New! View global litigation for patent families

US20020177863A1 - Surface treated ligating clip - Google Patents

Surface treated ligating clip Download PDF

Info

Publication number
US20020177863A1
US20020177863A1 US09864585 US86458501A US2002177863A1 US 20020177863 A1 US20020177863 A1 US 20020177863A1 US 09864585 US09864585 US 09864585 US 86458501 A US86458501 A US 86458501A US 2002177863 A1 US2002177863 A1 US 2002177863A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
clip
ligating
silver
antimicrobial
antibiotic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09864585
Inventor
Stanley Mandel
James Whitney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weck Closure Systems Inc
Original Assignee
Weck Closure Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/122Clamps or clips, e.g. for the umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/005Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters containing a biologically active substance, e.g. a medicament or a biocide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • A61L2300/406Antibiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Abstract

The invention provides ligating clips for surgical use which have antimicrobial or antibiotic properties. More particularly, the ligating clips have antimicrobial and/or antibiotic agents either in a coating or provided within the material from which the clip is manufactured. The invention also provides a method for inhibiting the growth of or killing microorganisms by coating a ligating clip or ligating clip applying instrument with an antimicrobial or antibiotic coating composition or incorporating an antimicrobial or antibiotic coating into the material from which the ligating clip or ligating clip applying instrument was made.

