US20020192792A1 - Laccase mutants - Google Patents

Laccase mutants Download PDF

Info

Publication number
US20020192792A1
US20020192792A1 US09/869,877 US86987701A US2002192792A1 US 20020192792 A1 US20020192792 A1 US 20020192792A1 US 86987701 A US86987701 A US 86987701A US 2002192792 A1 US2002192792 A1 US 2002192792A1
Authority
US
United States
Prior art keywords
gly
leu
ala
val
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/869,877
Inventor
Palle Schneider
Steffen Danielsen
Allan Svendsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novozymes AS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26068820&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020192792(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Assigned to NOVOZYMES A/S reassignment NOVOZYMES A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DANIELSEN, STEFFEN, SVENDSEN, ALLAN, SCHNEIDER, PALLE
Publication of US20020192792A1 publication Critical patent/US20020192792A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
    • C12N9/54Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D2/00Treatment of flour or dough by adding materials thereto before or during baking
    • A21D2/08Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
    • A21D2/24Organic nitrogen compounds
    • A21D2/26Proteins
    • A21D2/267Microbial proteins
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/02Methods for preparing dough; Treating dough prior to baking
    • A21D8/04Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes
    • A21D8/042Methods for preparing dough; Treating dough prior to baking treating dough with microorganisms or enzymes with enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • C07K1/047Simultaneous synthesis of different peptide species; Peptide libraries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/1008Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/1013Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing O or S as heteroatoms, e.g. Cys, Ser
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1019Tetrapeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1021Tetrapeptides with the first amino acid being acidic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0061Laccase (1.10.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03002Laccase (1.10.3.2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21062Subtilisin (3.4.21.62)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi

Definitions

  • the invention relates to laccase mutants with improved stability properties.
  • Laccase is a polyphenol oxidase (EC 1.10.3.2) which catalyses the oxidation of a variety It of inorganic and aromatic compounds, particularly phenols, with the concomitant reduction of molecular oxygen to water.
  • laccases are able to catalyze the oxidation of a variety of inorganic and aromatic compounds
  • laccases have been suggested in many industrial applications such as lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair colouring, and waste water treatment.
  • a major problem with the use of laccases is their poor stability against oxidative attack from e.g. radicals formed from the oxidation of mediators (also referred to as “enhancing agents”).
  • the invention provides variants of a Coprinus laccase and of Coprinus-like laccases with improved oxidative stability as compared to the parent Coprinus laccase or Coprinus-like laccase.
  • the invention relates to DNA encoding such variants and to the use of the variants for various industrial purposes.
  • Coprinus cinereus laccase comprising the amino acid sequence shown in SEQ ID No. 1: 100%;
  • Polyporus pinsitus (I) laccase comprising the amino acid sequence shown in SEQ ID No. 2: 74.4%;
  • Polyporus pinsitus (II) laccase comprising the amino acid sequence shown in SEQ ID No. 3: 73.8%;
  • Phlebia radiata laccase comprising the amino acid sequence shown in SEQ ID No. 4: 69.9%;
  • Rhizoctonia solani (I) laccase comprising the amino acid sequence shown in SEQ ID No. 5: 64.8%;
  • Rhizoctonia solani (II) laccase comprising the amino acid sequence shown in SEQ ID No.6: 63.0%;
  • Rhizoctonia solani (III) laccase comprising the amino acid sequence shown in SEQ ID No. 7: 61.0%;
  • Rhizoctonia solani (IV) laccase comprising the amino acid sequence shown in SEQ ID No. 8: 59.7%;
  • Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10:56.5%.
  • Coprinus-like laccase is intended to indicate a laccase which, on the amino acid level, displays a homology of at least 50% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 55% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 60% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 65% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 70% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.
  • derived from is intended not only to indicate a laccase produced or producible by a strain of the organism in question, but also a laccase encoded by a DNA sequence isolated from such strain and produced in a host organism containing said DNA sequence.
  • the term is intended to indicate a laccase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the laccase in question.
  • the Coprinus laccase consists of the 539 amino acids derived from Coprinus cinereus laccase IFO 8371 as disclosed in SEQ ID No.1.
  • the three-dimensional structure is believed to be representative for the structure of any Coprinus-like laccase.
  • the laccase structure is made up of three plastocyanin-like domains. These three domains all have a similar beta-barrel fold.
  • type 1 copper ion is coordinated by two histidines and one cysteine.
  • type 3 copper consists of two type 3 copper atoms (pair of copper atoms) bound to a total of 6 histidine ligands.
  • Q19 in SEQ ID No. 1 is an A1 in the crystallized protein
  • Q243 in SEQ ID No. 1 is an E225 in the crystallized protein.
  • Coprinus laccase structure may be identified in other Coprinus-like laccases on the basis of a model (or solved) structure of the relevant Coprinus-like laccase or simply on the basis of an alignment between the amino acid sequence of the Coprinus-like laccase in question with that of the Coprinus laccase used herein for identifying the amino acid residues of the respective structural elements.
  • Coprinus laccase variants of the invention which are defined by modification of specific amino acid residues of the parent Coprinus laccase, it will be understood that variants of Coprinus-like laccases modified in an equivalent position (as determined from the best possible amino acid sequence alignment between the respective sequences) are intended to be covered as well.
  • the laccase mutants of the present invention may be designed by constructing a variant of a parent Coprinus laccase, which variant has laccase activity and improved stability as compared to the parent laccase, which method comprises:
  • the laccase mutants of the invention may also be designed by constructing a variant of a parent Coprinus-like laccase, which variant has laccase activity and improved stability as compared to the parent laccase, which method comprises:
  • step i) of the methods of the invention may be performed by use of any suitable computer programme capable of analysing and/or comparing amino acid sequences.
  • the structural part which is identified in step i) of the methods of the invention may be composed of one amino acid residue. However, normally the structural part comprises more than one amino acid residue, typically constituting one of the above mentioned parts of the Coprinus structure such as one of the copper centres.
  • the laccase variants of the invention have improved oxidative stability compared to the un-modified parent laccases. Improved oxidative stability means that the laccase variants of the invention have improved tolerance towards oxidative chemical compounds, such as radicals formed from laccase mediated oxidation of radical precursor compounds.
  • the radical precursor compounds may preferably be mediators or “enhancing agents”, such as those described in EP 705327 (compounds containing N—OH, N—O and NR—OH groups), WO9501426 (compounds containing two aromatic rings etc.), WO 96/10079 (methylsyringate type of compounds) and/or WO 99/57360 (N-hydroxyacetanilide type of compounds).
  • laccase variants may be obtained by:
  • the modification of an amino acid residue or structural part is typically accomplished by suitable modifications of a DNA sequence encoding the parent enzyme in question.
  • modified as used in the methods according to the invention is intended to have the following meaning: When used in relation to an amino acid residue the term is intended to mean replacement of the amino acid residue in question with another amino acid residue.
  • the term is intended to mean: replacement of one or more amino acid residues of said structural part with other amino acid residues, or addition of one or more amino acid residues to said part, or deletion of one or more amino acid residues of said structural part.
  • the construction of the variant of interest is accomplished by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant, and optionally subsequently recovering the variant from the resulting culture broth. This is described in detail further below.
  • Preferred positions for mutations are the following: CcL: MtL: F21 V52 H91 G121 F112 F141 H133 — H153 Y177 Y176 H206 H230 M260 H309 P336 F335 T365 Y347 I380 S349 I382 Y375 V406 Y416 — F449 — E455 A506 F456 W507 Y490 W543
  • CcL Coprinus cinereus laccase comprising the amino acid sequence shown in SEQ ID No. 1;
  • MtL Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10.
  • a variant of a parent Coprinus laccase which comprises one or more of the following substitutions in SEQ ID No. 1:
  • F21 A I, L, N, R, S, Q;
  • F335 A I, L, N, R, S, Q;
  • F456 A I, L, N, R, S, Q;
  • a variant of a parent Myceliophthora thermophila laccase which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:
  • H206 A I, L, N, R, S, Q;
  • T365 A I, L, N, R, S, Q;
  • V406A I, L, N, R, S, Q;
  • laccase variants of the invention may be added to and thus become a component of a detergent composition.
  • the detergent composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations.
  • the invention provides a detergent additive comprising the laccase variants of the invention.
  • the detergent additive as well as the detergent composition may comprise one or more other enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an oxidase, e.g., a laccase, and/or a peroxidase.
  • enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an
  • the properties of the chosen enzyme(s) should be compatible with the selected detergent, (i.e. pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.
  • Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279).
  • Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 and WO 94/25583.
  • Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101, 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, EverlaseTM, EsperaseTM, and KannaseTM (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372,034), P.
  • lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97104079 and WO 97/07202.
  • Preferred commercially available lipase enzymes include LipolaseTM, Lipolase UltraTM and LipoprimeTM (Novozymes A/S).
  • Amylases [0115] Amylases:
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, ⁇ -amylases obtained from Bacillus, e.g. a special strain of B. licheniformis , described in more detail in GB 1,296,839.
  • Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, and WO 97/43424, especially the variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444.
  • amylases are DuramylTM, TermamylTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed in U.S. Pat. Nos. 4,435,307, 5,648,263, 5,691,178, 5,776,757 and WO 89/09259.
  • cellulases are the alkaline or neutral cellulases having colour care benefits.
  • Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940.
  • Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, U.S. Pat. Nos. 5,457,046, 5,686,593, 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.
  • cellulases include CelluzymeTM, and CarezymeTM (Novozymes A/S), ClazinaseTM, and Puradax HATM (Genencor International Inc.), and KAC-500(B) TM (Kao Corporation).
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus , and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • the detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes.
  • a detergent additive of the invention i.e. a separate additive or a combined additive, can be formulated e.g. as a granulate, a liquid, a slurry, etc.
  • Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.
  • Non-dusting granulates may be produced, e.g., as disclosed in U.S. Pat. Nos. 4 , 106 , 991 and 4,661,452 and may optionally be coated by methods known in the art.
  • waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
  • Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
  • Protected enzymes may be prepared according to the method disclosed in EP 238,216.
  • the detergent composition of the invention may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste or a liquid.
  • a liquid detergent may be aqueous, typically containing up to 70% water and 0-30% organic solvent, or non-aqueous.
  • the detergent composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic.
  • the surfactants are typically present at a level of from 0.1% to 60% by weight.
  • the detergent When included therein the detergent will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.
  • an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.
  • the detergent When included therein the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • glucamides N-acyl N-alkyl derivatives of glucosamine
  • the detergent may contain 0-65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkyl- or alkenyisuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst).
  • a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkyl- or alkenyisuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst).
  • the detergent may comprise one or more polymers.
  • examples are carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • the detergent may contain a bleaching system which may comprise a H 2 O 2 source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine or nonanoyloxybenzenesulfonate.
  • a bleaching system may comprise peroxyacids of e.g. the amide, imide, or sulfone type.
  • the enzyme(s) of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • the detergent may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes.
  • fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes.
  • any enzyme, in particular the laccase variants of the invention may be added in an amount corresponding to 0.01-100 mg of enzyme protein per liter of wash liquor, preferably 0.05-10 mg of enzyme protein per liter of wash liquor, more preferably 0.1-5 mg of enzyme protein per liter of wash liquor, and most preferably 0.1-1 mg of enzyme protein per liter of wash liquor.
  • laccase variants of the invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202 which is hereby incorporated as reference.
  • the DNA sequence encoding a parent laccase may be isolated from any cell or microorganism producing the laccase in question, using various methods well known in the art.
  • a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the laccase to be studied.
  • homologous, labelled oligonucleotide probes may be synthesized and used to identify laccase-encoding clones from a genomic library prepared from the organism in question.
  • a labelled oligonucleotide probe containing sequences homologous to a known laccase gene could be used as a probe to identify laccase-encoding clones, using hybridization and washing conditions of lower stringency.
  • a method for identifying laccase-encoding clones involves inserting cDNA into an expression vector, such as a plasmid, transforming laccase-negative fungi with the resulting cDNA library, and then plating the transformed fungi onto agar containing a substrate for laccase, thereby allowing clones expressing the laccase to be identified.
  • an expression vector such as a plasmid, transforming laccase-negative fungi with the resulting cDNA library
  • the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method.
  • oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.
  • the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques.
  • the DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers.
  • oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis.
  • a single-stranded gap of DNA bridging the laccase-encoding sequence, is created in a vector carrying the laccase gene.
  • the synthetic nucleotide, bearing the desired mutation is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with T7 DNA polymerase and the construct is ligated using T4 ligase.
  • the random mutagenesis of a DNA sequence encoding a parent laccase may conveniently be performed by use of any method known in the art.
  • the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents.
  • the mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.
  • Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.
  • UV ultraviolet
  • MNNG N-methyl-N′-nitro-N-nitrosoguanidine
  • EMS ethyl methane sulphonate
  • sodium bisulphite formic acid
  • nucleotide analogues examples include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide ana
  • the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.
  • the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed.
  • the doping or spiking may be done so that codons for unwanted amino acids are avoided.
  • the doped or spiked oligonucleotide can be incorporated into the DNA encoding the laccase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase.
  • PCR-generated mutagenesis When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent laccase enzyme is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15).
  • a mutator strain of E. coli (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), S. cereviseae or any other microbial organism may be used for the random mutagenesis of the DNA encoding the laccase enzyme by e.g. transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may subsequently be transformed into the expression organism.
  • the DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent laccase enzyme.
  • the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent.
  • the DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell.
  • the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.
  • the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place.
  • the host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment.
  • suitable host cells are fungal hosts such as Aspergillus niger or Aspergillus oryzae.
  • the mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.
  • the random mutagenesis may advantageously be localized to a part of the parent laccase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.
  • the localized random mutagenesis is conveniently performed by use of PCR-generated mutagenesis techniques as described above or any other suitable technique known in the art.
  • the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g. by being inserted into a suitable vector, and said part may subsequently be subjected to mutagenesis by use of any of the mutagenesis methods discussed above.
  • a microorganism capable of expressing the mutated laccase enzyme of interest is incubated on a suitable medium and under suitable conditions for the enzyme to be secreted, the medium being provided with a double filter comprising a first protein-binding filter and on top of that a second filter exhibiting a low protein binding capability.
  • the microorganism is located on the second filter.
  • the first filter comprising enzymes secreted from the microorganisms is separated from the second filter comprising the microorganisms.
  • the first filter is subjected to screening for the desired enzymatic activity and the corresponding microbial colonies present on the second filter are identified.
  • the filter used for binding the enzymatic activity may be any protein binding filter e.g. nylon or nitrocellulose.
  • the top filter carrying the colonies of the expression organism may be any filter that has no or low affinity for binding proteins e.g. cellulose acetate or DuraporeTM.
  • the filter may be pretreated with any of the conditions to be used for screening or may be treated during the detection of enzymatic activity.
  • the enzymatic activity may be detected by a dye, fluorescence, precipitation, pH indicator, IR-absorbance or any other known technique for detection of enzymatic activity.
  • the detecting compound may be immobilized by any immobilizing agent, e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.
  • immobilizing agent e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents.
  • the laccase activity may be measured using 10-(2-hydroxyethyl)-phenoxazine (HEPO) as substrate.
  • HEPO 10-(2-hydroxyethyl)-phenoxazine
  • HEPO was synthesized using the same procedure as described for 10-(2-hydroxyethyl)-phenothiazine, (G. Cauquil in Bulletin de la Society Chemique de France, 1960, p. 1049).
  • oxygen laccases E.C. 1.10.3.2
  • Coprinus cinereus laccase was measured using 0.4 mM HEPO in 50 mM sodium acetate, pH 5.0, 0.05% TWEEN-20 at 30° C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.
  • the Myceliophthora thermophila laccase was measured using 0.4 mM HEPO in 25 mM Tris-HCl, pH 7.5, 0.05% Tween-20 at 30° C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.
  • the Polyporus pinsitus laccase was measured using 0.4 mM HEPO in 50 mM MES-NaOH, pH 5.5. The absorbance at 528 nm was followed for 200 sec. and the rate calculated from the linear part of the progress curve.
  • the stability against oxidation by radicals (oxidative stability) of Coprinus variants or Coprinus-like variants may be measured as described in the following.
  • the enzyme is diluted in 100 mM phosphate pH 5 or 6 (which is closest to the pH optimum for the enzyme with methylsyringate as substrate) to a concentration of 0.1 mg enzyme protein per ml.
  • sample and reference are stored at room temperature (approx. 25° C.) for 20 hours. After dilution residual activity of sample and reference is determined by the LACU or LAMU assays using syringaldazine as substrate.
  • Conditions for some fungal laccases are: Laccase from Incubation Assay Polyporus/Trametes pH 5 LACU Coprinus cinereus pH 6 LAMU Myceliophthora thermophila pH 6 LAMU Rhizoctonia solani pH 6 LAMU
  • LACU Laccase Activity
  • Laccase activity may be determined from the oxidation of syringaldazin under aerobic conditions.
  • the violet colour produced is photometered at 530 nm.
  • the analytical conditions are 19 mM syringaldazin, 23 mM acetate buffer, pH 5.5, 30° C., 1 min. reaction time.
  • laccase unit is the amount of enzyme that catalyses the conversion of 1.0 ⁇ mole syringaldazin per minute at these conditions.
  • LAMU Laccase Activity
  • Laccase activity may be determined from the oxidation of syringaldazin under aerobic conditions.
  • the violet colour produced is photometered at 530 nm.
  • the analytical conditions are 19 mM syringaldazin, 23 mM Tris/maleate buffer, pH 7.5, 30° C., 1 min. reaction time.
  • laccase unit is the amount of enzyme that catalyses the conversion of 1.0 ⁇ mole syringaldazin per minute at these conditions.
  • a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.
  • the recombinant expression vector carrying the DNA sequence encoding a laccase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced.
  • the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome.
  • the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.
  • the DNA sequence should be operably connected to a suitable promoter sequence.
  • the promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.
  • suitable promoters for directing the transcription of the DNA sequence encoding a laccase variant of the invention, especially in a fungal host are those derived from the gene encoding A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral ⁇ -amylase, A. niger acid stable ⁇ -amylase, A.
  • niger glucoamylase Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.
  • the expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the laccase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.
  • the vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question.
  • a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.
  • the vector may also comprise a selectable marker, e.g. a gene, the product of which complements a defect in the host cell, such as one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance.
  • a selectable marker e.g. a gene, the product of which complements a defect in the host cell, such as one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance.
  • the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.
  • the cell of the invention is advantageously used as a host cell in the recombinant production of a laccase variant of the invention.
  • the cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.
  • the cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a fungal cell.
  • the filamentous fungus may advantageously belong to a species of Aspergillus, e.g. Aspergillus oryzae or Aspergillus niger .
  • Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se.
  • a suitable procedure for transformation of Aspergillus host cells is described in EP 238 023.
  • the present invention relates to a method of producing a laccase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.
  • the medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the laccase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection).
  • the laccase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.
  • the laccase variants of this invention possesses valuable properties allowing for various industrial applications, in particular lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair dyeing, bleaching of textiles (in particular bleaching of denim as described in WO 96/12845 and WO 96112846) and waste water treatment.
  • Any detergent composition normally used for enzymes may be used, e.g., the detergent compositions disclosed in WO 95/01426.

