US20020185778A1 - Tube shoulder and method for its manufacture - Google Patents

Tube shoulder and method for its manufacture Download PDF

Info

Publication number
US20020185778A1
US20020185778A1 US10/209,013 US20901302A US2002185778A1 US 20020185778 A1 US20020185778 A1 US 20020185778A1 US 20901302 A US20901302 A US 20901302A US 2002185778 A1 US2002185778 A1 US 2002185778A1
Authority
US
United States
Prior art keywords
material component
cavity
tube shoulder
tube
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/209,013
Inventor
Rainer Armbruster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foboha GmbH
Original Assignee
Foboha GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foboha GmbH filed Critical Foboha GmbH
Priority to US10/209,013 priority Critical patent/US20020185778A1/en
Publication of US20020185778A1 publication Critical patent/US20020185778A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D35/00Pliable tubular containers adapted to be permanently or temporarily deformed to expel contents, e.g. collapsible tubes for toothpaste or other plastic or semi-liquid material; Holders therefor
    • B65D35/02Body construction
    • B65D35/12Connections between body and closure-receiving bush
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1615The materials being injected at different moulding stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/20Flexible squeeze tubes, e.g. for cosmetics

Definitions

  • the present invention relates to a multilayer tube shoulder for a tube and to a method for the manufacture of such tube shoulders according to the preambles of the independent claims.
  • tube shoulders made from these materials, undesired substances diffuse or pass out of the tube into the environment or pass from the environment into the tube, which is prejudicial to the substance introduced into the tube.
  • tube shoulders In order to prevent this harmful permeability, tube shoulders generally have a two-layer structure, comprising an outer, shaping layer and an inner barrier layer.
  • the material generally used for the shaping layer is polyethylene (PE), while the barrier layer material is polyethylene rerephthalate (PET).
  • PE polyethylene
  • PET polyethylene rerephthalate
  • the present invention is directed toward a tube shoulder and method for making a tube shoulder that avoids the disadvantages discussed in conjunction with the aforementioned prior art.
  • drastic material reductions are possible and, on the other hand, the manufacturing time is greatly reduced and optimized, leading to a better utilization of the invested resources.
  • the present invention Unlike in the prior art, which is generally based on a forced demolding (removal from the mold) of cooled parts, in the present invention there is no need to wait until the material of the first component has cooled. Instead, further processing takes place when the first part is in the uncured state. Accordingly, the present method provides considerable time saving while greatly reducing material consumption because the layers of the tube shoulder disclosed here, unlike with the conventional tube shoulders, are made significantly thinner.
  • the present production-optimized design of the tube shoulder does not, unlike the known designs, constrain the production cycles. Undercuts or filigree keys, which are difficult to remove from the mold or which must even be forcibly de-molded, are not needed in the present ivnetion. Rather, the inventive design utilizes generously dimensioned contact faces between the individual parts of the tube shoulder that are arranged so that no forced de-molding is necessary and, therefore, leads to a very simple construction of the injection mold. The design is also optimized such that material shrinkage has no negative effect on manufacturing precision.
  • the present invention makes it possible, for the first time, for a first material component to be injected in a first cavity of an injection mold and to remove said first material component, before the material has cured or completely hardened, from the first cavity. Then, after release, a second component of another material is injected around the first material, either in a second cavity of the first injection mold or a second injection mold, so as to obtain a strong mechanical connection between the first and second material components.