Description

    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to surgical ligating clips and clip appliers and more particularly to the use of antibiotic and/or antimicrobial coatings or additives for such devices.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Surgical clips like hemostatic clips and aneurysm clips are often used in surgery to ligate vessels or tissue bundles to stop the flow of blood. The clips may be left in place permanently or may be absorbable. Within a period of time the ligated end of the vessel will close, that is, hemostasis or occlusion will occur.
  • [0003]
    Metal clips having generally U or chevron shapes have been used for years. The most common metals are tantalum, titanium, stainless steel or alloys thereof, all of which are deformed into a closed position about the vessel and because of the nature of the metal stay deformed and resist any force by the vessel to expand or open up.
  • [0004]
    Metal clips cause a certain amount of interference with high technology diagnostic modalities, including Computer Tomography (CATSCAN) and Magnetic Resonance Imaging (MRI). In particular, the new and emerging MRI techniques place stringent demands on the non-interference properties of clips. To aggravate the situation even more, recent developments in in vivo Magnetic Resonance Spectroscopy (MRS) create even greater demands on minimizing magnetic field interferences. Some existing metal clips may preclude the use of MRS data taken in the proximity of the metal clips.
  • [0005]
    To overcome the above problems, in recent years plastic clips have been introduced. The plastic clips now in the market may be biodegradable and absorbable polymeric or other material or nonabsorbent.
  • [0006]
    Some of the currently available clips may have the disadvantage of providing opportunities for infection in the patient. Infectious organisms may enter the body from a contaminated or infected surgical field or may be already present in the body. Certain ligating clips may allow infectious organisms to grow thereon or may harbor such organisms on the clip or in microcracks formed in the surface of the clip. Therefore, there is a need in the art for a surgical ligating clip which is resistant to harboring infectious organisms or which can kill such organisms existing in the body or in the area of the clip, eliminating the opportunity for infection in the body. Moreover, there is a need in the art for both metal and polymeric ligating clips which are resistant to or which eliminate infectious organisms. This invention provides such a ligating clip which has antimicrobial or antibiotic properties.
  • SUMMARY OF THE INVENTION
  • [0007]
    The present invention provides a ligating clip for use in a patient's body comprising a metal ligating clip having one or more surfaces coated with an antimicrobial or antibiotic coating composition. In an alternative embodiment, the antimicrobial or antibiotic composition is compounded into the metal. In a further embodiment, the invention provides a polymeric or absorbable ligating clip for use in a body comprising a ligating clip formed from a polymer or absorbable material having one or more surfaces coated with an antimicrobial or antibiotic composition. In a further embodiment, the polymeric or absorbable ligating clip is made from a polymer or absorbable material which comprises a polymer or absorbable material and an antimicrobial or antibiotic composition. The patient may be a human or any other animal patient.
  • [0008]
    In a further embodiment of the invention, there is provided a method for inhibiting the growth of or killing microorganisms comprising coating a ligating clip with an antimicrobial or antibiotic coating composition.
  • [0009]
    In a still further embodiment of the invention, there is provided a method for inhibiting the growth of or killing microorganisms comprising coating a ligating clip applying instrument with an antimicrobial or antibiotic coating composition.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0010]
    [0010]FIG. 1 is a drawing of an example of a metal chevron shaped ligating clip which can be provided according to the present invention.
  • [0011]
    [0011]FIG. 2 is a drawing of an example of a ligating clip which can be provided according to the present invention.
  • [0012]
    [0012]FIG. 3 is a drawing of an example of a ligating clip applying instrument which can be provided according to the present invention.
  • [0013]
    [0013]FIG. 4 is a drawing of an endoscopic ligating clip applier which can be provided according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0014]
    The ligating clip of the present invention may be any ligating clip which can be manufactured to include an antimicrobial or antibiotic coating or component as taught herein. Ligating clips which are useful in the present invention include those disclosed in U.S. Pat. Nos. 4,834,096, 5,062,846 and 5,100,416, each of which is incorporated herein by reference in its entirety. For example, in one embodiment shown in FIG. 1, there may be provided a chevron shaped ligating clip which has an antimicrobial or antibiotic coating thereon or antimicrobial or antibiotic material incorporated therein. In another aspect of the invention, the ligating clip is a polymeric clip including an antimicrobial or antibiotic material having first and second curved leg members joined at their proximal ends by a reduced thickness hinge portion and movable from an open position to a closed position for clamping a vessel between curved opposing inner surfaces which are substantially parallel when the clip is closed. The first leg member has a concave inner surface and a hook portion at its distal end curved toward the second leg member. The hook portion is disposed to engage the outer surface of the end of the second leg member when the clip is in the closed position. The outer surface of the second leg member opposite the inner convex surface is concave in shape. This configuration provides a more secure latching mechanism, since any forces by the clamped vessel tending to open the clip will force the second leg to lengthen and the first leg member to shorten moving the distal end of the second leg member into further engagement with the hook portion. Because the thickness of the second leg member is smaller than it would have been without the concave outer surface, the second leg member will deflect upon clamping or in response to the forces exerted on it by the clamped vessel and because the thickness of each leg between its inner and opposite outer surfaces between the hinge and distal end is substantially equal to the thickness of the other leg, the total deflection necessary to accommodate closing and clamping of the vessel is distributed between the two legs helping to avoid breakage or failure of either leg.
  • [0015]
    In another aspect of the invention, the ligating clip having one or more surfaces coated with an antimicrobial or antibiotic coating composition or having such material incorporated therein is a surgical ligating clip comprising first and second curved leg members joined at their proximal ends by a resilient hinge means, each leg member having a vessel contacting inner surface and an opposite outer surface, the vessel clamping inner surface being in opposition to the vessel clamping inner surface of the other leg member, the first leg member terminating at its distal end in a deflectable hook member curved toward the second leg member, the second leg member terminating at its distal end is a complimentary locking portion to the hook member whereby when the first and second leg members are moved from an open position to a closed position about the hinge means, the hook member deflects about the distal end of the second leg member to lock the clip in a closed position, the inner surface of the first leg member having a concave radius of curvature between the hinge means and the hook member, the inner surface of the second leg member having a convex radius of curvature between the hinge means and its distal end and the outer surface of the second leg member having a concave radius of curvature between the hinge means and its distal end.
  • [0016]
