US20020193091A1 - Emergency response system - Google Patents

Emergency response system Download PDF

Info

Publication number
US20020193091A1
US20020193091A1 US10105136 US10513602A US2002193091A1 US 20020193091 A1 US20020193091 A1 US 20020193091A1 US 10105136 US10105136 US 10105136 US 10513602 A US10513602 A US 10513602A US 2002193091 A1 US2002193091 A1 US 2002193091A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
means
electronic signals
receiving
art
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10105136
Inventor
Kevin Zmarthie
Original Assignee
Kevin Zmarthie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal operating condition and not elsewhere provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • G08B21/04Alarms for ensuring the safety of persons responsive to non-activity, e.g. of elderly persons
    • G08B21/0438Sensor means for detecting
    • G08B21/0446Sensor means for detecting worn on the body to detect changes of posture, e.g. a fall, inclination, acceleration, gait
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/016Personal emergency signalling and security systems

Abstract

To generate an emergency distress signal, an automatic call for help, should the person wearing the device be rendered helpless, unconscious, or unable to talk or communicate. The unit transmits a continuous wave coded burst on a worldwide emergency distress frequency to the emergency dispatch receiver. The signal contains the subscriber ID code and current position from the Global Positioning System (GPS) which includes latitude and longitude. The unit combines a continuous wave transceiver and antenna, GPS-navigational positioning system receiver and antenna, accelerometer switches, and speaker merged into a single unit. Continuous wave is used to extend the range of the unit to underground parking garages or other out-of-the-way places where cell phone coverage is inhibited. The unit contains two accelerometer switches to activate the unit should the wearer be unable to respond because of a fall, or if rendered unconscious.
The receiving end (emergency dispatch receiver) interpolates the short continuous wave transmission, (ID number, Lat./Long, Global Positioning System PLOT,) displays the subscriber ID, medical history records, and a tracking map on the computer screen. It shows the exact location (Global Positioning System accuracy within 13 feet) of the individual and displays the proper medical prompts according to patient's history or recorded instructions. The operator need only read a standard computer display to know that the client has an emergency, their exact location, and using proper dispatch procedures, to call the emergency contact indicted in the client's history.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation-in-Part of application Ser. No. 09/570,066 file May 12, 2000.[0001]
  • BACKGROUND
  • 1. Field of Invention [0002]
  • The present invention relates to a signaling system that automatically generates an emergency distress signal, containing personal identification and Global Positioning System location of the person in distress, and transmits that signal in a continuous wave broadcast on an emergency distress frequency to a control information center that can determine the appropriate emergency response and notify and dispatch response procedures and personal. [0003]
  • 2. Description of Prior Art [0004]
  • The closest art, U.S. Pat. No. 5,940,044, (“Fulton”), relates to a recovery system that provides automatic warnings at predetermined times. It transmits emergency information via cellular telephone, which can be unreliable. [0005]
  • The ERU does not emit signals at predetermined times, but transmits if activated by the wearer, if the accelerometer detects unusual movement or if it receives an alarm from an outside monitoring device that might be attached through a ground closure. [0006]
  • The ERU specifies use of a continuous wave transmission using abbreviated Morse code. No modulated signal is used, thus allowing the ERU to transmit at approximately ten times the power of a cellular phone signal. This allows the ERU to transmit from basement and parking garage locations where Fulton won't transmit. [0007]
  • The ERU does not require the usual FCC license for a device of this power output, because it uses the emergency frequency band for transmission since the transmissions relate to emergencies and are short bursts of information. [0008]
  • U.S. Pat. No. 5,742,233 (“Hoffman et al”) also uses an GPS signal, but like Fulton links the device to security, stressing personal safety, a means of sounding an alarm if the wearer is under threat of forceful or unauthorized action or if the device is removed from the wearer improperly. Hoffman also specifies transmission of the alarm via cellular phone or personal communications system (PCS). The ERU specifies use of continuous wave transmission on any of the emergency band frequencies. [0009]
  • SUMMARY
  • In accordance with the present invention, an electronic locator/signaling device that uses a continuous wave (CW) transmission of high power, utilizing abbreviated code on emergency broadcast frequencies comprises a Global Positioning System (GPS) receiver, a GPS antenna, a radio signal transmitter/receiver, an electronic signal mixing device to mix output from said GPS receiver and signal transmitter/receiver, a microprocessor device, an electronic I/O port, a speaker, a power supply and two emergency activation switches to interface with said microprocessor device, and A CW transmit/receive antenna. [0010]
  • OBJECTS AND ADVANTAGES
  • Besides the objects and advantages of the Emergency Response Unit described in my patent, several objects and advantages of the present invention are: [0011]