  • the first material component in the first cavity is injected on a support, which is designed to transport or convey partly plastic material. Following injection of the first phase, the support with the partly plastic material of the first component is removed from the first cavity and introduced into the second cavity. The material of the second component is injected and positively joined to the first component. Prior to the injection of the material of the second component, there is a release of the material of the first component. This is a mechanical process wherein, by means of a slider or a functionally equivalent element, a certain area or surface of the first material component is freed, so that the material of the second component in this area engages in undercutting manner around the material of the first component following the second injection process. As a result of the thus formed mechanical stop, a positive connection is obtained between the first material component and the second material component. This release preferably takes place in a very large-area manner.
  • the invention has two vital advantages. On the one hand the material consumption of a two-layer tube shoulder is massively reduced and, on the other hand, the cycle time during manufacture is drastically decreased.
  • the present invention is also suitable for integrally joining a tube body to the tube shoulder in a first step.
  • This tube body can be supplied as an extraneous part from the outside to the processing operation.
  • This additional step advantageously takes place in a further cavity or is combined with one of the steps in which the first or second material component is produced.
  • FIG. 1 diagrammatically shows a preferred embodiment of a tube shoulder in a perspective sectional view.
  • FIG. 2 diagrammatically shows a sequence of a tube shoulder manufacturing process.
  • FIG. 1 shows a preferred embodiment of a tube shoulder 1 in a perspective sectional view.
  • the tube shoulder 1 comprises an outer layer 2 and an inner barrier layer 3 .
  • the outer layer 2 is of polyethylene (PE) and the barrier layer 3 of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the outer layer 2 is primarily used for shaping the tube shoulder 1 and the barrier layer 3 serves to seal the tube shoulder 1 .
  • the two materials of the outer layer 2 and barrier layer 3 will typically not melt, fuse, or bond with one another.
  • the outer layer 2 engages, or extends around, the barrier layer 3 , here at a lower face 4 and an upper face 5 , so that a large-area, positive connection is formed between the outer layer 2 and the barrier layer 3 .
  • the inner layer is essentially captured by the outer layer.
  • FIG. 2 a diagrammatically shows a sectional representation through an injection mold 10 for the manufacture of the tube shoulder 1 shown in FIG. 1.
  • the injection mold 10 here comprises a base body 11 , which has two openings 20 and 21 .
  • Two, here identical, rotationally symmetrical cores 12 . 1 and 12 . 2 and two identical, annular release elements 14 . 1 and 14 . 2 engage from below and in sealing manner in the openings 20 and 21 , so as to form a first cavity 22 and a second cavity 23 .
  • the first cavity 22 corresponds to the negative of a barrier layer 3 according to FIG. 1.
  • the second cavity 23 corresponds to the negative of a barrier layer 3 and an outer layer 2 .
  • molten plastic of a first material component preferably PET
  • a barrier layer 3 is injected into the first cavity 22 , so as to form a barrier layer 3 according to
  • FIG. 1 Before the plastic material of the barrier layer 3 has cured, the core 12 , release element 14 and partly plastic barrier layer 3 are drawn out of the opening 20 . This process is illustrated by an arrow 30 .
  • the release element 14 additionally serves as an ejection aid for the finished tube shoulder 1 .
  • the faces of the release elements 14 . 1 , 14 . 2 and the cavities 22 , 23 which are in functional combination with one another, are advantageously conically constructed.
  • the core 14 and mold 1 may be cooled to further control and speed the manufacturing process.
  • Advantageously gas or liquid cooling systems are used.
  • the barrier layer 3 is so positioned in the vicinity of an outlet port 6 (cf. FIG. 1) that it is visible from the outside for the user.
  • the outlet port 6 can also have a non-circular cross-section, so that a pattern can be impressed on the filled material passing out.