    In another aspect of the invention shown in FIG. 2, the ligating clip is of a polymeric material which has one or more surfaces coated with an antimicrobial or antibiotic coating composition or has such material incorporated therein and comprises first and second curved leg members joined at their proximal ends by a hinge means. The first and second curved leg members are disposed to be latched together in the closed position at their distal ends. The leg members each include complementary curved, opposing inner surfaces, the inner surface of the first leg being concave in shape. The first leg member further includes a hook portion joined at its distal end and curved toward the second leg member. The hook portion includes a continuously curved outer surface extending from the outer surface of the distal end of the first leg and a distal tip portion forming a sharp pointed distal tip extending rearwardly toward the proximal end of the first leg. The hook portion may also include a sharp pointed member attached to the outer surface of the distal tip portion. The hook portion is disposed to engage the outer surface of the distal end of the second leg member when the clip is in the closed position. The distal end of the second leg member includes a groove through which the sharp pointed distal tip presses when the first and second leg members are moved from the open position to a closed position. Where the clip includes a sharp pointed member the sharp pointed member passes through the groove ahead of the sharp pointed distal tip. The sharp pointed member engages, stretches and penetrates connective tissue connected to the vessel to be clamped. In the stretched position, the connective tissue is more easily penetrated and cut by the sharp distal tip as the clip is closed.
  • [0017]
    In another aspect of the invention, the ligating clip is a polymeric surgical clip having an antimicrobial or antibiotic coating or having such material incorporated therein wherein the clip comprises first and second leg members joined at their proximal ends by a resilient hinge means, each leg member having a vessel clamping or contacting inner surface and an opposite outer surface, the vessel clamping or contacting inner surface being in opposition to the vessel clamping or contacting inner surface of the other leg member, the first leg member terminating at its distal end in a deflectable hook member curved toward the second leg member, the second leg member terminating at its distal end in a locking portion complementary to the hook member whereby when the first and second leg members are moved from an open position to a closed position about the hinge means, the hook member deflects about the distal end of the second leg member to lock the clip in a closed position, the hook member having a continuously curved outer surface extending distally from the outer surface of the first leg member, side surfaces and an inner surface; the hook member further comprising a distal tip portion terminating in a sharp pointed distal tip extending rearwardly toward the proximal end of the first leg, the distal end of the second leg member including a groove through which the distal tip passes when the first and second leg members are moved from an open position to a closed position, whereby connective tissue adjacent the vessel to be clamped is cut or stretched, which aids in locking the first and second leg members when the legs are closed.
  • [0018]
    Ligating clip applying instruments are known in the art, such as described in U.S. Pat. No. 5,100,416. In accordance with one aspect of the present invention, such instruments may be coated with antimicrobial and/or antibiotic materials in order to provide resistance to the growth of organisms or to kill such organisms during use of these instruments near or in a patient's body, in storage or in a sterilization area. The patient may be a human patient or any other animal patient in need of the use of a ligating clip. A ligating clip applying instrument for applying a ligating clip generally has a pair of handles pivoted about a hinge point and extends beyond the hinge point to form a pair of clip closing jaws equipped with means for engaging bosses located on the sides of the first and second leg members. Such ligating clip applying instrument is illustrated in FIG. 3.
  • [0019]
    In another aspect of the invention, endoscopic applier devices such as shown in FIG. 4 may be coated with antimicrobial and/or antibiotic materials in order to provide resistance to the growth of organisms or to kill such organisms during use of these instruments.
  • [0020]
    The ligating clip of the invention may be made of a metal, a polymeric material or a bioabsorbable or biodegradable material. Metal ligating clips are known in the art and may be made from various metals or metal alloys. The most common metals for the manufacture of ligating clips are tantalum, titanium or stainless steel, or alloys of these metals. The most preferred metal for the surgical clips of the present invention is titanium.
  • [0021]
    Polymeric or plastic ligating clips have also been described, such as in U.S. Pat. Nos. 5,062,846 and 4,834,096, incorporated herein by reference. The polymeric or plastic ligating clip according to the present invention may be of any material meeting the requirements of a ligating clip intended for use in a patient and which can be provided with an antimicrobial or antibiotic material coated thereon or incorporated into the polymer material itself. The ligating clip may be of thermoplastic or thermoset polymers. The ligating clip preferably will be made from one of the engineering plastics commercially available for surgical devices. Such plastics will be biocompatible and include polymers such as polyethylene terephthalate, polybutylene terephthalate, polyacetal, polytetrafluroethylene, high density polyethylene, low density polyethylene, ethylene tetrafluoroethylene and polyoxymethylene. Preferably, the plastic material will be a thermoplastic material that can be injection molded, extruded or otherwise thermally processed into shaped articles.
  • [0022]
    The ligating clip of the invention in one aspect of the invention is an absorbable or biodegradable clip, typically made from a starch-based material or biodegradable polymer. Such biodegradable polymers are known in the art, for example, homopolymers or copolymers of glycolide, lactide, caprolactone, pdioxanone and trimethylene carbonate. Antimicrobial or antibiotic material may be coated on the absorbable clip or incorporated in the material from which it is made.
  • [0023]
    As used herein, antimicrobial means any agent which is antagonistic to microbes. Antibiotic refers to any agent which inhibits the growth of other organisms, particularly microorganisms. Some agents will qualify as both an antimicrobial and an antibiotic material.
  • [0024]
    It may be desirable for the antimicrobial or antibiotic material to be effective against a broad range of infectious agents or pathogens. For example, antimicrobial or antibiotic materials effective against one or more of the following infectious agents may be useful: staphylococcus aureus, coagulase-negative staphylococcus, streptococcus, β-hemolytic, streptococcus pneumoniae, enterococcus, corynebacterim jeikeium, listeria monocytogenes, moraxella catarrhalis, neisseria gonorrhoeae, neisseria meningitidis, citrobacter, enterbacter, escherichia coli, klebsiella pneumoniae, proteus mirabilis, salmonella, serratia, shigella, acinetobacter, aeromonas hydrophila, hemophilus influenzae, legionella pneumophila, pasteurella multocida, pseudomonas aeruginosa, stenotrophomonas maltophilia, clostridium difficile, clostridium, peptostreptoccus, bacteroides fagilis group, prevotella, mycobacterium avium-intracellulare, mycobacterium tuberculosis, chlamydia, mycoplasma pneumoniae, among others.
  • [0025]
    Antimicrobial or antibiotics which have been found to be effective against one or more of these infectious agents include ampicillin, oxacillin, penicillin G, piperacillin, ticarcillin-carbenicillin, ampicillin/sulbactam, aztreonam, imipenem, meropenem, piperacillin/tazobactam, ticarcillin/clavulanate, cefazolin-cephalothin, cephalexin, cefaclor, cefamandole-cefonicid, cefotetan, cefoxitin-cefinetazole, cefuroxime axetil, cefuroxime sodium, cefdinir, cefixime, cefoperazone, cefotaxime, cefpodoxime, ceftazidime, ceftibuten, ceftizoxime, ceftriaxone, cefepime, ciprolfloxacin, gatifloxacin, levofloxacin, moxifloxacin, amikacin, gentamicin, netilmicin, spectinomycin, streptomycin, tobramycin, azithromycin, clarithromycin, erythromycin, quinupristin/dalfopristin, linezolid, chloramphenicol, clindamycin, fosfomycin, metronidazole, nitrofurantoin, rifampin, sulfonamides, tetracyclines, vancomycin, among others. These agents fall generally into the categories of penicillins, cephalosporins, quinolones, aminoglycosides, macrolides, streptogramin, oxazolidinone and other antimicrobials.
  • [0026]