  • a) to give the user the means of signaling for assistance in case of an emergency; [0012]
  • b) to signal for assistance when the device detects unusual motion; [0013]
  • c) to allow the user to interrupt the distress signal; [0014]
  • d) to interface with a wide range of electronic devices through the I/O ports; [0015]
  • e) to be used globally; [0016]
  • f) to rely on non congested frequencies to transmit; [0017]
  • g) to use a continuous wave transmission to enhance range of transmission; [0018]
  • h) to use continuous wave transmission which allows broadcast with up to ten times the power of existing art because all the power of this present art is concentrated in the carrier frequency (with no side bands) which is turned off and on to send a message; [0019]
  • i) to avoid use of the 911 telephone emergency system as a default, and contact the care provider elected by the user; [0020]
  • j) to pin-point the user within thirteen square feet; [0021]
  • k) to emit a distress call triggered by an exterior device such as but not limited to a health monitoring device; [0022]
  • l) to send signals over phone lines, if necessary; [0023]
  • m) to transmit a signal successfully from locations where other devices could not, for example, parking garages, or subterranean areas; [0024]
  • n) to operate as a pager device; [0025]
  • o) to allow the sensitivity of the emergency activation switches to be calibrated to the weight of the user; [0026]
  • p) to interface with any compatible wireless device; [0027]
  • q) to transmit over alternate transmitter/receiver; [0028]
  • r) to add “at home” message to outgoing signal if the user is within range of the recharger device; [0029]
  • s) to provide recharge through AC/DC or electromagnetic induction; [0030]
  • t) to include altitude in the outgoing signal; [0031]
  • u) to conform to ruggedized standards so the unit can withstand reasonable impact; [0032]
  • v) to allow the user the opportunity to terminate the signal prior to transmission in case of false alarms or accidental activation; [0033]
  • w) to transmit an “I'm okay” signal to confirm a false alarm or accidental activation; [0034]
  • x) to provide for the transmission of a test signal to confirm the functionality of the unit; [0035]
  • y) to emanate an audible signal when the battery is low.[0036]
  • DRAWING FIGURES
  • FIG. 1 shows schematic of the preferred embodiment of the Emergency Response Unit [0037]
  • FIG. 2 shows the Emergency Response Unit with the addition of user controls as described in dependent claim 11 [0038]
  • FIG. 3 shows the Emergency Response Unit with the addition of user controls and an altimeter, as described in dependent claim 12 [0039]
  • FIG. 4 shows the Emergency Response Unit with the addition of user controls and a ground closure connection, as described in dependent claim 13 [0040]
  • FIG. 5 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection as described in dependent claim 14 [0041]
  • FIG. 6 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, and display screen, as described in dependent claim 15 [0042]
  • FIG. 7 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, pager and alternate I/O ports as described in dependent claim 16 [0043]
  • FIG. 8 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, alternate I/O ports, alternate microprocessor device, alternate transceiver, and alternate antenna as described in dependent claim 17 [0044]
  • FIG. 9 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, alternate I/O ports, alternate microprocessor device, alternate transceiver, alternate antenna and modem as described in dependent claim 18. [0045]
  • FIG. 10 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, alternate I/O ports, alternate microprocessor device, alternate transceiver, alternate antenna, modem and pager as described in dependent claim 19 [0046]
  • FIG. 11 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, alternate I/O ports, alternate microprocessor device, alternate antenna, and wireless connectivity means as described in dependent claim 20 [0047]
  • FIG. 12 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, pager, alternate I/O ports alternate microprocessor device, alternate antenna, wireless connectivity means and pager as described in dependent claim 21 [0048]
  • FIG. 13 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, alternate I/O ports, alternate microprocessor device, alternate antenna, wireless connectivity means, pager and modem as described in dependent claim 22 [0049]
  • FIG. 14 shows the Emergency Response Unit with the addition of user controls, altimeter, a ground closure connection, display screen, vibrator, alternate I/O ports, alternate microprocessor device, alternate transceiver device, alternate antenna, wireless connectivity means, pager and modem as described in dependent claim 23 [0050]
  • FIG. 15 lays out the Functional Diagram of the Emergency Response Unit as depicted in FIG. 14 [0051]
  • FIG. 16 show a Block Diagram of Operation of Complete Emergency Response System including the Control Information Center[0052]
  • [0053]
    REFERENCE NUMERALS IN DRAWINGS
     (1) Global Positioning System (10) Ground Closure
    Receiver Connection
     (2) Personal subscriber ID (11) Screen
    information (12) Alternate I/O Port
     (3) Buffer/adder/encoder (13) User Controls
     (4) Power Supply (14) Speaker
     (5) Microprocessor (ERU) (15) In/Out Port
     (6) Accelerometer switches (16) GPS antenna
     (7) Continuous wave transmitter (17) CW antenna
     (8) Receiver (18) Control Information
     (9) Modem Center (CIC)
    (19) Emergency Response Unit (27) Modem/Phone Lines
    (20) Antenna Array (28) Altimeter
    (21) Receiver (29) Pager
    (22) Transmitter (30) Wireless connectivity
    (23) Data Modem/Converter/Buffers device