Abstract

A multilayer tube shoulder and method for manufacture wherein a first material component is injected into a cavity (22) and then removed from the cavity on a support (12) while in a partly-plastic state. Thereafter, following insertion of the first material component into a second cavity (23), a second material component is injected around the first material component, and thereby leads to a positive connection between the first and second material components.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a multilayer tube shoulder for a tube and to a method for the manufacture of such tube shoulders according to the preambles of the independent claims. [0001]
  • The prior art discloses numerous tube shoulders for tubes. Currently, such tube shoulders are almost exclusively made from thermoplastic material by injection molding and are then welded to the tubular tube body in a further operation. [0002]
  • Certain plastics, such as polyethylene (PE), have a considerable permeability for oxygen, carbon dioxide and odorous/aromatizing substances. In the case of tube shoulders made from these materials, undesired substances diffuse or pass out of the tube into the environment or pass from the environment into the tube, which is prejudicial to the substance introduced into the tube. In order to prevent this harmful permeability, tube shoulders generally have a two-layer structure, comprising an outer, shaping layer and an inner barrier layer. [0003]
  • The material generally used for the shaping layer is polyethylene (PE), while the barrier layer material is polyethylene rerephthalate (PET). The fact that these materials do not adhere to one another constitutes one of the main problems in the rational, economic manufacture of tube shoulders. [0004]
  • The use of multilayer tube shoulders of PE and PET has been adopted. Thus, the prior art discloses numerous attempts to rationally and economically manufacture known, multilayer tube shoulders. U.S. Pat. No. 4,185,757 discloses one such attempt. However, none of the known solutions is completely satisfactory. Since tube shoulders are mass produced articles, the price is mainly determined by two factors: cost/material consumption and cycle time for manufacture. The tube shoulders known from the prior art on the one hand have an excessive material consumption, which has a negative effect on the consumption of resources, and therefore costs and environmental compatibility. On the other hand they cannot be manufactured rationally, because they require long cycle times. In fact, certain tube shoulders even require several injection molds and several operations, which amounts to a poor utilization of the machines and molds. [0005]
  • The problem of non-mutually adhering materials has in the prior art led to inefficient or even impracticable solutions. As e.g. in U.S. Pat. No. 4,185,757, these are based on filigree undercuts and keys or wedges, which are intended to bring about a positive connection between the inner barrier layer and the outer, shaping layer of a tube shoulder. These undercuts and keys e.g. comprise mutually corresponding grooves and ribs, which are generally made at right angles to the symmetry axis of the tube shoulder and are so constructed that they must be forcibly demolded. [0006]
  • Another multilayer tube shoulder is described in European patent application EP-130 239. This application teaches a multilayer tube shoulder having an inner barrier layer adhering by friction to an outer, shaping layer. This arrangement is unsatisfactory for various reasons. Firstly, the two layers must be combined in a separate operation. Secondly, there is no reliable hold between the two parts. Thirdly, the parts require increased manufacturing precision, which, inter alia, takes into account the differing shrinkage behavior of the materials. [0007]
  • The parts of the above-described tube shoulders can generally only be further processed after complete cooling. It is also necessary to manually join the individual parts in a separate operation. Thus, the prior art arrangements lead to the manufacturing process for the corresponding tube shoulders being directly and completely decelerated. [0008]
  • SUMMARY OF THE INVENTION
  • The present invention is directed toward a tube shoulder and method for making a tube shoulder that avoids the disadvantages discussed in conjunction with the aforementioned prior art. On the one hand, by means of the present invention, drastic material reductions are possible and, on the other hand, the manufacturing time is greatly reduced and optimized, leading to a better utilization of the invested resources. [0009]
  • Unlike in the prior art, which is generally based on a forced demolding (removal from the mold) of cooled parts, in the present invention there is no need to wait until the material of the first component has cooled. Instead, further processing takes place when the first part is in the uncured state. Accordingly, the present method provides considerable time saving while greatly reducing material consumption because the layers of the tube shoulder disclosed here, unlike with the conventional tube shoulders, are made significantly thinner. [0010]
  • In further accordance with the present invention, further processing the first component of the tube shoulder can be done before the material has completely cured. Therefore, the present production-optimized design of the tube shoulder does not, unlike the known designs, constrain the production cycles. Undercuts or filigree keys, which are difficult to remove from the mold or which must even be forcibly de-molded, are not needed in the present ivnetion. Rather, the inventive design utilizes generously dimensioned contact faces between the individual parts of the tube shoulder that are arranged so that no forced de-molding is necessary and, therefore, leads to a very simple construction of the injection mold. The design is also optimized such that material shrinkage has no negative effect on manufacturing precision. [0011]
  • The present invention makes it possible, for the first time, for a first material component to be injected in a first cavity of an injection mold and to remove said first material component, before the material has cured or completely hardened, from the first cavity. Then, after release, a second component of another material is injected around the first material, either in a second cavity of the first injection mold or a second injection mold, so as to obtain a strong mechanical connection between the first and second material components. [0012]
