell Telephone Laboratories, Incorporated Filled cables
US4215703A (en) 1978-08-29 1980-08-05 Willson James K V Variable stiffness guide wire
US4255500A (en) * 1979-03-29 1981-03-10 General Electric Company Vibration resistant electrochemical cell having deformed casing and method of making same
US4292423A (en) 1979-04-19 1981-09-29 Wacker-Chemie Gmbh Process for the preparation of organopolysiloxanes
US4253469A (en) 1979-04-20 1981-03-03 The Narda Microwave Corporation Implantable temperature probe
JPS6129667B2 (en) 1979-08-14 1986-07-08 Tokyo Shibaura Electric Co
US4260725A (en) 1979-12-10 1981-04-07 Bausch & Lomb Incorporated Hydrophilic contact lens made from polysiloxanes which are thermally bonded to polymerizable groups and which contain hydrophilic sidechains
US4403984A (en) 1979-12-28 1983-09-13 Biotek, Inc. System for demand-based adminstration of insulin
US4861830A (en) 1980-02-29 1989-08-29 Th. Goldschmidt Ag Polymer systems suitable for blood-contacting surfaces of a biomedical device, and methods for forming
US4686137A (en) 1980-02-29 1987-08-11 Thoratec Laboratories Corp. Moisture vapor permeable materials
US5120813A (en) 1980-02-29 1992-06-09 Th. Goldschmidt Ag Moisture vapor permeable materials
SE419903B (en) * 1980-03-05 1981-08-31 Enfors Sven Olof enzyme electrode
JPS625174Y2 (en) 1980-09-02 1987-02-05
IE51643B1 (en) 1980-10-15 1987-01-21 Smith & Nephew Ass Coated articles and materials suitable for coating
JPS5929693Y2 (en) 1980-12-25 1984-08-25
JPH0136063B2 (en) * 1981-01-14 1989-07-28 Matsushita Electric Ind Co Ltd
JPS6251131B2 (en) 1981-03-20 1987-10-28 Nitto Electric Ind Co
JPS6252602B2 (en) 1981-03-20 1987-11-06 Nitto Electric Ind Co
JPS57156005U (en) 1981-03-26 1982-09-30
JPS57156004U (en) 1981-03-26 1982-09-30
US4442841A (en) 1981-04-30 1984-04-17 Mitsubishi Rayon Company Limited Electrode for living bodies
US4378016A (en) 1981-07-15 1983-03-29 Biotek, Inc. Artificial endocrine gland containing hormone-producing cells
US4402694A (en) 1981-07-16 1983-09-06 Biotek, Inc. Body cavity access device containing a hormone source
US4419535A (en) 1981-07-31 1983-12-06 Hara Robert J O Multi-cable conduit for floors and walls
EP0078636B2 (en) 1981-10-23 1997-04-02 MediSense, Inc. Sensor for components of a liquid mixture
US4418148A (en) 1981-11-05 1983-11-29 Miles Laboratories, Inc. Multilayer enzyme electrode membrane
US4415666A (en) 1981-11-05 1983-11-15 Miles Laboratories, Inc. Enzyme electrode membrane
NL193256C (en) 1981-11-10 1999-04-02 Cordis Europ Sensor system.