Abstract

By analyzing the three-dimensional structure of the Coprinus laccase structural parts or specific amino acid residues can be identified, which from structural or functional considerations appear to be important for the oxidative stability of a laccase. When comparing the three-dimensional structure of the Coprinus laccase structure with known amino acid sequences of various laccases, it has been found that several similarities exist between the sequences.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a 35 U.S.C. 371 national application of PCT/DK01/00292 filed Apr. 30, 2001 and claims, under 35 U.S.C. 119, priority or the benefit of Danish application nos. PA 2000 00707 and PA 2001 00327 filed Apr. 28, 2000 and Feb. 28, 2001, respectively, and U.S. application Nos. 60/203,345 and 60/277,817 filed May 10, 2000 and Mar. 21, 2001, respectively, the contents of which are fully incorporated herein by reference.[0001]
  • FIELD OF THE INVENTION
  • The invention relates to laccase mutants with improved stability properties. [0002]
  • BACKGROUND
  • Laccase is a polyphenol oxidase (EC 1.10.3.2) which catalyses the oxidation of a variety It of inorganic and aromatic compounds, particularly phenols, with the concomitant reduction of molecular oxygen to water. [0003]
  • Because laccases are able to catalyze the oxidation of a variety of inorganic and aromatic compounds, laccases have been suggested in many industrial applications such as lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair colouring, and waste water treatment. A major problem with the use of laccases is their poor stability against oxidative attack from e.g. radicals formed from the oxidation of mediators (also referred to as “enhancing agents”). [0004]
  • Accordingly, it is the purpose of the present invention to create laccase variants with improved oxidative stability by using the information of a three-dimensional structure of a [0005] Coprinus cinereus laccase.
  • SUMMARY OF THE INVENTION
  • By analysing the three-dimensional structure of the Coprinus laccase structural parts or specific amino acid residues can be identified, which from structural or functional considerations appear to be important for the oxidative stability of a laccase. Furthermore, when comparing the three-dimensional structure of the Coprinus laccase structure with known amino acid sequences of various laccases, it has been found that several similarities exist between the sequences. The present invention is based on these findings. [0006]
  • Accordingly, as a first aspect the invention provides variants of a Coprinus laccase and of Coprinus-like laccases with improved oxidative stability as compared to the parent Coprinus laccase or Coprinus-like laccase. [0007]
  • In still further aspects the invention relates to DNA encoding such variants and to the use of the variants for various industrial purposes.[0008]
  • DETAILED DESCRIPTION
  • The Coprinus-Like Laccases [0009]
  • A number of laccases produced by different fungi are homologous on the amino acid level. For instance, when using the homology percent obtained from UWGCG program using the GAP program with the default parameters (penalties: gap weight=3.0, length weight=0.1; WISCONSIN PACKAGE Version 8.1-UNIX, August 1995, Genetics Computer Group, 575 Science Drive, Madison, Wis., USA 53711) the following homology was found: [0010]
  • [0011] Coprinus cinereus laccase comprising the amino acid sequence shown in SEQ ID No. 1: 100%;
  • [0012] Polyporus pinsitus (I) laccase comprising the amino acid sequence shown in SEQ ID No. 2: 74.4%;
  • [0013] Polyporus pinsitus (II) laccase comprising the amino acid sequence shown in SEQ ID No. 3: 73.8%;
  • [0014] Phlebia radiata laccase comprising the amino acid sequence shown in SEQ ID No. 4: 69.9%;
  • [0015] Rhizoctonia solani (I) laccase comprising the amino acid sequence shown in SEQ ID No. 5: 64.8%;
  • [0016] Rhizoctonia solani (II) laccase comprising the amino acid sequence shown in SEQ ID No.6: 63.0%;
  • [0017] Rhizoctonia solani (III) laccase comprising the amino acid sequence shown in SEQ ID No. 7: 61.0%;
  • [0018] Rhizoctonia solani (IV) laccase comprising the amino acid sequence shown in SEQ ID No. 8: 59.7%;
  • [0019] Scytalidium thermophilum laccase comprising the amino acid sequence shown in SEQ ID No.9: 57.4%;
  • [0020] Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10:56.5%.
  • Because of the homology found between the above-mentioned laccases, they are considered to belong to the same class of laccases, namely the class of “Coprinus-like laccases”. [0021]
  • Accordingly, in the present context, the term “Coprinus-like laccase” is intended to indicate a laccase which, on the amino acid level, displays a homology of at least 50% and less than 100% to the [0022] Coprinus cinereus laccase SEQ ID NO.1, or at least 55% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 60% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 65% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 70% and less than 100% to the Coprinus cinereus laccase SEQ ID NO.1, or at least 75% and less than 100% to the Coprinus cinereus laccase SEQ ID NO. 1, or at least 80% and less than 100% to the Coprinus cinereus laccase SEQ ID NO. 1, or at least 85% and less than 100% to the Coprinus cinereus laccase SEQ ID NO. 1, or at least 90% and less than 100% to the Coprinus cinereus laccase SEQ ID NO. 1, or at least 95% and less than 100% to the Coprinus cinereus laccase SEQ ID NO. 1.
  • In the present context, “derived from” is intended not only to indicate a laccase produced or producible by a strain of the organism in question, but also a laccase encoded by a DNA sequence isolated from such strain and produced in a host organism containing said DNA sequence. Finally, the term is intended to indicate a laccase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the laccase in question. [0023]
  • The Three-Dimensional Coprinus Laccase Structure [0024]
  • The Coprinus laccase consists of the 539 amino acids derived from [0025] Coprinus cinereus laccase IFO 8371 as disclosed in SEQ ID No.1.
  • The three-dimensional structure is believed to be representative for the structure of any Coprinus-like laccase. [0026]
  • The structure of the laccase was solved in accordance with the principle for X-ray crystallographic methods given in “X-Ray Structure Determination”, Stout, G. K. and Jensen, L. H., John Wiley & Sons, inc. NY, 1989. The structural coordinates for the solved crystal structure of the laccase at 2.2 Å resolution using the isomorphous replacement method are given in a standard PDB format (Brookhaven Protein Data Base) in Appendix 1. It is to be understood that Appendix 1 forms part of the present application. In Appendix 1 the amino acid residues of the enzyme are identified by three-letter amino acid code (capitalized letters). [0027]
  • The laccase structure is made up of three plastocyanin-like domains. These three domains all have a similar beta-barrel fold. [0028]
  • Three copper atoms were observed in the three-dimensional structure: [0029]
  • The so-called type 1 copper ion is coordinated by two histidines and one cysteine. [0030]
  • The so-called type 2 copper of the trinuclear centre is missing in the structure disclosed in the present application. [0031]
  • The so-called type 3 copper consists of two type 3 copper atoms (pair of copper atoms) bound to a total of 6 histidine ligands. [0032]
  • When comparing the amino acid sequence of the crystallized three-dimensional structure with [0033] Coprinus cinereus amino acid sequence of SEQ ID No. 1 the following four differences are observed:
  • 18 amino acids are missing from the N-terminal of the crystallized protein; [0034]
  • 17 amino acids are missing from the C-terminal of the crystallized protein; [0035]
  • Q19 in SEQ ID No. 1 is an A1 in the crystallized protein; and [0036]
  • Q243 in SEQ ID No. 1 is an E225 in the crystallized protein. [0037]
  • Generality of Structure [0038]
  • Because of the homology between the Coprinus laccase and the various Coprinus-like laccases, the solved structure defined by the coordinates of Appendix 1 is believed to be representative for the structure of all Coprinus-like laccases. A model structure of Coprinus-like laccases may be built on the basis of the coordinates given in Appendix 1 adapted to the laccase in question by use of an alignment between the respective amino acid sequences. [0039]
  • The above identified structurally characteristic parts of the Coprinus laccase structure may be identified in other Coprinus-like laccases on the basis of a model (or solved) structure of the relevant Coprinus-like laccase or simply on the basis of an alignment between the amino acid sequence of the Coprinus-like laccase in question with that of the Coprinus laccase used herein for identifying the amino acid residues of the respective structural elements. [0040]
  • Furthermore, in connection with Coprinus laccase variants of the invention, which are defined by modification of specific amino acid residues of the parent Coprinus laccase, it will be understood that variants of Coprinus-like laccases modified in an equivalent position (as determined from the best possible amino acid sequence alignment between the respective sequences) are intended to be covered as well. [0041]
  • Methods of the Invention for Design of Novel Laccase Variants [0042]
  • The laccase mutants of the present invention may be designed by constructing a variant of a parent Coprinus laccase, which variant has laccase activity and improved stability as compared to the parent laccase, which method comprises: [0043]
  • i) analysing the three-dimensional structure of the parent Coprinus laccase to identify at least one amino acid residue or at least one structural part of the Coprinus laccase structure, which amino acid residue or structural part is believed to be of relevance for altering the stability of the parent Coprinus laccase (as evaluated on the basis of structural or functional considerations), [0044]
  • ii) constructing a Coprinus laccase variant, which as compared to the parent Coprinus laccase, has been modified in the amino acid residue or structural part identified in i) so as to alter the stability, and, optionally, [0045]
  • iii) testing the resulting Coprinus laccase variant with respect to stability. [0046]
  • The laccase mutants of the invention may also be designed by constructing a variant of a parent Coprinus-like laccase, which variant has laccase activity and improved stability as compared to the parent laccase, which method comprises: [0047]
  • i) comparing the three-dimensional amino acid structure of the Coprinus laccase with an amino acid sequence of a Coprinus-like laccase, [0048]
  • ii) identifying a part of the Coprinus-like laccase amino acid sequence which is different from the Coprinus laccase amino acid sequence and which from structural or functional considerations is contemplated to be responsible for differences in the stability of the Coprinus and Coprinus-like laccase, [0049]
  • iii) modifying the part of the Coprinus-like laccase identified in ii) whereby a Coprinus-like laccase variant is obtained, which has an improved stability as compared to the parent Coprinus-like laccase, and optionally, [0050]
  • iv) testing the resulting Coprinus-like laccase variant with respect to stability. [0051]
  • The analysis or comparison performed in step i) of the methods of the invention may be performed by use of any suitable computer programme capable of analysing and/or comparing amino acid sequences. [0052]
  • The structural part which is identified in step i) of the methods of the invention may be composed of one amino acid residue. However, normally the structural part comprises more than one amino acid residue, typically constituting one of the above mentioned parts of the Coprinus structure such as one of the copper centres. [0053]
  • The laccase variants of the invention have improved oxidative stability compared to the un-modified parent laccases. Improved oxidative stability means that the laccase variants of the invention have improved tolerance towards oxidative chemical compounds, such as radicals formed from laccase mediated oxidation of radical precursor compounds. The radical precursor compounds may preferably be mediators or “enhancing agents”, such as those described in EP 705327 (compounds containing N—OH, N—O and NR—OH groups), WO9501426 (compounds containing two aromatic rings etc.), WO 96/10079 (methylsyringate type of compounds) and/or WO 99/57360 (N-hydroxyacetanilide type of compounds). [0054]
  • According to the invention useful laccase variants may be obtained by: [0055]
  • protection of the active site center by introduction of steric hindrance in the oxygen entry cleft; [0056]
  • modification of oxidation labile amino acid residues in or near the substrate entry cleft; [0057]
  • modification of oxidation labile surface exposed amino acid residues. [0058]
  • Modifications [0059]
  • The modification of an amino acid residue or structural part is typically accomplished by suitable modifications of a DNA sequence encoding the parent enzyme in question. The term “modified” as used in the methods according to the invention is intended to have the following meaning: When used in relation to an amino acid residue the term is intended to mean replacement of the amino acid residue in question with another amino acid residue. When used in relation to a structural part, the term is intended to mean: replacement of one or more amino acid residues of said structural part with other amino acid residues, or addition of one or more amino acid residues to said part, or deletion of one or more amino acid residues of said structural part. [0060]
  • The construction of the variant of interest is accomplished by cultivating a microorganism comprising a DNA sequence encoding the variant under conditions which are conducive for producing the variant, and optionally subsequently recovering the variant from the resulting culture broth. This is described in detail further below. [0061]
  • Variants with Altered Oxidative Stability [0062]
  • It is contemplated that it is possible to improve the oxidative stability of a parent Coprinus laccase or a parent Coprinus-like laccase, wherein said variant is the result of a mutation, i.e. one or more amino acid residues having been deleted from, replaced or added to the parent laccase, the stability test performed as described below. [0063]
  • Preferred positions for mutations are the following: [0064]
    CcL: MtL:
    F21 V52
    H91 G121
    F112 F141
    H133
    H153 Y177
    Y176 H206
    H230 M260
    H309 P336
    F335 T365
    Y347 I380
    S349 I382
    Y375 V406
    Y416
    F449
    E455 A506
    F456 W507
    Y490 W543
  • wherein [0065]
  • CcL: [0066] Coprinus cinereus laccase comprising the amino acid sequence shown in SEQ ID No. 1;
  • MtL: [0067] Myceliophthora thermophila laccase comprising the amino acid sequence shown in SEQ ID No. 10.
  • The above shown rows are homologous positions. The following variants are preferred: [0068]
  • A variant of a parent Coprinus laccase, which comprises one or more of the following substitutions in SEQ ID No. 1: [0069]
  • F21 A, I, L, N, R, S, Q; [0070]
  • H91 A, I, L, N, R, S, Q; [0071]
  • F112 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0072]
  • H133A, I, L, N, R, S, Q; [0073]
  • H153A, I, L, N, R, S, Q; [0074]
  • Y176A, i, L, N, R, S, Q; [0075]
  • H230A, I, L, N, R, S, Q; [0076]
  • H309 A, I, L, N, R, S, Q; [0077]
  • F335 A, I, L, N, R, S, Q; [0078]
  • Y347 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0079]
  • S349 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0080]
  • Y375 A, I, L, N, R, S, Q; [0081]
  • Y416 A, I, L, N, R, S, Q; [0082]
  • F449 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0083]
  • E455 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0084]
  • F456 A, I, L, N, R, S, Q; [0085]
  • Y490 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H. [0086]
  • A variant of a parent [0087] Myceliophthora thermophila laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:
  • V52 A, I, L, N, R, S, Q; [0088]
  • G121 A, I, L, N, R, S, Q; [0089]
  • F141 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0090]
  • Y177A, I, L, N, R, S, Q; [0091]
  • H206 A, I, L, N, R, S, Q; [0092]
  • M260 A, I, L, N, R, S, Q; [0093]
  • P336 A, I, L, N, R, S, Q; [0094]
  • T365 A, I, L, N, R, S, Q; [0095]
  • I380 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0096]
  • I382 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0097]
  • V406A, I, L, N, R, S, Q; [0098]
  • A506 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H; [0099]