  • The first material component in the first cavity is injected on a support, which is designed to transport or convey partly plastic material. Following injection of the first phase, the support with the partly plastic material of the first component is removed from the first cavity and introduced into the second cavity. The material of the second component is injected and positively joined to the first component. Prior to the injection of the material of the second component, there is a release of the material of the first component. This is a mechanical process wherein, by means of a slider or a functionally equivalent element, a certain area or surface of the first material component is freed, so that the material of the second component in this area engages in undercutting manner around the material of the first component following the second injection process. As a result of the thus formed mechanical stop, a positive connection is obtained between the first material component and the second material component. This release preferably takes place in a very large-area manner. [0013]
  • Compared with the prior art the invention has two vital advantages. On the one hand the material consumption of a two-layer tube shoulder is massively reduced and, on the other hand, the cycle time during manufacture is drastically decreased. [0014]
  • The present invention is also suitable for integrally joining a tube body to the tube shoulder in a first step. This tube body can be supplied as an extraneous part from the outside to the processing operation. This additional step advantageously takes place in a further cavity or is combined with one of the steps in which the first or second material component is produced.[0015]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention is described in greater detail hereinafter relative to a preferred embodiment and the attached drawings, wherein show: [0016]
  • FIG. 1 diagrammatically shows a preferred embodiment of a tube shoulder in a perspective sectional view. [0017]
  • FIG. 2 diagrammatically shows a sequence of a tube shoulder manufacturing process.[0018]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 shows a preferred embodiment of a tube shoulder [0019] 1 in a perspective sectional view. The tube shoulder 1 comprises an outer layer 2 and an inner barrier layer 3. Preferably the outer layer 2 is of polyethylene (PE) and the barrier layer 3 of polyethylene terephthalate (PET). The outer layer 2 is primarily used for shaping the tube shoulder 1 and the barrier layer 3 serves to seal the tube shoulder 1. The two materials of the outer layer 2 and barrier layer 3 will typically not melt, fuse, or bond with one another. In order, despite this, to bring about a mechanical connection, the outer layer 2 engages, or extends around, the barrier layer 3, here at a lower face 4 and an upper face 5, so that a large-area, positive connection is formed between the outer layer 2 and the barrier layer 3. The inner layer is essentially captured by the outer layer. The use of the method described relative to FIG. 2 is made possible by the represented embodiment of the tube shoulder 1 as a result of the inventive construction, which deliberately avoids small undercuts and the like.
  • As a result of the inventive construction of the tube shoulder [0020] 1, in which all the mechanical connections between the outer layer 2 and barrier layer 3 are in large-area form, it is possible to release the barrier layer in a mold 10 while the material of said barrier layer 3 is still partly plastic. With filigree or difficultly demoldable undercuts (e.g. undercuts which must be forcibly demolded) this is not possible. The presently disclosed invention is therefore based on a design of tube shoulders permitting an optimum, large-area and unforced demolding, without undercuts. The individual steps of the manufacturing process are diagrammatically represented in FIGS. 2a) and 2 b).
  • FIG. 2[0021] a) diagrammatically shows a sectional representation through an injection mold 10 for the manufacture of the tube shoulder 1 shown in FIG. 1. The injection mold 10 here comprises a base body 11, which has two openings 20 and 21. Two, here identical, rotationally symmetrical cores 12.1 and 12.2 and two identical, annular release elements 14.1 and 14.2 engage from below and in sealing manner in the openings 20 and 21, so as to form a first cavity 22 and a second cavity 23. The first cavity 22 corresponds to the negative of a barrier layer 3 according to FIG. 1. The second cavity 23 corresponds to the negative of a barrier layer 3 and an outer layer 2.
  • By means of a first runner or [0022] port 25 molten plastic of a first material component, preferably PET, is injected into the first cavity 22, so as to form a barrier layer 3 according to
  • FIG. 1. Before the plastic material of the [0023] barrier layer 3 has cured, the core 12, release element 14 and partly plastic barrier layer 3 are drawn out of the opening 20. This process is illustrated by an arrow 30.
  • As shown in FIG. 2[0024] b), subsequently the release element 14 is so displaced (arrow 37), that there is a release of a lower surface 4 of the barrier layer 3. The core 12, release element 14 and barrier layer 3 are subsequently sealingly inserted into the second opening 21 of the injection mold 10 (FIG. 2a). This is diagrammatically represented by an arrow 31. By means of a second runner or port 26, a second material component is injected around the released barrier layer 3 formed by the first material component that a strong, mechanical connection is formed. At least one face, preferably an annular face 4, 5 (cf. FIG. 1), serves as a mechanical stop. The second material component forms an outer layer 2 according to FIG. 1.
  • The entire sequence is represented here in a highly diagrammatic manner and is, in practice, advantageously incorporated into a reversing mold with typically two [0025] cavities 20 and two cores 14.1 and 14.2. The two cores 14.1 and 14.2 are simultaneously used. As a result of the tube shoulder design according to the invention and the resulting unforced release of the first material component in a partly plastic state, compared with conventional tube shoulders, it is possible to achieve a massive reduction of cycle times and material consumption. Also, the barrier layer can be made very thin, because the core 14 acts as a shaping support, thereby saving material costs.
  • At the end of a manufacturing cycle the [0026] release element 14 additionally serves as an ejection aid for the finished tube shoulder 1.
  • To achieve a better sealing of the [0027] cavities 22 and 23, the faces of the release elements 14.1, 14.2 and the cavities 22, 23, which are in functional combination with one another, are advantageously conically constructed.
  • Optionally, the [0028] core 14 and mold 1 may be cooled to further control and speed the manufacturing process. Advantageously gas or liquid cooling systems are used.
  • For aesthetic reasons it is possible to use differently colored or transparent plastics, in order to achieve special optical effects. This can, for example, be advantageous if the [0029] barrier layer 3 is so positioned in the vicinity of an outlet port 6 (cf. FIG. 1) that it is visible from the outside for the user. The outlet port 6 can also have a non-circular cross-section, so that a pattern can be impressed on the filled material passing out.