    (24) In-line Computer (31) Alternate transmitter/
    (25) Display receiver
    (26) Control Information Center (32) Alternate Antenna
    Computer (33) Vibrator
    (34) alternate
    microprocessor
  • DESCRIPTION
  • FIG. 1—The Emergency Response Unit [0054]
  • A preferred embodiment of the system is illustrated in FIG. 1. [0055]
  • Static State: [0056]
  • The unit receives information through the GPS antenna ([0057] 16), to the incorporated Global Positioning System Receiver (1) and adds the information to Personal subscriber ID information (2) in the Buffer/adder/encoder (3). This information is constantly changing as a person moves about so that the exact location in latitude and longitude are readably available. The unit draws minimal power from the power supply (4).
  • Dynamic Operation (Emergency Response): [0058]
  • The wearer of the device falls in a basement parking garage, and is unconscious. The Accelerometer switches ([0059] 6) will activate the unit and send an emergency distress signal which consists of personal ID, and latitude/longitude location repeatedly via continuous wave transmission from the CW transmitter (7) over the CW antenna (17). The un-modulated continuous wave signal is received at the Control Information Center in many instances where a cellular phone or standard UHF/VHF (walkie-talkie) transmission would be impossible.
  • FIGS. [0060] 2, Through 13—Additional Embodiments
  • FIG. 2 depicts The Emergency Response Unit with the addition of user controls ([0061] 13).
  • FIG. 3 shows the Emergency Response Unit with the addition of user controls ([0062] 13) and an altimeter (28), allowing the wearers altitude to be included in the emergency transmission.
  • FIG. 4 shows the Emergency Response Unit with addition of user controls ([0063] 13) and a ground closure connection (10), which allows the unit to interface with a wide range of electronic devices.
  • FIG. 5 shows the Emergency Response Unit with addition of user controls ([0064] 13) a ground closure connection (10), and altimeter (28).
  • FIG. 6 shows the Emergency Response Unit with the addition of user controls ([0065] 13), altimeter (28), a ground closure connection (10) and display screen (11), which allows for the display of text messages.
  • FIG. 7 shows the Emergency Response Unit with the addition of user controls ([0066] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), pager (29), alternate I/O ports (12), which affords the unit additional connectivity.
  • FIG. 8 shows the Emergency Response Unit with the addition of user controls ([0067] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), alternate I/O ports (12), alternate microprocessor device (34), alternate transceiver (31) and alternate antenna (32), allowing for a redundant means of transmission.
  • FIG. 9 shows the Emergency Response Unit with the addition of user controls ([0068] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), pager (29), alternate I/O ports (12), alternate microprocessor device (34), alternate transceiver (31), alternate antenna (32), and modem (9) which allows the unit to communicate over standard telephone lines.
  • FIG. 10 shows the Emergency Response Unit with the addition of user controls ([0069] 13), altimeter (29), a ground closure connection (33), display screen (11), vibrator (33), pager (29), alternate I/O ports (12), alternate transceiver (31), alternate microprocessor device (34), alternate antenna (32), modem (9) and pager (29).
  • FIG. 11 shows the Emergency Response Unit with the addition of user controls ([0070] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), pager (29), alternate I/O ports (12), alternate microprocessor device (34), alternate antenna (32), and wireless connectivity means (30) which allows the unit to communicate with wireless devices.
  • FIG. 12 shows the Emergency Response Unit with the addition of user controls ([0071] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), alternate I/O ports (12), alternate microprocessor device (34), alternate antenna (32), wireless connectivity means (31), and pager (29).
  • FIG. 13 shows the Emergency Response Unit with the addition of user controls ([0072] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), pager (29), alternate I/O ports (12), alternate microprocessor device (34), alternate antenna (32), wireless connectivity means (31), pager (29), and modem (9).
  • FIG. 14 shows the Emergency Response Unit with the addition of user controls ([0073] 13), altimeter (28), a ground closure connection (10), display screen (11), vibrator (33), pager (29), alternate I/O ports (12), alternate microprocessor device (34), alternate transceiver (31), alternate antenna (32), wireless connectivity means (31), pager (29), and modem (9).
  • Advantages [0074]
  • The Continuous Wave design of the Emergency Response Unit allows the unit to emit a more powerful signal than other units because the power is used to transmit the carrier frequency and not to modulate the signal on the side bands of the carrier frequency. Couple this with using frequencies reserved for emergency use and the ERU becomes much more reliable than other response units. Because the signal is designed for broadcast on emergency frequencies, the unit has the capability of world-wide range. Because the signal is broadcast to a private Control Information Center, it does not use the standard, and sometimes over-used, 911 emergency system, so assistance can be dispatched in a more timely fashion. [0075]
  • The multiple I/O Ports allows the ERU to interface with many other devices including, but not limited to, medical monitoring devices. An alarm from on of these devices can be used to trigger the Emergency Response Unit. [0076]
  • Operations—FIGS. 15 and 16 [0077]