  • W507 A, I, L, N, R, S, Q; [0100]
  • W543 A, V, L, I, P, F, M, G, S, T, C, Y, N, Q, D, E, K, R, H. [0101]
  • Detergent Composition [0102]
  • The laccase variants of the invention may be added to and thus become a component of a detergent composition. [0103]
  • The detergent composition of the invention may for example be formulated as a hand or machine laundry detergent composition including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for hand or machine dishwashing operations. [0104]
  • In a specific aspect, the invention provides a detergent additive comprising the laccase variants of the invention. The detergent additive as well as the detergent composition may comprise one or more other enzymes such as a protease, a lipase, a cutinase, an amylase, a carbohydrase, a cellulase, a pectinase, a mannanase, an arabinase, a galactanase, a xylanase, an oxidase, e.g., a laccase, and/or a peroxidase. [0105]
  • In general the properties of the chosen enzyme(s) should be compatible with the selected detergent, (i.e. pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts. [0106]
  • Proteases: [0107]
  • Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Examples of alkaline proteases are subtilisins, especially those derived from Bacillus, e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279). Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 and WO 94/25583. [0108]
  • Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101, 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274. [0109]
  • Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Everlase™, Esperase™, and Kannase™ (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.). [0110]
  • Lipases: [0111]
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from [0112] H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131, 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
  • Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97104079 and WO 97/07202. [0113]
  • Preferred commercially available lipase enzymes include Lipolase™, Lipolase Ultra™ and Lipoprime™ (Novozymes A/S). [0114]
  • Amylases: [0115]
  • Suitable amylases (α and/or β) include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, α-amylases obtained from Bacillus, e.g. a special strain of [0116] B. licheniformis, described in more detail in GB 1,296,839.
  • Examples of useful amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, and WO 97/43424, especially the variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 181, 188, 190, 197, 202, 208, 209, 243, 264, 304, 305, 391, 408, and 444. [0117]
  • Commercially available amylases are Duramyl™, Termamyl™, Fungamyl™ and BAN™ (Novozymes A/S), Rapidase™ and Purastar™ (Genencor International Inc.). [0118]
  • Cellulases: [0119]
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from [0120] Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed in U.S. Pat. Nos. 4,435,307, 5,648,263, 5,691,178, 5,776,757 and WO 89/09259.
  • Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits. Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940. Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, U.S. Pat. Nos. 5,457,046, 5,686,593, 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299. [0121]
  • Commercially available cellulases include Celluzyme™, and Carezyme™ (Novozymes A/S), Clazinase™, and Puradax HA™ (Genencor International Inc.), and KAC-500(B) ™ (Kao Corporation). [0122]
  • Peroxidases/Oxidases: [0123]
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from [0124] C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, i.e. a separate additive or a combined additive, can be formulated e.g. as a granulate, a liquid, a slurry, etc. Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries. [0125]
  • Non-dusting granulates may be produced, e.g., as disclosed in U.S. Pat. Nos. [0126] 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in GB 1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP 238,216.
  • The detergent composition of the invention may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste or a liquid. A liquid detergent may be aqueous, typically containing up to 70% water and 0-30% organic solvent, or non-aqueous. [0127]
  • The detergent composition comprises one or more surfactants, which may be non-ionic including semi-polar and/or anionic and/or cationic and/or zwitterionic. The surfactants are typically present at a level of from 0.1% to 60% by weight. [0128]
  • When included therein the detergent will usually contain from about 1% to about 40% of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap. [0129]
  • When included therein the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”). [0130]
  • The detergent may contain 0-65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, alkyl- or alkenyisuccinic acid, soluble silicates or layered silicates (e.g. SKS-6 from Hoechst). [0131]
  • The detergent may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers. [0132]
  • The detergent may contain a bleaching system which may comprise a H[0133] 2O2 source such as perborate or percarbonate which may be combined with a peracid-forming bleach activator such as tetraacetylethylenediamine or nonanoyloxybenzenesulfonate. Alternatively, the bleaching system may comprise peroxyacids of e.g. the amide, imide, or sulfone type.
  • The enzyme(s) of the detergent composition of the invention may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708. [0134]
  • The detergent may also contain other conventional detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, optical brighteners, hydrotropes, tarnish inhibitors, or perfumes. [0135]
  • It is at present contemplated that in the detergent compositions any enzyme, in particular the laccase variants of the invention, may be added in an amount corresponding to 0.01-100 mg of enzyme protein per liter of wash liquor, preferably 0.05-10 mg of enzyme protein per liter of wash liquor, more preferably 0.1-5 mg of enzyme protein per liter of wash liquor, and most preferably 0.1-1 mg of enzyme protein per liter of wash liquor. [0136]
  • The laccase variants of the invention may additionally be incorporated in the detergent formulations disclosed in WO 97/07202 which is hereby incorporated as reference. [0137]
  • Methods of Preparing Laccase Variants [0138]
  • Several methods for introducing mutations into genes are known in the art. After a brief discussion of the cloning of laccase-encoding DNA sequences, methods for generating mutations at specific sites within the laccase-encoding sequence will be discussed. [0139]
  • Cloning a DNA Sequence Encoding a Laccase [0140]
  • The DNA sequence encoding a parent laccase may be isolated from any cell or microorganism producing the laccase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the laccase to be studied. Then, if the amino acid sequence of the laccase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify laccase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known laccase gene could be used as a probe to identify laccase-encoding clones, using hybridization and washing conditions of lower stringency. [0141]
  • A method for identifying laccase-encoding clones involves inserting cDNA into an expression vector, such as a plasmid, transforming laccase-negative fungi with the resulting cDNA library, and then plating the transformed fungi onto agar containing a substrate for laccase, thereby allowing clones expressing the laccase to be identified. [0142]
  • Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method. In the phosphoroamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors. [0143]
  • Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic and cDNA origin, prepared by ligating fragments of synthetic, genomic or cDNA origin (as appropriate, the fragments corresponding to various parts of the entire DNA sequence), in accordance with standard techniques. The DNA sequence may also be prepared by polymerase chain reaction (PCR) using specific primers. [0144]
  • Site-Directed Mutagenesis [0145]
  • Once a laccase-encoding DNA sequence has been isolated, and desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide synthesis. In a specific method, a single-stranded gap of DNA, bridging the laccase-encoding sequence, is created in a vector carrying the laccase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then filled in with T7 DNA polymerase and the construct is ligated using T4 ligase. A specific example of this method is described in Morinaga et al. (1984). U.S. Pat. Nos. 4,760,025 discloses the introduction of oligonucleotdes encoding multiple mutations by performing minor alterations of the cassette. However, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced. [0146]
  • Another method of introducing mutations into laccase-encoding DNA sequences is described in Nelson and Long (1989). It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid. [0147]
  • Random Mutagenesis [0148]
  • The random mutagenesis of a DNA sequence encoding a parent laccase may conveniently be performed by use of any method known in the art. [0149]
  • For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. [0150]
  • The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions. [0151]
  • Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. [0152]
  • When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties. [0153]
  • When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the laccase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase. [0154]
  • When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent laccase enzyme is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15). [0155]
  • A mutator strain of [0156] E. coli (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), S. cereviseae or any other microbial organism may be used for the random mutagenesis of the DNA encoding the laccase enzyme by e.g. transforming a plasmid containing the parent enzyme into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may subsequently be transformed into the expression organism.
  • The DNA sequence to be mutagenized may conveniently be present in a genomic or cDNA library prepared from an organism expressing the parent laccase enzyme. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or otherwise exposed to the mutagenizing agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence. [0157]
  • In some cases it may be convenient to amplify the mutated DNA sequence prior to the expression step or the screening step being performed. Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme. [0158]
  • Subsequent to the incubation with or exposure to the mutagenizing agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are fungal hosts such as [0159] Aspergillus niger or Aspergillus oryzae.
  • The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence. [0160]
  • Localized Random Mutagenesis [0161]
  • The random mutagenesis may advantageously be localized to a part of the parent laccase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme. [0162]
  • The localized random mutagenesis is conveniently performed by use of PCR-generated mutagenesis techniques as described above or any other suitable technique known in the art. [0163]
  • Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g. by being inserted into a suitable vector, and said part may subsequently be subjected to mutagenesis by use of any of the mutagenesis methods discussed above. [0164]
  • With respect to the screening step in the above-mentioned method of the invention, this may conveniently be performed by use of aa filter assay based on the following principle: [0165]
  • A microorganism capable of expressing the mutated laccase enzyme of interest is incubated on a suitable medium and under suitable conditions for the enzyme to be secreted, the medium being provided with a double filter comprising a first protein-binding filter and on top of that a second filter exhibiting a low protein binding capability. The microorganism is located on the second filter. Subsequent to the incubation, the first filter comprising enzymes secreted from the microorganisms is separated from the second filter comprising the microorganisms. The first filter is subjected to screening for the desired enzymatic activity and the corresponding microbial colonies present on the second filter are identified. [0166]
  • The filter used for binding the enzymatic activity may be any protein binding filter e.g. nylon or nitrocellulose. The top filter carrying the colonies of the expression organism may be any filter that has no or low affinity for binding proteins e.g. cellulose acetate or Durapore™. The filter may be pretreated with any of the conditions to be used for screening or may be treated during the detection of enzymatic activity. [0167]
  • The enzymatic activity may be detected by a dye, fluorescence, precipitation, pH indicator, IR-absorbance or any other known technique for detection of enzymatic activity. [0168]
  • The detecting compound may be immobilized by any immobilizing agent, e.g., agarose, agar, gelatine, polyacrylamide, starch, filter paper, cloth; or any combination of immobilizing agents. [0169]
  • Laccase Activity [0170]
  • The laccase activity may be measured using 10-(2-hydroxyethyl)-phenoxazine (HEPO) as substrate. HEPO was synthesized using the same procedure as described for 10-(2-hydroxyethyl)-phenothiazine, (G. Cauquil in Bulletin de la Society Chemique de France, 1960, p. 1049). In the presence of oxygen laccases (E.C. 1.10.3.2) oxidize HEPO to a HEPO radical that can be monitored photometrically at 528 nm. [0171]
  • The [0172] Coprinus cinereus laccase was measured using 0.4 mM HEPO in 50 mM sodium acetate, pH 5.0, 0.05% TWEEN-20 at 30° C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.
  • The [0173] Myceliophthora thermophila laccase was measured using 0.4 mM HEPO in 25 mM Tris-HCl, pH 7.5, 0.05% Tween-20 at 30° C. The absorbance at 528 nm was followed for 200 s and the rate calculated from the linear part of the progress curve.
  • The [0174] Polyporus pinsitus laccase was measured using 0.4 mM HEPO in 50 mM MES-NaOH, pH 5.5. The absorbance at 528 nm was followed for 200 sec. and the rate calculated from the linear part of the progress curve.
  • Testing of Variants of the Invention [0175]
  • The stability against oxidation by radicals (oxidative stability) of Coprinus variants or Coprinus-like variants may be measured as described in the following. [0176]
  • The enzyme is diluted in 100 mM phosphate pH 5 or 6 (which is closest to the pH optimum for the enzyme with methylsyringate as substrate) to a concentration of 0.1 mg enzyme protein per ml. [0177]
  • To 0.9 ml enzyme dilution is added 0.1 ml 5 mM methylsyringate (in 50% ethanol). As a reference 0.9 ml enzyme dilution is added 0.1 ml 50% ethanol. [0178]
  • Both sample and reference are stored at room temperature (approx. 25° C.) for 20 hours. After dilution residual activity of sample and reference is determined by the LACU or LAMU assays using syringaldazine as substrate. [0179]
  • Conditions for some fungal laccases are: [0180]
    Laccase from Incubation Assay
    Polyporus/Trametes pH 5 LACU
    Coprinus cinereus pH 6 LAMU
    Myceliophthora thermophila pH 6 LAMU
    Rhizoctonia solani pH 6 LAMU
  • Laccase Activity (LACU) [0181]
  • Laccase activity may be determined from the oxidation of syringaldazin under aerobic conditions. The violet colour produced is photometered at 530 nm. The analytical conditions are 19 mM syringaldazin, 23 mM acetate buffer, pH 5.5, 30° C., 1 min. reaction time. [0182]
  • 1 laccase unit (LACU) is the amount of enzyme that catalyses the conversion of 1.0 μmole syringaldazin per minute at these conditions. [0183]
  • Laccase Activity (LAMU) [0184]
  • Laccase activity may be determined from the oxidation of syringaldazin under aerobic conditions. The violet colour produced is photometered at 530 nm. The analytical conditions are 19 mM syringaldazin, 23 mM Tris/maleate buffer, pH 7.5, 30° C., 1 min. reaction time. [0185]
  • 1 laccase unit (LAMU) is the amount of enzyme that catalyses the conversion of 1.0 μmole syringaldazin per minute at these conditions. [0186]
  • Expression of Laccase Variants [0187]
  • According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes. [0188]
  • The recombinant expression vector carrying the DNA sequence encoding a laccase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e. a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g. a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated. [0189]
  • In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding a laccase variant of the invention, especially in a fungal host, are those derived from the gene encoding [0190] A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α-amylase, A. niger acid stable α-amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.