Claims (5)

What is claimed is:
1. A mold (10) for manufacturing a multi-layer tube shoulder, wherein said mold defines a first cavity and a second cavity, and said multi-layer tube shoulder is formed by the steps of:
injecting a first material component into a first cavity (22);
using a support (12) to remove said first material component from said first cavity in a partially plastic state;
inserting said partially plastic first material component into a second cavity (23), said second cavity having, after receipt of said first material component, a free space extending such that at least one face (4,5) of said first material component is exposed;
injecting a second material component into said second cavity and onto said first material component, said at least one face being engaged by said second material component and serving as a mechanical stop for the first material component with respect to the second material component, so that there is a positive connection between the first and second material;
wherein said mold comprises a base body (11) and a core (12.1, 12.2), wherein at least one of the base body (11) and the core (12.1, 12.2) are closed with a media selected from the group consisting of gaseous and liquid media.
2. A tube shoulder, said tube shoulder being made according to the following steps:
said multi-layer tube shoulder is formed by the steps of:
injecting a first material component into a first cavity (22);
using a support (12) to remove said first material component from said first cavity in a partially plastic state;
inserting said partially plastic first material component into a second cavity (23), said second cavity having, after receipt of said first material component, a free space extending such that at least one face (4,5) of said first material component is exposed;
injecting a second material component into said second cavity and onto said first material component, said at least one face being engaged by said second material component and serving as a mechanical stop for the first material component with respect to the second material component, so that there is a positive connection between the first and second material;
and wherein said at least one face (4, 5) of a barrier layer (3) serves as a mechanical stop for an outer layer (2) and thereby provides a positive connection between the barrier layer (3) and the outer layer (2).
3. The tube shoulder according to claim 2, wherein said at least one face (4, 5) is annular.
4. The tube shoulder according to claim 4, wherein an outlet port (6) has a non-circular cross-section so as to impress a pattern on the filled material passing through said outlet port, said pattern corresponding to the non-circular cross-section of said outlet port.
5. The tube shoulder according to claim 4, wherein the barrier layer (3) is a first color and the outer layer is a second color, said first color being different than said second color.
US10/209,013 1999-02-18 2002-07-31 Tube shoulder and method for its manufacture Abandoned US20020185778A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/209,013 US20020185778A1 (en) 1999-02-18 2002-07-31 Tube shoulder and method for its manufacture

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP99103183.2 1999-02-18
EP99103183A EP1033318B1 (en) 1999-02-18 1999-02-18 Tube shoulder and process for its manufacture
US09/505,815 US6464921B1 (en) 1999-02-18 2000-02-17 Method for manufacturing a tube shoulder
US10/209,013 US20020185778A1 (en) 1999-02-18 2002-07-31 Tube shoulder and method for its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/505,815 Division US6464921B1 (en) 1999-02-18 2000-02-17 Method for manufacturing a tube shoulder

Publications (1)

Publication Number Publication Date
US20020185778A1 true US20020185778A1 (en) 2002-12-12

Family

ID=8237579

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/505,815 Expired - Fee Related US6464921B1 (en) 1999-02-18 2000-02-17 Method for manufacturing a tube shoulder
US10/209,013 Abandoned US20020185778A1 (en) 1999-02-18 2002-07-31 Tube shoulder and method for its manufacture

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/505,815 Expired - Fee Related US6464921B1 (en) 1999-02-18 2000-02-17 Method for manufacturing a tube shoulder

Country Status (9)