  • FIG. 15 shows the unit constantly receives information via the GPS antenna ([0078] 16), which relays that signal to the GPS receiver (global positioning system) (1) in the form of a latitude and longitude plot. An example: Lat:N 37° 44″ 15′, Long: W 78° 20″ 42′. This is an exact address on the surface of the earth and using this information a person's exact location within a few feet can be plotted on a map.
  • This GPS information from the GPS receiver ([0079] 1) along with personal subscriber identification codes from the programmable memory in (2) are mixed in the buffer, mixer, encoder module (3). Information at this point is converted into a code for use by the Continuous Wave (CW) transmitter (7), which will broadcast the distress signal repeatedly via the CW antenna (17) in the emergency distress frequency band as a CW transmission.
  • The additional embodiment depicted in FIG. 14, included a pager ([0080] 29) to receive text messages, a modem (9) to communicate via standard phone lines, an alternate microprocessor (34), alternate transceiver (31), and alternate antenna (32), for a second means of communication, as well as wireless connectivity (30) to interface with wireless devices. A ground closure connection (10) and alternate In/Out ((I/O) port (12) facilitate connectivity to other devices and a vibrator (33) can be used to send alerts to the user.
  • CW or continuous wave transmission turns the carrier frequency on and off to send a message, putting all of the transmit power into the center carrier frequency and none in a modulated side band allowing for an extended range and more powerful signal being broadcast. This allows the unit to transmit from more remote locations like parking garages, tunnels and other enclosed building or basement situations where cellular telephones and standard UHF, VHF transmissions will not work for reliable communications. [0081]
  • The coded CW message is only a short burst of information, yet at the receiving end the burst interpolates to complete medical history, addresses, phone numbers and the exact location of where the person is now located. Emergency procedures are initiated from the Central Information Center. [0082]
  • The Accelerometer switches ([0083] 6) activate the unit automatically should the wearer be involved in any motion that exceeds normal movement, examples could be an auto accident, or a fall, slipping on ice or stairs would be good examples as to what would activate the unit.
  • An audible beep occurs at the unit for 15 seconds, after which the unit transmits ([0084] 7) the emergency distress signal repeatedly to the CIC (Control Information Center), unless the wearer resets the unit (via reset button) prior to transmission.
  • Once transmission has occurred, the unit sends out an audible Help! Help! Help! via the local speaker system ([0085] 14).
  • When the Central Information Center has activated emergency response procedures it also sends back acknowledgment information. The Continuous Wave Receiver ([0086] 8) receives special coded emergency procedures that show up as text on the screen (11) and a simple SOS in dots and dashes that now becomes audible over the unit's speaker (14) so that now a passerby or the fallen person hears “Help, Help, Help, SOS, (dit, dit, dit, da, da, da, dit, dit, dit) SOS, SOS.” repeated in regular intervals until reset. This double audible code makes the fallen subscriber aware that his unit has transmitted and help has been dispatched, even in total darkness and without glasses.
  • FIG. 16 shows details of the operation of the Control Information Center. Signals are received through an antenna array and repeater system designed for 100% redundancy in metropolitan areas ([0087] 20).
  • A standard VHF/UHF receiver ([0088] 21) is tuned to the emergency distress frequency chosen. Its output is feed to a data converter (23), which translates the information for the computer (24), the computer displays the information about the subscriber, i.e. address, health history and other pertinent data that could be required in an emergency situation. An alarm notifies the operator that an emergency is in progress. The GPS positions that are part of the received information work with a maps program to show where the subscriber is located (13 feet accuracy). This information is displayed on monitor (25) and is also sent to remote computers and CIC Personal manning stations via (26) a phone line system (27) for initiation of emergency proceedures.
  • The CIC operator dispatches proper emergency vehicles and notifies personal according to his written instructions and also activates an outgoing coded message from his computer ([0089] 26) that is reconverted to an outgoing CW signal and transmitted over standard transmission frequencies to be received by the distressed subscriber. This will activate the speaker (14) on his ERU letting him know he has been heard and help is on the way.
  • Conclusions, Ramifications, and Scope [0090]
  • It is the object of the present invention to provide a personal recovery unit to give the wearer a reliable means of sending a distress signal, even if they have fallen and are unconscious. The present art pinpoints the wearer's location to within 13 square feet, includes the components as shown in FIG. 1, and works as described in the operational description of the ERU. [0091]
  • The Unit can be modified with additional means, as shown is FIGS. 2 through 14, making it very adaptable. It can be used as a stand-alone unit, or connect to or be embedded in other electronic devices and systems. In several embodiments it offers a redundant means of transmission. In several other embodiments the ERU offers a wireless connectivity means so that the ERU can communicate with other wireless devices. [0092]