  • The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the laccase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter. [0191]
  • The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702. [0192]
  • The vector may also comprise a selectable marker, e.g. a gene, the product of which complements a defect in the host cell, such as one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243. [0193]
  • The procedures used to ligate the DNA construct of the invention encoding a laccase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al. (1989)). [0194]
  • The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of a laccase variant of the invention. The cell may be transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells. [0195]
  • The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g. a fungal cell. [0196]
  • The filamentous fungus may advantageously belong to a species of Aspergillus, e.g. [0197] Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus host cells is described in EP 238 023.
  • In a yet further aspect, the present invention relates to a method of producing a laccase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium. [0198]
  • The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the laccase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g. as described in catalogues of the American Type Culture Collection). [0199]
  • The laccase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like. [0200]
  • INDUSTRIAL APPLICATIONS
  • The laccase variants of this invention possesses valuable properties allowing for various industrial applications, in particular lignin modification, paper strengthening, dye transfer inhibition in detergents, phenol polymerization, hair dyeing, bleaching of textiles (in particular bleaching of denim as described in WO 96/12845 and WO 96112846) and waste water treatment. Any detergent composition normally used for enzymes may be used, e.g., the detergent compositions disclosed in WO 95/01426. [0201]
    Figure US20020192792A1-20021219-P00001
    Figure US20020192792A1-20021219-P00002
    Figure US20020192792A1-20021219-P00003
    Figure US20020192792A1-20021219-P00004
    Figure US20020192792A1-20021219-P00005
    Figure US20020192792A1-20021219-P00006
    Figure US20020192792A1-20021219-P00007
    Figure US20020192792A1-20021219-P00008
    Figure US20020192792A1-20021219-P00009
    Figure US20020192792A1-20021219-P00010
    Figure US20020192792A1-20021219-P00011
    Figure US20020192792A1-20021219-P00012
    Figure US20020192792A1-20021219-P00013
    Figure US20020192792A1-20021219-P00014
    Figure US20020192792A1-20021219-P00015
    Figure US20020192792A1-20021219-P00016
    Figure US20020192792A1-20021219-P00017
    Figure US20020192792A1-20021219-P00018
    Figure US20020192792A1-20021219-P00019
    Figure US20020192792A1-20021219-P00020
    Figure US20020192792A1-20021219-P00021
    Figure US20020192792A1-20021219-P00022
    Figure US20020192792A1-20021219-P00023
    Figure US20020192792A1-20021219-P00024
    Figure US20020192792A1-20021219-P00025
    Figure US20020192792A1-20021219-P00026
    Figure US20020192792A1-20021219-P00027
    Figure US20020192792A1-20021219-P00028
    Figure US20020192792A1-20021219-P00029
    Figure US20020192792A1-20021219-P00030
    Figure US20020192792A1-20021219-P00031
    Figure US20020192792A1-20021219-P00032
    Figure US20020192792A1-20021219-P00033
    Figure US20020192792A1-20021219-P00034
    Figure US20020192792A1-20021219-P00035
    Figure US20020192792A1-20021219-P00036
    Figure US20020192792A1-20021219-P00037
    Figure US20020192792A1-20021219-P00038
    Figure US20020192792A1-20021219-P00039
    Figure US20020192792A1-20021219-P00040
    Figure US20020192792A1-20021219-P00041
    Figure US20020192792A1-20021219-P00042
    Figure US20020192792A1-20021219-P00043
    Figure US20020192792A1-20021219-P00044
    Figure US20020192792A1-20021219-P00045
    Figure US20020192792A1-20021219-P00046
    Figure US20020192792A1-20021219-P00047
    Figure US20020192792A1-20021219-P00048
    Figure US20020192792A1-20021219-P00049
    Figure US20020192792A1-20021219-P00050
    Figure US20020192792A1-20021219-P00051
    Figure US20020192792A1-20021219-P00052
    Figure US20020192792A1-20021219-P00053
    Figure US20020192792A1-20021219-P00054
    Figure US20020192792A1-20021219-P00055
    Figure US20020192792A1-20021219-P00056
    Figure US20020192792A1-20021219-P00057
    Figure US20020192792A1-20021219-P00058
    Figure US20020192792A1-20021219-P00059
    Figure US20020192792A1-20021219-P00060
    Figure US20020192792A1-20021219-P00061
    Figure US20020192792A1-20021219-P00062
    Figure US20020192792A1-20021219-P00063
    Figure US20020192792A1-20021219-P00064
    Figure US20020192792A1-20021219-P00065
    Figure US20020192792A1-20021219-P00066
    Figure US20020192792A1-20021219-P00067
    Figure US20020192792A1-20021219-P00068
    Figure US20020192792A1-20021219-P00069
    Figure US20020192792A1-20021219-P00070
    Figure US20020192792A1-20021219-P00071
    Figure US20020192792A1-20021219-P00072
    Figure US20020192792A1-20021219-P00073
    Figure US20020192792A1-20021219-P00074
    Figure US20020192792A1-20021219-P00075
    Figure US20020192792A1-20021219-P00076
    Figure US20020192792A1-20021219-P00077
    Figure US20020192792A1-20021219-P00078
    Figure US20020192792A1-20021219-P00079
    Figure US20020192792A1-20021219-P00080
    Figure US20020192792A1-20021219-P00081
    Figure US20020192792A1-20021219-P00082
    Figure US20020192792A1-20021219-P00083
    Figure US20020192792A1-20021219-P00084
    Figure US20020192792A1-20021219-P00085
    Figure US20020192792A1-20021219-P00086
    Figure US20020192792A1-20021219-P00087
    Figure US20020192792A1-20021219-P00088
    Figure US20020192792A1-20021219-P00089
    Figure US20020192792A1-20021219-P00090
    Figure US20020192792A1-20021219-P00091
    Figure US20020192792A1-20021219-P00092
    Figure US20020192792A1-20021219-P00093
    Figure US20020192792A1-20021219-P00094
    Figure US20020192792A1-20021219-P00095
    Figure US20020192792A1-20021219-P00096
    Figure US20020192792A1-20021219-P00097
    Figure US20020192792A1-20021219-P00098
    Figure US20020192792A1-20021219-P00099
    Figure US20020192792A1-20021219-P00100
    Figure US20020192792A1-20021219-P00101
    Figure US20020192792A1-20021219-P00102
    Figure US20020192792A1-20021219-P00103
    Figure US20020192792A1-20021219-P00104
    Figure US20020192792A1-20021219-P00105
    Figure US20020192792A1-20021219-P00106
    Figure US20020192792A1-20021219-P00107
    Figure US20020192792A1-20021219-P00108
    Figure US20020192792A1-20021219-P00109
    Figure US20020192792A1-20021219-P00110
    Figure US20020192792A1-20021219-P00111
  • 1 10 1 539 PRT Coprinus cinereus 1 Met Phe Lys Asn Leu Leu Ser Phe Ala Leu Leu Ala Ile Ser Val Ala 1 5 10 15 Asn Ala Gln Ile Val Asn Ser Val Asp Thr Met Thr Leu Thr Asn Ala 20 25 30 Asn Val Ser Pro Asp Gly Phe Thr Arg Ala Gly Ile Leu Val Asn Gly 35 40 45 Val His Gly Pro Leu Ile Arg Gly Gly Lys Asn Asp Asn Phe Glu Leu 50 55 60 Asn Val Val Asn Asp Leu Asp Asn Pro Thr Met Leu Arg Pro Thr Ser 65 70 75 80 Ile His Trp His Gly Leu Phe Gln Arg Gly Thr Asn Trp Ala Asp Gly 85 90 95 Ala Asp Gly Val Asn Gln Cys Pro Ile Ser Pro Gly His Ala Phe Leu 100 105 110 Tyr Lys Phe Thr Pro Ala Gly His Ala Gly Thr Phe Trp Tyr His Ser 115 120 125 His Phe Gly Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Met Val Ile 130 135 140 Tyr Asp Asp Asn Asp Pro His Ala Ala Leu Tyr Asp Glu Asp Asp Glu 145 150 155 160 Asn Thr Ile Ile Thr Leu Ala Asp Trp Tyr His Ile Pro Ala Pro Ser 165 170 175 Ile Gln Gly Ala Ala Gln Pro Asp Ala Thr Leu Ile Asn Gly Lys Gly 180 185 190 Arg Tyr Val Gly Gly Pro Ala Ala Glu Leu Ser Ile Val Asn Val Glu 195 200 205 Gln Gly Lys Lys Tyr Arg Met Arg Leu Ile Ser Leu Ser Cys Asp Pro 210 215 220 Asn Trp Gln Phe Ser Ile Asp Gly His Glu Leu Thr Ile Ile Glu Val 225 230 235 240 Asp Gly Gln Leu Thr Glu Pro His Thr Val Asp Arg Leu Gln Ile Phe 245 250 255 Thr Gly Gln Arg Tyr Ser Phe Val Leu Asp Ala Asn Gln Pro Val Asp 260 265 270 Asn Tyr Trp Ile Arg Ala Gln Pro Asn Lys Gly Arg Asn Gly Leu Ala 275 280 285 Gly Thr Phe Ala Asn Gly Val Asn Ser Ala Ile Leu Arg Tyr Ala Gly 290 295 300 Ala Ala Asn Ala Asp Pro Thr Thr Ser Ala Asn Pro Asn Pro Ala Gln 305 310 315 320 Leu Asn Glu Ala Asp Leu His Ala Leu Ile Asp Pro Ala Ala Pro Gly 325 330 335 Ile Pro Thr Pro Gly Ala Ala Asp Val Asn Leu Arg Phe Gln Leu Gly 340 345 350 Phe Ser Gly Gly Arg Phe Thr Ile Asn Gly Thr Ala Tyr Glu Ser Pro 355 360 365 Ser Val Pro Thr Leu Leu Gln Ile Met Ser Gly Ala Gln Ser Ala Asn 370 375 380 Asp Leu Leu Pro Ala Gly Ser Val Tyr Glu Leu Pro Arg Asn Gln Val 385 390 395 400 Val Glu Leu Val Val Pro Ala Gly Val Leu Gly Gly Pro His Pro Phe 405 410 415 His Leu His Gly His Ala Phe Ser Val Val Arg Ser Ala Gly Ser Ser 420 425 430 Thr Tyr Asn Phe Val Asn Pro Val Lys Arg Asp Val Val Ser Leu Gly 435 440 445 Val Thr Gly Asp Glu Val Thr Ile Arg Phe Val Thr Asp Asn Pro Gly 450 455 460 Pro Trp Phe Phe His Cys His Ile Glu Phe His Leu Met Asn Gly Leu 465 470 475 480 Ala Ile Val Phe Ala Glu Asp Met Ala Asn Thr Val Asp Ala Asn Asn 485 490 495 Pro Pro Val Glu Trp Ala Gln Leu Cys Glu Ile Tyr Asp Asp Leu Pro 500 505 510 Pro Glu Ala Thr Ser Ile Gln Thr Val Val Arg Arg Ala Glu Pro Thr 515 520 525 Gly Phe Ser Ala Lys Phe Arg Arg Glu Gly Leu 530 535 2 499 PRT Polyporus pinsitus 2 Gly Ile Gly Pro Val Ala Asp Leu Thr Ile Thr Asn Ala Ala Val Ser 1 5 10 15 Pro Asp Gly Phe Ser Arg Gln Ala Val Val Val Asn Gly Gly Thr Pro 20 25 30 Gly Pro Leu Ile Thr Gly Asn Met Gly Asp Arg Phe Gln Leu Asn Val 35 40 45 Ile Asp Asn Leu Thr Asn His Thr Met Leu Lys Ser Thr Ser Ile His 50 55 60 Trp His Gly Phe Phe Gln Lys Gly Thr Asn Trp Ala Asp Gly Pro Ala 65 70 75 80 Phe Ile Asn Gln Cys Pro Ile Ser Ser Gly His Ser Phe Leu Tyr Asp 85 90 95 Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu 100 105 110 Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Val Val Tyr Asp 115 120 125 Pro Asn Asp Pro Ala Ala Asp Leu Tyr Asp Val Asp Asn Asp Asp Thr 130 135 140 Val Ile Thr Leu Val Asp Trp Tyr His Val Ala Ala Lys Leu Gly Pro 145 150 155 160 Ala Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Lys Gly Arg 165 170 175 Ser Pro Ser Thr Thr Thr Ala Asp Leu Ser Val Ile Ser Val Thr Pro 180 185 190 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Leu Ser Cys Asp Pro Asn 195 200 205 Tyr Thr Phe Ser Ile Asp Gly His Asn Met Thr Ile Ile Glu Thr Asp 210 215 220 Ser Ile Asn Thr Ala Pro Leu Val Val Asp Ser Ile Gln Ile Phe Ala 225 230 235 240 Ala Gln Arg Tyr Ser Phe Val Leu Glu Ala Asn Gln Ala Val Asp Asn 245 250 255 Tyr Trp Ile Arg Ala Asn Pro Asn Phe Gly Asn Val Gly Phe Thr Gly 260 265 270 Gly Ile Asn Ser Ala Ile Leu Arg Tyr Asp Gly Ala Ala Ala Val Glu 275 280 285 Pro Thr Thr Thr Gln Thr Thr Ser Thr Ala Pro Leu Asn Glu Val Asn 290 295 300 Leu His Pro Leu Val Thr Thr Ala Val Pro Gly Ser Pro Val Ala Gly 305 310 315 320 Gly Val Asp Leu Ala Ile Asn Met Ala Phe Asn Phe Asn Gly Thr Asn 325 330 335 Phe Phe Ile Asn Gly Ala Ser Phe Thr Pro Pro Thr Val Pro Val Leu 340 345 350 Leu Gln Ile Ile Ser Gly Ala Gln Asn Ala Gln Asp Leu Leu Pro Ser 355 360 365 Gly Ser Val Tyr Ser Leu Pro Ser Asn Ala Asp Ile Glu Ile Ser Phe 370 375 380 Pro Ala Thr Ala Ala Ala Pro Gly Ala Pro His Pro Phe His Leu His 385 390 395 400 Gly His Ala Phe Ala Val Val Arg Ser Ala Gly Ser Thr Val Tyr Asn 405 410 415 Tyr Asp Asn Pro Ile Phe Arg Asp Val Val Ser Thr Gly Thr Pro Ala 420 425 430 Ala Gly Asp Asn Val Thr Ile Arg Phe Arg Thr Asp Asn Pro Gly Pro 435 440 445 Trp Phe Leu His Cys His Ile Asp Phe His Leu Glu Ala Gly Phe Ala 450 455 460 Val Val Phe Ala Glu Asp Ile Pro Asp Val Ala Ser Ala Asn Pro Val 465 470 475 480 Pro Gln Ala Trp Ser Asp Leu Cys Pro Thr Tyr Asp Ala Leu Asp Pro 485 490 495 Ser Asp Gln 3 499 PRT Polyporus pinsitus 3 Ala Ile Gly Pro Val Ala Ser Leu Val Val Ala Asn Ala Pro Val Ser 1 5 10 15 Pro Asp Gly Phe Leu Arg Asp Ala Ile Val Val Asn Gly Val Val Pro 20 25 30 Ser Pro Leu Ile Thr Gly Lys Lys Gly Asp Arg Phe Gln Leu Asn Val 35 40 45 Val Asp Thr Leu Thr Asn His Ser Met Leu Lys Ser Thr Ser Ile His 50 55 60 Trp His Gly Phe Phe Gln Ala Gly Thr Asn Trp Ala Glu Gly Pro Ala 65 70 75 80 Phe Val Asn Gln Cys Pro Ile Ala Ser Gly His Ser Phe Leu Tyr Asp 85 90 95 Phe His Val Pro Asp Gln Ala Gly Thr Phe Trp Tyr His Ser His Leu 100 105 110 Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro Phe Val Val Tyr Asp 115 120 125 Pro Lys Asp Pro His Ala Ser Arg Tyr Asp Val Asp Asn Glu Ser Thr 130 135 140 Val Ile Thr Leu Thr Asp Trp Tyr His Thr Ala Ala Arg Leu Gly Pro 145 150 155 160 Lys Phe Pro Leu Gly Ala Asp Ala Thr Leu Ile Asn Gly Leu Gly Arg 165 170 175 Ser Ala Ser Thr Pro Thr Ala Ala Leu Ala Val Ile Asn Val Gln His 180 185 190 Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser Ile Ser Cys Asp Pro Asn 195 200 205 Tyr Thr Phe Ser Ile Asp Gly His Asn Leu Thr Val Ile Glu Val Asp 210 215 220 Gly Ile Asn Ser Gln Pro Leu Leu Val Asp Ser Ile Gln Ile Phe Ala 225 230 235 240 Ala Gln Arg Tyr Ser Phe Val Leu Asn Ala Asn Gln Thr Val Gly Asn 245 250 255 Tyr Trp Val Arg Ala Asn Pro Asn Phe Gly Thr Val Gly Phe Ala Gly 260 265 270 Gly Ile Asn Ser Ala Ile Leu Arg Tyr Gln Gly Ala Pro Val Ala Glu 275 280 285 Pro Thr Thr Thr Gln Thr Pro Ser Val Ile Pro Leu Ile Glu Thr Asn 290 295 300 Leu His Pro Leu Ala Arg Met Pro Val Pro Gly Ser Pro Thr Pro Gly 305 310 315 320 Gly Val Asp Lys Ala Leu Asn Leu Ala Phe Asn Phe Asn Gly Thr Asn 325 330 335 Phe Phe Ile Asn Asn Ala Thr Phe Thr Pro Pro Thr Val Pro Val Leu 340 345 350 Leu Gln Ile Leu Ser Gly Ala Gln Thr Ala Gln Asp Leu Leu Pro Ala 355 360 365 Gly Ser Val Tyr Pro Leu Pro Ala His Ser Thr Ile Glu Ile Thr Leu 370 375 380 Pro Ala Thr Ala Leu Ala Pro Gly Ala Pro His Pro Phe His Leu His 385 390 395 400 Gly His Ala Phe Ala Val Val Arg Ser Ala Gly Ser Thr Thr Tyr Asn 405 410 415 Tyr Asn Asp Pro Ile Phe Arg Asp Val Val Ser Thr Gly Thr Pro Ala 420 425 430 Ala Gly Asp Asn Val Thr Ile Arg Phe Gln Thr Asp Asn Pro Gly Pro 435 440 445 Trp Phe Leu His Cys His Ile Asp Phe His Leu Asp Ala Gly Phe Ala 450 455 460 Ile Val Phe Ala Glu Asp Val Ala Asp Val Lys Ala Ala Asn Pro Val 465 470 475 480 Pro Lys Ala Trp Ser Asp Leu Cys Pro Ile Tyr Asp Gly Leu Ser Glu 485 490 495 Ala Asn Gln 4 548 PRT Phlebia radiata 4 Met His Thr Phe Leu Arg Ser Thr Ala Leu Val Val Ala Gly Leu Ser 1 5 10 15 Ala Arg Ala Leu Ala Ser Ile Gly Pro Val Thr Asp Phe His Ile Val 20 25 30 Asn Ala Ala Val Ser Pro Asp Gly Phe Ser Arg Gln Ala Val Leu Ala 35 40 45 Glu Gly Val Phe Pro Gly Pro Leu Ile Ala Gly Asn Lys Gly Asp Asn 50 55 60 Phe Gln Ile Asn Val Ile Asp Glu Leu Thr Asn Ala Thr Met Leu Lys 65 70 75 80 Thr Thr Thr Ile His Trp His Gly Phe Phe Gln His Gly Thr Asn Trp 85 90 95 Ala Asp Gly Pro Ala Phe Ile Asn Gln Cys Pro Ile Ala Ser Gly Asp 100 105 110 Ser Phe Leu Tyr Asn Phe Gln Val Pro Asp Gln Ala Gly Thr Phe Trp 115 120 125 Tyr His Ser His Leu Ser Thr Gln Tyr Cys Asp Gly Leu Arg Gly Pro 130 135 140 Phe Val Val Tyr Asp Pro Ala Asp Pro Tyr Leu Asp Gln Tyr Asp Val 145 150 155 160 Asp Asp Asp Ser Thr Val Ile Thr Leu Ala Asp Trp Tyr His Thr Ala 165 170 175 Ala Arg Leu Gly Ser Pro Phe Pro Ala Ala Asp Thr Thr Leu Ile Asn 180 185 190 Gly Leu Gly Arg Cys Gly Glu Ala Gly Cys Pro Val Ser Asp Leu Ala 195 200 205 Val Ile Ser Val Thr Lys Gly Lys Arg Tyr Arg Phe Arg Leu Val Ser 210 215 220 Ile Ser Cys Asp Ser Phe Phe Thr Phe Ser Ile Asp Gly His Ser Leu 225 230 235 240 Asn Val Ile Glu Val Asp Ala Thr Asn His Gln Pro Leu Thr Val Asp 245 250 255 Glu Leu Thr Ile Tyr Ala Gly Gln Arg Tyr Ser Phe Ile Leu Thr Ala 260 265 270 Asp Gln Asp Val Asp Asn Tyr Trp Ile Arg Ala Asn Pro Gly Ile Gly 275 280 285 Ile Thr Thr Gly Phe Ala Gly Gly Ile Asn Ser Ala Ile Leu Arg Tyr 290 295 300 Asp Gly Ala Asp Val Val Glu Pro Thr Thr Thr Gln Ala Thr Ser Pro 305 310 315 320 Val Val Leu Ser Glu Ser Asn Leu Ala Pro Leu Thr Asn Ala Ala Ala 325 330 335 Pro Gly Leu Pro Glu Val Gly Gly Val Asp Leu Ala Leu Asn Phe Asn 340 345 350 Leu Thr Phe Asp Gly Pro Ser Leu Lys Phe Gln Ile Asn Gly Val Thr 355 360 365 Phe Val Pro Pro Thr Val Pro Val Leu Leu Gln Ile Leu Ser Gly Ala 370 375 380 Gln Ser Ala Ala Asp Leu Leu Pro Ser Gly Ser Val Tyr Ala Leu Pro 385 390 395 400 Ser Asn Ala Thr Ile Glu Leu Ser Leu Pro Ala Gly Ala Leu Gly Gly 405 410 415 Pro His Pro Phe His Leu His Gly His Thr Phe Ser Val Val Arg Pro 420 425 430 Ala Gly Ser Thr Thr Tyr Asn Tyr Val Asn Pro Val Gln Arg Asp Val 435 440 445 Val Ser Ile Gly Asn Thr Gly Asp Asn Val Thr Ile Arg Phe Asp Thr 450 455 460 Asn Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Trp His Leu 465 470 475 480 Glu Ala Ala Leu Pro Leu Ser Ser Leu Arg Thr Ser Leu Thr Leu Arg 485 490 495 Pro Leu Thr Leu Ser Pro Arg Thr Gly Pro Thr Cys Ala Leu Ser Thr 500 505 510 Thr Leu Trp Thr His Leu Ile Thr Ser