US4454295A (en) 1981-11-16 1984-06-12 Uco Optics, Inc. Cured cellulose ester, method of curing same, and use thereof
JPS6229061B2 (en) 1981-11-18 1987-06-24 Terumo Corp
US4494950A (en) 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US4482666A (en) 1982-03-12 1984-11-13 Apace Research Limited Emulsions of liquid hydrocarbons with water and/or alcohols
JPH022913Y2 (en) 1982-03-12 1990-01-24
JPS58163402A (en) 1982-03-20 1983-09-28 Nitto Electric Ind Co Ltd Gas separation membrane
JPS58163403A (en) 1982-03-23 1983-09-28 Nitto Electric Ind Co Ltd Gas separation membrane
US4403847A (en) 1982-03-29 1983-09-13 Eastman Kodak Company Electrographic transfer apparatus
US4493714A (en) 1982-05-06 1985-01-15 Teijin Limited Ultrathin film, process for production thereof, and use thereof for concentrating a specified gas in a gaseous mixture
JPS6254841B2 (en) * 1982-06-08 1987-11-17 Koku Uchu Gijutsu Kenkyu Shocho
EP0098592A3 (en) 1982-07-06 1985-08-21 Fujisawa Pharmaceutical Co., Ltd. Portable artificial pancreas
DE3228551A1 (en) 1982-07-30 1984-02-02 Siemens Ag METHOD FOR DETERMINING SUGAR CONCENTRATION
JPH0375557B2 (en) 1982-08-10 1991-12-02 Asahi Glass Co Ltd
US4571292A (en) 1982-08-12 1986-02-18 Case Western Reserve University Apparatus for electrochemical measurements
JPH0230292B2 (en) 1982-09-17 1990-07-05 Teijin Ltd
JPH0347890B2 (en) 1982-09-17 1991-07-22 Teijin Ltd
JPS5949803U (en) 1982-09-27 1984-04-02
JPS5949805U (en) 1982-09-27 1984-04-02
JPS5959221A (en) 1982-09-29 1984-04-05 Teijin Ltd Prearation of composite perrmeable membrane for separating gas
JPS5959221U (en) 1982-10-12 1984-04-18
EP0107634B1 (en) 1982-10-25 1989-04-12 Lars Gustav Inge Hellgren Enzyme composition for cleaning, the use thereof and preparation of the composition
JPS591929Y2 (en) 1982-10-25 1984-01-19
JPS5987004A (en) 1982-11-08 1984-05-19 Nitto Electric Ind Co Ltd Gas separation membrane
JPS58163403U (en) 1982-11-27 1983-10-31
JPS5987004U (en) 1982-12-01 1984-06-12
US5059654A (en) 1983-02-14 1991-10-22 Cuno Inc. Affinity matrices of modified polysaccharide supports
JPH0118404Y2 (en) 1983-02-19 1989-05-30
US4506680A (en) 1983-03-17 1985-03-26 Medtronic, Inc. Drug dispensing body implantable lead
CA1226036A (en) 1983-05-05 1987-08-25 Irving J. Higgins Analytical equipment and sensor electrodes therefor
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
CA1219040A (en) 1983-05-05 1987-03-10 Elliot V. Plotkin Measurement of enzyme-catalysed reactions
JPS59209608A (en) 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS59209610A (en) 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS59209609A (en) 1983-05-12 1984-11-28 Teijin Ltd Permselective membrane
JPS6246190B2 (en) 1983-05-17 1987-10-01 Teijin Ltd
US4650547A (en) * 1983-05-19 1987-03-17 The Regents Of The University Of California Method and membrane applicable to implantable sensor
JPH0693160B2 (en) * 1983-05-31 1994-11-16 シャープ株式会社 LCD drive circuit
US4663824A (en) 1983-07-05 1987-05-12 Matsushita Electric Industrial Co., Ltd. Aluminum electrolytic capacitor and a manufacturing method therefor
US4655880A (en) 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US4578215A (en) 1983-08-12 1986-03-25 Micro-Circuits Company Electrical conductivity-enhancing and protecting material
US4554927A (en) 1983-08-30 1985-11-26 Thermometrics Inc. Pressure and temperature sensor
GB2149918A (en) 1983-11-03 1985-06-19 John Anderson Sudden infant death syndrome monitor
JPH032283B2 (en) 1984-01-11 1991-01-14 Toray Industries
US4739380A (en) 1984-01-19 1988-04-19 Integrated Ionics, Inc. Integrated ambient sensing devices and methods of manufacture
JPH0118405Y2 (en) 1984-02-23 1989-05-30
US4527999A (en) 1984-03-23 1985-07-09 Abcor, Inc. Separation membrane and method of preparing and using same
US4753652A (en) 1984-05-04 1988-06-28 Children's Medical Center Corporation Biomaterial implants which resist calcification
US4883057A (en) 1984-05-09 1989-11-28 Research Foundation, The City University Of New York Cathodic electrochemical current arrangement with telemetric application
JPH058211B2 (en) 1984-05-18 1993-02-01 Nippon Unicar Co Ltd
US4583976A (en) 1984-05-31 1986-04-22 E. R. Squibb & Sons, Inc. Catheter support
US4644046A (en) 1984-06-20 1987-02-17 Teijin Limited Ultrathin film, process for production thereof, and use thereof for concentrating a specific gas from a gas mixture
CA1258496A (en) 1984-07-30 1989-08-15 Teruyoshi Uchida Insulated noble metal wire and porous membrane as po.sub.2 bioelectrode
US4602922A (en) 1984-11-09 1986-07-29 Research Foundation Of State University Of New York Method of making membranes for gas separation and the composite membranes
US4702732A (en) 1984-12-24 1987-10-27 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation and transdermal delivery of pharmacologically active ligands
US4963595A (en) 1985-01-04 1990-10-16 Thoratec Laboratories Corporation Polysiloxane-polylactone block copolymers
US5235003A (en) 1985-01-04 1993-08-10 Thoratec Laboratories Corporation Polysiloxane-polylactone block copolymers
US4577642A (en) * 1985-02-27 1986-03-25 Medtronic, Inc. Drug dispensing body implantable lead employing molecular sieves and methods of fabrication
US4958148A (en) 1985-03-22 1990-09-18 Elmwood Sensors, Inc. Contrast enhancing transparent touch panel device
JPS61238319A (en) 1985-04-17 1986-10-23 Dainippon Ink & Chem Inc Selective gas permeable membrane
US4781798A (en) 1985-04-19 1988-11-01 The Regents Of The University Of California Transparent multi-oxygen sensor array and method of using same
GB8514176D0 (en) 1985-06-05 1985-07-10 Ici Plc Membrane
US4671288A (en) 1985-06-13 1987-06-09 The Regents Of The University Of California Electrochemical cell sensor for continuous short-term use in tissues and blood
US4938860A (en) 1985-06-28 1990-07-03 Miles Inc. Electrode for electrochemical sensors
US4805624A (en) 1985-09-09 1989-02-21 The Montefiore Hospital Association Of Western Pa Low-potential electrochemical redox sensors
US4680268A (en) * 1985-09-18 1987-07-14 Children's Hospital Medical Center Implantable gas-containing biosensor and method for measuring an analyte such as glucose
JPS6274406A (en) 1985-09-30 1987-04-06 Teijin Ltd Separating membrane
US4689309A (en) 1985-09-30 1987-08-25 Miles Laboratories, Inc. Test device, method of manufacturing same and method of determining a component in a sample
JPH0331414B2 (en) 1985-10-04 1991-05-07 Reiji Yoshinaka
JPS6283649A (en) 1985-10-08 1987-04-17 Matsushita Electric Ind Co Ltd Blood-sugar measuring device
JPS6274406U (en) 1985-10-29 1987-05-13
JPH0478332B2 (en) 1985-10-30 1992-12-10 Kogyo Gijutsuin
US4647643A (en) 1985-11-08 1987-03-03 Becton, Dickinson And Company Soft non-blocking polyurethanes
JPS6283849U (en) 1985-11-12 1987-05-28
JPS6283649U (en) 1985-11-14 1987-05-28
JPH0341047Y2 (en) 1985-12-19 1991-08-29
JPH058947B2 (en) 1986-01-20 1993-02-03 Shinetsu Chem Ind Co
US4684538A (en) 1986-02-21 1987-08-04 Loctite Corporation Polysiloxane urethane compounds and adhesive compositions, and method of making and using the same
US4776944A (en) 1986-03-20 1988-10-11 Jiri Janata Chemical selective sensors utilizing admittance modulated membranes
JPH0696106B2 (en) 1986-03-31 1994-11-30 帝人株式会社 Gas separation membrane
US4685463A (en) 1986-04-03 1987-08-11 Williams R Bruce Device for continuous in vivo measurement of blood glucose concentrations
CA1299653C (en) 1988-07-07 1992-04-28 Markwell Medical Institute, Inc. Biological fluid measuring device
US4795542A (en) 1986-04-24 1989-01-03 St. Jude Medical, Inc. Electrochemical concentration detector device
US4909908A (en) 1986-04-24 1990-03-20 Pepi Ross Electrochemical cncentration detector method
DE3752345T2 (en) 1986-04-30 2002-08-22 Igen Int Inc Electroluminescent compounds and intermediates for manufacturing
US4731726A (en) 1986-05-19 1988-03-15 Healthware Corporation Patient-operated glucose monitor and diabetes management system
GB8612861D0 (en) 1986-05-27 1986-07-02 Cambridge Life Sciences Immobilised enzyme biosensors
US4726381A (en) 1986-06-04 1988-02-23 Solutech, Inc. Dialysis system and method
US4763658A (en) 1986-06-04 1988-08-16 Solutech, Inc. Dialysis system 2nd method
US4781733A (en) 1986-07-23 1988-11-01 Bend Research, Inc. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
US4935346A (en) * 1986-08-13 1990-06-19 Lifescan, Inc. Minimum procedure system for the determination of analytes
US5002572A (en) * 1986-09-11 1991-03-26 Picha George J Biological implant with textured surface
AU617667B2 (en) 1986-11-04 1991-12-05 Allergan, Inc. Open-cell, silicone-elastomer medical implant and method for making
US5007929B1 (en) * 1986-11-04 1994-08-30 Medical Products Dev Open-cell silicone-elastomer medical implant
JPS63130661A (en) 1986-11-20 1988-06-02 Toppan Printing Co Ltd Non-porous moisture-permeable waterproof film
US4954381A (en) 1986-12-30 1990-09-04 The Research Foundation Of The State University Of New York Preparation of porous substrates having well defined morphology
DE3700119A1 (en) 1987-01-03 1988-07-14 Inst Diabetestechnologie Gemei Implantable electrochemical sensor
AT391063B (en) * 1987-01-08 1990-08-10 Blum Gmbh Julius Connecting fitting for fastening the railing of a drawer
US4750496A (en) 1987-01-28 1988-06-14 Xienta, Inc. Method and apparatus for measuring blood glucose concentration
JPS63130661U (en) 1987-02-18 1988-08-26
DE3875149T2 (en) 1987-03-27 1993-02-11 Isao Karube Miniaturized bio-sensor with miniaturized oxygen electrode and its production process.
US4935345A (en) 1987-04-07 1990-06-19 Arizona Board Of Regents Implantable microelectronic biochemical sensor incorporating thin film thermopile
US5352348A (en) 1987-04-09 1994-10-04 Nova Biomedical Corporation Method of using enzyme electrode
US4832034A (en) 1987-04-09 1989-05-23 Pizziconi Vincent B Method and apparatus for withdrawing, collecting and biosensing chemical constituents from complex fluids
US5100689A (en) 1987-04-10 1992-03-31 University Of Florida Surface modified surgical instruments, devices, implants, contact lenses and the like
US4961954A (en) 1987-04-10 1990-10-09 University Of Florida Surface modified surgical instruments, devices, implants, contact lenses and the like
US6387379B1 (en) 1987-04-10 2002-05-14 University Of Florida Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
US5094876A (en) 1987-04-10 1992-03-10 University Of Florida Surface modified surgical instruments, devices, implants, contact lenses and the like
IT1215491B (en) 1987-05-15 1990-02-14 Enricerche Spa Biosensor with enzymatic membrane chemically bound to a semiconductor device.
US4880883A (en) 1987-06-03 1989-11-14 Wisconsin Alumni Research Foundation Biocompatible polyurethanes modified with lower alkyl sulfonate and lower alkyl carboxylate
US5540828A (en) 1987-06-08 1996-07-30 Yacynych; Alexander Method for making electrochemical sensors and biosensors having a polymer modified surface
US5286364A (en) 1987-06-08 1994-02-15 Rutgers University Surface-modified electochemical biosensor
US4810470A (en) * 1987-06-19 1989-03-07 Miles Inc. Volume independent diagnostic device
US4786657A (en) 1987-07-02 1988-11-22 Minnesota Mining And Manufacturing Company Polyurethanes and polyurethane/polyureas crosslinked using 2-glyceryl acrylate or 2-glyceryl methacrylate
US4805625A (en) 1987-07-08 1989-02-21 Ad-Tech Medical Instrument Corporation Sphenoidal electrode and insertion method
FI77569C (en) 1987-07-13 1989-04-10 Huhtamaeki Oy Anordination for the purpose of the operations and the operations of eller en vaevnad.
JPH07114937B2 (en) 1987-07-13 1995-12-13 帝人株式会社 Separation membrane
JPH0824830B2 (en) 1987-07-13 1996-03-13 帝人株式会社 Separation membrane
DE3725728C2 (en) 1987-08-04 1989-11-16 Fa. Carl Freudenberg, 6940 Weinheim, De
US5221724A (en) 1987-08-12 1993-06-22 Wisconsin Alumni Research Foundation Polysiloxane polyurea urethanes
GB2209836A (en) 1987-09-16 1989-05-24 Cambridge Life Sciences Multilayer enzyme electrode membrane and method of making same
US4974929A (en) 1987-09-22 1990-12-04 Baxter International, Inc. Fiber optical probe connector for physiologic measurement devices
NL8702370A (en) 1987-10-05 1989-05-01 Groningen Science Park Method and system for glucose determination and useable measuring cell assembly.
DE3736652A1 (en) 1987-10-29 1989-05-11 Bayer Ag Process for preparing coatings
US5242835A (en) 1987-11-03 1993-09-07 Radiometer A/S Method and apparatus for determining the concentration of oxygen
GB8725936D0 (en) 1987-11-05 1987-12-09 Genetics Int Inc Sensing system
US5128408A (en) 1987-11-16 1992-07-07 Toyo Boseki Kabushiki Kaisha Gas-permeable material with excellent compatibility with blood
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
US4813424A (en) 1987-12-23 1989-03-21 University Of New Mexico Long-life membrane electrode for non-ionic species
US4890621A (en) 1988-01-19 1990-01-02 Northstar Research Institute, Ltd. Continuous glucose monitoring and a system utilized therefor
US5034112A (en) 1988-05-19 1991-07-23 Nissan Motor Company, Ltd. Device for measuring concentration of nitrogen oxide in combustion gas
US5070169A (en) 1988-02-26 1991-12-03 Ciba-Geigy Corporation Wettable, flexible, oxygen permeable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units and use thereof
US4822336A (en) 1988-03-04 1989-04-18 Ditraglia John Blood glucose level sensing
US4955861A (en) 1988-04-21 1990-09-11 Therex Corp. Dual access infusion and monitoring system
US4951657A (en) 1988-04-22 1990-08-28 Dow Corning Corporation Heat sealable membrane for transdermal drug release
US4793555A (en) 1988-04-22 1988-12-27 Dow Corning Corporation Container, method and composition for controlling the release of a volatile liquid from an aqueous mixture
US4908208A (en) 1988-04-22 1990-03-13 Dow Corning Corporation Matrix for release of active ingredients
US4952618A (en) 1988-05-03 1990-08-28 Minnesota Mining And Manufacturing Company Hydrocolloid/adhesive composition
US5342693A (en) 1988-06-08 1994-08-30 Cardiopulmonics, Inc. Multifunctional thrombo-resistant coating and methods of manufacture
JPH022913A (en) 1988-06-16 1990-01-08 Bridgestone Corp Modified electrode
GB8817997D0 (en) 1988-07-28 1988-09-01 Cambridge Life Sciences Enzyme electrodes & improvements in manufacture thereof
EP0353328A1 (en) 1988-08-03 1990-02-07 Dräger Nederland B.V. A polarographic-amperometric three-electrode sensor
US5438984A (en) 1988-09-08 1995-08-08 Sudor Partners Apparatus and method for the collection of analytes on a dermal patch
US4960594A (en) 1988-09-22 1990-10-02 Derma-Lock Medical Corporation Polyurethane foam dressing
US4983702A (en) 1988-09-28 1991-01-08 Ciba-Geigy Corporation Crosslinked siloxane-urethane polymer contact lens
NL8802481A (en) 1988-10-10 1990-05-01 Texas Instruments Holland Transponder and method for making the same
US5063081A (en) 1988-11-14 1991-11-05 I-Stat Corporation Method of manufacturing a plurality of uniform microfabricated sensing devices having an immobilized ligand receptor
US5200051A (en) 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
US6306594B1 (en) 1988-11-14 2001-10-23 I-Stat Corporation Methods for microdispensing patterened layers
US5212050A (en) 1988-11-14 1993-05-18 Mier Randall M Method of forming a permselective layer
AU4951690A (en) 1988-12-30 1990-08-01 David M. Anderson Stabilized microporous materials and hydrogel materials
US5269891A (en) 1989-03-09 1993-12-14 Novo Nordisk A/S Method and apparatus for determination of a constituent in a fluid
JPH02298855A (en) 1989-03-20 1990-12-11 Assoc Univ Inc Electrochemical biosensor using immobilized enzyme and redox polymer
US5089112A (en) 1989-03-20 1992-02-18 Associated Universities, Inc. Electrochemical biosensor based on immobilized enzymes and redox polymers
US4986671A (en) * 1989-04-12 1991-01-22 Luxtron Corporation Three-parameter optical fiber sensor and system
US4953552A (en) 1989-04-21 1990-09-04 Demarzo Arthur P Blood glucose monitoring system
EP0396788A1 (en) 1989-05-08 1990-11-14 Dräger Nederland B.V. Process and sensor for measuring the glucose content of glucosecontaining fluids
US4907145A (en) * 1989-05-11 1990-03-06 Belmont Instrument Corporation Sine wave inverter
US4988341A (en) 1989-06-05 1991-01-29 Eastman Kodak Company Sterilizing dressing device and method for skin puncture
US5034461A (en) 1989-06-07 1991-07-23 Bausch & Lomb Incorporated Novel prepolymers useful in biomedical devices
US5045601A (en) 1989-06-13 1991-09-03 Biointerface Technologies, Inc. Pressure-sensitive adhesive compositions suitable for medical uses
US4927407A (en) 1989-06-19 1990-05-22 Regents Of The University Of Minnesota Cardiac assist pump with steady rate supply of fluid lubricant
US5115056A (en) 1989-06-20 1992-05-19 Ciba-Geigy Corporation Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymers and contact lenses thereof
US5334681A (en) 1989-06-20 1994-08-02 Ciba-Geigy Corporation Fluorine and/or silicone containing poly(alkylene-oxide)-block copolymer hydrogels and contact lenses thereof
CH677149A5 (en) 1989-07-07 1991-04-15 Disetronic Ag
US5264104A (en) 1989-08-02 1993-11-23 Gregg Brian A Enzyme electrodes
FR2650756B1 (en) 1989-08-11 1991-10-31 Inst Francais Du Petrole Gas separation membrane
US5101814A (en) * 1989-08-11 1992-04-07 Palti Yoram Prof System for monitoring and controlling blood glucose
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5002590A (en) 1989-09-19 1991-03-26 Bend Research, Inc. Countercurrent dehydration by hollow fibers
FR2652736A1 (en) 1989-10-06 1991-04-12 Neftel Frederic Implantable device for evaluating the rate of glucose.
JPH0414980B2 (en) 1989-10-18 1992-03-16 Nishitomo Kk
US5010141A (en) 1989-10-25 1991-04-23 Ciba-Geigy Corporation Reactive silicone and/or fluorine containing hydrophilic prepolymers and polymers thereof
US5067491A (en) 1989-12-08 1991-11-26 Becton, Dickinson And Company Barrier coating on blood contacting devices
WO1991009302A1 (en)