Country Link
US (2) US6464921B1 (en)
EP (1) EP1033318B1 (en)
AT (1) ATE224326T1 (en)
CA (1) CA2299214A1 (en)
DE (1) DE59902742D1 (en)
DK (1) DK1033318T3 (en)
ES (1) ES2186262T3 (en)
HK (1) HK1032573A1 (en)
PT (1) PT1033318E (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096518A2 (en) * 2003-04-30 2004-11-11 A. Raymond & Cie Method for the production of connection systems, and connection systems produced according to said method
US20070284784A1 (en) * 2006-06-13 2007-12-13 Electroform Company, Inc. Method and apparatus for molding and assembling plural-part plastic assemblies
US8394342B2 (en) 2008-07-21 2013-03-12 Becton, Dickinson And Company Density phase separation device
US8747781B2 (en) 2008-07-21 2014-06-10 Becton, Dickinson And Company Density phase separation device
US8794452B2 (en) 2009-05-15 2014-08-05 Becton, Dickinson And Company Density phase separation device
US9333445B2 (en) 2008-07-21 2016-05-10 Becton, Dickinson And Company Density phase separation device
US20170001345A1 (en) * 2015-06-30 2017-01-05 Braun Gmbh Process for making a multi-component plastic housing
US9694359B2 (en) 2014-11-13 2017-07-04 Becton, Dickinson And Company Mechanical separator for a biological fluid
US10226315B2 (en) 2015-06-30 2019-03-12 Braun Gmbh Multi-component plastic housing
US10583625B2 (en) 2015-06-30 2020-03-10 Braun Gmbh Plurality of mass-produced multi-component plastic housings

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170987B2 (en) * 2003-06-12 2008-10-22 東洋ゴム工業株式会社 Method and apparatus for manufacturing a two-layer structure bush
DE10344179A1 (en) * 2003-09-24 2005-04-21 Plast Competence Ct Ag Zofinge Method for producing a container with reclosure
EP2500157A1 (en) 2011-03-18 2012-09-19 Albéa Services Pre-formed tube end piece
CH705141A2 (en) * 2011-06-30 2012-12-31 Foboha Gmbh Formenbau Device and method for the production of injection molded parts with different components.
CH706993A1 (en) 2012-09-19 2014-03-31 Alpla Werke Injection molding apparatus and method for producing a tube head, and tube head.
JP6468748B2 (en) * 2014-07-28 2019-02-13 オリンパス株式会社 Composite optical element manufacturing apparatus and composite optical element manufacturing method
WO2019088934A1 (en) * 2017-11-03 2019-05-09 Kimpai Lamitube Co., Ltd. In-mold assembly method of tubular shoulder for tube container

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565293A (en) * 1968-03-20 1971-02-23 American Can Co Collapsible tube
US3700513A (en) * 1969-09-18 1972-10-24 Spiess C F & Sohn Method of making tube
US3914081A (en) * 1969-12-29 1975-10-21 Katashi Aoki Apparatus for injection molding two-colored products
US4185757A (en) * 1977-07-08 1980-01-29 Schultz Robert S Collapsible dispensing tube having an anchored barrier member
US4854484A (en) * 1987-01-28 1989-08-08 Chesebrough-Pond's Inc. Viscous product dispenser
US5656346A (en) * 1991-01-21 1997-08-12 Kmk Lizence Ltd. Packaging tube
US5702033A (en) * 1995-06-07 1997-12-30 Continental Plastic Containers, Inc. Adjoined dual-tube dispenser
US5836484A (en) * 1996-10-03 1998-11-17 Gerber; Bernard R. Contamination-safe multiple-dose dispensing cartridge for flowable materials
US5941420A (en) * 1997-08-06 1999-08-24 Colgate-Palmolive Company Multichamber container dispensing orifices
US6127011A (en) * 1994-04-15 2000-10-03 Owens-Brockway Plastics Products Inc. Flexible tube and method of making
US6322738B1 (en) * 1997-07-24 2001-11-27 Husky Injection Molding Systems Ltd. Method of injection over-molding articles
US6428737B1 (en) * 1995-07-07 2002-08-06 Continental Pet Technologies, Inc. Sleeve molding

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3186601A (en) * 1964-07-07 1965-06-01 American Can Co Leakproof dispensing tube
US3260411A (en) * 1964-07-13 1966-07-12 American Can Co Collapsible container structure
US3465917A (en) * 1966-06-29 1969-09-09 Taisei Kako Co Method for the production of plastic tubes
US3988413A (en) * 1975-02-24 1976-10-26 American Can Company Method of molding a headpiece on a tubular body
US4492548A (en) * 1980-02-15 1985-01-08 Rjr Archer, Inc. Machinery for molding headpiece for collapsible tube including a chilled wiper
US4275864A (en) * 1980-06-12 1981-06-30 Richards Les W Method and system for cooling a mold
EP0130239A1 (en) 1983-06-28 1985-01-09 Automation Industrielle SA Pliable container preform and method of producing the same
US5030406A (en) * 1989-08-14 1991-07-09 Sorensen Jens Ole Sequentially injected multi-component shuttle-stack-molding

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565293A (en) * 1968-03-20 1971-02-23 American Can Co Collapsible tube
US3700513A (en) * 1969-09-18 1972-10-24 Spiess C F & Sohn Method of making tube
US3914081A (en) * 1969-12-29 1975-10-21 Katashi Aoki Apparatus for injection molding two-colored products
US4185757A (en) * 1977-07-08 1980-01-29 Schultz Robert S Collapsible dispensing tube having an anchored barrier member
US4854484A (en) * 1987-01-28 1989-08-08 Chesebrough-Pond's Inc. Viscous product dispenser
US5656346A (en) * 1991-01-21 1997-08-12 Kmk Lizence Ltd. Packaging tube
US6127011A (en) * 1994-04-15 2000-10-03 Owens-Brockway Plastics Products Inc. Flexible tube and method of making
US5702033A (en) * 1995-06-07 1997-12-30 Continental Plastic Containers, Inc. Adjoined dual-tube dispenser
US6428737B1 (en) * 1995-07-07 2002-08-06 Continental Pet Technologies, Inc. Sleeve molding
US5836484A (en) * 1996-10-03 1998-11-17 Gerber; Bernard R. Contamination-safe multiple-dose dispensing cartridge for flowable materials
US6322738B1 (en) * 1997-07-24 2001-11-27 Husky Injection Molding Systems Ltd. Method of injection over-molding articles
US5941420A (en) * 1997-08-06 1999-08-24 Colgate-Palmolive Company Multichamber container dispensing orifices

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096518A2 (en) * 2003-04-30 2004-11-11 A. Raymond & Cie Method for the production of connection systems, and connection systems produced according to said method
WO2004096518A3 (en) * 2003-04-30 2005-01-20 Raymond A & Cie Method for the production of connection systems, and connection systems produced according to said method
US20060285918A1 (en) * 2003-04-30 2006-12-21 Jean-Jacques Legat Method for the production of connection systems, and connection systems produced according to said method
EP1769896A1 (en) * 2003-04-30 2007-04-04 A. Raymond Et Cie Connection system
US20070284784A1 (en) * 2006-06-13 2007-12-13 Electroform Company, Inc. Method and apparatus for molding and assembling plural-part plastic assemblies
US7951322B2 (en) 2006-06-13 2011-05-31 Electroform Company Method and apparatus for molding and assembling plural-part plastic assemblies
US20110206796A1 (en) * 2006-06-13 2011-08-25 Electroform Company, Inc. Method and Apparatus for Molding and Assembling Plural-Part Plastic Assemblies
US8113820B2 (en) 2006-06-13 2012-02-14 Electroform Company, Inc. Method and apparatus for molding and assembling plural-part plastic assemblies
US10350591B2 (en) 2008-07-21 2019-07-16 Becton, Dickinson And Company Density phase separation device
US8394342B2 (en) 2008-07-21 2013-03-12 Becton, Dickinson And Company Density phase separation device
US8747781B2 (en) 2008-07-21 2014-06-10 Becton, Dickinson And Company Density phase separation device
US9933344B2 (en) 2008-07-21 2018-04-03 Becton, Dickinson And Company Density phase separation device
US9714890B2 (en) 2008-07-21 2017-07-25 Becton, Dickinson And Company Density phase separation device
US9333445B2 (en) 2008-07-21 2016-05-10 Becton, Dickinson And Company Density phase separation device
US9339741B2 (en) 2008-07-21 2016-05-17 Becton, Dickinson And Company Density phase separation device
US9700886B2 (en) 2008-07-21 2017-07-11 Becton, Dickinson And Company Density phase separation device
US9452427B2 (en) 2008-07-21 2016-09-27 Becton, Dickinson And Company Density phase separation device
US10413898B2 (en) 2009-05-15 2019-09-17 Becton, Dickinson And Company Density phase separation device
US11786895B2 (en) 2009-05-15 2023-10-17 Becton, Dickinson And Company Density phase separation device
US11351535B2 (en) 2009-05-15 2022-06-07 Becton, Dickinson And Company Density phase separation device
US9079123B2 (en) 2009-05-15 2015-07-14 Becton, Dickinson And Company Density phase separation device
US9731290B2 (en) 2009-05-15 2017-08-15 Becton, Dickinson And Company Density phase separation device
US9802189B2 (en) 2009-05-15 2017-10-31 Becton, Dickinson And Company Density phase separation device
US9919309B2 (en) 2009-05-15 2018-03-20 Becton, Dickinson And Company Density phase separation device
US9919307B2 (en) 2009-05-15 2018-03-20 Becton, Dickinson And Company Density phase separation device
US9919308B2 (en) 2009-05-15 2018-03-20 Becton, Dickinson And Company Density phase separation device
US10343157B2 (en) 2009-05-15 2019-07-09 Becton, Dickinson And Company Density phase separation device
US9364828B2 (en) 2009-05-15 2016-06-14 Becton, Dickinson And Company Density phase separation device
US10807088B2 (en) 2009-05-15 2020-10-20 Becton, Dickinson And Company Density phase separation device
US8998000B2 (en) 2009-05-15 2015-04-07 Becton, Dickinson And Company Density phase separation device
US8794452B2 (en) 2009-05-15 2014-08-05 Becton, Dickinson And Company Density phase separation device
US10376879B2 (en) 2009-05-15 2019-08-13 Becton, Dickinson And Company Density phase separation device
US10456782B2 (en) 2009-05-15 2019-10-29 Becton, Dickinson And Company Density phase separation device
US9694359B2 (en) 2014-11-13 2017-07-04 Becton, Dickinson And Company Mechanical separator for a biological fluid
US20170001345A1 (en) * 2015-06-30 2017-01-05 Braun Gmbh Process for making a multi-component plastic housing
US10583625B2 (en) 2015-06-30 2020-03-10 Braun Gmbh Plurality of mass-produced multi-component plastic housings
US11254084B2 (en) 2015-06-30 2022-02-22 Braun Gmbh Plurality of mass-produced multi-component plastic housings
US10059046B2 (en) * 2015-06-30 2018-08-28 Braun Gmbh Process for making a multi-component plastic housing
US11534282B2 (en) 2015-06-30 2022-12-27 Braun Gmbh Multi-component plastic housing
US10226315B2 (en) 2015-06-30 2019-03-12 Braun Gmbh Multi-component plastic housing