Gly Phe Ala Ser Ile Ile Gln 515 520 525 Trp Met Met Gly Gly Asn Gly Leu Phe Ala Pro His Ala Leu Ser Phe 530 535 540 Leu Gly Ser Gln 545 5 529 PRT Rhizoctonia solani 5 Met Leu Ser Ser Ile Thr Leu Leu Pro Leu Leu Ala Ala Val Ser Thr 1 5 10 15 Pro Ala Phe Ala Ala Val Arg Asn Tyr Lys Phe Asp Ile Lys Asn Val 20 25 30 Asn Val Ala Pro Asp Gly Phe Gln Arg Ser Ile Val Ser Val Asn Gly 35 40 45 Leu Val Pro Gly Thr Leu Ile Thr Ala Asn Lys Gly Asp Thr Leu Arg 50 55 60 Ile Asn Val Thr Asn Gln Leu Thr Asp Pro Ser Met Arg Arg Ala Thr 65 70 75 80 Thr Ile His Trp His Gly Leu Phe Gln Ala Thr Thr Ala Asp Glu Asp 85 90 95 Gly Pro Ala Phe Val Thr Gln Cys Pro Ile Ala Gln Asn Leu Ser Tyr 100 105 110 Thr Tyr Glu Ile Pro Leu Arg Gly Gln Thr Gly Thr Met Trp Tyr His 115 120 125 Ala His Leu Ala Ser Gln Tyr Val Asp Gly Leu Arg Gly Pro Leu Val 130 135 140 Ile Tyr Asp Pro Asn Asp Pro His Lys Ser Arg Tyr Asp Val Asp Asp 145 150 155 160 Ala Ser Thr Val Val Met Leu Glu Asp Trp Tyr His Thr Pro Ala Pro 165 170 175 Val Leu Glu Lys Gln Met Phe Ser Thr Asn Asn Thr Ala Leu Leu Ser 180 185 190 Pro Val Pro Asp Ser Gly Leu Ile Asn Gly Lys Gly Arg Tyr Val Gly 195 200 205 Gly Pro Ala Val Pro Arg Ser Val Ile Asn Val Lys Arg Gly Lys Arg 210 215 220 Tyr Arg Leu Arg Val Ile Asn Ala Ser Ala Ile Gly Ser Phe Thr Phe 225 230 235 240 Ser Ile Glu Gly His Ser Leu Thr Val Ile Glu Ala Asp Gly Ile Leu 245 250 255 His Gln Pro Leu Ala Val Asp Ser Phe Gln Ile Tyr Ala Gly Gln Arg 260 265 270 Tyr Ser Val Ile Val Glu Ala Asn Gln Thr Ala Ala Asn Tyr Trp Ile 275 280 285 Arg Ala Pro Met Thr Val Ala Gly Ala Gly Thr Asn Ala Asn Leu Asp 290 295 300 Pro Thr Asn Val Phe Ala Val Leu His Tyr Glu Gly Ala Pro Asn Ala 305 310 315 320 Glu Pro Thr Thr Glu Gln Gly Ser Ala Ile Gly Thr Ala Leu Val Glu 325 330 335 Glu Asn Leu His Ala Leu Ile Asn Pro Gly Ala Pro Gly Gly Ser Ala 340 345 350 Pro Ala Asp Val Ser Leu Asn Leu Ala Ile Gly Arg Ser Thr Val Asp 355 360 365 Gly Ile Leu Arg Phe Thr Phe Asn Asn Ile Lys Tyr Glu Ala Pro Ser 370 375 380 Leu Pro Thr Leu Leu Lys Ile Leu Ala Asn Asn Ala Ser Asn Asp Ala 385 390 395 400 Asp Phe Thr Pro Asn Glu His Thr Ile Val Leu Pro His Asn Lys Val 405 410 415 Ile Glu Leu Asn Ile Thr Gly Gly Ala Asp His Pro Ile His Leu His 420 425 430 Gly His Val Phe Asp Ile Val Lys Ser Leu Gly Gly Thr Pro Asn Tyr 435 440 445 Val Asn Pro Pro Arg Arg Asp Val Val Arg Val Gly Gly Thr Gly Val 450 455 460 Val Leu Arg Phe Lys Thr Asp Asn Pro Gly Pro Trp Phe Val His Cys 465 470 475 480 His Ile Asp Trp His Leu Glu Ala Gly Leu Ala Leu Val Phe Ala Glu 485 490 495 Ala Pro Ser Gln Ile Arg Gln Gly Val Gln Ser Val Gln Pro Asn Asn 500 505 510 Ala Trp Asn Gln Leu Cys Pro Lys Tyr Ala Ala Leu Pro Pro Asp Leu 515 520 525 Gln 6 599 PRT Rhizoctonia solani 6 Met Ala Arg Ser Thr Thr Ser Leu Phe Ala Leu Ser Leu Val Ala Ser 1 5 10 15 Ala Phe Ala Arg Val Val Asp Tyr Gly Phe Asp Val Ala Asn Gly Ala 20 25 30 Val Ala Pro Asp Gly Val Thr Arg Asn Ala Val Leu Val Asn Gly Arg 35 40 45 Phe Pro Gly Pro Leu Ile Thr Ala Asn Lys Gly Asp Thr Leu Lys Ile 50 55 60 Thr Val Arg Asn Lys Leu Ser Asp Pro Thr Met Arg Arg Ser Thr Thr 65 70 75 80 Ile His Trp His Gly Leu Leu Gln His Arg Thr Ala Glu Glu Asp Gly 85 90 95 Pro Ala Phe Val Thr Gln Cys Pro Ile Pro Pro Gln Glu Ser Tyr Thr 100 105 110 Tyr Thr Met Pro Leu Gly Glu Gln Thr Gly Thr Tyr Trp Tyr His Ser 115 120 125 His Leu Ser Ser Gln Tyr Val Asp Gly Leu Arg Gly Pro Ile Val Ile 130 135 140 Tyr Asp Pro His Asp Pro Tyr Arg Asn Tyr Tyr Asp Val Asp Asp Glu 145 150 155 160 Arg Thr Val Phe Thr Leu Ala Asp Trp Tyr His Thr Pro Ser Glu Ala 165 170 175 Ile Ile Ala Thr His Asp Val Leu Lys Thr Ile Pro Asp Ser Gly Thr 180 185 190 Ile Asn Gly Lys Gly Lys Tyr Asp Pro Ala Ser Ala Asn Thr Asn Asn 195 200 205 Thr Thr Leu Glu Asn Leu Tyr Thr Leu Lys Val Lys Arg Gly Lys Arg 210 215 220 Tyr Arg Leu Arg Ile Ile Asn Ala Ser Ala Ile Ala Ser Phe Arg Phe 225 230 235 240 Gly Val Gln Gly His Lys Cys Thr Ile Ile Glu Ala Asp Gly Val Leu 245 250 255 Thr Lys Pro Ile Glu Val Asp Ala Phe Asp Ile Leu Ala Gly Gln Arg 260 265 270 Tyr Ser Cys Ile Leu Lys Ala Asp Gln Asp Pro Asp Ser Tyr Trp Ile 275 280 285 Asn Ala Pro Ile Thr Asn Val Leu Asn Thr Asn Val Gln Ala Leu Leu 290 295 300 Val Tyr Glu Asp Asp Lys Arg Pro Thr His Tyr Pro Trp Lys Pro Phe 305 310 315 320 Leu Thr Trp Lys Ile Ser Asn Glu Ile Ile Gln Tyr Trp Gln His Lys 325 330 335 His Gly Ser His Gly His Lys Gly Lys Gly His His His Lys Val Arg 340 345 350 Ala Ile Gly Gly Val Ser Gly Leu Ser Ser Arg Val Lys Ser Arg Ala 355 360 365 Ser Asp Leu Ser Lys Lys Ala Val Glu Leu Ala Ala Ala Leu Val Ala 370 375 380 Gly Glu Ala Glu Leu Asp Lys Arg Gln Asn Glu Asp Asn Ser Thr Ile 385 390 395 400 Val Leu Asp Glu Thr Lys Leu Ile Pro Leu Val Gln Pro Gly Ala Pro 405 410 415 Gly Gly Ser Arg Pro Ala Asp Val Val Val Pro Leu Asp Phe Gly Leu 420 425 430 Asn Phe Ala Asn Gly Leu Trp Thr Ile Asn Asn Val Ser Tyr Ser Pro 435 440 445 Pro Asp Val Pro Thr Leu Leu Lys Ile Leu Thr Asp Lys Asp Lys Val 450 455 460 Asp Ala Ser Asp Phe Thr Ala Asp Glu His Thr Tyr Ile Leu Pro Lys 465 470 475 480 Asn Gln Val Val Glu Leu His Ile Lys Gly Gln Ala Leu Gly Ile Val 485 490 495 His Pro Leu His Leu His Gly His Ala Phe Asp Val Val Gln Phe Gly 500 505 510 Asp Asn Ala Pro Asn Tyr Val Asn Pro Pro Arg Arg Asp Val Val Gly 515 520 525 Val Thr Asp Ala Gly Val Arg Ile Gln Phe Arg Thr Asp Asn Pro Gly 530 535 540 Pro Trp Phe Leu His Cys His Ile Asp Trp His Leu Glu Glu Gly Phe 545 550 555 560 Ala Met Val Phe Ala Glu Ala Pro Glu Asp Ile Lys Lys Gly Ser Gln 565 570 575 Ser Val Lys Pro Asp Gly Gln Trp Lys Lys Leu Cys Glu Lys Tyr Glu 580 585 590 Lys Leu Pro Glu Ala Leu Gln 595 7 572 PRT Rhizoctonia solani 7 Met Ala Arg Thr Thr Phe Leu Val Ser Val Ser Leu Phe Val Ser Ala 1 5 10 15 Val Leu Ala Arg Thr Val Glu Tyr Asn Leu Lys Ile Ser Asn Gly Lys 20 25 30 Ile Ala Pro Asp Gly Val Glu Arg Asp Ala Thr Leu Val Asn Gly Gly 35 40 45 Tyr Pro Gly Pro Leu Ile Phe Ala Asn Lys Gly Asp Thr Leu Lys Val 50 55 60 Lys Val Gln Asn Lys Leu Thr Asn Pro Asp Met Tyr Arg Thr Thr Ser 65 70 75 80 Ile His Trp His Gly Leu Leu Gln His Arg Asn Ala Asp Asp Asp Gly 85 90 95 Pro Ala Phe Val Thr Gln Cys Pro Ile Val Pro Gln Ala Ser Tyr Thr 100 105 110 Tyr Thr Met Pro Leu Gly Asp Gln Thr Gly Thr Tyr Trp Tyr His Ser 115 120 125 His Leu Ser Ser Gln Tyr Val Asp Gly Leu Arg Gly Pro Leu Val Ile 130 135 140 Tyr Asp Pro Lys Asp Pro His Arg Arg Leu Tyr Asp Ile Asp Asp Glu 145 150 155 160 Lys Thr Val Leu Ile Ile Gly Asp Trp Tyr His Thr Ser Ser Lys Ala 165 170 175 Ile Leu Ala Thr Gly Asn Ile Thr Leu Gln Gln Pro Asp Ser Ala Thr 180 185 190 Ile Asn Gly Lys Gly Arg Phe Asp Pro Asp Asn Thr Pro Ala Asn Pro 195 200 205 Asn Thr Leu Tyr Thr Leu Lys Val Lys Arg Gly Lys Arg Tyr Arg Leu 210 215 220 Arg Val Ile Asn Ser Ser Ala Ile Ala Ser Phe Arg Met Ser Ile Gln 225 230 235 240 Gly His Lys Met Thr Val Ile Ala Ala Asp Gly Val Ser Thr Lys Pro 245 250 255 Tyr Gln Val Asp Ser Phe Asp Ile Leu Ala Gly Gln Arg Ile Asp Ala 260 265 270 Val Val Glu Ala Asn Gln Glu Pro Asp Thr Tyr Trp Ile Asn Ala Pro 275 280 285 Leu Thr Asn Val Ala Asn Lys Thr Ala Gln Ala Leu Leu Ile Tyr Glu 290 295 300 Asp Asp Arg Arg Pro Tyr His Pro Pro Lys Gly Pro Tyr Arg Lys Trp 305 310 315 320 Ser Val Ser Glu Ala Ile Ile Lys Tyr Trp Lys His Lys His Gly Arg 325 330 335 Gly Leu Leu Ser Gly His Gly Gly Leu Lys Ala Arg Met Met Glu Gly 340 345 350 Ser Leu His Leu His Gly Arg Arg Asp Ile Val Lys Arg Gln Asn Glu 355 360 365 Thr Thr Thr Val Val Met Asp Glu Thr Lys Leu Val Pro Leu Glu His 370 375 380 Pro Gly Ala Ala Cys Gly Ser Lys Pro Ala Asp Leu Val Ile Asp Leu 385 390 395 400 Thr Phe Gly Val Asn Phe Thr Thr Gly His Trp Met Ile Asn Gly Ile 405 410 415 Pro His Lys Ser Pro Asp Met Pro Thr Leu Leu Lys Ile Leu Thr Asp 420 425 430 Thr Asp Gly Val Thr Glu Ser Asp Phe Thr Gln Pro Glu His Thr Ile 435 440 445 Ile Leu Pro Lys Asn Lys Cys Val Glu Phe Asn Ile Lys Gly Asn Ser 450 455 460 Gly Leu Gly Ile Val His Pro Ile His Leu His Gly His Thr Phe Asp 465 470 475 480 Val Val Gln Phe Gly Asn Asn Pro Pro Asn Tyr Val Asn Pro Pro Arg 485 490 495 Arg Asp Val Val Gly Ala Thr Asp Glu Gly Val Arg Phe Gln Phe Lys 500 505 510 Thr Asp Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Trp His 515 520 525 Leu Glu Glu Gly Phe Ala Met Val Phe Ala Glu Ala Pro Glu Ala Ile 530 535 540 Lys Gly Gly Pro Lys Ser Val Pro Val Asp Arg Gln Trp Lys Asp Leu 545 550 555 560 Cys Arg Lys Tyr Gly Ser Leu Pro Ala Gly Phe Leu 565 570 8 575 PRT Rhizoctonia solani 8 Met Ala Arg Thr Thr Phe Leu Val Ser Val Ser Leu Phe Val Ser Ala 1 5 10 15 Val Leu Ala Arg Thr Val Glu Tyr Gly Leu Lys Ile Ser Asp Gly Glu 20 25 30 Ile Ala Pro Asp Gly Val Lys Arg Asn Ala Thr Leu Val Asn Gly Gly 35 40 45 Tyr Pro Gly Pro Leu Ile Phe Ala Asn Lys Gly Asp Thr Leu Lys Val 50 55 60 Lys Val Gln Asn Lys Leu Thr Asn Pro Glu Met Tyr Arg Thr Thr Ser 65 70 75 80 Ile His Trp His Gly Leu Leu Gln His Arg Asn Ala Asp Asp Asp Gly 85 90 95 Pro Ser Phe Val Thr Gln Cys Pro Ile Val Pro Arg Glu Ser Tyr Thr 100 105 110 Tyr Thr Ile Pro Leu Asp Asp Gln Thr Gly Thr Tyr Trp Tyr His Ser 115 120 125 His Leu Ser Ser Gln Tyr Val Asp Gly Leu Arg Gly Pro Leu Val Ile 130 135 140 Tyr Pro Lys Asp Pro His Arg Arg Leu Tyr Asp Val Asp Asp Glu Lys 145 150 155 160 Thr Val Leu Ile Ile Gly Asp Trp Tyr His Glu Ser Ser Lys Ala Ile 165 170 175 Leu Ala Ser Gly Asn Ile Thr Arg Gln Arg Pro Val Ser Ala Thr Ile 180 185 190 Asn Gly Lys Gly Arg Phe Asp Pro Asp Asn Thr Pro Ala Asn Pro Asp 195 200 205 Thr Leu Tyr Thr Leu Lys Val Lys Arg Gly Lys Arg Tyr Arg Leu Arg 210 215 220 Val Ile Asn Ser Ser Glu Ile Ala Ser Phe Arg Phe Ser Val Glu Gly 225 230 235 240 His Lys Val Thr Val Ile Ala Ala Asp Gly Val Ser Thr Lys Pro Tyr 245 250 255 Gln Val Asp Ala Phe Asp Ile Leu Ala Gly Gln Arg Ile Asp Cys Val 260 265 270 Val Glu Ala Asn Gln Glu Pro Asp Thr Tyr Trp Ile Asn Ala Pro Leu 275 280 285 Thr Asn Val Pro Asn Lys Thr Ala Gln Ala Leu Leu Val Tyr Glu Glu 290 295 300 Asp Arg Arg Pro Tyr His Pro Pro Lys Gly Pro Tyr Arg Lys Trp Ser 305 310 315 320 Val Ser Glu Ala Ile Ile Lys Tyr Trp Asn His Lys His Lys His Gly 325 330 335 Arg Gly Leu Leu Ser Gly His Gly Gly Leu Lys Ala Arg Met Ile Glu 340 345 350 Gly Ser His His Leu His Ser Arg Ser Val Val Lys Arg Gln Asn Glu 355 360 365 Thr Thr Thr Val Val Met Asp Glu Ser Lys Leu Val Pro Leu Glu Tyr 370 375 380 Pro Gly Ala Ala Cys Gly Ser Lys Pro Ala Asp Leu Val Leu Asp Leu 385 390 395 400 Thr Phe Gly Leu Asn Phe Ala Thr Gly His Trp Met Ile Asn Gly Ile 405 410 415 Pro Tyr Glu Ser Pro Lys Ile Pro Thr Leu Leu Lys Ile Leu Thr Asp 420 425 430 Glu Asp Gly Val Thr Glu Ser Asp Phe Thr Lys Glu Glu His Thr Val 435 440 445 Ile Leu Pro Lys Asn Lys Cys Ile Glu Phe Asn Ile Lys Gly Asn Ser 450 455 460 Gly Ile Pro Ile Thr His Pro Val His Leu His Gly His Thr Trp Asp 465 470 475 480 Val Val Gln Phe Gly Asn Asn Pro Pro Asn Tyr Val Asn Pro Pro Arg 485 490 495 Arg Asp Val Val Gly Ser Thr Asp Ala Gly Val Arg Ile Gln Phe Lys 500 505 510 Thr Asp Asn Pro Gly Pro Trp Phe Leu His Cys His Ile Asp Trp His 515 520 525 Leu Glu Glu Gly Phe Ala Met Val Phe Ala Glu Ala Pro Glu Ala Val 530 535 540 Lys Gly Gly Pro Lys Ser Val Ala Val Asp Ser Gln Trp Glu Gly Leu 545 550 555 560 Cys Gly Lys Tyr Asp Asn Trp Leu Lys Ser Asn Pro Gly Gln Leu 565 570 575 9 616 PRT Scytalidium thermophilum MISC_FEATURE (218)..(218) Xaa is Gln 9 Met Lys Arg Phe Phe Ile Asn Ser Leu Leu Leu Leu Ala Gly Leu Leu 1 5 10 15 Asn Ser Gly Ala Leu Ala Ala Pro Ser Thr His Pro Arg Ser Asn Pro 20 25 30 Asp Ile Leu Leu Glu Arg Asp Asp His Ser Leu Thr Ser Arg Gln Gly 35 40 45 Ser Cys His Ser Pro Ser Asn Arg Ala Cys Trp Cys Ser Gly Phe Asp 50 55 60 Ile Asn Thr Asp Tyr Glu Thr Lys Thr Pro Asn Thr Gly Val Val Arg 65 70 75 80 Arg Tyr Thr Phe Asp Ile Thr Glu Val Asp Asn Arg Pro Gly Pro Asp 85 90 95 Gly Val Ile Lys Glu Lys Leu Met Leu Ile Asn Asp Lys Leu Leu Gly 100 105 110 Pro Thr Val Phe Ala Asn Trp Gly Asp Thr Ile Glu Val Thr Val Asn 115 120 125 Asn His Leu Arg Thr Asn Gly Thr Ser Ile His Trp His Gly Leu His 130 135 140 Gln Lys Gly Thr Asn Tyr His Asp Gly Ala Asn Gly Val Thr Glu Cys 145 150 155 160 Pro Ile Pro Pro Gly Gly Ser Arg Val Tyr Ser Phe Arg Ala Arg Gln 165 170 175 Tyr Gly Thr Ser Trp Tyr His Ser His Phe Ser Ala Gln Tyr Gly Asn 180 185 190 Gly Val Ser Gly Ala Ile Gln Ile Asn Gly Pro Ala Ser Leu Pro Tyr 195 200 205 Asp Ile Asp Leu Gly Val Leu Pro Leu Xaa Asp Trp Tyr Tyr Lys Ser 210 215 220 Ala Asp Gln Leu Val Ile Glu Thr Leu Xaa Lys Gly Asn Ala Pro Phe 225 230 235 240 Ser Asp Asn Val Leu Ile Asn Gly Thr Ala Lys His Pro Thr Thr Gly 245 250 255 Glu Gly Glu Tyr Ala Ile Val Lys Leu Thr Pro Asp Lys Arg His Arg 260 265 270 Leu Arg Leu Ile Asn Met Ser Val Glu Asn His Phe Gln Val Ser Leu 275 280 285 Ala Lys His Thr Met Thr Val Ile Ala Ala Asp Met Val Pro Val Asn 290 295 300 Ala Met Thr Val Asp Ser Leu Phe Met Ala Val Gly Gln Arg Tyr Asp 305 310 315 320 Val Thr Ile Asp Ala Ser Gln Ala Val Gly Asn Tyr Trp Phe Asn Ile 325 330 335 Thr Phe Gly Gly Gln Gln Lys Cys Gly Phe Ser His Asn Pro Ala Pro 340 345 350 Ala Ala Ile Phe Arg Tyr Glu Gly Ala Pro Asp Ala Leu Pro Thr Asp 355 360 365 Pro Gly Ala Ala Pro Lys Asp His Gln Cys Leu Asp Thr Leu Asp Leu 370 375 380 Ser Pro Val Val Gln Lys Asn Val Pro Val Asp Gly Phe Val Lys Glu 385 390 395 400 Pro Gly Asn Thr Leu Pro Val Thr Leu His Val Asp Gln Ala Ala Ala 405 410 415 Pro His Val Phe Thr Trp Lys Ile Asn Gly Ser Ala Ala Asp Val Asp 420 425 430 Trp Asp Arg Pro Val Leu Glu Tyr Val Met Asn Asn Asp Leu Ser Ser 435 440 445 Ile Pro Val Lys Asn Asn Ile Val Arg Val Asp Gly Val Asn Glu Trp 450 455 460 Thr Tyr Trp Leu Val Glu Asn Asp Pro Glu Gly Arg Leu Ser Leu Pro 465 470 475 480 His Pro Met His Leu His Gly His Asp Phe Phe Val Leu Gly Arg Ser 485 490 495 Pro Asp Val Ser Pro Asp Ser Glu Thr Arg Phe Val Phe Asp Pro Ala 500 505 510 Val Asp Leu Pro Arg Leu Arg Gly His Asn Pro Val Arg Arg Asp Val 515 520 525 Thr Met Leu Pro Ala Arg Gly Trp Leu Leu Leu Ala Phe Arg Thr Asp 530 535 540 Asn Pro Gly Ala Trp Leu Phe His Cys His Ile Ala Xaa His Val Ser 545 550 555 560 Gly Gly Leu Ser Val Asp Phe Leu Glu Arg Pro Asp Glu Leu Arg Gly 565 570 575 Gln Leu Thr Gly Glu Ser Lys Ala Glu Leu Glu Arg Val Cys Arg Glu 580 585 590 Trp Lys Asp Trp Glu Ala Lys Ser Pro His Gly Lys Ile Asp Ser Gly 595 600 605 Leu Lys Gln Arg Arg Trp Asp Ala 610 615 10 573 PRT Myceliophthora thermophila 10 Gln Gln Ser Cys Asn Thr Pro Ser Asn Arg Ala Cys Trp Thr Asp Gly 1 5 10 15 Tyr Asp Ile Asn Thr Asp Tyr Glu Val Asp Ser Pro Asp Thr Gly Val 20 25 30 Val Arg Pro Tyr Thr Leu Thr Leu Thr Glu Val Asp Asn Trp Thr Gly 35 40 45 Pro Asp Gly Val Val Lys Glu Lys Val Met Leu Val Asn Asn Ser Ile 50 55 60 Ile Gly Pro Thr Ile Phe Ala Asp Trp Gly Asp Thr Ile Gln Val Thr 65 70 75 80 Val Ile Asn Asn Leu Glu Thr Asn Gly Thr Ser Ile His Trp His Gly 85 90 95 Leu His Gln Lys Gly Thr Asn Leu His Asp Gly Ala Asn Gly Ile Thr 100 105 110 Glu Cys Pro Ile Pro Pro Lys Gly Gly Arg Lys Val Tyr Arg Phe Lys 115 120 125 Ala Gln Gln Tyr Gly Thr Ser Trp Tyr His Ser His Phe Ser Ala Gln 130 135 140 Tyr Gly Asn Gly Val Val Gly Ala Ile Gln Ile Asn Gly Pro Ala Ser 145 150 155 160 Leu Pro Tyr Asp Thr Asp Leu Gly Val Phe Pro Ile Ser Asp Tyr Tyr 165 170 175 Tyr Ser Ser Ala Asp Glu Leu Val Glu Leu Thr Lys Asn Ser Gly Ala 180 185 190 Pro Phe Ser Asp Asn Val Leu Phe Asn Gly Thr Ala Lys His Pro Glu 195 200 205 Thr Gly Glu Gly Glu Tyr Ala Asn Val Thr Leu Thr Pro Gly Arg Arg 210 215 220 His Arg Leu Arg Leu Ile Asn Thr Ser Val Glu Asn His Phe Gln Val 225 230 235 240 Ser Leu Val Asn His Thr Met Cys Ile Ile Ala Ala Asp Met Val Pro 245 250 255 Val Asn Ala Met Thr Val Asp Ser Leu Phe Leu Gly Val Gly Gln Arg 260 265 270 Tyr Asp Val Val Ile Glu Ala Asn Arg Thr Pro Gly Asn Tyr Trp Phe 275 280 285 Asn Val Thr Phe Gly Gly Gly Leu Leu Cys Gly Gly Ser Arg Asn Pro 290 295 300 Tyr Pro Ala Ala Ile Phe His Tyr Ala Gly Ala Pro Gly Gly Pro Pro 305 310 315 320 Thr Asp Glu Gly Lys Ala Pro Val Asp His Asn Cys Leu Asp Leu Pro 325 330 335 Asn Leu Lys Pro Val Val Ala Arg Asp Val Pro Leu Ser Gly Phe Ala 340 345 350 Lys Arg Ala Asp Asn Thr Leu Asp Val Thr Leu Asp Thr Thr Gly Thr 355 360 365 Pro Leu Phe Val Trp Lys Val Asn Gly Ser Ala Ile Asn Ile Asp Trp 370 375 380 Gly Arg Ala Val Val Asp Tyr Val Leu Thr Gln Asn Thr Ser Phe Pro 385 390 395 400 Pro Gly Tyr Asn Ile Val Glu Val Asn Gly Ala Asp Gln Trp Ser Tyr 405 410 415 Trp Leu Ile Glu Asn Asp Pro Gly Ala Pro Phe Thr Leu Pro His Pro 420 425 430 Met His Leu His Gly His Asp Phe Tyr Val Leu Gly Arg Ser Pro Asp 435 440 445 Glu Ser Pro Ala Ser Asn Glu Arg His Val Phe Asp Pro Ala Arg Asp 450 455 460 Ala Gly Leu Leu Ser Gly Ala Asn Pro Val Arg Arg Asp Val Ser Met 465 470 475 480 Leu Pro Ala Phe Gly Trp Val Val Leu Ser Phe Arg Ala Asp Asn Pro 485 490 495 Gly Ala Trp Leu Phe His Cys His Ile Ala Trp His Val Ser Gly Gly 500 505 510 Leu Gly Val Val Tyr Leu Glu Arg Ala Asp Asp Leu Arg Gly Ala Val 515 520 525 Ser Asp Ala Asp Ala Asp Asp Leu Asp Arg Leu Cys Ala Asp Trp Arg 530 535 540 Arg Tyr Trp Pro Thr Asn Pro Tyr Pro Lys Ser Asp Ser Gly Leu Lys 545 550 555 560 His Arg Trp Val Glu Glu Gly Glu Trp Leu Val Lys Ala 565 570