    Antimicrobial materials useful in this invention include any antimicrobial materials which can be coated onto or included within the material from which the ligating clip or applier is made. Particularly useful antimicrobial materials include metals known to have antimicrobial properties such as silver, gold, platinum, palladium, iridium, tin, copper, antimony, bismuth, selenium and zinc. Compounds of these metals, alloys containing one or more of these metals, or salts of these metals may be coated onto the surface of the ligating clip or added to the material from which the ligating clip is made during the manufacture of the clip or compounded into the base material. A preferred antimicrobial material will contain silver ions and may be obtained through the use of silver salts, such as silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, or silver sulfadiazine, among others. Other preferred antimicrobial materials are selenium and copper.
  • [0027]
    Antibiotic materials to be used with the ligating clips of this invention may include any antibiotic capable of being coated onto a ligating clip or applier or incorporated within the material from which the clip is made. Such antibiotics include oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin, among others. Antibiotics discovered hereafter may also be used where such antibiotic is capable of incorporation into a coating for or material for manufacture of a ligating clip or applier. In a preferred embodiment, the antibiotic material will be cephalosporin or aminoglycosides.
  • [0028]
    Antimicrobial and/or antibiotic materials may be chosen based upon the particular application anticipated for the ligating clip. For example, it may be desirable to use a timed release or leachable content material for a particular use. The material comprising the clip may also affect the choice of antimicrobial and/or antibiotic material. For example, metal ligating clips which are to be provided with antimicrobial or antibiotic coatings, preferably, will require antimicrobial and/or antibiotic materials which can be coated onto the metal with satisfactory adhesion so the resistance to harboring infectious organisms, or ability to kill such organisms is present throughout the use of the ligating clip. Alternatively, where the antimicrobial and/or antibiotic material is to be compounded into the metal prior to its formation into a ligating clip, the antimicrobial and/or antibiotic material should be selected so that the material can be readily incorporated into the metal of the clip. Preferably where a metal ligating clip is desired, the metal will be titanium and the antimicrobial will be silver ion.
  • [0029]
    Likewise, where the ligating clip is of a polymeric material, the antimicrobial and/or antibiotic materials may be selected such that they can be used as or in a coating material or be incorporated into the polymeric material itself. For example, materials such as silver ions, selenium, silver zeolite may be used, or any commercially available additives, e.g., such as Heathshield,® among others.
  • [0030]
    The antimicrobial and/or antibiotic materials may be coated onto the surface of a ligating clip or ligating clip applying instrument by any method known to those of skill in the art. The coating method will be determined by the material of the clip and the antimicrobial and/or antibiotic material utilized. Such methods include dipping, spraying, rolling, plating and embedding the coating into the surface by any means, among others. For example, polymeric clips and appliers may be coated by dip or spray coating polymeric resin and crosslinker with the antimicrobial or antibiotic material as substituent or dissolved within the polymer. Curing typically is achieved chemically, photochemically or thermally. Other common methods include dip or spray coating water insoluble resin containing antimicrobial components followed by drying or grafting antimicrobials directly onto the substrate chemically or photochemically.
  • [0031]
    Examples of ways to form the clips and appliers of the invention include blending an antimicrobial agent with a polymer and then forming the polymer into a ligating clip or clip applier. Alternatively, the antimicrobial may be in a solution with the polymer to form a coating. In another aspect of the invention, the antimicrobial may be attached to a polymeric ligating clip or applier by a chemical modification of the surface such as surface grafting by hydrolyzable linkage of the antimicrobial to the surface or by photolinking the antimicrobial to the surface. Surface polymerization, derivatization or absorption may also be used. Other examples of obtaining a surface bound antimicrobial include any existing means, such as ion implantation, chemical modification of the surface, photochemical or chemical grafting or formation of a crosslinked surface immobilized network. Silver ions, where used, may be deposited on the surface of the clip or applier by vacuum deposition, ion sputtering or surface deposition, among others. The surface of the clip may be pretreated according to known methods such as plasma treatment prior to exposure to the coating material. Where solvents are present in the antimicrobial or antibiotic coating composition such solvents must be biocompatible if residue remains after the coating is applied.
  • [0032]
    Antimicrobial and/or antibiotic materials may be incorporated into the metal or polymeric material of the clip itself. In one embodiment, the antimicrobial and/or antibiotic material is added to the polymer material prior to molding or extruding the final ligating clip. Where it is preferred to incorporate the antimicrobial and/or antibiotic material into the polymer, such inclusion in the polymer may take place during polymerization. In an alternate embodiment, the antimicrobial and/or antibiotic material is compounded into the metal where a metal clip is desired.
  • [0033]
    One aspect of the invention is directed to a method for inhibiting the growth of microorganisms or killing the microorganisms on a ligating clip comprising coating the ligating clip with an antimicrobial or antibiotic coating composition. Alternatively, the invention provides for inclusion of antimicrobial or antibiotic formulations in the materials used to construct the ligating clip. Likewise, the invention is directed to a method for inhibiting the growth of microorganisms or killing the microorganisms on a ligating clip applying instrument comprising coating the ligating clip applying instrument with antimicrobial or antibiotic substances or including such components within the material used to form the instrument.
  • [0034]
    By use of the method of the invention, the ligating clips and ligating clip applying instruments so treated resist harboring or kill microorganisms in or around the area of these medical tools. The coatings or antimicrobial and/or antibiotic materials included within the ligating clips and clip applying instruments have been proven to terminate microorganisms in a variety of ways, depending on the type of coating used or the ability of the antimicrobial and/or antibiotic materials to be included within the ligating clip or clip applying instrument. Thus, the present invention may provide the desired antimicrobial or antibiotic effect by a variety of mechanisms, including preventing adherence of an organism to a surface of the clip or applier, providing slow release of an antimicrobial into the surrounding area or immobilizing antimicrobials on the surface of the clip or applier for long term effects. For example, where the coating material contains silver ions, these ions may leach into the area surrounding the clip with the coating and kill microbial organisms present in that area and/or kill microbes that contact the clip surface. This provides a quick but short lived effect. Alternatively, the silver ions may be attached to the surface of the ligating clip and organisms which come in contact with the surface are killed. This method allows a longer lasting effect and keeps organisms off the surface of the ligating clip. Preferably, these methods are combined to kill microbes in the area around the clip or clip applier and on the instrument itself.
  • [0035]
    In another embodiment, where selenium is used, the selenium is bonded to the surface of the ligating clip, providing a long lasting antimicrobial coating. In yet another embodiment, antibiotic applied to the surface of a ligating clip may leach from the surface to affect any microbial organisms in proximity to the surface.
  • [0036]
    While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made without departing from the spirit and scope thereof.

Claims (27)

    We claim:
  1. 1. A polymeric ligating clip for use in a body having one or more surfaces coated with an antimicrobial or antibiotic coating composition.
  2. 2. The ligating clip according to claim 1 wherein the antimicrobial coating composition comprises silver ions.
  3. 3. The ligating clip according to claim 1 wherein the antimicrobial coating composition comprises at least one of the compounds selected from the group consisting of selenium, copper, silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  4. 4. The ligating clip of claim 1 wherein the antibiotic coating composition is selected from the group consisting of oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin.
  5. 5. A metal ligating clip for use in a body having one or more surfaces coated with an antimicrobial or antibiotic coating composition.
  6. 6. The ligating clip according to claim 5 wherein the antimicrobial coating composition comprises silver ions.
  7. 7. The ligating clip according to claim 5 wherein the antimicrobial coating composition comprises at least one of the compounds selected from the group consisting of selenium, copper, silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  8. 8. The ligating clip of claim 5 wherein the antibiotic coating composition is selected from the group consisting of oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin.
  9. 9. A ligating clip for use in a body comprising a ligating clip formed from a polymer material wherein the polymer material includes an antimicrobial or antibiotic composition.
  10. 10. The ligating clip according to claim 9 wherein the antimicrobial composition comprises at least one of the compounds selected from the group consisting of selenium, copper, silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  11. 11. The ligating clip of claim 9 wherein the antibiotic composition is selected from the group consisting of oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin.
  12. 12. A method for inhibiting the growth of or killing microorganisms comprising coating a ligating clip or a ligating clip applying instrument with an antimicrobial or antibiotic coating composition.
  13. 13. The method according to claim 12 wherein the antimicrobial coating composition comprises at least one of the compounds selected from the group consisting of selenium, copper, silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  14. 14. The method of claim 12 wherein the antibiotic coating composition is selected from the group consisting of oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin.
  15. 15. The method of claim 12 wherein the ligating clip is formed from a polymer.
  16. 16. The method of claim 12 wherein the ligating clip or ligating clip applying instrument is formed from a metal or a metal alloy.
  17. 17. The method of claim 12 wherein the ligating clip is formed from an absorbable material.
  18. 18. The method of claim 12 wherein the antimicrobial or antibiotic coating composition kills microorganisms by leaching into an area surrounding the ligating clip or ligating clip applying instrument, by contacting the microorganisms on a surface of the ligating clip or ligating clip applying instrument or by a combination thereof.
  19. 19. A method for inhibiting the growth of or killing microorganisms comprising incorporating an antimicrobial or antibiotic composition into the composition of a ligating clip or ligating clip applying instrument.
  20. 20. The method according to claim 19 wherein the antimicrobial composition comprises at least one of the compounds selected from the group consisting of selenium, copper, silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  21. 21. The method of claim 19 wherein the antibiotic composition is selected from the group consisting of oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin.
  22. 22. The method of claim 19 wherein the ligating clip is formed from a polymer or an absorbable material.
  23. 23. The method of claim 22 wherein the polymer is polyethylene terephthalate, polybutylene terephthalate, polyacetal, polytetrafluoroethylene, high density polyethylene, low density polyethylene, ethylene tetrafluoroethylene or polyoxymethylene.
  24. 24. A ligating clip for use in a body comprising a ligating clip formed from a metallic material wherein the metallic material includes an antimicrobial or antibiotic composition.
  25. 25. The ligating clip according to claim 24 wherein the antimicrobial composition comprises at least one of the compounds selected from the group consisting of selenium, copper, silver acetate, silver benzoate, silver carbonate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine.
  26. 26. The ligating clip of claim 24 wherein the antibiotic composition is selected from the group consisting of oxacillin, aminoglycosides, erythromycin, ciprolfloxacin, cephalosporins, quinolones and vancomycin.
  27. 26. An absorbable ligating clip for use in a body having one or more surfaces coated with an antimicrobial or antibiotic coating composition.
US09864585 2001-05-24 2001-05-24 Surface treated ligating clip Abandoned US20020177863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09864585 US20020177863A1 (en) 2001-05-24 2001-05-24 Surface treated ligating clip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09864585 US20020177863A1 (en) 2001-05-24 2001-05-24 Surface treated ligating clip
PCT/US2002/016022 WO2002094110A1 (en) 2001-05-24 2002-05-22 Surface treated ligating clip

Publications (1)

Publication Number Publication Date
US20020177863A1 true true US20020177863A1 (en) 2002-11-28

Family

ID=25343594

Family Applications (1)

Application Number Title Priority Date Filing Date
US09864585 Abandoned US20020177863A1 (en) 2001-05-24 2001-05-24 Surface treated ligating clip

Country Status (2)

Country Link
US (1) US20020177863A1 (en)
WO (1) WO2002094110A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073241A1 (en) * 2002-10-11 2004-04-15 Spiration, Inc. Implantable tissue constriction device and method for suppressing leakage of fluid from resectioned body tissue
US20060214069A1 (en) * 2002-08-14 2006-09-28 Mark Schiebler Multi-use linkage device
US20060224170A1 (en) * 2005-03-30 2006-10-05 Michael Duff Surgical marker clip and method for cholangiography
US20060235468A1 (en) * 2005-04-14 2006-10-19 Ethicon Endo-Surgery, Inc. Surgical clip
US20060259056A1 (en) * 2003-03-25 2006-11-16 Go Watanabe Surgical holder for a blood vessel
US20070083218A1 (en) * 2005-10-12 2007-04-12 A Morris Steven Coated ligating clip
US20070149988A1 (en) * 2005-12-22 2007-06-28 Michler Robert E Exclusion of the left atrial appendage
US20070224275A1 (en) * 2005-05-24 2007-09-27 Reid Ted W Selenium-based biocidal formulations and methods of use thereof
US20100028823A1 (en) * 2005-05-24 2010-02-04 Ted Reid Anti-microbial orthodontic compositions and appliances and methods of production and use thereof
US7686820B2 (en) 2005-04-14 2010-03-30 Ethicon Endo-Surgery, Inc. Surgical clip applier ratchet mechanism
US7731724B2 (en) 2005-04-14 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical clip advancement and alignment mechanism
US7740641B2 (en) 2005-04-14 2010-06-22 Ethicon Endo-Surgery, Inc. Clip applier with migrational resistance features
US20100158966A1 (en) * 2005-05-24 2010-06-24 Ted Reid Selenium-based biocidal formulations and methods of use thereof
US20100158967A1 (en) * 2005-05-24 2010-06-24 Ted Reid Selenium-based biocidal formulations and methods of use thereof
US20100274289A1 (en) * 2009-04-24 2010-10-28 Warsaw Orthopedic, Inc. Medical implant with tie configured to deliver a therapeutic substance
US20100274295A1 (en) * 2009-04-24 2010-10-28 Warsaw Orthopedic, Inc. Medical implant configured to deliver a therapeutic substance
US20110224701A1 (en) * 2010-03-10 2011-09-15 Pavel Menn Surgical Clips For Laparoscopic Procedures
US8038686B2 (en) 2005-04-14 2011-10-18 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US8075571B2 (en) 2005-04-14 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US20120124886A1 (en) * 2010-11-18 2012-05-24 Hopkins Samuel P Antimicrobial containing fish hook and method of using and manufacturing same
US8236012B2 (en) 2005-04-14 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical clip advancement mechanism
US8262679B2 (en) 2009-10-09 2012-09-11 Ethicon Endo-Surgery, Inc. Clip advancer
US8267945B2 (en) 2009-10-09 2012-09-18 Ethicon Endo-Surgery, Inc. Clip advancer with lockout mechanism
US20120271230A1 (en) * 2011-02-23 2012-10-25 Ams Research Corporation Fibroid Treatment System and Method
DE102011053781A1 (en) * 2011-09-20 2013-03-21 Implantcast Gmbh A surgical stapling
US8523882B2 (en) 2005-04-14 2013-09-03 Ethicon Endo-Surgery, Inc. Clip advancer mechanism with alignment features
US20140018830A1 (en) * 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Surgical Clip Having Compliant Portion
US20140018832A1 (en) * 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Method For Applying A Surgical Clip Having A Compliant Portion
US8915930B2 (en) 2005-04-14 2014-12-23 Ethicon Endo-Surgery, Inc. Force limiting mechanism for medical instrument
CN104510513A (en) * 2013-09-27 2015-04-15 上海交通大学医学院附属第九人民医院 Tissue vascular clamp capable of being decomposed by body fluid
US9326776B2 (en) 2005-09-29 2016-05-03 Applied Medical Resources Corporation Manually actuated surgical clip applier
US9370400B2 (en) 2011-10-19 2016-06-21 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US9370187B2 (en) 2005-05-24 2016-06-21 Selenium, Ltd. Selenium-based biocidal formulations and methods of use thereof
US9375218B2 (en) 2006-05-03 2016-06-28 Datascope Corp. Systems and methods of tissue closure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149558B2 (en) * 2005-05-19 2015-10-06 Ethicon, Inc. Antimicrobial polymer compositions and the use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705938A (en) * 1971-02-02 1972-12-12 Hercules Protective Fabric Cor Activated polymer materials and process for making same
US5019096A (en) * 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5681575A (en) * 1992-05-19 1997-10-28 Westaim Technologies Inc. Anti-microbial coating for medical devices
US5534288A (en) * 1993-03-23 1996-07-09 United States Surgical Corporation Infection-resistant surgical devices and methods of making them

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214069A1 (en) * 2002-08-14 2006-09-28 Mark Schiebler Multi-use linkage device
US7582089B2 (en) * 2002-08-14 2009-09-01 Mark Schiebler Multi-use linkage device
US20040073241A1 (en) * 2002-10-11 2004-04-15 Spiration, Inc. Implantable tissue constriction device and method for suppressing leakage of fluid from resectioned body tissue
US20060259056A1 (en) * 2003-03-25 2006-11-16 Go Watanabe Surgical holder for a blood vessel
US20060224170A1 (en) * 2005-03-30 2006-10-05 Michael Duff Surgical marker clip and method for cholangiography
US8216257B2 (en) 2005-04-14 2012-07-10 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US9717504B2 (en) 2005-04-14 2017-08-01 Ethicon Llc Clip applier with migrational resistance features
US9782181B2 (en) 2005-04-14 2017-10-10 Ethicon Llc Surgical clip applier methods
US20060235468A1 (en) * 2005-04-14 2006-10-19 Ethicon Endo-Surgery, Inc. Surgical clip
US8915930B2 (en) 2005-04-14 2014-12-23 Ethicon Endo-Surgery, Inc. Force limiting mechanism for medical instrument
US7686820B2 (en) 2005-04-14 2010-03-30 Ethicon Endo-Surgery, Inc. Surgical clip applier ratchet mechanism
US7699860B2 (en) 2005-04-14 2010-04-20 Ethicon Endo-Surgery, Inc. Surgical clip
US8821516B2 (en) 2005-04-14 2014-09-02 Ethicon Endo-Surgery, Inc. Clip applier with migrational resistance features
US7731724B2 (en) 2005-04-14 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical clip advancement and alignment mechanism
US7740641B2 (en) 2005-04-14 2010-06-22 Ethicon Endo-Surgery, Inc. Clip applier with migrational resistance features
US8556920B2 (en) 2005-04-14 2013-10-15 Ethicon Endo-Surgery, Inc. Surgical clip
US8523882B2 (en) 2005-04-14 2013-09-03 Ethicon Endo-Surgery, Inc. Clip advancer mechanism with alignment features
US8246634B2 (en) 2005-04-14 2012-08-21 Ethicon Endo-Surgery, Inc. Surgical clip applier ratchet mechanism
US8246635B2 (en) 2005-04-14 2012-08-21 Ethicon Endo-Surgery, Inc. Clip applier with migrational resistance features
US20100114133A1 (en) * 2005-04-14 2010-05-06 Ethicon Endo-Surgery, Inc. Surgical clip
US8328822B2 (en) 2005-04-14 2012-12-11 Ethicon Endo-Surgery, Inc. Surgical clip applier ratchet mechanism
US8038686B2 (en) 2005-04-14 2011-10-18 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US8075571B2 (en) 2005-04-14 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US8236012B2 (en) 2005-04-14 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical clip advancement mechanism
US8753356B2 (en) 2005-04-14 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US20070224275A1 (en) * 2005-05-24 2007-09-27 Reid Ted W Selenium-based biocidal formulations and methods of use thereof
US8236337B2 (en) 2005-05-24 2012-08-07 Selenium, Ltd. Anti-microbial orthodontic compositions and appliances and methods of production and use thereof
US20100158966A1 (en) * 2005-05-24 2010-06-24 Ted Reid Selenium-based biocidal formulations and methods of use thereof
US20100028823A1 (en) * 2005-05-24 2010-02-04 Ted Reid Anti-microbial orthodontic compositions and appliances and methods of production and use thereof
US9370187B2 (en) 2005-05-24 2016-06-21 Selenium, Ltd. Selenium-based biocidal formulations and methods of use thereof
US20100158967A1 (en) * 2005-05-24 2010-06-24 Ted Reid Selenium-based biocidal formulations and methods of use thereof
US9326776B2 (en) 2005-09-29 2016-05-03 Applied Medical Resources Corporation Manually actuated surgical clip applier
US20070083218A1 (en) * 2005-10-12 2007-04-12 A Morris Steven Coated ligating clip
US20070149988A1 (en) * 2005-12-22 2007-06-28 Michler Robert E Exclusion of the left atrial appendage
US9486225B2 (en) * 2005-12-22 2016-11-08 Robert E. Michler Exclusion of the left atrial appendage
US9375218B2 (en) 2006-05-03 2016-06-28 Datascope Corp. Systems and methods of tissue closure
WO2010080086A1 (en) * 2009-01-12 2010-07-15 Selenium, Ltd. Anti-microbial orthodontic compositions and appliances and methods of production and use thereof
US8333791B2 (en) 2009-04-24 2012-12-18 Warsaw Orthopedic, Inc. Medical implant with tie configured to deliver a therapeutic substance
US20100274295A1 (en) * 2009-04-24 2010-10-28 Warsaw Orthopedic, Inc. Medical implant configured to deliver a therapeutic substance
US20100274289A1 (en) * 2009-04-24 2010-10-28 Warsaw Orthopedic, Inc. Medical implant with tie configured to deliver a therapeutic substance
US8496673B2 (en) 2009-10-09 2013-07-30 Ethicon Endo-Surgery, Inc. Clip advancer with lockout mechanism
US8267945B2 (en) 2009-10-09 2012-09-18 Ethicon Endo-Surgery, Inc. Clip advancer with lockout mechanism
US8262679B2 (en) 2009-10-09 2012-09-11 Ethicon Endo-Surgery, Inc. Clip advancer
US9597089B2 (en) * 2010-03-10 2017-03-21 Conmed Corporation Surgical clips for laparoscopic procedures
US20110224701A1 (en) * 2010-03-10 2011-09-15 Pavel Menn Surgical Clips For Laparoscopic Procedures
US9572329B2 (en) * 2010-11-18 2017-02-21 Samuel P Hopkins Antimicrobial containing fish hook and method of using and manufacturing same
US20120124886A1 (en) * 2010-11-18 2012-05-24 Hopkins Samuel P Antimicrobial containing fish hook and method of using and manufacturing same
US20120271230A1 (en) * 2011-02-23 2012-10-25 Ams Research Corporation Fibroid Treatment System and Method
DE102011053781A1 (en) * 2011-09-20 2013-03-21 Implantcast Gmbh A surgical stapling
US9370400B2 (en) 2011-10-19 2016-06-21 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US20140018830A1 (en) * 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Surgical Clip Having Compliant Portion
US20140018832A1 (en) * 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Method For Applying A Surgical Clip Having A Compliant Portion
CN104510513A (en) * 2013-09-27 2015-04-15 上海交通大学医学院附属第九人民医院 Tissue vascular clamp capable of being decomposed by body fluid

Also Published As

Publication number Publication date Type
WO2002094110A1 (en) 2002-11-28 application

Similar Documents

Publication Publication Date Title
McCann et al. Staphylococcus epidermidis device‐related infections: pathogenesis and clinical management
Samuel et al. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter
US5281419A (en) Biodegradable drug delivery system for the prevention and treatment of osteomyelitis
US6162487A (en) Method of coating medical devices with a combination of antiseptics and antiseptic coating therefor
US6921390B2 (en) Long-term indwelling medical devices containing slow-releasing antimicrobial agents and having a surfactant surface
Kockro et al. Use of scanning electron microscopy to investigate the prophylactic efficacy of rifampin-impregnated CSF shunt catheters
US20100152708A1 (en) Non-fouling, anti-microbial, anti-thrombogenic graft-from compositions
US20080063693A1 (en) Antimicrobial coating for inhibition of bacterial adhesion and biofilm formation
US7314857B2 (en) Synergistic antimicrobial compositions and methods of inhibiting biofilm formation
US7179849B2 (en) Antimicrobial compositions containing colloids of oligodynamic metals
US4381380A (en) Thermoplastic polyurethane article treated with iodine for antibacterial use
Harris et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (L-lysine)-grafted-poly (ethylene glycol) copolymers
US6589591B1 (en) Method for treating medical devices using glycerol and an antimicrobial agent
EP0379271A2 (en) Anti-infective and lubricious medical articles and method for their preparation
Belt et al. Infection of orthopedic implants and the use of antibiotic-loaded bone cements: a review
US5413788A (en) Antimicrobial compositions
Hetrick et al. Reducing implant-related infections: active release strategies
US20090155335A1 (en) Non-leaching non-fouling antimicrobial coatings
Kälicke et al. Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: an in vitro and in vivo study
US20060161256A1 (en) Anti-infectious, biocompatible titanium coating for implants, and method for the production thereof
US20030039697A1 (en) Matrices containing nitric oxide donors and reducing agents and their use
US4849223A (en) Antimicrobial compositions consisting of metallic silver combined with titanium oxide or tantalum oxide
US20040208908A1 (en) Antimicrobial medical articles containing a synergistic combination of anti-infective compounds and octoxyglycerin
Jansen et al. In-vitro efficacy of a central venous catheter (‘Hydrocath’) loaded with teicoplanin to prevent bacterial colonization
US6224579B1 (en) Triclosan and silver compound containing medical devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: WECK CLOSURE SYSTEMS, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MANDEL, STANLEY R.;WHITNEY, JAMES R.;REEL/FRAME:011850/0603

Effective date: 20010521