Claims (14)

  1. 10) Preferred embodiment: An electronic locator/signaling device that turns off and on a continuous wave (CW) transmission of high power, to send a signal on emergency broadcast frequencies comprising
    a) means for receiving Global Positioning System signals
    b) means for transmitting and receiving continuous wave radio signals
    c) means for electronic mixing s of output from said means for receiving Global Positioning System signals and said means for transmitting and receiving continuous wave radio signals
    d) means for processing electronic signals from other components of the art
    e) means for programmable storage of information, including but not limited to a unique personal identification number
    f) means for sending out and receiving in electronic signals through a physical connection
    g) means for determining unusual acceleration
    h) means for intercepting Global Positioning System signal
    i) means for intercepting continuous wave signal
    j) means for supplying power
    k) means for emitting sound
  2. 11) Same as 10) further including
    a) means for allowing the user to interface with said Means for processing electronic signals from other components of the art
  3. 12) Same as 10) further including
    b) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    a) means for determining altitude
  4. 13) Same as 10) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
  5. 14) Same as 10) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
  6. 15) Same as 10) further including
    a) means for allowing the user to interface with said Means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
  7. 16) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means for receiving text messages
    g) means wherein causes the unit to vibrate
  8. 17) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means for receiving text messages
    g) means wherein causes the unit to vibrate
    h) second means for processing electronic signals from other components of the art
    i) second means for transmitting and receiving a radio signal
    j) second means for intercepting a radio signal
  9. 18) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means for receiving text messages
    g) means wherein causes the unit to vibrate
    h) second means for processing electronic signals from other components of the art
    i) second means for transmitting and receiving a radio signal
    j) second means for intercepting a radio signal
    k) modulation/demodulation device wherein allows for communication over telephone lines
  10. 19) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means for receiving text messages
    g) means wherein causes the unit to vibrate
    h) second means for processing electronic signals from other components of the art
    i) second means for transmitting and receiving a radio signal
    j) second means for intercepting a radio signal
    k) electronic means for receiving text message
  11. 20) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means wherein causes the unit to vibrate
    g) second means for processing electronic signals from other components of the art
    h) second means for intercepting a radio signal
    i) means for interfacing with other wireless devices
  12. 21) The same as 1 further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means wherein causes the unit to vibrate
    g) second means for processing electronic signals from other components of the art
    h) second means for intercepting a radio signal
    i) means for interfacing with other wireless devices
    j) an electronic means for receiving text messages
  13. 22) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means wherein causes the unit to vibrate
    g) second means for processing electronic signals from other components of the art
    h) second means for intercepting a radio signal
    i) means for interfacing with other wireless devices
    j) an electronic means for receiving text messages
    k) modulation/demodulation device wherein allows for communication over telephone lines
  14. 23) The same as 1) further including
    a) means for allowing the user to interface with said means for processing electronic signals from other components of the art
    b) means for achieving a ground closure connection
    c) means for determining altitude
    d) means for electronically displaying various symbols
    e) alternate means for sending out and receiving in electronic signals through a physical connection
    f) means wherein causes the unit to vibrate
    g) second means for processing electronic signals from other components of the art
    h) second means for transmitting and receiving radio signal
    i) second means for intercepting a radio signal
    j) means for interfacing with other wireless devices
    k) an electronic means for receiving text messages
    l) modulation/demodulation device wherein allows for communication over telephone lines
US10105136 2000-05-12 2002-03-22 Emergency response system Abandoned US20020193091A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US57006600 true 2000-05-12 2000-05-12
US10105136 US20020193091A1 (en) 2000-05-12 2002-03-22 Emergency response system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10105136 US20020193091A1 (en) 2000-05-12 2002-03-22 Emergency response system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US57006600 Continuation-In-Part 2000-05-12 2000-05-12

Publications (1)

Publication Number Publication Date
US20020193091A1 true true US20020193091A1 (en) 2002-12-19

Family

ID=24278069

Family Applications (1)

Application Number Title Priority Date Filing Date
US10105136 Abandoned US20020193091A1 (en) 2000-05-12 2002-03-22 Emergency response system

Country Status (1)

Country Link
US (1) US20020193091A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062242A2 (en) * 2002-12-31 2004-07-22 Motorola, Inc. Emergency call-back for mobile terminals in a limited service mode
GB2409321A (en) * 2003-10-28 2005-06-22 Terry Thomas Jones Fall alarm
US20050208925A1 (en) * 2004-03-16 2005-09-22 Texas Instruments Incorporated Handheld portable automatic emergency alert system and method
US20060046719A1 (en) * 2004-08-30 2006-03-02 Holtschneider David J Method and apparatus for automatic connection of communication devices
GB2436698A (en) * 2006-03-31 2007-10-03 Dennis Huang Fall-over alert device
US20080139899A1 (en) * 2005-05-04 2008-06-12 Menachem Student Remote Monitoring System For Alzheimer Patients
WO2008117253A1 (en) * 2007-03-27 2008-10-02 Saulle Mattei Alarm device and method for location and communication of a distress signal to security personnel
US20090228073A1 (en) * 2008-03-07 2009-09-10 Patrick Scholten Implantable medical device with patient input mechanism
EP2180454A1 (en) 2008-10-21 2010-04-28 Saulle Mattei Portable alarm device
US20120059284A1 (en) * 2009-03-16 2012-03-08 Johannes Eschler Status detecting device to be attached to a living being
US8688375B2 (en) 2006-05-31 2014-04-01 Trx Systems, Inc. Method and system for locating and monitoring first responders
US8712686B2 (en) 2007-08-06 2014-04-29 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US9395190B1 (en) 2007-05-31 2016-07-19 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US9736618B1 (en) 2005-04-04 2017-08-15 X One, Inc. Techniques for sharing relative position between mobile devices
WO2018039679A1 (en) * 2016-08-26 2018-03-01 Intrinsic Value, Llc Systems, devices, and methods for emergency responses and safety

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062242A2 (en) * 2002-12-31 2004-07-22 Motorola, Inc. Emergency call-back for mobile terminals in a limited service mode
WO2004062242A3 (en) * 2002-12-31 2004-12-09 Motorola Inc Emergency call-back for mobile terminals in a limited service mode
GB2409321A (en) * 2003-10-28 2005-06-22 Terry Thomas Jones Fall alarm
US20050208925A1 (en) * 2004-03-16 2005-09-22 Texas Instruments Incorporated Handheld portable automatic emergency alert system and method
US7181192B2 (en) * 2004-03-16 2007-02-20 Texas Instruments Incorporated Handheld portable automatic emergency alert system and method
US20060046719A1 (en) * 2004-08-30 2006-03-02 Holtschneider David J Method and apparatus for automatic connection of communication devices
US9955298B1 (en) 2005-04-04 2018-04-24 X One, Inc. Methods, systems and apparatuses for the formation and tracking of location sharing groups
US9942705B1 (en) 2005-04-04 2018-04-10 X One, Inc. Location sharing group for services provision
US9883360B1 (en) 2005-04-04 2018-01-30 X One, Inc. Rendez vous management using mobile phones or other mobile devices
US9854402B1 (en) 2005-04-04 2017-12-26 X One, Inc. Formation of wireless device location sharing group
US9854394B1 (en) 2005-04-04 2017-12-26 X One, Inc. Ad hoc location sharing group between first and second cellular wireless devices
US9749790B1 (en) 2005-04-04 2017-08-29 X One, Inc. Rendez vous management using mobile phones or other mobile devices
US9736618B1 (en) 2005-04-04 2017-08-15 X One, Inc. Techniques for sharing relative position between mobile devices
US9967704B1 (en) 2005-04-04 2018-05-08 X One, Inc. Location sharing group map management
US20080139899A1 (en) * 2005-05-04 2008-06-12 Menachem Student Remote Monitoring System For Alzheimer Patients
GB2436698B (en) * 2006-03-31 2011-02-23 Dennis Huang Fall-over alert device
GB2436698A (en) * 2006-03-31 2007-10-03 Dennis Huang Fall-over alert device
US8688375B2 (en) 2006-05-31 2014-04-01 Trx Systems, Inc. Method and system for locating and monitoring first responders
US8706414B2 (en) 2006-05-31 2014-04-22 Trx Systems, Inc. Method and system for locating and monitoring first responders
WO2008117253A1 (en) * 2007-03-27 2008-10-02 Saulle Mattei Alarm device and method for location and communication of a distress signal to security personnel
US9395190B1 (en) 2007-05-31 2016-07-19 Trx Systems, Inc. Crowd sourced mapping with robust structural features
US9448072B2 (en) 2007-05-31 2016-09-20 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US9046373B2 (en) 2007-08-06 2015-06-02 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US8965688B2 (en) 2007-08-06 2015-02-24 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US9008962B2 (en) 2007-08-06 2015-04-14 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US8712686B2 (en) 2007-08-06 2014-04-29 Trx Systems, Inc. System and method for locating, tracking, and/or monitoring the status of personnel and/or assets both indoors and outdoors
US20090228073A1 (en) * 2008-03-07 2009-09-10 Patrick Scholten Implantable medical device with patient input mechanism
EP2180454A1 (en) 2008-10-21 2010-04-28 Saulle Mattei Portable alarm device
US9028431B2 (en) * 2009-03-16 2015-05-12 Robert Bosch Gmbh Status detecting device to be attached to a living being
US20120059284A1 (en) * 2009-03-16 2012-03-08 Johannes Eschler Status detecting device to be attached to a living being
WO2018039679A1 (en) * 2016-08-26 2018-03-01 Intrinsic Value, Llc Systems, devices, and methods for emergency responses and safety

Similar Documents

Publication Publication Date Title
US6404352B1 (en) Mobile terminal and emergency reporting system
US5630206A (en) Position enhanced cellular telephone system
US7920679B1 (en) Communication system and method for notifying persons of an emergency telephone call
US6028506A (en) Car alarm transmitting and paging system
US7042361B2 (en) Child monitoring, communication and locating system
US5389935A (en) Automatic system for locating and identifying vehicles in distress
US5334974A (en) Personal security system
US5305370A (en) Personal emergency response communications system
US6961001B1 (en) Perimeter monitoring alarm method and system
US7567174B2 (en) Combination alarm device with enhanced wireless notification and position location features
US6496111B1 (en) Personal security system
US20010045886A1 (en) Mobile terminal and mobile communications system
US5760742A (en) Integrated mobile GIS/GPS/AVL with wireless messaging capability
US5796338A (en) System for preventing loss of cellular phone or the like
US20030149527A1 (en) Positioning system and method
US20040239498A1 (en) System and method for signaling emergency responses
US6484096B2 (en) Wireless vehicle monitoring system
US20010026240A1 (en) Personal location detection system
US3696384A (en) Ultrasonic tracking and locating system
US6518889B2 (en) Voice-activated personal alarm
US5687215A (en) Vehicular emergency message system
US5515043A (en) Cellular/GPS system for vehicle tracking
US20070030156A1 (en) Multi-hazard alarm system using selectable power-level transmission and localization
US20020169539A1 (en) Method and system for wireless tracking
US7336962B2 (en) System and method for position equipment dusting in search and rescue operations