Claims (15)

1. A variant of a parent Coprinus laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 1:
F21,
H91,
F112,
H133,
H153,
Y176,
H230,
H309,
F335,
Y347,
S349,
Y375,
Y416,
F449,
E455,
F456, and/or
Y490.
2. A variant of a parent Myceliophthora thermophila laccase, which comprises a mutation in a position corresponding to at least one of the following positions in SEQ ID No. 10:
V52,
G121,
F141,
Y177,
H206,
M260,
P336,
V406,
T365,
I380,
I382,
A506,
W507, and/or
W543.
3. A DNA construct comprising a DNA sequence encoding a laccase variant of claim 1.
4. A recombinant expression vector which carries a DNA construct of claim 3.
5. A cell which is transformed with a DNA construct of claim 3.
6. A cell of claim 5, which is a microorganism.
7. A cell of claim 6, which is a bacterium or a fungus.
8. A cell of claim 7, which is an Aspergillus niger or an Aspergillus oryzae cell.
9. A method for oxidizing a substrate, comprising contacting the substrate with a laccase variant of claim 1.
10. A method for inhibiting dye transfer during washing of fabrics, comprising adding a laccase variant of claim 9 during washing.
11. A method for bleaching a textile, comprising applying a laccase variant of claim 9 to the textile.
12. A detergent additive comprising a laccase variant of claim 1 in the form of a non-dusting granulate, a stabilised liquid or a protected enzyme.
13. A detergent additive of claim 12, which additionally comprises one or more other enzyme such as a protease, a lipase, an amylase, and/or a cellulase.
14. A detergent composition comprising a laccase variant of claim 1 and a surfactant.
15. A detergent composition of claim 14 which additionally comprises one or more other enzymes such as a protease, a lipase, an amylase and/or a cellulase.
US09/869,877 2000-04-28 2001-04-30 Laccase mutants Abandoned US20020192792A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200000707 2000-04-28
DKPA200000707 2000-04-28
DKPA200100327 2001-02-28
DKPA200100327 2001-02-28

Publications (1)

Publication Number Publication Date
US20020192792A1 true US20020192792A1 (en) 2002-12-19

Family

ID=26068820

Family Applications (6)

Application Number Title Priority Date Filing Date
US10/258,783 Expired - Lifetime US7226770B2 (en) 2000-04-28 2001-04-30 Lipolytic enzyme variant
US09/869,877 Abandoned US20020192792A1 (en) 2000-04-28 2001-04-30 Laccase mutants
US09/957,806 Abandoned US20050181446A1 (en) 2000-04-28 2001-09-21 Protein variants having modified immunogenicity
US12/699,979 Abandoned US20110045572A1 (en) 2000-04-28 2010-02-04 Protein variants having modified immunogenicity
US13/936,300 Abandoned US20140011259A1 (en) 2000-04-28 2013-07-08 Protein Variants Having Modified Immunogenicity
US14/514,652 Abandoned US20150037872A1 (en) 2000-04-28 2014-10-15 Protein Variants Having Modified Immunogenicty

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/258,783 Expired - Lifetime US7226770B2 (en) 2000-04-28 2001-04-30 Lipolytic enzyme variant

Family Applications After (4)

Application Number Title Priority Date Filing Date
US09/957,806 Abandoned US20050181446A1 (en) 2000-04-28 2001-09-21 Protein variants having modified immunogenicity
US12/699,979 Abandoned US20110045572A1 (en) 2000-04-28 2010-02-04 Protein variants having modified immunogenicity
US13/936,300 Abandoned US20140011259A1 (en) 2000-04-28 2013-07-08 Protein Variants Having Modified Immunogenicity
US14/514,652 Abandoned US20150037872A1 (en) 2000-04-28 2014-10-15 Protein Variants Having Modified Immunogenicty

Country Status (8)

Country Link
US (6) US7226770B2 (en)
EP (7) EP1280919A2 (en)
AT (1) ATE471377T1 (en)
AU (3) AU2001254620A1 (en)
CA (1) CA2406621A1 (en)
DE (1) DE60142415D1 (en)
ES (1) ES2588756T3 (en)
WO (3) WO2001083770A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703212A (en) * 2022-03-01 2022-07-05 东华大学 Method for modifying laccase by using random mutation method of specific section and laccase strain LAC123

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK6488D0 (en) * 1988-01-07 1988-01-07 Novo Industri As ENZYMES
US6682924B1 (en) * 1995-05-05 2004-01-27 Novozymes A/S Protease variants and compositions
US20120165241A1 (en) * 1995-05-05 2012-06-28 Unilever Plc Subtilase Variants
US6936289B2 (en) 1995-06-07 2005-08-30 Danisco A/S Method of improving the properties of a flour dough, a flour dough improving composition and improved food products
ES2188190T5 (en) 1998-07-21 2007-11-16 Danisco A/S FOOD PRODUCT.
US6686164B1 (en) * 1998-10-30 2004-02-03 Novozymes A/S Low allergenic protein variants
CA2374009A1 (en) * 1999-07-09 2001-01-18 Novozymes A/S Glucoamylase variant
WO2001083770A2 (en) 2000-04-28 2001-11-08 Novozymes A/S Lipolytic enzyme variant
EP1301080B1 (en) 2000-07-06 2011-09-14 Novozymes A/S Method of preparing a dough, or a baked product made from a dough, with addition of lipolytic enzymes
EP1352057B1 (en) 2001-01-10 2009-03-25 Novozymes A/S Lipolytic enzyme variant
DE10121463A1 (en) * 2001-05-02 2003-02-27 Henkel Kgaa New alkaline protease variants and washing and cleaning agents containing these new alkaline protease variants
BR0209154A (en) 2001-05-18 2004-07-20 Danisco Process of preparing a dough with an enzyme
DK200101090A (en) * 2001-07-12 2001-08-16 Novozymes As Subtilase variants
US20030119066A1 (en) * 2001-10-05 2003-06-26 Novozymes A/S Diagnostic kit for detecting immunogenic response and method of screening
DE10153792A1 (en) * 2001-10-31 2003-05-22 Henkel Kgaa New alkaline protease variants and washing and cleaning agents containing these new alkaline protease variants
AU2003210552A1 (en) * 2002-01-16 2003-09-02 Genencor International, Inc. Multiply-substituted protease variants
DK2295556T3 (en) 2002-01-16 2015-01-26 Novozymes As Lipolytic Enzyme Variants and Method of Preparation thereof.
WO2003062380A2 (en) * 2002-01-16 2003-07-31 Genencor International, Inc. Multiply-substituted protease variants
JP4426307B2 (en) 2002-02-08 2010-03-03 ノボザイムス アクティーゼルスカブ Phytase mutant
US7511015B2 (en) * 2002-02-19 2009-03-31 The United States Of America As Represented By The Department Of Health And Human Services Modified defensins and their use
EP1504089A2 (en) * 2002-05-16 2005-02-09 Alk Abell A/S Allergen mutants
CN100532546C (en) * 2002-06-26 2009-08-26 诺维信公司 Subtilases and subtilase variants having altered immunogenicity
US7888093B2 (en) * 2002-11-06 2011-02-15 Novozymes A/S Subtilase variants
ATE389731T1 (en) * 2002-12-12 2008-04-15 Novozymes As METHOD FOR SELECTING A LIPOLYTIC ENZYME
DE10260903A1 (en) * 2002-12-20 2004-07-08 Henkel Kgaa New perhydrolases
US20050196766A1 (en) 2003-12-24 2005-09-08 Soe Jorn B. Proteins
DE602004030000D1 (en) 2003-01-17 2010-12-23 Danisco PROCESS FOR IN-SITU-PRODUCTION OF AN EMULSIFIER IN A FOODSTUFF
US7955814B2 (en) 2003-01-17 2011-06-07 Danisco A/S Method
US7294499B2 (en) * 2003-01-30 2007-11-13 Novozymes A/S Subtilases
CN1751116A (en) * 2003-02-18 2006-03-22 诺和酶股份有限公司 Detergent compositions
WO2004078960A1 (en) 2003-02-26 2004-09-16 Genencor International, Inc. Amylases producing an altered immunogenic response and methods of making and using the same
EP2500423B1 (en) 2003-02-26 2015-06-17 Danisco US Inc. Amylases producing an altered immunogenic response and methods of making and using the same
AU2004233940A1 (en) * 2003-04-25 2004-11-11 Novozymes A/S Group 1 mite polypeptide variants
DK2270139T3 (en) * 2003-05-09 2016-11-07 Novozymes As Lipolytic Enzyme Variants
EP1639106B1 (en) 2003-06-19 2010-05-26 Novozymes A/S Proteases
WO2004111216A2 (en) * 2003-06-19 2004-12-23 Novozymes A/S Phospholipase variants
DK1639107T3 (en) 2003-06-19 2013-11-18 Novozymes As Improved proteases and processes for their preparation
EP2308966A1 (en) 2003-10-10 2011-04-13 Novozymes A/S Protease variants
US7906307B2 (en) 2003-12-24 2011-03-15 Danisco A/S Variant lipid acyltransferases and methods of making
GB0716126D0 (en) 2007-08-17 2007-09-26 Danisco Process
US7718408B2 (en) 2003-12-24 2010-05-18 Danisco A/S Method
GB0405637D0 (en) 2004-03-12 2004-04-21 Danisco Protein
US20090060933A1 (en) * 2004-06-14 2009-03-05 Estell David A Proteases producing an altered immunogenic response and methods of making and using the same
CA2591858C (en) 2004-06-21 2015-05-05 Novozymes A/S Proteases derived from norcardiopsis
GB0416035D0 (en) * 2004-07-16 2004-08-18 Danisco Protein
PL1791933T3 (en) 2004-07-16 2011-12-30 Dupont Nutrition Biosci Aps Enzymatic oil-degumming method
ES2614744T3 (en) 2004-10-04 2017-06-01 Novozymes A/S Polypeptides with phytase activity and polynucleotides encoding them
AR050895A1 (en) 2004-10-04 2006-11-29 Novozymes As POLYPEPTIDES THAT HAVE FITASA ACTIVITY AND POLYUCLEOTIDES THAT CODE THEM
EP1812463A2 (en) * 2004-10-22 2007-08-01 Novozymes A/S Group 2 mite polypeptide variants
US20090304869A1 (en) * 2005-04-28 2009-12-10 Christianus Jacobus Van Platerink Peptides Having an Ace Inhibiting Effect
WO2006114195A1 (en) * 2005-04-28 2006-11-02 Unilever N.V. Compositions comprising tripeptides inhibiting ace
CN101194019A (en) 2005-06-13 2008-06-04 诺维信公司 Production of degummed fatty acid alkyl esters
US20070161531A1 (en) 2005-07-08 2007-07-12 Novozymes A/S Subtilase variants
US20070148311A1 (en) * 2005-12-22 2007-06-28 Bunge Oils, Inc. Phytosterol esterification product and method of make same
BRPI0707215A2 (en) * 2006-01-23 2011-04-26 Procter & Gamble detergent compositions
US8187854B2 (en) 2006-01-23 2012-05-29 Novozymes A/S Lipase variants
AR059157A1 (en) * 2006-01-23 2008-03-12 Procter & Gamble DETERGENT COMPOSITIONS
EP1998793A1 (en) 2006-03-22 2008-12-10 Novozymes A/S Use of polypeptides having antimicrobial activity
ES2387203T3 (en) 2006-04-04 2012-09-17 Novozymes A/S Phytase variants
EP2455459B1 (en) 2006-12-21 2016-03-16 Novozymes A/S Lipase variants for pharmaceutical use
US8221743B2 (en) 2006-12-22 2012-07-17 Novozymes A/S Use of polypeptides against diseases caused by protozoans
CN101652474B (en) 2007-01-25 2012-06-27 丹尼斯科有限公司 Production of a lipid acyltransferase from transformed bacillus licheniformis cells
FI20075059A0 (en) 2007-01-29 2007-01-29 Valtion Teknillinen Allergen-binding monoclonal IgE antibodies and hypoallergenic genes: Immunocomplex interaction between type I IgE and allergen
US8956853B2 (en) * 2007-01-30 2015-02-17 Bunge Oils, Inc. Enzymatic degumming utilizing a mixture of PLA and PLC phospholipases
US8460905B2 (en) * 2007-09-11 2013-06-11 Bunge Oils, Inc. Enzymatic degumming utilizing a mixture of PLA and PLC phospholipases with reduced reaction time
US7923232B2 (en) 2007-03-26 2011-04-12 Novozymes A/S Hafnia phytase
US8241876B2 (en) 2008-01-07 2012-08-14 Bunge Oils, Inc. Generation of triacylglycerols from gums
EA201001393A1 (en) 2008-02-29 2011-04-29 ДСМ АйПи АССЕТС Б.В. HIGH SPECIFICITY LIPPASES TO FATTY ACIDS, SHORT CHAIN AND THEIR USE
MX2010013121A (en) 2008-06-06 2011-01-21 Danisco Inc Compositions and methods comprising variant microbial proteases.
EP2342323B1 (en) 2008-09-26 2013-06-05 Novozymes A/S Hafnia phytase variants
EP2362902B1 (en) * 2008-11-11 2012-10-24 Danisco US, Inc., Genencor Division Compositions and methods comprising a subtilisin variant
GB0915572D0 (en) 2009-09-07 2009-10-07 Reckitt Benckiser Nv Detergent composition
AU2010299800B2 (en) * 2009-09-25 2014-08-07 Novozymes A/S Use of protease variants
EP2516606B1 (en) 2009-12-21 2019-01-23 Danisco US Inc. Surfactants that improve the cleaning of lipid-based stains treated with lipases
BR112013003725B1 (en) * 2010-08-17 2020-05-26 Council Of Scintific & Industrial Research METHOD FOR OBTAINING LACASE ENZYME FROM ARTHROGRAPHIS SP
CN104011204A (en) * 2011-12-20 2014-08-27 诺维信公司 Subtilase Variants And Polynucleotides Encoding Same
US10180434B2 (en) 2012-03-13 2019-01-15 Array Bridge Inc. Antibody array used for the analysis of the three-dimensional structure of protein therapeutics and its production
CN110093330B (en) 2012-10-12 2023-11-28 丹尼斯科美国公司 Compositions and methods comprising lipolytic enzyme variants
WO2014067933A1 (en) 2012-10-31 2014-05-08 C-Lecta Gmbh Bioactive carrier preparation for enhanced safety in care products and food
CA2923991C (en) * 2013-10-11 2021-07-06 Mauna Kea Technologies Method for characterizing images acquired through a video medical device
EP3122760A1 (en) * 2014-03-28 2017-02-01 Novozymes A/S Resolubilization of protein crystals at low ph
KR101655276B1 (en) * 2014-10-23 2016-09-08 대한민국(환경부 국립생물자원관장) Cosmetic composition for anti-oxidant and skin whitening effect comprising Ambrosia trifida extract as effective component
EP3227438A1 (en) 2014-12-02 2017-10-11 Novozymes A/S Laccase variants and polynucleotides encoding same
US11518987B2 (en) 2014-12-19 2022-12-06 Novozymes A/S Protease variants and polynucleotides encoding same
US11198860B2 (en) 2014-12-19 2021-12-14 Novozymes A/S Protease variants and polynucleotides encoding same
WO2016164096A1 (en) * 2015-04-06 2016-10-13 Dupont Nutrition Biosciences Aps Proteases for high protein fermented milk products
CA2995771A1 (en) * 2015-09-25 2017-03-30 Imcyse Sa Improved methods and compounds for eliminating immune responses to therapeutic agents
BR112018071466A2 (en) 2016-04-19 2019-03-19 Imcyse Sa new immunogenic cd1d binding peptides
CN108239626B (en) * 2016-12-27 2022-10-04 丰益(上海)生物技术研发中心有限公司 Lipase mutant with high esterification activity
CN109280091A (en) * 2018-11-27 2019-01-29 苏州卫生职业技术学院 A kind of biological enzyme extraction process of bitter melon polysaccharide
CN109912707B (en) * 2019-03-07 2022-03-11 辽宁师范大学 Lampetra lamprey immune protein LIP mutant capable of being used as tumor diagnosis marker
CN111979208B (en) * 2019-05-23 2023-01-10 弈柯莱生物科技(上海)股份有限公司 L-glutamate dehydrogenase mutant and application thereof
CN110684751B (en) * 2019-10-23 2021-06-25 江南大学 Starch branching enzyme mutant with improved catalytic capability
KR20230050402A (en) 2020-08-13 2023-04-14 노보자임스 에이/에스 Phytase variants and polynucleotides encoding them
WO2023225459A2 (en) 2022-05-14 2023-11-23 Novozymes A/S Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998353A (en) * 1996-12-19 1999-12-07 Novo Nordisk A/S Laccase mutants

Family Cites Families (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1585105A (en) 1976-04-29 1981-02-25 Unilever Ltd Emulsions
GB1590432A (en) 1976-07-07 1981-06-03 Novo Industri As Process for the production of an enzyme granulate and the enzyme granuate thus produced
JPS57189638A (en) 1981-05-20 1982-11-22 Yakult Honsha Co Ltd Production of liquid fermented milk
DK289083A (en) 1983-06-23 1984-12-24 Novo Industri As LIPASE, PROCEDURE FOR PREPARING THEREOF AND ITS APPLICATION
DK263584D0 (en) 1984-05-29 1984-05-29 Novo Industri As ENZYMOUS GRANULATES USED AS DETERGENT ADDITIVES
DE3423699C1 (en) 1984-06-27 1986-01-16 Maggi AG, Kempttal Sauce improver in tubes
GB8525012D0 (en) 1985-10-10 1985-11-13 Cpc International Inc Carbohydrate refining process
ATE110768T1 (en) 1986-08-29 1994-09-15 Novo Nordisk As ENZYMATIC DETERGENT ADDITIVE.
EP0305216B1 (en) 1987-08-28 1995-08-02 Novo Nordisk A/S Recombinant Humicola lipase and process for the production of recombinant humicola lipases
ES2032000T3 (en) 1987-12-03 1993-01-01 Unilever Nv A PROCEDURE FOR THE PREPARATION OF A WATER AND OIL EMULSION.
DK6488D0 (en) * 1988-01-07 1988-01-07 Novo Industri As ENZYMES
JP2794574B2 (en) 1988-08-11 1998-09-10 昭和産業株式会社 Method for producing lysolecithin
JP2709736B2 (en) 1988-08-11 1998-02-04 昭和産業株式会社 Oil and fat refining method
JPH02160984A (en) 1988-12-09 1990-06-20 Novo Ind As Deinking method of waste paper
JPH02160997A (en) 1988-12-13 1990-06-20 Jujo Paper Co Ltd Method for preventing trouble by pitch
JP2877439B2 (en) 1989-05-17 1999-03-31 協和醗酵工業株式会社 How to modify eggs
US5665587A (en) * 1989-06-26 1997-09-09 Novo Nordisk A/S Modified subtilisins and detergent compositions containing same
DE3922748B4 (en) 1989-07-11 2006-01-05 Röhm GmbH & Co. KG Enzymatic soft process
DK0426211T3 (en) 1989-09-29 1994-01-31 Unilever Plc Nutrient product containing dried lysophospholipoprotein
AT401180B (en) * 1990-08-13 1996-07-25 Biomay Biotech Prod FOR THE TREE POLLEN ALLERGEN P14 CODING RECOMBINANT DNA MOLECULES, MADE AND DERIVED POLYPEPTIDES THEREOF AND THEIR USE
CA2067182A1 (en) * 1990-08-13 1992-02-14 Rudolf Valenta Birch pollen allergen p14 for diagnosis and therapy of allergic diseases
EP0548228B1 (en) 1990-09-13 1998-08-12 Novo Nordisk A/S Lipase variants
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
US5892013A (en) * 1990-09-13 1999-04-06 Novo Nordisk A/S Lipase variants
JPH0687751B2 (en) 1990-09-26 1994-11-09 辻製油株式会社 Method for collecting lysolecithin containing high concentration of lysophosphatidylcholine
EP0550695B1 (en) 1990-09-28 1997-07-16 The Procter & Gamble Company Polyhydroxy fatty acid amide surfactants to enhance enzyme performance
DK249990D0 (en) 1990-10-17 1990-10-17 Novo Nordisk As PROCEDURE FOR ENZYMATIC PULP TREATMENT
JP3355186B2 (en) * 1990-12-05 2002-12-09 ノボザイムス アクティーゼルスカブ Proteins with modified epitopes and methods for their production
JPH04240286A (en) 1991-01-25 1992-08-27 Novo Nordisk As Method for preventing pitch trouble caused by heat resisting lipase
CZ285164B6 (en) 1991-03-26 1999-05-12 Röhm Gmbh Process for producing pelts ready for tanning
EP0585285B1 (en) 1991-05-01 1998-08-12 Novo Nordisk A/S Stabilized enzymes
DE4115938A1 (en) 1991-05-16 1992-11-19 Metallgesellschaft Ag ENZYMATIC METHOD FOR REDUCING THE CONTENT OF PHOSPHORUS-CONTAINING COMPONENTS IN VEGETABLE AND ANIMAL OILS
KR940703953A (en) 1991-12-20 1994-12-12 안네 제케르 REMOVAL OF HYDROPHOBIC ESTERS FROM TEXTILES
ATE149290T1 (en) 1992-04-25 1997-03-15 Nestle Sa METHOD FOR FLAVORING MILK CHOCOLATE
DK104592D0 (en) 1992-08-21 1992-08-21 Novo Nordisk As COURSE OF ACTION
DK0628256T3 (en) 1993-06-11 1998-03-09 Nestle Sa Means for thermal stabilization of proteins and product obtained therefrom
US6436690B1 (en) * 1993-09-15 2002-08-20 The Procter & Gamble Company BPN′ variants having decreased adsorption and increased hydrolysis wherein one or more loop regions are substituted
DE4339556C1 (en) 1993-11-19 1995-02-02 Metallgesellschaft Ag Process for degumming vegetable oil by means of enzymes
JPH10507639A (en) 1994-10-26 1998-07-28 ノボ ノルディスク アクティーゼルスカブ Enzyme surfactant composition
GB2296011B (en) 1994-12-13 1999-06-16 Solvay Novel fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom
IL117350A0 (en) * 1995-03-09 1996-07-23 Procter & Gamble Proteinase k variants having decreased adsorption and increased hydrolysis
US6475765B1 (en) * 1995-03-09 2002-11-05 Procter & Gamble Company Subtilisin DY variants having decreased adsorption and increased hydrolysis
US5837517A (en) * 1995-05-05 1998-11-17 Novo Nordisk A/S Protease variants and compositions
US6682924B1 (en) * 1995-05-05 2004-01-27 Novozymes A/S Protease variants and compositions
DE69633825T2 (en) * 1995-07-14 2005-11-10 Novozymes A/S Modified enzyme with lipolytic activity
ES2221934T3 (en) 1995-08-11 2005-01-16 Novozymes A/S NEW LIPOLITIC ENZYMES.
ZA967411B (en) * 1995-09-01 1997-04-16 Novo Nordisk Biotech Inc Blue copper oxidase mutants with enhanced activity
JP3333521B2 (en) 1996-01-24 2002-10-15 ノボザイムス バイオテック,インコーポレイティド Nucleic acid encoding a polypeptide having abscisdia lipase activity
US5804201A (en) * 1996-03-11 1998-09-08 The Rockefeller University Immunomodulatory peptides of vespid antigen 5
EP0897423B1 (en) 1996-04-25 2004-10-13 Novozymes A/S Alkaline lipolytic enzyme
CA2254781A1 (en) 1996-05-15 1997-11-20 The Procter & Gamble Company Detergent compositions comprising specific lipolytic enzyme and a specific surfactant system
JP3791058B2 (en) 1996-07-30 2006-06-28 日本油脂株式会社 Method for producing lysolecithin
EP0954569A1 (en) 1996-08-27 1999-11-10 Novo Nordisk A/S Novel lipolytic enzymes
JPH10155493A (en) 1996-10-04 1998-06-16 Sankyo Co Ltd Gene coding for phospholipase a1 derived from aspergillus
JP2001503269A (en) * 1996-11-04 2001-03-13 ノボ ノルディスク アクティーゼルスカブ Subtilase variants and compositions
ES2183113T5 (en) 1996-12-09 2010-03-31 Novozymes A/S REDUCTION OF COMPONENTS WITH CONTENT IN PHOSPHOLIPIDS IN EDIBLE OILS CONTAINING A RAISED AMOUNT OF NON-HYDRAPHABLE PHOSPHORUS, WITH THE USE OF A PHOSPHOLIPASE, OF A PHOSPHOLIPASE OF A FILAMENTOUS FUNGUS THAT PRESENTS O / PHOSPHOLE ACTIVITY B.
AU5310198A (en) * 1996-12-19 1998-07-15 Novo Nordisk A/S Laccase mutants
DE19701348A1 (en) 1997-01-16 1998-07-23 Roehm Gmbh Protein with phospholipase activity
EP1017794A1 (en) * 1997-02-06 2000-07-12 Novo Nordisk A/S Polypeptide-polymer conjugates having added and/or removed attachment groups
AU5983398A (en) * 1997-02-28 1998-09-18 Novo Nordisk A/S Laccase mutants
JP3853464B2 (en) 1997-04-08 2006-12-06 辻製油株式会社 Production method of plant lysolecithin
DK0973399T3 (en) 1997-04-09 2002-11-11 Danisco Improved process for preparing flour dough and products made from such dough using glycerol oxidase
CN1272137A (en) * 1997-08-29 2000-11-01 诺沃挪第克公司 Protease variants and compositions
WO1999011768A1 (en) * 1997-08-29 1999-03-11 Novo Nordisk A/S Protease variants and compositions
MA24811A1 (en) * 1997-10-23 1999-12-31 Procter & Gamble WASHING COMPOSITIONS CONTAINING MULTISUBSTITUTED PROTEASE VARIANTS
US6780629B2 (en) * 1997-11-21 2004-08-24 Novozymes A/S Subtilase enzymes
CA2310454C (en) * 1997-11-21 2012-01-24 Novo Nordisk A/S Protease variants and compositions
US6773907B2 (en) * 1997-11-21 2004-08-10 Peter Kamp Hansen Subtilase enzymes
EP1044019A1 (en) * 1998-01-09 2000-10-18 Circassia Limited Methods and compositions for desensitisation
CA2319437C (en) * 1998-01-31 2009-06-16 University Of Arkansas Methods and reagents for decreasing allergic reactions
AU3247699A (en) * 1998-02-17 1999-09-06 Novo Nordisk A/S Lipase variant
PL194804B1 (en) * 1998-03-16 2007-07-31 Alk Abello As Mutant recombinant allergens
US6835550B1 (en) * 1998-04-15 2004-12-28 Genencor International, Inc. Mutant proteins having lower allergenic response in humans and methods for constructing, identifying and producing such proteins
US6461849B1 (en) * 1998-10-13 2002-10-08 Novozymes, A/S Modified polypeptide
US6376450B1 (en) * 1998-10-23 2002-04-23 Chanchal Kumar Ghosh Cleaning compositions containing multiply-substituted protease variants
AU776534B2 (en) * 1998-10-30 2004-09-16 Novozymes A/S Low allergenic protein variants
US6686164B1 (en) * 1998-10-30 2004-02-03 Novozymes A/S Low allergenic protein variants
DK1131416T3 (en) 1998-11-27 2009-10-26 Novozymes As Lipolytic Enzyme Variants
EP1033405A3 (en) * 1999-02-25 2001-08-01 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
US8229721B1 (en) * 1999-11-03 2012-07-24 Lonza Biologics Plc Apparatus and method for structure-based prediction of amino acid sequences
US6777218B1 (en) * 2000-03-14 2004-08-17 Novozymes A/S Subtilase enzymes having an improved wash performance on egg stains
ATE500323T1 (en) * 2000-04-03 2011-03-15 Maxygen Inc SUBTILISIN VARIANT
WO2001083770A2 (en) 2000-04-28 2001-11-08 Novozymes A/S Lipolytic enzyme variant
US7109016B2 (en) * 2000-08-21 2006-09-19 Novozymes A/S Subtilase enzymes
US6893855B2 (en) * 2000-10-13 2005-05-17 Novozymes A/S Subtilase variants
US7888093B2 (en) * 2002-11-06 2011-02-15 Novozymes A/S Subtilase variants
DE602004016314D1 (en) * 2003-05-07 2008-10-16 Maxygen Inc ENZYM VARIANTS OF SUBTILISIN (SUBTILASES)
US20070161531A1 (en) * 2005-07-08 2007-07-12 Novozymes A/S Subtilase variants

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998353A (en) * 1996-12-19 1999-12-07 Novo Nordisk A/S Laccase mutants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703212A (en) * 2022-03-01 2022-07-05 东华大学 Method for modifying laccase by using random mutation method of specific section and laccase strain LAC123

Also Published As

Publication number Publication date
EP1555322B1 (en) 2010-06-16
AU2001254620A1 (en) 2001-11-12
US20050181446A1 (en) 2005-08-18
EP2258835A1 (en) 2010-12-08
EP2258853B1 (en) 2016-06-08
EP1280919A2 (en) 2003-02-05
US7226770B2 (en) 2007-06-05
US20030144165A1 (en) 2003-07-31
EP1555322A1 (en) 2005-07-20
EP2258852A1 (en) 2010-12-08
EP2236611A1 (en) 2010-10-06
WO2001083770A2 (en) 2001-11-08
US20150037872A1 (en) 2015-02-05
WO2001083559A3 (en) 2002-06-20
AU2001254623A1 (en) 2001-11-12
EP1280817A2 (en) 2003-02-05
WO2001083559A2 (en) 2001-11-08
EP2258853A1 (en) 2010-12-08
CA2406621A1 (en) 2001-11-08
AU2001254622A1 (en) 2001-11-12
WO2001083761A1 (en) 2001-11-08
US20140011259A1 (en) 2014-01-09
DE60142415D1 (en) 2010-07-29
ATE471377T1 (en) 2010-07-15
ES2588756T3 (en) 2016-11-04
US20110045572A1 (en) 2011-02-24
WO2001083770A3 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
US20020192792A1 (en) Laccase mutants
US6309871B1 (en) Polypeptides having alkaline α-amylase activity
EP0675949B1 (en) Recombinant lipase and alpha-amylase variants
US6399561B1 (en) Methods and compositions for bleaching a dye in solution
EP1169434B1 (en) Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
KR100787392B1 (en) Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
EP2004789B1 (en) A stabilized liquid enzyme composition
KR100305140B1 (en) Protease Variants
US8263368B2 (en) Alpha-amylase mutants
US20100311636A1 (en) Detergent compositions and the use of enzyme combinations therein
EP1326965A2 (en) Alpha-amylase variant with altered properties
US6110884A (en) Protease variants
US6184015B1 (en) Laccase mutants
US6623948B1 (en) Nucleic acid sequences encoding alkaline alpha-amylases
EP0956344A1 (en) $i(MYCELIOPHTHORA) AND $i(SCYTALIDIUM) LACCASE VARIANTS HAVING IMPROVED STABILITY
EP0972014A1 (en) Laccase mutants
US6218170B1 (en) Laccase mutants
US20040091994A1 (en) Alpha-amylase variant with altered properties

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVOZYMES A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNEIDER, PALLE;DANIELSEN, STEFFEN;SVENDSEN, ALLAN;REEL/FRAME:012713/0494;SIGNING DATES FROM 20010515 TO 20010521

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION