New! View global litigation for patent families

US20030029540A1 - Method for the manufacture of a smart label inlet web, and a smart label inlet web - Google Patents

Method for the manufacture of a smart label inlet web, and a smart label inlet web Download PDF

Info

Publication number
US20030029540A1
US20030029540A1 US10191968 US19196802A US2003029540A1 US 20030029540 A1 US20030029540 A1 US 20030029540A1 US 10191968 US10191968 US 10191968 US 19196802 A US19196802 A US 19196802A US 2003029540 A1 US2003029540 A1 US 2003029540A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
web
smart
label
surface
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10191968
Inventor
Samuli Stromberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rafsec Oy
Original Assignee
Rafsec Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/04Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the shape
    • G06K19/041Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07718Constructional details, e.g. mounting of circuits in the carrier the record carrier being manufactured in a continuous process, e.g. using endless rolls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Abstract

The invention relates to a method for the manufacture of a smart label inlet web, in which method a smart label is protected from external effects by means of a surface film coated with an adhesive, the adhesive being in contact with the smart label. The adhesive is cured by radiation. The invention also relates to a smart label inlet web comprising a surface film, a smart label and a back web attached to each other. The surface film is attached to the smart label with an adhesive cured by radiation.

Description

  • [0001]
    A method for the manufacture of a smart label inlet web, and a smart label inlet web
  • [0002]
    The present invention relates to a method for the manufacture of a smart label inlet web, a smart label inlet web, and a smart label card. A smart label inlet web comprises successive smart labels suitably spaced in a continuous sequence on a back web. The smart label inlet web is normally used as a raw material for further processing in the manufacture of a smart label product. At the stage of further processing e.g. by a printing machine, the smart label inlet web is introduced between a facing paper and a back paper for a label, before the ready labels are punched off the web.
  • [0003]
    In the present application, smart labels refer to labels comprising an RF-ID circuit (identification) or an RF-EAS circuit (electronic article surveillance). In this Finnish application, the English terms corresponding to the Finnish terms are often included in parenthesis, because the. English terms are regularly used by persons skilled in the art.
  • [0004]
    A known smart label inlet web is disclosed in U.S. patent publication 5,867,102. In the publication, FIG. 15 shows a smart label inlet web comprising electronic product control means 240 having an adhesive background and comprising a thin film and an oscillating circuit protected by a small plastic cover.
  • [0005]
    The manufacture of the smart label inlet web involves several problems. Discharges of static electricity during the manufacturing process or moisture, particularly in a long term, may damage a smart label having no protection so that it becomes useless. When a suitable protection, for example a plastic film or paper, is attached with a conventional adhesive onto the smart label, it is relatively easy to detach, and the smart label can thus be easily damaged. Conventional wet lamination processes and direct application of a hot-melt adhesive on the smart label are poorly suited alternatives, because the smart label is subjected to mechanical stress and heat stress in these processes. In the process, waste is also produced especially at the beginning of the manufacturing process particularly when wet lamination is used, because the production parametres are usually not successfully set at once.
  • [0006]
    The smart label may comprise a silicon chip with an integrated circuit attached on its surface. The chip, whose thickness is typically more than 50 μm, forms a bulge on the surface of the smart label, which is a problem e.g. at the stages of further processing, because the profile of the smart label is uneven. The above-mentioned problems can be reduced by the method according to claim 1, which is characterized in that the adhesive is cured by radiation. The smart label inlet web according to the invention is characterized in that the surface film is attached to the smart label with an adhesive cured by radiation. The smart label card according to the invention is characterized in that the surface film is attached to the smart label with an adhesive cured by radiation.
  • [0007]
    The chip is brittle and may be damaged, if there are angles with a small radius in the manufacturing process and/or if the smart label is pressed with a too hard compression load for example in a hard nip. These problems can be reduced by the method presented in the dependent claims 5 and 6.
  • [0008]
    The blank for a smart label inlet web comprises a back web, a smart label web and a surface web which are uniformly continuous and are attached to each other. In the ready smart label inlet web, the back web is uniformly continuous, but the surface web and the smart label web are punched into pieces separated from each other and having a fixed size. In this application, these pieces are referred to as the cover film and the smart label. It is also possible that the blank for a smart label inlet web is punched into pieces, separated from each other and having a fixed size, in such a way that the back web is also punched. In this way, smart label cards are formed.
  • [0009]
    The surface of the back web, which may be for example a release paper with a silicon coating, is provided with an adhesive. The adhesive can be any adhesive that is suitable for the purpose, for example a pressure-sensitive adhesive (PSA) which is easily adhered at room temperature.
  • [0010]
    The smart label web is a carrier web containing smart labels one after each other. The smart label web can be for example a plastic film. The smart label can be made either by etching the required conductive circuit in a metal or by pressing the required conductive circuit with an electro conductive ink on the smart label web. The electrically operating radio frequency identification (RFID) circuit of the smart label is a simple electric oscillating circuit (RCL circuit) operating at a defined frequency. The circuit consists of a coil, a capacitor and an integrated circuit on a chip. The integrated circuit comprises an escort memory and an RF part which is arranged to communicate with a reader device. Also the capacitor of the RCL circuit can be integrated on the chip.
  • [0011]
    The surface web is a film provided with an adhesive, such as a hot-melt adhesive, on its lower surface, i.e. on the side of the smart label. The hot-melt adhesive is preferably curable by radiation, wherein the adherence of the adhesive can be controlled by controlling the quantity of the radiation dose. Suitable methods for curing by radiation include curing by ultraviolet radiation or curing by an electron beam. The surface web is a plastic film, preferably a polyolefine film, such as a polypropylene or polyethylene film.
  • [0012]
    The back web, the smart label web and the surface web are attached to each other by introducing them simultaneously into a nip which can be for example a nip formed by two rolls or a nip formed by a roll and a belt. The adhesive of the back web adheres to the lower surface of the smart label web, and the adhesive of the surface web adheres to the upper surface of the smart label web. Before the nip, the adhesive can be suitably heated e.g. with an infrared heater, to provide the adhesive with suitable properties of adhesion to the smart label web. At least one of the contact surfaces forming the nip, such as rolls or belts, has a resilient surface, wherein a long nip is formed. The smart label inlet web formed by the attached webs is led to radiation, wherein the adhesive is finally cross-linked. After this, the smart label web and the surface web are punched into a smart label and a surface film of a fixed size. The material left over from the webs is removed from the surface of the back web, and the ready smart label inlet web is reeled up. In some applications, it is also possible to punch the back web into back films of fixed size, wherein smart label cards are formed, whose back film remains in its position in the ready product.
  • [0013]
    The surface web protects the smart label web from external effects. The surface web prevents damage to the electrical properties of the circuit caused by the effect of moisture or mechanically. It also protects the integrated circuit on the chip as well as its attachment from ambient factors, mechanical stress and discharges of static electricity. All the above-mentioned phenomena may completely break the circuit or impair its efficiency. A chip can be attached to each smart label of the smart label web for example by a so-called flip-chip technique, known as such.
  • [0014]
    The adhesive to be applied to the interface of the surface film and the smart label is an important factor in how successfully the smart label is protected from external effects. The hydrofobic/hydrophilic properties of the adhesive and the change of the mechanical properties by the effect of moisture must be taken into account. Particularly suitable adhesives for this purpose include, thanks to their slight absorption of moisture, hot-melt adhesives, particularly adhesives which can be cross-linked by UV radiation or electron beam curing and which can be transfer laminated. The adhesive layer formed on the release web of the surface web is transfer laminated, and after this, the polymer is cross-linked further. Cross-linking can be controlled by adjusting the energy supplied to the system. It is possible to use UV hot-melt adhesives, whose cross-linking can be adjusted by adjusting the quantity of the UV radiation. The radiation requires a protective film passing UV radiation, wherein for example polyethylene and polypropylene films are well suited for the purpose. It is also possible to cure the adhesive by electron beam (EB) curing, wherein it is possible to use a range of films with a larger material basis than when UV radiation is used, because in this case the film does not need to pass UV radiation. When curing by an electron beam is used, the penetration depth must be suitably selected so that it will not affect the functional properties of the chip. When using an adhesive that is cross-linked by radiation, the web does not need to be subjected to a hard pressure in the nip upon attaching the webs, because the adhesion of the adhesive can be improved by cross-linking after the nip.
  • [0015]
    It is also possible that the smart label web is laminated between the surface and back webs in such a way that the back web is not intended to be removed at a stage of further processing, but it is punched into a back film having a fixed size and remaining in its position also in the final product. In this way, a card is formed which can be used e.g. as a disposable charge card, such as a ticket or a charge card for a bus. Such a card can also be used as a product control means, for example sewn or heat-sealed inside a garment. The surface and back webs of such cards can be made of for example plastic, paper or board. In cases in which the material does not pass UV radiation, a suitable curing method is curing by an electron beam. In these uses, properties that can be required of the surface and back webs include suitability for heat sealing, rigidity, and good mechanical, optical and visual properties.
  • [0016]
    The speed used in the process of manufacturing the smart label inlet web is relatively slow, wherein a good result is obtained with a long nip time in a soft and long nip. The long nip can be formed for example between two rolls or between a roll and a resilient belt. In a nip formed by two rolls, at least one of the rolls has a resilient surface, wherein at least part of the material of the roll can be of an elastomer. It is also possible that both of the rolls forming the nip have a resilient surface. The tension of the back and surface webs is adjusted by methods known as such, but the smart label web is slack when it is led to lamination. By simultaneous lamination of the surface web and the back web, the risk of breaking the smart label is reduced, when it is run only once through the nip in the lamination process. Similarly, by using a long, soft nip, the risk of breaking is reduced, when the smart label is subjected to a low surface pressure when compared with using a hard nip. Furthermore, the path of the smart label is more straight in a soft nip than in a hard nip which may easily have quickly turning angles.
  • [0017]
    In further processing, the smart label inlet web is introduced between the surface and back webs in the process, and after that, the ready labels are possibly punched off the web, wherein separate smart label products are formed. In further processing, the labels can be printed, wherein for achieving a good printing result, the profile of the smart label product must be even. Problems in the smoothness are particularly caused by the chip of the smart label which forms a clear bulge on the surface of the smart label product. The bulge can be made smaller by trying to remove the adhesive layer of the surface web from the surface of the chip. A hot-melt adhesive, which is either a hot-melt adhesive cured by radiation, such as ultraviolet radiation or an electron beam, or a normal hot-melt adhesive that can be made fluid by heating, can be made to run off the surface of the chip. A hot-melt adhesive curable by ultraviolet radiation or by an electron beam can be left fluid upon the lamination of the surface web, wherein no additional heating is necessary.
  • [0018]
    In the following, the invention will be described with reference to the appended drawings, in which
  • [0019]
    [0019]FIG. 1 shows a smart label web in a top view,
  • [0020]
    [0020]FIG. 2 shows the process of manufacturing a smart label inlet web in a schematic view, and
  • [0021]
    [0021]FIG. 3 shows a side view of the ready smart label inlet web.
  • [0022]
    [0022]FIG. 1 shows a smart label web W2 in a top view, including a single smart label 12 comprising a circuitry pattern 13 and an integrated circuit 14 therein. The smart label 12 can be manufactured by pressing the circuitry pattern on a film with an electroconductive printing ink or by etching the circuitry pattern on a metal film. The circuitry pattern is provided with an identification circuit, such as a radio frequency identification (RFID) circuit. The identification circuit is a simple electric oscillating circuit (RCL circuit) tuned to operate at a defined frequency. The circuit consists of a coil, a capacitor and a circuit integrated on a chip, consisting of an escort memory and an RF part for communication with a reader device. The capacitor of the RCL circuit can also be integrated on the chip.
  • [0023]
    [0023]FIG. 2 shows the process of manufacturing a smart label inlet web. A continuous web comprising a surface web W1 is unwound from a reel 5. From the reverse side of the surface web W1, the release web of the surface web is released and, after the releasing, it is reeled up on a roll 4. On the side where the release web was released, the surface web W1 is impregnated with an adhesive whose adhesion can be improved by heating it with a heater 7 which can be for example an infrared heater. The material of the surface web W1 is preferably a polyolefine film, such as a polypropylene or polyethylene film.
  • [0024]
    The smart label web W2 containing smart labels 12 one after another on a carrier web, is unwound from a reel 3. The carrier web may also contain several smart labels side by side. The material of the smart label web W2, onto whose surface the circuitry pattern is formed and the integrated circuit is attached, is preferably a plastic film with a suitable rigidity.
  • [0025]
    A continuous web comprising a back web W3 is unwound from a reel 1. From the reverse side of the back web W3, the release web of the back web is released and, after the releasing, it is reeled up on a roll 2. On the side where the release web was released, the back web W3 is provided with an adhesive. The adhesive can be for example a pressure-sensitive adhesive which can be made to adhere to another surface by pressing it against the other surface.
  • [0026]
    The surface web W1, the smart label web W2 and the back web W3 are attached to each other in a nip N1 formed by rolls 8 and 9, which is a resilient, long nip. The nip N1 is followed by a radiator device 10 to which the blank W4 of the smart label inlet web is led. The radiator device 10 can produce ultraviolet radiation or electron beams. The blank W4 of the smart label inlet web is further introduced to a punching unit 18 in which the surface web W1 and the smart label web W2 are punched at a suitable location so that the surface of the back web W3 is provided with a sequence of smart labels 12 of a fixed size and protective surface films 15 on top of them. After the punching, excess parts of the surface web W1 and the smart label web W3 are left outside the smart label 12 and the surface film and are removed by reeling up the excess material on a reel 19. The ready made smart label inlet web W5 is reeled up on a reel 11.
  • [0027]
    [0027]FIG. 3 shows the cross-section of the ready smart label inlet web in the longitudinal direction of the web. The back web W3 is a continuous carrier web for the smart label 12 under the surface film 15. The surface web W1 and the smart label web P12 are punched as a cover film 15 and a smart label 12. The excess parts of the surface web W1 and the smart label web W2 left at the edges upon punching are removed from the back web W3. The interface 16 between the back web W3 and the smart label 12 is provided with an adhesive layer which can be for example a pressure-sensitive adhesive. The inter-face 17 between the smart label 12 and the cover film 15 is provided with an adhesive layer which is preferably a hot-melt adhesive cured by means of ultraviolet (UV) radiation or an electron beam (EB).
  • [0028]
    The back web W3 is a release paper whose surface on the side of the smart label 12 is treated in such a way that the smart label 12 and the cover film 15 can be easily detached together from the back web W3 at the interface 16. The cover film 15 is a film passing UV radiation, such as a polyolefine film.
  • EXAMPLE
  • [0029]
    A hot-melt adhesive curable by ultraviolet radiation (acResin A 258 UV, BASF AG, Germany) and a conventional adhesive were used in a comparison test on the attachment of synthetic films. Samples were drawn with a tension device (Instron) at the angle of 1800 at the speed of 300 mm/min, and the withdrawal force was measured. The force required for the detachment (peel value) was the following for the different adhesives (average of the measurements):
    Conventional adhesive 16 N/48 mm
    Adhesive cured by ultraviolet radiation 22 N/48 mm
  • [0030]
    It is seen from the results that the adhesive curable by ultraviolet radiation yields an increase of about 37% when compared with the conventional adhesive.
  • [0031]
    The invention is not restricted to the description above, but it may vary within the scope of the claims. The method according to the invention can be used in all suitable uses where a protection is required for the smart label. The smart label inlet web does not necessarily need to be ready in the form of a continuous web, but single smart labels can be fed with a suitable feeding device. The blank of the smart label inlet web can be punched into smart label cards which comprise a film on both sides of the smart label, no adhesive being normally applied on the outer surface of the films. The main idea in the present invention is that by using an adhesive of a particular type, it is possible to protect the properties of the smart label and thus to improve the quality and reliability of the manufacture.

Claims (14)

  1. 1. A method for the manufacture of a smart label inlet web, the method comprising protecting a smart label from external effects by means of a surface film coated with an adhesive, the adhesive being in contact with the smart label, wherein adhesive is cured by radiation.
  2. 2. The method according to claim 1, wherein the adhesive is cured by means of ultraviolet (UV) radiation or electron beam (EB) curing.
  3. 3. The method according to claim 1 or 2, wherein the adhesive is applied onto a surface web by transfer lamination.
  4. 4. The method according to claim 3, wherein the surface web is a polyolefin film.
  5. 5. The method according to claim 4, wherein the surface web is a polyolefin film.
  6. 6. The method according to claim 5, wherein at least one of two contact surfaces forming the nip has a resilient surface.
  7. 7. The method according to claim 6, wherein before attachment of the surface web, smart label web, and back web, release webs are released from a reverse side of the surface web and from a reverse side of the back web.
  8. 8. The method according to claim 5, wherein after radiation of the adhesive, the smart label and the surface film on a surface of the back web are punched off the attached surface web and the smart label web, and excess material is removed.
  9. 9. The method according to claim 8, wherein the ready smart label inlet web is reeled up on a roll.
  10. 10. The method according to claim 5, wherein after radiation of the adhesive, the smart label, the surface film and the back film are punched off the attached surface web, smart label web and back web.
  11. 11. A smart label inlet web comprising a surface film, a smart label and a back web attached to each other, wherein the surface film is attached to the smart label by an adhesive which is radiation curable.
  12. 12. The smart label inlet web according to claim 11, wherein the surface film is attached to the smart label by means of an adhesive effective for being crosslinked by ultraviolet radiation or electron beam curing.
  13. 13. A smart label card comprising a surface film, a smart label and a back film made of a back web, attached to each other, wherein the surface film is attached to the smart label by an adhesive which is radiation curable.
  14. 14. The smart label card according to claim 13, wherein the surface film is attached to the smart label by means of an adhesive effective for being crosslinked by ultraviolet irradiation or electron beam curing.
US10191968 2000-01-17 2002-07-09 Method for the manufacture of a smart label inlet web, and a smart label inlet web Abandoned US20030029540A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FIFI20000082 2000-01-17
FI20000082A FI112288B (en) 2000-01-17 2000-01-17 Process for the preparation of älytarrasyöttörainan
PCT/FI2001/000037 WO2001054058A1 (en) 2000-01-17 2001-01-16 Method to manufacture a smart label inlet web and a smart label inlet web

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11217199 US7236093B2 (en) 2000-01-17 2005-09-01 Method for the manufacture of a smart label inlet web, and a smart label inlet web

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2001/000037 Continuation WO2001054058A1 (en) 2000-01-17 2001-01-16 Method to manufacture a smart label inlet web and a smart label inlet web

Publications (1)

Publication Number Publication Date
US20030029540A1 true true US20030029540A1 (en) 2003-02-13

Family

ID=8557082

Family Applications (2)

Application Number Title Priority Date Filing Date
US10191968 Abandoned US20030029540A1 (en) 2000-01-17 2002-07-09 Method for the manufacture of a smart label inlet web, and a smart label inlet web
US11217199 Active 2021-02-02 US7236093B2 (en) 2000-01-17 2005-09-01 Method for the manufacture of a smart label inlet web, and a smart label inlet web

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11217199 Active 2021-02-02 US7236093B2 (en) 2000-01-17 2005-09-01 Method for the manufacture of a smart label inlet web, and a smart label inlet web

Country Status (5)

Country Link
US (2) US20030029540A1 (en)
EP (2) EP1249004A1 (en)
JP (2) JP2003520666A (en)
FI (1) FI112288B (en)
WO (1) WO2001054058A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060196936A1 (en) * 2005-01-06 2006-09-07 Quad/Graphics, Inc. Resonator use in the print field
WO2007000407A2 (en) * 2005-06-28 2007-01-04 Mühlbauer Ag Method and device for producing self-adhesive rfid transponders
US20080046325A1 (en) * 2004-02-05 2008-02-21 Alex Suk Couponing system
US20080147504A1 (en) * 2004-02-05 2008-06-19 Unicous Marketing, Inc. Point-Of-Sale System Implementing Criteria-Based Transaction Totals
US20080154676A1 (en) * 2004-02-05 2008-06-26 Unicous Marketing, Inc. System And Method For The Processing Of Electronic Coupons
US20130300102A1 (en) * 2012-04-11 2013-11-14 Universal Surveillance Systems, Llc Hybrid label

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750899B1 (en) 2000-01-07 2004-06-15 Cyberoptics Corporation Solder paste inspection system
JP2002189999A (en) * 2000-12-21 2002-07-05 Toppan Forms Co Ltd Manufacture of ic medium using electron beam
US6606247B2 (en) 2001-05-31 2003-08-12 Alien Technology Corporation Multi-feature-size electronic structures
US6951596B2 (en) 2002-01-18 2005-10-04 Avery Dennison Corporation RFID label technique
US7023347B2 (en) 2002-08-02 2006-04-04 Symbol Technologies, Inc. Method and system for forming a die frame and for transferring dies therewith
US6915551B2 (en) 2002-08-02 2005-07-12 Matrics, Inc. Multi-barrel die transfer apparatus and method for transferring dies therewith
US7253735B2 (en) * 2003-03-24 2007-08-07 Alien Technology Corporation RFID tags and processes for producing RFID tags
US20040250417A1 (en) 2003-06-12 2004-12-16 Arneson Michael R. Method, system, and apparatus for transfer of dies using a die plate
US7479614B2 (en) 2004-01-12 2009-01-20 Symbol Technologies Radio frequency identification tag inlay sortation and assembly
US7370808B2 (en) 2004-01-12 2008-05-13 Symbol Technologies, Inc. Method and system for manufacturing radio frequency identification tag antennas
CA2576772A1 (en) 2004-08-17 2006-03-02 Symbol Technologies, Inc. Singulation of radio frequency identification (rfid) tags for testing and/or programming
US7688206B2 (en) * 2004-11-22 2010-03-30 Alien Technology Corporation Radio frequency identification (RFID) tag for an item having a conductive layer included or attached
JP4091096B2 (en) 2004-12-03 2008-05-28 株式会社 ハリーズ Interposer bonding device
WO2006109678A1 (en) 2005-04-06 2006-10-19 Hallys Corporation Electronic component manufacturing apparatus
US8786510B2 (en) * 2006-01-24 2014-07-22 Avery Dennison Corporation Radio frequency (RF) antenna containing element and methods of making the same
US7497004B2 (en) * 2006-04-10 2009-03-03 Checkpoint Systems, Inc. Process for making UHF antennas for EAS and RFID tags and antennas made thereby
US20090079542A1 (en) * 2007-09-21 2009-03-26 Heinl Rochelle L RFID tag and method for spacing an RFID tag
US8059280B2 (en) 2008-01-31 2011-11-15 Cyberoptics Corporation Method for three-dimensional imaging using multi-phase structured light
FR2938958A1 (en) * 2008-11-25 2010-05-28 Neopost Technologies answers-card processing Method
US20100215875A1 (en) * 2009-02-26 2010-08-26 Ching-Chang Yang Thermal transfer-printing film and method utilizing the same
FR2944124B1 (en) * 2009-04-03 2012-05-11 Paragon Identification radio frequency identification (RFID) tag and method of manufacturing the label
CN102939802B (en) 2010-06-14 2016-04-06 艾利丹尼森公司 The method of manufacturing a conductive structure
DE102014102519A1 (en) 2014-02-26 2015-08-27 Schreiner Group Gmbh & Co. Kg Film composite with electrical functionality for application to a substrate

Citations (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897964A (en) * 1971-12-08 1975-08-05 Dainippon Printing Co Ltd Identification cards and method for making the same
US4021705A (en) * 1975-03-24 1977-05-03 Lichtblau G J Resonant tag circuits having one or more fusible links
US4303949A (en) * 1978-08-01 1981-12-01 Societe Pyral Magnetic recording device for providing security related information
US4419413A (en) * 1981-02-26 1983-12-06 Nippon Piston Ring Co., Ltd. Powder molding method and powder compression molded composite article having a rest-curve like boundary
US4450024A (en) * 1980-08-07 1984-05-22 Gao Gesellschaft Fur Automation Und Organisation Mbh Identification card with an IC-module and method for producing it
US4455359A (en) * 1981-07-30 1984-06-19 Agfa-Gevaert Aktiengesellschaft Tamper-proof document
US4686152A (en) * 1984-11-16 1987-08-11 Toyo Seikan Kaisha, Ltd. Packaging material comprising iron foil, and container and container lid composed thereof
US4846922A (en) * 1986-09-29 1989-07-11 Monarch Marking Systems, Inc. Method of making deactivatable tags
US4866505A (en) * 1986-03-19 1989-09-12 Analog Devices, Inc. Aluminum-backed wafer and chip
US4954814A (en) * 1986-09-29 1990-09-04 Monarch Marking Systems, Inc. Tag and method of making same
US5026452A (en) * 1986-12-11 1991-06-25 Mitsubishi Denki Kabushiki Kaisha Method of producing IC cards
US5172461A (en) * 1990-08-17 1992-12-22 Fritz Pichl Method of producing electrical resonant circuits, specifically resonance labels
US5244836A (en) * 1991-12-30 1993-09-14 North American Philips Corporation Method of manufacturing fusible links in semiconductor devices
US5250341A (en) * 1990-03-26 1993-10-05 Mitsubishi Denki Kabushiki Kaisha IC card
US5266355A (en) * 1992-06-18 1993-11-30 Eastman Kodak Company Chemical vapor deposition of metal oxide films
US5294290A (en) * 1982-06-07 1994-03-15 Reeb Max E Computer and electromagnetic energy based mass production method for the continuous flow make of planar electrical circuits
US5302431A (en) * 1992-01-06 1994-04-12 National Poly Products, Inc. Deformable label
US5309326A (en) * 1991-12-06 1994-05-03 Rohm Co., Ltd. Circuit module having stacked circuit boards
US5337063A (en) * 1991-04-22 1994-08-09 Mitsubishi Denki Kabushiki Kaisha Antenna circuit for non-contact IC card and method of manufacturing the same
US5384955A (en) * 1992-09-29 1995-01-31 International Business Machines Corporation Method for replacing IC chip package interposer
US5525400A (en) * 1989-05-16 1996-06-11 Ciba-Geigy Corporation Information carrier and process for the production thereof
US5528222A (en) * 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5598032A (en) * 1994-02-14 1997-01-28 Gemplus Card International Hybrid chip card capable of both contact and contact-free operation and having antenna contacts situated in a cavity for an electronic module
US5667541A (en) * 1993-11-22 1997-09-16 Minnesota Mining And Manufacturing Company Coatable compositions abrasive articles made therefrom, and methods of making and using same
US5689263A (en) * 1991-07-09 1997-11-18 Esselte Meto International Gmbh Antipilferage markers
US5690773A (en) * 1994-02-24 1997-11-25 Gemplus Card International Method for the manufacture of a contact-free or hybrid card
US5714305A (en) * 1995-05-24 1998-02-03 Polaroid Corporation Overcoat-releasing laminate and method for the manufacture thereof
US5781110A (en) * 1996-05-01 1998-07-14 James River Paper Company, Inc. Electronic article surveillance tag product and method of manufacturing same
US5810959A (en) * 1996-02-28 1998-09-22 Kabushiki Kaisha Toshiba Thermocompressing bonding method and thermocompressing bonding apparatus
US5822194A (en) * 1994-03-31 1998-10-13 Ibiden Co., Ltd. Electronic part mounting device
US5837367A (en) * 1995-01-27 1998-11-17 Interprint Formularios Ltda. Memory card and method of producing same
US5850690A (en) * 1995-07-11 1998-12-22 De La Rue Cartes Et Systemes Sas Method of manufacturing and assembling an integrated circuit card
US5867102A (en) * 1997-02-27 1999-02-02 Wallace Computer Services, Inc. Electronic article surveillance label assembly and method of manufacture
US5918113A (en) * 1996-07-19 1999-06-29 Shinko Electric Industries Co., Ltd. Process for producing a semiconductor device using anisotropic conductive adhesive
US5918363A (en) * 1996-05-20 1999-07-06 Motorola, Inc. Method for marking functional integrated circuit chips with underfill material
US5920290A (en) * 1994-03-04 1999-07-06 Flexcon Company Inc. Resonant tag labels and method of making the same
US5932301A (en) * 1992-12-22 1999-08-03 Dai Nippon Printing Co., Ltd. Information recording medium and information recording and reproducing method
US5935497A (en) * 1995-06-21 1999-08-10 Schlumberger Industries Method of printing a graphic on a memory card
US5936847A (en) * 1996-05-02 1999-08-10 Hei, Inc. Low profile electronic circuit modules
US5937512A (en) * 1996-01-11 1999-08-17 Micron Communications, Inc. Method of forming a circuit board
US5952713A (en) * 1994-12-27 1999-09-14 Takahira; Kenichi Non-contact type IC card
US5962840A (en) * 1994-12-23 1999-10-05 Giesecke & Devrient Gmbh Data carrier with electronic module and embedded coil feature
US5969951A (en) * 1997-03-13 1999-10-19 Orga Kartensysteme Gmbh Method for manufacturing a chip card and chip card manufactured in accordance with said method
US5973600A (en) * 1997-09-11 1999-10-26 Precision Dynamics Corporation Laminated radio frequency identification device
US5976690A (en) * 1995-05-18 1999-11-02 3M Innovative Properties Company Opaque adhesives and method therefor
US5982284A (en) * 1997-09-19 1999-11-09 Avery Dennison Corporation Tag or label with laminated thin, flat, flexible device
US5994263A (en) * 1990-02-16 1999-11-30 Dai Nippon Insatsu Kabushiki Kaisha Card and process for producing the same
US6025780A (en) * 1997-07-25 2000-02-15 Checkpoint Systems, Inc. RFID tags which are virtually activated and/or deactivated and apparatus and methods of using same in an electronic security system
US6040630A (en) * 1998-04-13 2000-03-21 Harris Corporation Integrated circuit package for flip chip with alignment preform feature and method of forming same
US6066377A (en) * 1998-08-17 2000-05-23 Furon Laminated air brake tubing
US6077382A (en) * 1997-05-09 2000-06-20 Citizen Watch Co., Ltd Mounting method of semiconductor chip
US6113728A (en) * 1989-03-09 2000-09-05 Hitachi Chemical Company, Ltd. Process for connecting circuits and adhesive film used therefor
US6161761A (en) * 1998-07-09 2000-12-19 Motorola, Inc. Card assembly having a loop antenna formed of a bare conductor and method for manufacturing the card assembly
US6206292B1 (en) * 1999-01-23 2001-03-27 Sihl Gmbh Surface-printable RFID-transponders
US6220516B1 (en) * 1992-06-17 2001-04-24 Micron Technology, Inc. Method of manufacturing an enclosed transceiver
US6248199B1 (en) * 1999-04-26 2001-06-19 Soundcraft, Inc. Method for the continuous fabrication of access control and identification cards with embedded electronics or other elements
US6249199B1 (en) * 2000-04-10 2001-06-19 George Liu Quick magnetizing and demagnetizing device for screwdrivers
US6259408B1 (en) * 1999-11-19 2001-07-10 Intermec Ip Corp. RFID transponders with paste antennas and flip-chip attachment
US6288905B1 (en) * 1999-04-15 2001-09-11 Amerasia International Technology Inc. Contact module, as for a smart card, and method for making same
US6293470B1 (en) * 1997-04-29 2001-09-25 Swedish Advanced Technology Systems Ab Smartcard and method for its manufacture
US6315856B1 (en) * 1998-03-19 2001-11-13 Kabushiki Kaisha Toshiba Method of mounting electronic component
US6330162B2 (en) * 1998-03-17 2001-12-11 Sanyo Electric Co., Ltd. IC card module, manufacturing method therefor, hybrid integrated circuit module, and manufacturing method thereof
US6353420B1 (en) * 1999-04-28 2002-03-05 Amerasia International Technology, Inc. Wireless article including a plural-turn loop antenna
US6371378B1 (en) * 1997-12-15 2002-04-16 Gemplus Smart card provided with guarantee label
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
US6404643B1 (en) * 1998-10-15 2002-06-11 Amerasia International Technology, Inc. Article having an embedded electronic device, and method of making same
US6412702B1 (en) * 1999-01-25 2002-07-02 Mitsumi Electric Co., Ltd. Non-contact IC card having an antenna coil formed by a plating method
US6412470B1 (en) * 1999-05-19 2002-07-02 Robert Bosch Gmbh Method and arrangement for controlling the drive unit of a vehicle
US6421013B1 (en) * 1999-10-04 2002-07-16 Amerasia International Technology, Inc. Tamper-resistant wireless article including an antenna
US6478229B1 (en) * 2000-03-14 2002-11-12 Harvey Epstein Packaging tape with radio frequency identification technology
US6480110B2 (en) * 2000-12-01 2002-11-12 Microchip Technology Incorporated Inductively tunable antenna for a radio frequency identification tag
US6522549B2 (en) * 2000-09-29 2003-02-18 Sony Corporation Non-contacting type IC card and method for fabricating the same
US6557766B1 (en) * 1999-10-01 2003-05-06 Keith R. Leighton Hot lamination method for a hybrid radio frequency optical memory card converting sheets into a web process
US6569280B1 (en) * 1998-11-06 2003-05-27 The Standard Register Company Lamination by radiation through a ply
US6595426B1 (en) * 1997-10-03 2003-07-22 Gemplus Method of manufacturing an electronic device having a chip and/or an antenna, and a device obtained by implementing the method
US6736918B1 (en) * 1999-08-31 2004-05-18 Lintec Corporation Process for producing cards
US6780668B1 (en) * 1999-07-16 2004-08-24 Matsushita Electric Industrial Co., Ltd. Package of semiconductor device and method of manufacture thereof
US6843422B2 (en) * 2001-12-24 2005-01-18 Digimarc Corporation Contact smart cards having a document core, contactless smart cards including multi-layered structure, pet-based identification document, and methods of making same

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628977A (en) 1969-10-02 1971-12-21 Addressograph Multigraph Multilayer tape for coating intaglio depressions and process for using same
US4288499A (en) 1979-05-08 1981-09-08 Rohm And Haas Company Polymers adherent to polyolefins
US4443491A (en) * 1982-06-10 1984-04-17 Acumeter Laboratories, Inc. Method of and apparatus for producing adhesive-coated sheet materials usable with radiation-cured silicone release coatings and the like
EP0227293A3 (en) * 1985-12-05 1988-02-03 General Binding Corporation Method for laminating
CA1294117C (en) * 1986-09-29 1992-01-14 S. Eugene Benge Method of making deactivatable tags
DE3639630A1 (en) 1986-11-20 1988-06-01 Gao Ges Automation Org the same data medium with an integrated circuit and methods for making
US4841712A (en) 1987-12-17 1989-06-27 Package Service Company, Inc. Method of producing sealed protective pouchs with premium object enclosed therein
GB8817239D0 (en) * 1988-07-20 1988-08-24 Adhesive Materials Ltd Adhesive labels & methods for their manufacture
DE69304042T2 (en) * 1990-07-12 1996-12-19 C A Lawton Co Method and apparatus for the production of reinforced structural preforms with the energetic temporary gluing or stapling
US5201976A (en) * 1991-05-06 1993-04-13 Morgan Adhesives Company Method of producing a continuous label web
JPH05155191A (en) 1991-05-07 1993-06-22 Konica Corp Material for id card
JPH05169843A (en) 1991-12-25 1993-07-09 Nitto Denko Corp Reversible thermal recording material
US5344808A (en) * 1992-09-09 1994-09-06 Toppan Printing Co., Ltd. Intermediate transfer medium and process for producing image-recorded article making use of the same
DE4327642C2 (en) 1993-05-17 1998-09-24 Anatoli Stobbe Reader for a detection wafer
US5534372A (en) * 1993-07-28 1996-07-09 Konica Corporation IC card having image information
US5464690A (en) 1994-04-04 1995-11-07 Novavision, Inc. Holographic document and method for forming
CN1054573C (en) 1994-09-22 2000-07-19 罗姆股份有限公司 Non-contact type IC card and method of manufacturing same
DE4444789C3 (en) * 1994-12-15 2001-05-10 Ods Landis & Gyr Gmbh & Co Kg A method for producing chip cards, chip card and apparatus for carrying out the method
US6090484A (en) * 1995-05-19 2000-07-18 The Bergquist Company Thermally conductive filled polymer composites for mounting electronic devices and method of application
US6221191B1 (en) * 1996-06-07 2001-04-24 Qpf, L.L.C. Polyester-containing biaxially-oriented polypropylene films and method of making the same
CA2171526C (en) * 1995-10-13 1997-11-18 Glen E. Mavity Combination article security target and printed label and method and apparatus for making and applying same
JPH09156267A (en) * 1995-12-06 1997-06-17 Watada Insatsu Kk Plastic card
DE19602821C1 (en) * 1996-01-26 1997-06-26 Siemens Ag A method for manufacturing a data card
FR2744270A1 (en) * 1996-01-30 1997-08-01 Solaic Sa Smart card and its method of fabrication
JPH09290574A (en) * 1996-02-29 1997-11-11 Oji Paper Co Ltd Heat transfer accepting sheet and manufacture thereof
US5843549A (en) * 1996-07-12 1998-12-01 Avery Dennison Corporation Label laminate and novel paper substrate therefor
JPH10236041A (en) * 1997-02-27 1998-09-08 Konica Corp Electronic component supplying device for ic card, weblike component supplying medium, weblike component supplying medium housing cartridge, ic card production system, the second sheet for ic card, the second sheet housing cartridge for ic card
JPH10302040A (en) * 1997-04-30 1998-11-13 Toshiba Corp Manufacture of thin type electronic equipment and thin type electronic equipment
US5963134A (en) 1997-07-24 1999-10-05 Checkpoint Systems, Inc. Inventory system using articles with RFID tags
US6180256B1 (en) * 1997-08-26 2001-01-30 Arkwright Incorporated Heat shrinkable ink jet recording medium
JPH1191275A (en) * 1997-09-25 1999-04-06 Dainippon Printing Co Ltd Manufacture of non-contact type ic card and non-contact type ic card
FR2769110B1 (en) * 1997-09-26 1999-12-03 Gemplus Card Int Method for producing an electronic module or label, module or label obtained and medium having such a module or label
JPH11115328A (en) * 1997-10-16 1999-04-27 Dainippon Printing Co Ltd Thermal transfer image receiving sheet and manufacture thereof
US6177859B1 (en) 1997-10-21 2001-01-23 Micron Technology, Inc. Radio frequency communication apparatus and methods of forming a radio frequency communication apparatus
CN1296728A (en) * 1998-02-06 2001-05-23 弗莱康股份有限公司 Thin film transferable electric components
JPH11232416A (en) * 1998-02-17 1999-08-27 Hitachi Maxell Ltd Contactless information carrier and its production
DK1060460T3 (en) * 1998-03-06 2002-10-14 Security Graphics B V Identification mark, comprising optical and electronic readable label
US6107920A (en) 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
ES2344741T3 (en) 1998-08-14 2010-09-06 3M Innovative Properties Company Rfid reader.
WO2000016280A1 (en) 1998-09-11 2000-03-23 Key-Trak, Inc. Object tracking system with non-contact object detection and identification
US6358588B1 (en) * 1998-10-03 2002-03-19 Brady Worldwide, Inc. Tags having a metallic heft and appearance and process for making them
JP3779159B2 (en) 1999-02-25 2006-05-24 ピッツフィールド ウィーヴィング カンパニー インコーポレイテッド Label manufacturing method and apparatus
US6694872B1 (en) * 1999-06-18 2004-02-24 Holographic Label Converting, Inc. In-line microembossing, laminating, printing, and diecutting
FR2796183B1 (en) * 1999-07-07 2001-09-28 A S K Ticket for contactless access and process for its manufacture
US6147662A (en) 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
US6520544B1 (en) * 2000-01-10 2003-02-18 Moore North America, Inc. Radio frequency labels on reusable containers
US6451154B1 (en) 2000-02-18 2002-09-17 Moore North America, Inc. RFID manufacturing concepts
US6555213B1 (en) 2000-06-09 2003-04-29 3M Innovative Properties Company Polypropylene card construction
US6600418B2 (en) 2000-12-12 2003-07-29 3M Innovative Properties Company Object tracking and management system and method using radio-frequency identification tags
JP4789348B2 (en) 2001-05-31 2011-10-12 リンテック株式会社 Planar coil component, characteristic adjusting method of a planar coil component, id tag, and method of adjusting the resonant frequency of the id tag
US6644551B2 (en) * 2001-11-09 2003-11-11 G + D Cardtech, Inc. Card
FI119401B (en) 2001-12-21 2008-10-31 Upm Raflatac Oy Smart label web and a method for its preparation

Patent Citations (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897964A (en) * 1971-12-08 1975-08-05 Dainippon Printing Co Ltd Identification cards and method for making the same
US4021705A (en) * 1975-03-24 1977-05-03 Lichtblau G J Resonant tag circuits having one or more fusible links
US4303949A (en) * 1978-08-01 1981-12-01 Societe Pyral Magnetic recording device for providing security related information
US4450024A (en) * 1980-08-07 1984-05-22 Gao Gesellschaft Fur Automation Und Organisation Mbh Identification card with an IC-module and method for producing it
US4419413A (en) * 1981-02-26 1983-12-06 Nippon Piston Ring Co., Ltd. Powder molding method and powder compression molded composite article having a rest-curve like boundary
US4455359A (en) * 1981-07-30 1984-06-19 Agfa-Gevaert Aktiengesellschaft Tamper-proof document
US5294290A (en) * 1982-06-07 1994-03-15 Reeb Max E Computer and electromagnetic energy based mass production method for the continuous flow make of planar electrical circuits
US4686152A (en) * 1984-11-16 1987-08-11 Toyo Seikan Kaisha, Ltd. Packaging material comprising iron foil, and container and container lid composed thereof
US4866505A (en) * 1986-03-19 1989-09-12 Analog Devices, Inc. Aluminum-backed wafer and chip
US4846922A (en) * 1986-09-29 1989-07-11 Monarch Marking Systems, Inc. Method of making deactivatable tags
US4954814A (en) * 1986-09-29 1990-09-04 Monarch Marking Systems, Inc. Tag and method of making same
US5026452A (en) * 1986-12-11 1991-06-25 Mitsubishi Denki Kabushiki Kaisha Method of producing IC cards
US6113728A (en) * 1989-03-09 2000-09-05 Hitachi Chemical Company, Ltd. Process for connecting circuits and adhesive film used therefor
US5525400A (en) * 1989-05-16 1996-06-11 Ciba-Geigy Corporation Information carrier and process for the production thereof
US5994263A (en) * 1990-02-16 1999-11-30 Dai Nippon Insatsu Kabushiki Kaisha Card and process for producing the same
US5250341A (en) * 1990-03-26 1993-10-05 Mitsubishi Denki Kabushiki Kaisha IC card
US5172461A (en) * 1990-08-17 1992-12-22 Fritz Pichl Method of producing electrical resonant circuits, specifically resonance labels
US5337063A (en) * 1991-04-22 1994-08-09 Mitsubishi Denki Kabushiki Kaisha Antenna circuit for non-contact IC card and method of manufacturing the same
US5689263A (en) * 1991-07-09 1997-11-18 Esselte Meto International Gmbh Antipilferage markers
US5309326A (en) * 1991-12-06 1994-05-03 Rohm Co., Ltd. Circuit module having stacked circuit boards
US5244836A (en) * 1991-12-30 1993-09-14 North American Philips Corporation Method of manufacturing fusible links in semiconductor devices
US5302431A (en) * 1992-01-06 1994-04-12 National Poly Products, Inc. Deformable label
US6325294B2 (en) * 1992-06-17 2001-12-04 Micron Technology, Inc. Method of manufacturing an enclosed transceiver
US6220516B1 (en) * 1992-06-17 2001-04-24 Micron Technology, Inc. Method of manufacturing an enclosed transceiver
US5266355A (en) * 1992-06-18 1993-11-30 Eastman Kodak Company Chemical vapor deposition of metal oxide films
US5384955A (en) * 1992-09-29 1995-01-31 International Business Machines Corporation Method for replacing IC chip package interposer
US5932301A (en) * 1992-12-22 1999-08-03 Dai Nippon Printing Co., Ltd. Information recording medium and information recording and reproducing method
US5667541A (en) * 1993-11-22 1997-09-16 Minnesota Mining And Manufacturing Company Coatable compositions abrasive articles made therefrom, and methods of making and using same
US5598032A (en) * 1994-02-14 1997-01-28 Gemplus Card International Hybrid chip card capable of both contact and contact-free operation and having antenna contacts situated in a cavity for an electronic module
US5690773A (en) * 1994-02-24 1997-11-25 Gemplus Card International Method for the manufacture of a contact-free or hybrid card
US5920290A (en) * 1994-03-04 1999-07-06 Flexcon Company Inc. Resonant tag labels and method of making the same
US5822194A (en) * 1994-03-31 1998-10-13 Ibiden Co., Ltd. Electronic part mounting device
US5528222A (en) * 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US5962840A (en) * 1994-12-23 1999-10-05 Giesecke & Devrient Gmbh Data carrier with electronic module and embedded coil feature
US5952713A (en) * 1994-12-27 1999-09-14 Takahira; Kenichi Non-contact type IC card
US5837367A (en) * 1995-01-27 1998-11-17 Interprint Formularios Ltda. Memory card and method of producing same
US5976690A (en) * 1995-05-18 1999-11-02 3M Innovative Properties Company Opaque adhesives and method therefor
US5714305A (en) * 1995-05-24 1998-02-03 Polaroid Corporation Overcoat-releasing laminate and method for the manufacture thereof
US5935497A (en) * 1995-06-21 1999-08-10 Schlumberger Industries Method of printing a graphic on a memory card
US5850690A (en) * 1995-07-11 1998-12-22 De La Rue Cartes Et Systemes Sas Method of manufacturing and assembling an integrated circuit card
US5937512A (en) * 1996-01-11 1999-08-17 Micron Communications, Inc. Method of forming a circuit board
US5810959A (en) * 1996-02-28 1998-09-22 Kabushiki Kaisha Toshiba Thermocompressing bonding method and thermocompressing bonding apparatus
US5781110A (en) * 1996-05-01 1998-07-14 James River Paper Company, Inc. Electronic article surveillance tag product and method of manufacturing same
US5936847A (en) * 1996-05-02 1999-08-10 Hei, Inc. Low profile electronic circuit modules
US5918363A (en) * 1996-05-20 1999-07-06 Motorola, Inc. Method for marking functional integrated circuit chips with underfill material
US5918113A (en) * 1996-07-19 1999-06-29 Shinko Electric Industries Co., Ltd. Process for producing a semiconductor device using anisotropic conductive adhesive
US5867102A (en) * 1997-02-27 1999-02-02 Wallace Computer Services, Inc. Electronic article surveillance label assembly and method of manufacture
US5867102C1 (en) * 1997-02-27 2002-09-10 Wallace Comp Srvices Inc Electronic article surveillance label assembly and method of manufacture
US5969951A (en) * 1997-03-13 1999-10-19 Orga Kartensysteme Gmbh Method for manufacturing a chip card and chip card manufactured in accordance with said method
US6293470B1 (en) * 1997-04-29 2001-09-25 Swedish Advanced Technology Systems Ab Smartcard and method for its manufacture
US6077382A (en) * 1997-05-09 2000-06-20 Citizen Watch Co., Ltd Mounting method of semiconductor chip
US6025780A (en) * 1997-07-25 2000-02-15 Checkpoint Systems, Inc. RFID tags which are virtually activated and/or deactivated and apparatus and methods of using same in an electronic security system
US5973600A (en) * 1997-09-11 1999-10-26 Precision Dynamics Corporation Laminated radio frequency identification device
US5982284A (en) * 1997-09-19 1999-11-09 Avery Dennison Corporation Tag or label with laminated thin, flat, flexible device
US6595426B1 (en) * 1997-10-03 2003-07-22 Gemplus Method of manufacturing an electronic device having a chip and/or an antenna, and a device obtained by implementing the method
US6371378B1 (en) * 1997-12-15 2002-04-16 Gemplus Smart card provided with guarantee label
US6330162B2 (en) * 1998-03-17 2001-12-11 Sanyo Electric Co., Ltd. IC card module, manufacturing method therefor, hybrid integrated circuit module, and manufacturing method thereof
US6315856B1 (en) * 1998-03-19 2001-11-13 Kabushiki Kaisha Toshiba Method of mounting electronic component
US6040630A (en) * 1998-04-13 2000-03-21 Harris Corporation Integrated circuit package for flip chip with alignment preform feature and method of forming same
US6161761A (en) * 1998-07-09 2000-12-19 Motorola, Inc. Card assembly having a loop antenna formed of a bare conductor and method for manufacturing the card assembly
US6066377A (en) * 1998-08-17 2000-05-23 Furon Laminated air brake tubing
US6404643B1 (en) * 1998-10-15 2002-06-11 Amerasia International Technology, Inc. Article having an embedded electronic device, and method of making same
US6569280B1 (en) * 1998-11-06 2003-05-27 The Standard Register Company Lamination by radiation through a ply
US6206292B1 (en) * 1999-01-23 2001-03-27 Sihl Gmbh Surface-printable RFID-transponders
US6412702B1 (en) * 1999-01-25 2002-07-02 Mitsumi Electric Co., Ltd. Non-contact IC card having an antenna coil formed by a plating method
US6288905B1 (en) * 1999-04-15 2001-09-11 Amerasia International Technology Inc. Contact module, as for a smart card, and method for making same
US6248199B1 (en) * 1999-04-26 2001-06-19 Soundcraft, Inc. Method for the continuous fabrication of access control and identification cards with embedded electronics or other elements
US6353420B1 (en) * 1999-04-28 2002-03-05 Amerasia International Technology, Inc. Wireless article including a plural-turn loop antenna
US6376769B1 (en) * 1999-05-18 2002-04-23 Amerasia International Technology, Inc. High-density electronic package, and method for making same
US6412470B1 (en) * 1999-05-19 2002-07-02 Robert Bosch Gmbh Method and arrangement for controlling the drive unit of a vehicle
US6780668B1 (en) * 1999-07-16 2004-08-24 Matsushita Electric Industrial Co., Ltd. Package of semiconductor device and method of manufacture thereof
US6736918B1 (en) * 1999-08-31 2004-05-18 Lintec Corporation Process for producing cards
US6557766B1 (en) * 1999-10-01 2003-05-06 Keith R. Leighton Hot lamination method for a hybrid radio frequency optical memory card converting sheets into a web process
US6421013B1 (en) * 1999-10-04 2002-07-16 Amerasia International Technology, Inc. Tamper-resistant wireless article including an antenna
US6259408B1 (en) * 1999-11-19 2001-07-10 Intermec Ip Corp. RFID transponders with paste antennas and flip-chip attachment
US6478229B1 (en) * 2000-03-14 2002-11-12 Harvey Epstein Packaging tape with radio frequency identification technology
US6249199B1 (en) * 2000-04-10 2001-06-19 George Liu Quick magnetizing and demagnetizing device for screwdrivers
US6522549B2 (en) * 2000-09-29 2003-02-18 Sony Corporation Non-contacting type IC card and method for fabricating the same
US6480110B2 (en) * 2000-12-01 2002-11-12 Microchip Technology Incorporated Inductively tunable antenna for a radio frequency identification tag
US6843422B2 (en) * 2001-12-24 2005-01-18 Digimarc Corporation Contact smart cards having a document core, contactless smart cards including multi-layered structure, pet-based identification document, and methods of making same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578435B2 (en) 2004-02-05 2009-08-25 Unicous Marketing Inc. Couponing system
US8041603B2 (en) 2004-02-05 2011-10-18 Alex Suk System and method for reimbursing merchants for redeemed electronic coupons
US20080046325A1 (en) * 2004-02-05 2008-02-21 Alex Suk Couponing system
US20080147504A1 (en) * 2004-02-05 2008-06-19 Unicous Marketing, Inc. Point-Of-Sale System Implementing Criteria-Based Transaction Totals
US20080154676A1 (en) * 2004-02-05 2008-06-26 Unicous Marketing, Inc. System And Method For The Processing Of Electronic Coupons
US8328083B2 (en) 2004-02-05 2012-12-11 Unicous Marketing Inc. Point-of-sale system implementing criteria-based transaction totals
US20060196936A1 (en) * 2005-01-06 2006-09-07 Quad/Graphics, Inc. Resonator use in the print field
US7506813B2 (en) 2005-01-06 2009-03-24 Quad/Graphics, Inc. Resonator use in the print field
WO2007000407A2 (en) * 2005-06-28 2007-01-04 Mühlbauer Ag Method and device for producing self-adhesive rfid transponders
WO2007000407A3 (en) * 2005-06-28 2007-03-15 Muehlbauer Ag Method and device for producing self-adhesive rfid transponders
US20130300102A1 (en) * 2012-04-11 2013-11-14 Universal Surveillance Systems, Llc Hybrid label

Also Published As

Publication number Publication date Type
EP1612723A2 (en) 2006-01-04 application
FI20000082A (en) 2001-07-18 application
US7236093B2 (en) 2007-06-26 grant
JP2006048701A (en) 2006-02-16 application
FI112288B1 (en) grant
US20060032577A1 (en) 2006-02-16 application
FI20000082D0 (en) grant
EP1249004A1 (en) 2002-10-16 application
EP1612723A3 (en) 2006-01-25 application
FI20000082A0 (en) 2000-01-17 application
JP2003520666A (en) 2003-07-08 application
WO2001054058A1 (en) 2001-07-26 application
FI112288B (en) 2003-11-14 application

Similar Documents

Publication Publication Date Title
US4788102A (en) Data-carrying card, method for producing such a card, and device for carrying out said method
US6867983B2 (en) Radio frequency identification device and method
US4759816A (en) Strippable film for adhesive coating and laminating
US6087940A (en) Article surveillance device and method for forming
US5645932A (en) Circuit-like metallic foil sheet and the like and process for producing them
US6383616B1 (en) Circuit-like metallic foil sheet and the like and process for producing them
US6437985B1 (en) Disposable electronic chip device and process of manufacture
US6214444B1 (en) Circuit-like metallic foil sheet and the like and processing for producing them
US20020025416A1 (en) Circuit-like metallic foil sheet and the like and process for producing them
US7176799B1 (en) Assembling pressure sensitive labels with RFID tags
US3716439A (en) Method of manufacturing cards
EP0350235A2 (en) A thin electronic card having an integrated circuit chip and battery and a method of producing same
US4897533A (en) Credit card and method of making the same
US6736918B1 (en) Process for producing cards
US5567276A (en) Paper of value and a method of producing it
US7368032B2 (en) RFID label technique
US20050198811A1 (en) Manufacture of RFID tags and intermediate products therefor
US6391136B1 (en) Method of removing units from laminate webs which have a multiplicity of units
US5804026A (en) Method for producing identity cards, and identity card produced according to that method
US7116227B2 (en) Tag having patterned circuit elements and a process for making same
JP2004527864A (en) Smart labels and smart label web
US20050183817A1 (en) Security tag system for fabricating a tag including an integrated surface processing system
US20060244662A1 (en) Webs and methods of making same
US5751256A (en) Resonant tag labels and method of making same
US6988666B2 (en) Security tag and process for making same

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAFSEC OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STROMBERG, SAMULI;REEL/FRAME:013416/0588

Effective date: 20021001