Also Published As

Publication number Publication date
PT1033318E (en) 2003-02-28
CA2299214A1 (en) 2000-08-18
HK1032573A1 (en) 2001-07-27
US6464921B1 (en) 2002-10-15
ATE224326T1 (en) 2002-10-15
DE59902742D1 (en) 2002-10-24
EP1033318B1 (en) 2002-09-18
ES2186262T3 (en) 2003-05-01
DK1033318T3 (en) 2003-01-06
EP1033318A1 (en) 2000-09-06

Similar Documents

Publication Publication Date Title
US20020185778A1 (en) Tube shoulder and method for its manufacture
US4990077A (en) Injection mold
EP0514761B2 (en) Injection molding method, apparatus and molded article
Turng Special and emerging injection molding processes
US5045268A (en) Cross-lamination injection molding
CA2330554C (en) Insert-bonded cylindrical articles, and a molding method and a molding apparatus therefor technical field to which the invention pertains
EP0556323A1 (en) Method for the use of gas assistance in the molding of plastic articles to enhance surface quality.
US20090026221A1 (en) Tube made of flexible material, with pre-injected skirt and semihead, including in-mould labelling, and its manufacturing procedure
US5192481A (en) Method and apparatus for molding article in plurality of colors
US6824726B2 (en) Cold runner system for sandwich molding
JPS6176333A (en) Jointing method among molded articles by injection molding
JP3515563B2 (en) Injection molding method of multilayer hollow body made of synthetic resin
JP2688400B2 (en) Hollow body molding method and hollow body
JP2908839B2 (en) Injection molding method for composite products
USRE37506E1 (en) Method for molding article in plurality of colors
JP2976264B2 (en) Injection molding method of three-layer structure molded article and its mold
US7892612B1 (en) Insert-bonded cylindrical articles, and a molding method and a molding apparatus therefor technical field to which the invention pertains
CN114103005B (en) Three-time molding injection mold and molding method for thick-wall optical element
JP2003513820A (en) Multilayer preform and method of manufacturing the same
JPH09104044A (en) Injection molding of molded product having recessed part on its surface
JPH0763983B2 (en) Injection molding method and apparatus for molded article having concave portion on surface
JPH03284915A (en) Manufacture of hollow resin molded item
JPH0513715U (en) Valve body for synthetic resin check valve
JP2511390B2 (en) Tube container molding method
JP2698001B2 (en) In-mold coating method and injection mold for in-mold coating

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION