US20020159883A1 - Combination airflow straightener and finger guard for use with a fan - Google Patents

Combination airflow straightener and finger guard for use with a fan Download PDF

Info

Publication number
US20020159883A1
US20020159883A1 US09/846,059 US84605901A US2002159883A1 US 20020159883 A1 US20020159883 A1 US 20020159883A1 US 84605901 A US84605901 A US 84605901A US 2002159883 A1 US2002159883 A1 US 2002159883A1
Authority
US
United States
Prior art keywords
fan
airflow
guard
finger guard
straightener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/846,059
Inventor
Glenn Simon
Douglas Davies
Philip Langley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HP Inc
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Priority to US09/846,059 priority Critical patent/US20020159883A1/en
Assigned to HEWLETT-PACKARD COMPANY reassignment HEWLETT-PACKARD COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DAVIES, DOUGLAS L., SIMON, GLENN C., LANGLEY, PHILIP D.
Publication of US20020159883A1 publication Critical patent/US20020159883A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/703Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps specially for fans, e.g. fan guards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • F04D25/0613Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump the electric motor being of the inside-out type, i.e. the rotor is arranged radially outside a central stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • F04D29/544Blade shapes

Definitions

  • the present invention relates generally to cooling fans, such as fans used to cool electronic equipment. More specifically, the present invention relates to a finger guard that also straightens the airflow provided by a cooling fan.
  • FIG. 1 shows a prior art fan 10 similar to those used to cool computer systems.
  • Such fans are often included in computer power supplies, and are also typically mounted in computer cases to remove hot air from the interior of the case. These fans are often referred to in the art as tubeaxial fans.
  • a finger guard is coupled to the fan to prevent fingers and other objects from coming in contact with the rotating blades of the fan.
  • Finger guards are often made of metal or plastic, and typically have openings or gratings no larger than roughly 1 ⁇ 4 of an inch along a single axis. For example, a finger guard may have many arcuate openings that are an inch or two long, and 1 ⁇ 4 of an inch wide.
  • FIG. 2 is partial cross sectional view of prior art fan 10 taken along line 2 - 2 of FIG. 1.
  • the blades are shown as moving from left to right as the blades rotate through line 2 - 2 .
  • the vector Ve has a component Vi, which is the desired component, and a component Vr, which undesirable. Since the blades are rotating, Vr is rotational, and the air leaving the fan tends to have a whirling or circular motion similar to a vortex. This motion makes it difficult to predict where the air will go, leading to airflow where it is not wanted, and too little airflow where it is needed. Also, the swirling airflow tends to produce unpredictable eddies. These eddies sometimes lead to unpredictable accumulations of dust in certain areas.
  • HA high availability
  • N+1 redundancy The concept behind N+1 redundancy is that if N devices are needed to operate a system, N+1 devices are provided. If one of the devices fails, the failure is detected and the failed device can be replaced before one of the other devices fails. N+1 redundancy has been used successfully to provide redundancy for power supplies, hard disk drives in disk array subsystems, as well as many other devices.
  • N+1 redundancy has also been used to provide redundant cooling fans. For example, if one cooling fans is required to cool a power supply, then two cooling fans can be provided in series. The chances of both fans suffering a random failure at the same time are minuscule. Therefore, if one of the fans fail the other fan will continue to operate, and the failure can be detected and the computer system operator can be signaled. Thereafter, the failing fan can be replaced without have to interrupt the operation of the computer system.
  • FIG. 3 illustrates a prior art configuration 12 wherein two prior art fans 10 are connected in series.
  • the perspective of the view shown in FIG. 3 is similar to that shown in FIG. 2, which is taken along line 2 - 2 of FIG. 1.
  • the downstream fan does not operate as efficiently because the airflow is already rotating in the same direction as the blades of the downstream fan, which affects the angle of attack between the air and fan blade of the downstream fan.
  • One technique known in the art addresses this problem by having the two fans rotate in opposite directions, which of course requires that one of the fans have blades inclined in the opposite direction.
  • this configuration tends to produce more noise.
  • inexpensive tubeaxial fans such as those used to cool computer systems, tend to only be available in one direction of rotation.
  • FIG. 4 illustrates a prior art configuration 14 that shows two prior art fans 10 connected in series, wherein the downstream fan has failed and no longer rotates.
  • FIG. 4 is identical to FIG. 3. Notice that when the downstream fan fails, the airflow from the upstream fan is nearly perpendicular to the blade surfaces of the failed downstream fan. Accordingly, the airflow from the upstream fan is severely impeded by the stationary blades of the failed fan, causing the airflow to be much worse than the airflow produced by a single, unimpeded fan.
  • Another type of prior art fan contains flow straighteners (or alternatively, vanes) that remove the rotational components from the airflow produced by a fan.
  • the flow straighteners are provided in a relatively long tube that is downstream from the fan.
  • These types of fans are known in the art as vaneaxial fans.
  • vaneaxial fans are not commonly used in cool electronic equipment because vaneaxial fans tend to be larger than tubeaxial fans (because of the tube that contains the flow straighteners), non-standard in size, and more costly than tubeaxial fans.
  • the present invention is a combination airflow straightener and finger guard for use with a fan, such as an axial fan.
  • Axial fans are commonly used to cool electronic equipment, such as computer systems.
  • the present invention may be advantageously employed in any application where it is desirable to straighten airflow and minimize the chance of fingers or other objects coming into contact with the rotating blades of a fan.
  • the term “flow-guard” will be used herein to refer to a combination airflow straightener and finger guard in accordance with the present invention.
  • a flow-guard in accordance with the present invention includes a plurality of vanes that extend radially from a center hub to an outer frame of the flow-guard.
  • the vanes straighten the airflow and protect fingers and other objects from coming in contact with rotating blades of the fan.
  • adjacent vanes should be no farther apart than roughly 1 ⁇ 4-1 ⁇ 2 of an inch to prevent a finger from coming in contact with a rotating blade.
  • Each vane can be considered as having three portions.
  • the first portion is closest to the fan and is parallel to the airflow leaving the fan.
  • the second portion is farthest from the fan and is aligned with the axis of rotation of the fan (or some other desired vector).
  • the third portion is curved to link the first portion to the second portion to straighten the airflow to the desired exhaust vector. Accordingly, the space between each pair of vanes forms a plenum that straightens the airflow by removing the rotational components from the airflow, thereby eliminating the whirling or circular motion patterns produced by prior art tubeaxial fans.
  • the present invention can be used to enhance the performance of fans used in a redundant N+1 serial configuration.
  • the flow-guard between the upstream and downstream fans produces a much better angle of attack for the blades of the downstream fan. If the downstream fan fails, the flow-guard between the upstream and downstream fans straightens the airflow from the upstream fan so that the airflow encounters the blade surfaces of the failed fan at a 45° angle, which is better than the perpendicular encounter angle produced by similar prior art configurations.
  • the present invention provides an inexpensive and effective method for removing rotational components from the airflow of an axial fan, while also effectively preventing fingers and other objects from coming in contact with the rotating blades of the fan. By removing the rotational components from the airflow, the airflow is much more predictable, thereby ensuring proper airflow over devices that need to be cooled.
  • FIG. 1 shows a prior art axial fan similar to fans used to cool computer systems.
  • FIG. 2 is partial cross sectional view of the prior art fan of FIG. 1 taken along line 2 - 2 of FIG. 1.
  • FIG. 3 illustrates a prior art configuration wherein two prior art are fans are connected in series, with the perspective of the view shown in FIG. 3 being similar to that shown in FIG. 2, which is taken along line 2 - 2 of FIG. 1.
  • FIG. 4 illustrates a prior art configuration that is identical in all respects to FIG. 3, except that the downstream fan has failed and no longer rotates.
  • FIG. 5 shows a combination airflow straightener and finger guard in accordance with the present invention (which will be referred to herein as a “flow-guard”), along with a prior art axial fan.
  • FIG. 6 shows the flow-guard and fan of FIG. 5 coupled together to form a flow-guard/fan assembly.
  • FIG. 7 is a cross sectional view of the assembly of FIG. 6 taken along line 7 - 7 of FIG. 6.
  • FIG. 8 shows a pair of flow-guard/fan assemblies coupled into an N+1 redundant series configuration.
  • FIG. 9 shows the flow-guard/fan assembly of FIG. 8 after the downstream fan has failed and no longer rotates.
  • FIGS. 10 and 11 show a flow-guard configured to direct airflow in a direction other than the axis of rotation of the fan.
  • the present invention is a combination airflow straightener and finger guard for use with a fan, such as an axial fan.
  • Axial fans are commonly used to cool electronic equipment, such as computer systems.
  • the present invention my be advantageously employed in any application where it is desirable to straighten airflow and minimize the chance of fingers or other objects coming into contact with the rotating blades of a fan.
  • FIG. 5 shows a combination airflow straightener and finger guard 16 in accordance with the present invention.
  • the term “flow-guard” will be used herein to refer to a combination airflow straightener and finger guard in accordance with the present invention.
  • FIG. 5 Also shown in FIG. 5 is prior art fan 10 , to which flow-guard 16 can be attached, as will be discussed below with reference to FIG. 6.
  • Flow-guard 16 includes a plurality of vanes, such as vane 17 , that extend radially outward from a hub 19 to an outer frame 21 .
  • Flow-guard 16 also includes intermediate support member 23 radially disposed between hub 19 and frame 21 . Note that it may be desirable to provide fewer or additional intermediate support members based on the size of flow-guard 16 .
  • hub 19 and outer frame 21 are approximately the same size as the hub and outer frame, respectively, of the fan to which flow-guard 16 will be mounted.
  • vanes straighten the airflow, as will be discussed in greater detail below with reference to FIG. 7. Furthermore, the vanes protect fingers and other objects from coming into contact with rotating blades of the fan 10 .
  • prior art finger guards typically have openings or gratings no larger than roughly 1 ⁇ 4 of an inch along a single axis. Note that the curved nature of the vanes tends to provide a certain amount of protection, and therefore the vanes can be spaced a little farther apart than prior art finger guard openings. Accordingly, to provide this function in the present invention, adjacent vanes should be no farther apart than roughly 1 ⁇ 4-1 ⁇ 2 of an inch. Of course, those skilled in the art will appreciate that the separation between vanes can be varied to prevent objects of various sizes from coming in contact with the rotating blades of fan 10 .
  • Flow-guard 16 can be fabricated using a standard plastic injection molding processes. It is expected that the cost of a flow-guard in accordance with the present invention will be less than the cost of a typical prior art wire formed finger guard.
  • FIG. 6 shows flow-guard 16 coupled to fan 10 to form flow-guard/fan assembly 18 .
  • Flow-guard 16 can be coupled to fan 10 using methods known in the art, such as threaded screws or snap-in connectors.
  • the flow-guard can be mounted proximate to the fan in a number of different ways.
  • a fan assembly could be mounted to the exterior of a computer case and the flow-guard could be mounted to the interior of the case and aligned radially with the fan.
  • FIG. 6 Two section lines are shown in FIG. 6. Views in FIGS. 7, 8, 9 , and 10 are taken along line 7 - 7 .
  • FIG. 11 has a view taken along line 11 - 11 .
  • FIG. 7 is a cross sectional view taken along line 7 - 7 of FIG. 6. Note that there is a certain amount of linear distortion in FIG. 7, as well as FIGS. 8, 9, 10 , and 11 , because all blades and vanes are shown as if they were positioned directly at the top (or in the case of FIG. 11, the bottom) of assembly 18 .
  • flow-guard 16 which includes a plurality of straightening vanes, such as vane 17 . Note that the separation between the vanes is close enough to prevent objects, such as fingers, from coming into contact with the rotating blades of fan 10 .
  • Flow-guard 16 straightens the airflow, and the air emerges from flow-guard 16 along vector Vo, which is parallel to input vector Vi.
  • Each vane can be considered as having three portions.
  • the first portion is closest to the fan and is parallel to vector Ve.
  • the second portion is farthest from the fan and is aligned with vector Vo.
  • the third portion is curved and links the first and second portions to straighten the airflow from vector Ve to vector Vo. Accordingly, the space between each pair of vanes forms a plenum that straightens the airflow and removes the rotational components from the air leaving assembly 18 . Accordingly, the air leaving assembly 18 does not have the whirling or circular motion patterns of prior art tubeaxial fans. Therefore, it is easy to predict where the airflow will go, leading to airflow where it is wanted, and little or no airflow where it is not needed.
  • FIG. 8 shows a pair of flow-guard/fan assemblies coupled into an N+1 redundant series configuration 20 .
  • the downstream fan does not operate as efficiently because the airflow is already rotating in the same direction as the blades of the downstream fan, which affects the angle of attack between the air and fan blade of the downstream fan.
  • the upstream flow-guard 16 straightens the airflow from the upstream fan 10 so that when the airflow enters the downstream fan 10 the airflow is parallel to the axis of rotation of the fan. Accordingly, the angle of attack is much better and the downstream fan operates more efficiently than in the prior art configuration shown in FIG. 3.
  • the beneficial flow-straightening effect of the flow-guard between the two fans can be achieved if the flow-guard is mounted to either the upstream fan or the downstream fan. While it may appear that the finger guard function of the present invention is not necessary for the flow-guard between the two fans shown in FIG. 8, if the downstream fan fails, a technician may be required to service the downstream fan while the upstream fan is operating. Since the two fans are in close proximity, it is important that the flow-guard between the two fans protect the fingers of the technician while the technician is servicing the downstream fan. Therefore, it is preferable that this flow-guard be coupled to the upstream fan.
  • FIG. 9 shows a configuration 22 similar to configuration 20 of FIG. 8, except that the downstream fan 10 has failed.
  • the airflow from the upstream fan is nearly perpendicular to the blade surfaces of the failed fan, and the airflow from the upstream fan is severely impeded by the stationary blades of the failed downstream fan.
  • the upstream flow-guard 16 straightens the airflow from the upstream fan 10 so that the airflow encounters the blade surfaces of the failed downstream fan at a 45° angle, which is better than the perpendicular encounter angle shown in FIG. 4.
  • a flow “straightener” in accordance with the present invention that actually introduces rotational components in the direction opposite to the direction of rotation of the fan.
  • a flow “straightener” could be positioned over the upstream fan, and a flow-guard 16 as discussed above could be positioned over the downstream fan. Accordingly, the airflow from the upstream fan would have an excellent angle of attack for the downstream fan. Also, if the downstream fan fails, the airflow from the upstream fan would be parallel to the stationary fan blades of the failed downstream fan, thereby providing minimal resistance to the airflow.
  • a flow-guard in accordance with the present invention can also be configured to direct airflow in a particular direction.
  • a fan is mounted in a power supply
  • a heat sink is mounted within the power supply to the left and off-center from the fan.
  • FIGS. 10 and 11 show such a flow-guard 24 configured to direct airflow to the left.
  • FIG. 10 would result from flow-guard 24 being used in assembly 18 of FIG. 6 and is taken along line 7 - 7 of FIG. 6, and
  • FIG. 11 would result from flow-guard 24 being used in assembly 18 is taken along line 11 - 11 of FIG. 6.
  • Each vane has a first portion closest to the fan and parallel to the airflow leaving the fan and a second portion farthest from the fan and aligned with vector Vo.
  • the third portion is curved to link the first portion to the second portion to straighten the airflow to vector Vo. Note that the angle of the first portion varies with the angular position of the vane. However, the angle of the second portion remains aligned with the vector Vo in all vanes.
  • the present invention provides an inexpensive and effective method for removing rotational components from the airflow of a fan, while also effectively preventing fingers and other objects from coming in contact with the rotating blades of the fan.
  • the airflow is much more predictable, thereby ensuring proper airflow over devices that need to be cooled.
  • rotational components in the airflow created eddies that made it difficult to predict whether any particular device would receive proper airflow, which can lead to device failure.
  • the present invention can be used to enhance the performance of fans used in a redundant N+1 serial configuration.

Abstract

A combination airflow straightener and finger guard straightens airflow and minimize the chance of fingers or other objects coming into contact with rotating blades of a fan, and includes a plurality of vanes that extend radially outward from a hub to an outer frame of the combination airflow straightener and finger guard. Each vane can be considered as having three portions. The first portion is closest to the fan and is parallel to the airflow leaving the fan. The second portion is farthest from the fan and is aligned with the axis of rotation of the fan (or some other desired exhaust vector). The third portion is curved to link the first portion to the second portion to straighten the airflow to the desired exhaust vector, with the space between each pair of vanes forming a plenum that straightens the airflow by removing the rotational components from the airflow.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to cooling fans, such as fans used to cool electronic equipment. More specifically, the present invention relates to a finger guard that also straightens the airflow provided by a cooling fan. [0001]
  • DESCRIPTION OF THE RELATED ART
  • In the electronic arts, fans are often used to cool electronic equipment, such as computer systems. Of course, fans are also used in many other applications. FIG. 1 shows a [0002] prior art fan 10 similar to those used to cool computer systems. Such fans are often included in computer power supplies, and are also typically mounted in computer cases to remove hot air from the interior of the case. These fans are often referred to in the art as tubeaxial fans.
  • Often a finger guard is coupled to the fan to prevent fingers and other objects from coming in contact with the rotating blades of the fan. Finger guards are often made of metal or plastic, and typically have openings or gratings no larger than roughly ¼ of an inch along a single axis. For example, a finger guard may have many arcuate openings that are an inch or two long, and ¼ of an inch wide. [0003]
  • FIG. 2 is partial cross sectional view of [0004] prior art fan 10 taken along line 2-2 of FIG. 1. In FIG. 2, the blades are shown as moving from left to right as the blades rotate through line 2-2. Note that there is a certain amount of linear distortion in FIG. 2, as well as FIGS. 3 and 4, because all blades are shown as if they were positioned directly at the top of fan 10.
  • Air enters [0005] fan 10 along the vector Vi, which is parallel to the axis of rotation of the fan. However, air leaves the fan along the vector Ve, which is perpendicular to the face of the fan blades. The vector Ve has a component Vi, which is the desired component, and a component Vr, which undesirable. Since the blades are rotating, Vr is rotational, and the air leaving the fan tends to have a whirling or circular motion similar to a vortex. This motion makes it difficult to predict where the air will go, leading to airflow where it is not wanted, and too little airflow where it is needed. Also, the swirling airflow tends to produce unpredictable eddies. These eddies sometimes lead to unpredictable accumulations of dust in certain areas.
  • In the art of computing, it is desirable to maximize the availability of a computer system. This is known in the art as high availability (HA) computing. Companies desiring to market HA computing systems have set very high goals. For example, Hewlett-Packard Company has announced a goal of achieving 99.999% availability for high-end server platforms. This translates to about five minutes of downtime per year. [0006]
  • The design of an HA computer encompasses many of the computer's subsystems. One popular redundancy technique is known in the art as “N+1” redundancy. The concept behind N+1 redundancy is that if N devices are needed to operate a system, N+1 devices are provided. If one of the devices fails, the failure is detected and the failed device can be replaced before one of the other devices fails. N+1 redundancy has been used successfully to provide redundancy for power supplies, hard disk drives in disk array subsystems, as well as many other devices. [0007]
  • N+1 redundancy has also been used to provide redundant cooling fans. For example, if one cooling fans is required to cool a power supply, then two cooling fans can be provided in series. The chances of both fans suffering a random failure at the same time are minuscule. Therefore, if one of the fans fail the other fan will continue to operate, and the failure can be detected and the computer system operator can be signaled. Thereafter, the failing fan can be replaced without have to interrupt the operation of the computer system. [0008]
  • FIG. 3 illustrates a [0009] prior art configuration 12 wherein two prior art fans 10 are connected in series. The perspective of the view shown in FIG. 3 is similar to that shown in FIG. 2, which is taken along line 2-2 of FIG. 1. In configuration 12, when both fans 10 are operating, the downstream fan does not operate as efficiently because the airflow is already rotating in the same direction as the blades of the downstream fan, which affects the angle of attack between the air and fan blade of the downstream fan. One technique known in the art addresses this problem by having the two fans rotate in opposite directions, which of course requires that one of the fans have blades inclined in the opposite direction. However, this configuration tends to produce more noise. In addition, inexpensive tubeaxial fans, such as those used to cool computer systems, tend to only be available in one direction of rotation.
  • Furthermore, the problem becomes much worse if the downstream fan fails. FIG. 4 illustrates a [0010] prior art configuration 14 that shows two prior art fans 10 connected in series, wherein the downstream fan has failed and no longer rotates. In all other respects, FIG. 4 is identical to FIG. 3. Notice that when the downstream fan fails, the airflow from the upstream fan is nearly perpendicular to the blade surfaces of the failed downstream fan. Accordingly, the airflow from the upstream fan is severely impeded by the stationary blades of the failed fan, causing the airflow to be much worse than the airflow produced by a single, unimpeded fan.
  • Another type of prior art fan contains flow straighteners (or alternatively, vanes) that remove the rotational components from the airflow produced by a fan. Typically the flow straighteners are provided in a relatively long tube that is downstream from the fan. These types of fans are known in the art as vaneaxial fans. However, vaneaxial fans are not commonly used in cool electronic equipment because vaneaxial fans tend to be larger than tubeaxial fans (because of the tube that contains the flow straighteners), non-standard in size, and more costly than tubeaxial fans. [0011]
  • SUMMARY OF THE INVENTION
  • The present invention is a combination airflow straightener and finger guard for use with a fan, such as an axial fan. Axial fans are commonly used to cool electronic equipment, such as computer systems. Of course, the present invention may be advantageously employed in any application where it is desirable to straighten airflow and minimize the chance of fingers or other objects coming into contact with the rotating blades of a fan. The term “flow-guard” will be used herein to refer to a combination airflow straightener and finger guard in accordance with the present invention. [0012]
  • A flow-guard in accordance with the present invention includes a plurality of vanes that extend radially from a center hub to an outer frame of the flow-guard. The vanes straighten the airflow and protect fingers and other objects from coming in contact with rotating blades of the fan. Typically, adjacent vanes should be no farther apart than roughly ¼-½ of an inch to prevent a finger from coming in contact with a rotating blade. [0013]
  • Each vane can be considered as having three portions. The first portion is closest to the fan and is parallel to the airflow leaving the fan. The second portion is farthest from the fan and is aligned with the axis of rotation of the fan (or some other desired vector). The third portion is curved to link the first portion to the second portion to straighten the airflow to the desired exhaust vector. Accordingly, the space between each pair of vanes forms a plenum that straightens the airflow by removing the rotational components from the airflow, thereby eliminating the whirling or circular motion patterns produced by prior art tubeaxial fans. [0014]
  • Furthermore, the present invention can be used to enhance the performance of fans used in a redundant N+1 serial configuration. When both fans are operating normally, the flow-guard between the upstream and downstream fans produces a much better angle of attack for the blades of the downstream fan. If the downstream fan fails, the flow-guard between the upstream and downstream fans straightens the airflow from the upstream fan so that the airflow encounters the blade surfaces of the failed fan at a 45° angle, which is better than the perpendicular encounter angle produced by similar prior art configurations. [0015]
  • The present invention provides an inexpensive and effective method for removing rotational components from the airflow of an axial fan, while also effectively preventing fingers and other objects from coming in contact with the rotating blades of the fan. By removing the rotational components from the airflow, the airflow is much more predictable, thereby ensuring proper airflow over devices that need to be cooled.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a prior art axial fan similar to fans used to cool computer systems. [0017]
  • FIG. 2 is partial cross sectional view of the prior art fan of FIG. 1 taken along line [0018] 2-2 of FIG. 1.
  • FIG. 3 illustrates a prior art configuration wherein two prior art are fans are connected in series, with the perspective of the view shown in FIG. 3 being similar to that shown in FIG. 2, which is taken along line [0019] 2-2 of FIG. 1.
  • FIG. 4 illustrates a prior art configuration that is identical in all respects to FIG. 3, except that the downstream fan has failed and no longer rotates. [0020]
  • FIG. 5 shows a combination airflow straightener and finger guard in accordance with the present invention (which will be referred to herein as a “flow-guard”), along with a prior art axial fan. [0021]
  • FIG. 6 shows the flow-guard and fan of FIG. 5 coupled together to form a flow-guard/fan assembly. [0022]
  • FIG. 7 is a cross sectional view of the assembly of FIG. 6 taken along line [0023] 7-7 of FIG. 6.
  • FIG. 8 shows a pair of flow-guard/fan assemblies coupled into an N+1 redundant series configuration. [0024]
  • FIG. 9 shows the flow-guard/fan assembly of FIG. 8 after the downstream fan has failed and no longer rotates. [0025]
  • FIGS. 10 and 11 show a flow-guard configured to direct airflow in a direction other than the axis of rotation of the fan.[0026]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is a combination airflow straightener and finger guard for use with a fan, such as an axial fan. Axial fans are commonly used to cool electronic equipment, such as computer systems. Of course, the present invention my be advantageously employed in any application where it is desirable to straighten airflow and minimize the chance of fingers or other objects coming into contact with the rotating blades of a fan. [0027]
  • FIG. 5 shows a combination airflow straightener and [0028] finger guard 16 in accordance with the present invention. The term “flow-guard” will be used herein to refer to a combination airflow straightener and finger guard in accordance with the present invention. Also shown in FIG. 5 is prior art fan 10, to which flow-guard 16 can be attached, as will be discussed below with reference to FIG. 6.
  • Flow-[0029] guard 16 includes a plurality of vanes, such as vane 17, that extend radially outward from a hub 19 to an outer frame 21. Flow-guard 16 also includes intermediate support member 23 radially disposed between hub 19 and frame 21. Note that it may be desirable to provide fewer or additional intermediate support members based on the size of flow-guard 16. Typically hub 19 and outer frame 21 are approximately the same size as the hub and outer frame, respectively, of the fan to which flow-guard 16 will be mounted.
  • The vanes straighten the airflow, as will be discussed in greater detail below with reference to FIG. 7. Furthermore, the vanes protect fingers and other objects from coming into contact with rotating blades of the [0030] fan 10. As discussed above, prior art finger guards typically have openings or gratings no larger than roughly ¼ of an inch along a single axis. Note that the curved nature of the vanes tends to provide a certain amount of protection, and therefore the vanes can be spaced a little farther apart than prior art finger guard openings. Accordingly, to provide this function in the present invention, adjacent vanes should be no farther apart than roughly ¼-½ of an inch. Of course, those skilled in the art will appreciate that the separation between vanes can be varied to prevent objects of various sizes from coming in contact with the rotating blades of fan 10.
  • Flow-[0031] guard 16 can be fabricated using a standard plastic injection molding processes. It is expected that the cost of a flow-guard in accordance with the present invention will be less than the cost of a typical prior art wire formed finger guard.
  • FIG. 6 shows flow-[0032] guard 16 coupled to fan 10 to form flow-guard/fan assembly 18. Flow-guard 16 can be coupled to fan 10 using methods known in the art, such as threaded screws or snap-in connectors. Note that although flow-guard 16 is coupled to fan 10 in FIG. 6, the flow-guard can be mounted proximate to the fan in a number of different ways. For example, a fan assembly could be mounted to the exterior of a computer case and the flow-guard could be mounted to the interior of the case and aligned radially with the fan. Also note that in certain applications, it may be desirable to use a prior art finger guard on the intake side of a fan, and use a flow-guard on the exhaust side of the fan.
  • Two section lines are shown in FIG. 6. Views in FIGS. 7, 8, [0033] 9, and 10 are taken along line 7-7. FIG. 11 has a view taken along line 11-11.
  • FIG. 7 is a cross sectional view taken along line [0034] 7-7 of FIG. 6. Note that there is a certain amount of linear distortion in FIG. 7, as well as FIGS. 8, 9, 10, and 11, because all blades and vanes are shown as if they were positioned directly at the top (or in the case of FIG. 11, the bottom) of assembly 18.
  • In accordance with the present invention, air enters [0035] fan 10 along the vector Vi, which is parallel to the axis of rotation of the fan, and air leaves the fan along the vector Ve, which is perpendicular to the face of the fan blades.
  • Next, the airflow enters flow-[0036] guard 16, which includes a plurality of straightening vanes, such as vane 17. Note that the separation between the vanes is close enough to prevent objects, such as fingers, from coming into contact with the rotating blades of fan 10. Flow-guard 16 straightens the airflow, and the air emerges from flow-guard 16 along vector Vo, which is parallel to input vector Vi.
  • Each vane can be considered as having three portions. The first portion is closest to the fan and is parallel to vector Ve. The second portion is farthest from the fan and is aligned with vector Vo. The third portion is curved and links the first and second portions to straighten the airflow from vector Ve to vector Vo. Accordingly, the space between each pair of vanes forms a plenum that straightens the airflow and removes the rotational components from the [0037] air leaving assembly 18. Accordingly, the air leaving assembly 18 does not have the whirling or circular motion patterns of prior art tubeaxial fans. Therefore, it is easy to predict where the airflow will go, leading to airflow where it is wanted, and little or no airflow where it is not needed.
  • FIG. 8 shows a pair of flow-guard/fan assemblies coupled into an N+1 [0038] redundant series configuration 20. As discussed above, in the similar prior art configuration shown in FIG. 3, the downstream fan does not operate as efficiently because the airflow is already rotating in the same direction as the blades of the downstream fan, which affects the angle of attack between the air and fan blade of the downstream fan. However, as shown in FIG. 8 and in accordance with the present invention, the upstream flow-guard 16 straightens the airflow from the upstream fan 10 so that when the airflow enters the downstream fan 10 the airflow is parallel to the axis of rotation of the fan. Accordingly, the angle of attack is much better and the downstream fan operates more efficiently than in the prior art configuration shown in FIG. 3.
  • As can be seen in FIG. 8, the beneficial flow-straightening effect of the flow-guard between the two fans can be achieved if the flow-guard is mounted to either the upstream fan or the downstream fan. While it may appear that the finger guard function of the present invention is not necessary for the flow-guard between the two fans shown in FIG. 8, if the downstream fan fails, a technician may be required to service the downstream fan while the upstream fan is operating. Since the two fans are in close proximity, it is important that the flow-guard between the two fans protect the fingers of the technician while the technician is servicing the downstream fan. Therefore, it is preferable that this flow-guard be coupled to the upstream fan. [0039]
  • FIG. 9 shows a [0040] configuration 22 similar to configuration 20 of FIG. 8, except that the downstream fan 10 has failed. As discussed above, in the similar prior art configuration 14 shown in FIG. 4, the airflow from the upstream fan is nearly perpendicular to the blade surfaces of the failed fan, and the airflow from the upstream fan is severely impeded by the stationary blades of the failed downstream fan. However, as shown in FIG. 9 and in accordance with the present invention, the upstream flow-guard 16 straightens the airflow from the upstream fan 10 so that the airflow encounters the blade surfaces of the failed downstream fan at a 45° angle, which is better than the perpendicular encounter angle shown in FIG. 4.
  • Note that in one configuration, it may be desirable to use a flow “straightener” in accordance with the present invention that actually introduces rotational components in the direction opposite to the direction of rotation of the fan. Such a flow “straightener” could be positioned over the upstream fan, and a flow-[0041] guard 16 as discussed above could be positioned over the downstream fan. Accordingly, the airflow from the upstream fan would have an excellent angle of attack for the downstream fan. Also, if the downstream fan fails, the airflow from the upstream fan would be parallel to the stationary fan blades of the failed downstream fan, thereby providing minimal resistance to the airflow.
  • Note that a flow-guard in accordance with the present invention can also be configured to direct airflow in a particular direction. For example, assume that a fan is mounted in a power supply, and a heat sink is mounted within the power supply to the left and off-center from the fan. FIGS. 10 and 11 show such a flow-[0042] guard 24 configured to direct airflow to the left. FIG. 10 would result from flow-guard 24 being used in assembly 18 of FIG. 6 and is taken along line 7-7 of FIG. 6, and FIG. 11 would result from flow-guard 24 being used in assembly 18 is taken along line 11-11 of FIG. 6.
  • Each vane has a first portion closest to the fan and parallel to the airflow leaving the fan and a second portion farthest from the fan and aligned with vector Vo. The third portion is curved to link the first portion to the second portion to straighten the airflow to vector Vo. Note that the angle of the first portion varies with the angular position of the vane. However, the angle of the second portion remains aligned with the vector Vo in all vanes. [0043]
  • In conclusion, the present invention provides an inexpensive and effective method for removing rotational components from the airflow of a fan, while also effectively preventing fingers and other objects from coming in contact with the rotating blades of the fan. By removing the rotational components from the airflow, the airflow is much more predictable, thereby ensuring proper airflow over devices that need to be cooled. In the prior art, rotational components in the airflow created eddies that made it difficult to predict whether any particular device would receive proper airflow, which can lead to device failure. Furthermore, the present invention can be used to enhance the performance of fans used in a redundant N+1 serial configuration. [0044]
  • Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. [0045]

Claims (11)

What is claimed is:
1. A combination airflow straightener and finger guard having a fan side and an exhaust side, for use with a fan, comprising:
a hub;
a frame; and
a plurality of vanes extending radially from the hub to the frame, wherein a maximum angular distance separating adjacent vanes is sufficiently small to provide effective protection against a finger being inserted between adjacent vanes from the exhaust side to the fan side, and two or more adjacent vanes each comprise a first portion originating at the fan side that is approximately parallel to airflow leaving the fan, a second portion ending at the exhaust side, and a third portion that links the first portion to the second portion to straighten airflow leaving the exhaust side.
2. The combination airflow straightener and finger guard of claim 1 wherein the maximum angular distance separating adjacent vanes is no more than ½ of an inch.
3. The combination airflow straightener and finger guard of claim 1 wherein the second portion of each vane is substantially parallel to an axis of rotation of the fan when the combination airflow straightener and finger guard is mounted to the fan.
4. The combination airflow straightener and finger guard of claim 1 wherein the second portion of each vane is angularly displaced by a common angle from an axis of rotation of the fan when the combination airflow straightener and finger guard is mounted to the fan.
5. An assembly comprising:
an axial fan; and
a combination airflow straightener and finger guard having a fan side and an exhaust side and mounted to the axial fan, the combination airflow straightener and finger guard comprising:
a hub;
a frame; and
a plurality of vanes extending radially from the hub to the frame, wherein a maximum angular distance separating adjacent vanes is sufficiently small to provide effective protection against a finger being inserted between adjacent vanes and coming into contact with rotating blades of the axial fan, and two or more adjacent vanes each comprise a first portion originating at the fan side that is approximately parallel to airflow leaving the axial fan, a second portion ending at the exhaust side, and a third portion that links the first portion to the second portion to straighten airflow leaving the exhaust side.
6. The assembly of claim 5 wherein the maximum angular distance separating adjacent vanes is no more than ½ of an inch.
7. The assembly of claim 6 wherein the second portion of each vane is substantially parallel to an axis of rotation of the axial fan.
8. The assembly of claim 6 wherein the second portion of each vane is angularly displaced by a common angle from an axis of rotation of the axial fan.
9. An assembly comprising:
an upstream axial fan;
a downstream axial fan coupled to the upstream fan in a redundant N+1 serial configuration; and
a combination airflow straightener and finger guard having a fan side and an exhaust side and mounted between the upstream and downstream axial fans, the combination airflow straightener and finger guard comprising:
a hub;
a frame; and
a plurality of vanes extending radially from the hub to the frame, wherein a maximum angular distance separating adjacent vanes is sufficiently small to provide effective protection against a finger being inserted between adjacent vanes and coming into contact with rotating blades of the upstream axial fan, and two or more adjacent vanes each comprise a first portion originating at the fan side that is approximately parallel to airflow leaving the upstream axial fan, a second portion ending at the exhaust side, and a third portion that links the first portion to the second portion to straighten airflow leaving the exhaust side.
10. The assembly of claim 9 wherein the maximum angular distance separating adjacent vanes is no more than ½ of an inch.
11. The assembly of claim 9 wherein the second portion of each vane is substantially parallel to an axis of rotation of the downstream axial fan.
US09/846,059 2001-04-30 2001-04-30 Combination airflow straightener and finger guard for use with a fan Abandoned US20020159883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/846,059 US20020159883A1 (en) 2001-04-30 2001-04-30 Combination airflow straightener and finger guard for use with a fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/846,059 US20020159883A1 (en) 2001-04-30 2001-04-30 Combination airflow straightener and finger guard for use with a fan

Publications (1)

Publication Number Publication Date
US20020159883A1 true US20020159883A1 (en) 2002-10-31

Family

ID=25296830

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/846,059 Abandoned US20020159883A1 (en) 2001-04-30 2001-04-30 Combination airflow straightener and finger guard for use with a fan

Country Status (1)

Country Link
US (1) US20020159883A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040258520A1 (en) * 2003-06-18 2004-12-23 Parry Anthony B. Gas turbine engine
US20050186071A1 (en) * 2004-02-20 2005-08-25 Franz John P. Protection mechanism for flow inducing device
US20070081891A1 (en) * 2005-10-07 2007-04-12 Samsung Electronics Co., Ltd. Cooling fan assembly
US20070224039A1 (en) * 2006-03-23 2007-09-27 Delta Electronics Inc. Serial fan assembly and air-guiding structure thereof
US20070286727A1 (en) * 2006-06-08 2007-12-13 Delta Electronics, Inc. Heat dissipation fan
EP1884659A2 (en) * 2006-07-31 2008-02-06 General Electric Company Ventilation assembly for wind turbine rotor hub
US20110048065A1 (en) * 2009-08-26 2011-03-03 Petersen Cody L De-Aerating Flow Straightener For Cooling System
US20120020780A1 (en) * 2010-07-20 2012-01-26 Uchiyama Yusuke Axial flow fun
WO2013052752A2 (en) * 2011-10-05 2013-04-11 Twin City Fan Companies, Ltd. Guide vane & inline fan assembly
US8801374B1 (en) * 2009-10-07 2014-08-12 Juniper Networks, Inc. Fan trays having stator blades for improving air flow performance
WO2014056657A3 (en) * 2012-10-08 2014-10-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Flow rectifier for an axial fan
WO2016199195A1 (en) * 2015-06-08 2016-12-15 三菱電機株式会社 Axial fan
US20170114803A1 (en) * 2015-10-26 2017-04-27 Nec Platforms, Ltd. Cooling device, guard unit, and server
CN107489649A (en) * 2017-09-07 2017-12-19 珠海格力电器股份有限公司 Axial flow blower
WO2019065679A1 (en) * 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 Fan
US10578126B2 (en) * 2016-04-26 2020-03-03 Acme Engineering And Manufacturing Corp. Low sound tubeaxial fan
US10627121B2 (en) * 2015-03-27 2020-04-21 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
US11168899B2 (en) 2016-05-03 2021-11-09 Carrier Corporation Vane axial fan with intermediate flow control rings

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7444802B2 (en) * 2003-06-18 2008-11-04 Rolls-Royce Plc Gas turbine engine including stator vanes having variable camber and stagger configurations at different circumferential positions
US20040258520A1 (en) * 2003-06-18 2004-12-23 Parry Anthony B. Gas turbine engine
US20050186071A1 (en) * 2004-02-20 2005-08-25 Franz John P. Protection mechanism for flow inducing device
US7306426B2 (en) 2004-02-20 2007-12-11 Hewlett-Packard Development Company, L.P. Protection mechanism for flow inducing device
US20070081891A1 (en) * 2005-10-07 2007-04-12 Samsung Electronics Co., Ltd. Cooling fan assembly
US8035967B2 (en) * 2005-10-07 2011-10-11 Samsung Electronics Co., Ltd. Cooling fan assembly
US20070224039A1 (en) * 2006-03-23 2007-09-27 Delta Electronics Inc. Serial fan assembly and air-guiding structure thereof
US8029236B2 (en) * 2006-06-08 2011-10-04 Delta Electronics, Inc. Heat dissipation fan
US20070286727A1 (en) * 2006-06-08 2007-12-13 Delta Electronics, Inc. Heat dissipation fan
EP1884659A2 (en) * 2006-07-31 2008-02-06 General Electric Company Ventilation assembly for wind turbine rotor hub
EP1884659A3 (en) * 2006-07-31 2012-11-07 General Electric Company Ventilation assembly for wind turbine rotor hub
US20110048065A1 (en) * 2009-08-26 2011-03-03 Petersen Cody L De-Aerating Flow Straightener For Cooling System
US8322157B2 (en) 2009-08-26 2012-12-04 Deere & Company De-aerating flow straightener for cooling system
US8801374B1 (en) * 2009-10-07 2014-08-12 Juniper Networks, Inc. Fan trays having stator blades for improving air flow performance
US20120020780A1 (en) * 2010-07-20 2012-01-26 Uchiyama Yusuke Axial flow fun
WO2013052752A2 (en) * 2011-10-05 2013-04-11 Twin City Fan Companies, Ltd. Guide vane & inline fan assembly
WO2013052752A3 (en) * 2011-10-05 2014-05-15 Twin City Fan Companies, Ltd. Guide vane & inline fan assembly
US8932013B2 (en) 2011-10-05 2015-01-13 Twin City Fan Companies, Ltd. Guide vane and inline fan assembly
WO2014056657A3 (en) * 2012-10-08 2014-10-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Flow rectifier for an axial fan
CN104685220A (en) * 2012-10-08 2015-06-03 依必安-派特穆尔芬根股份有限两合公司 Flow rectifier for an axial fan
US10094394B2 (en) 2012-10-08 2018-10-09 Ebm-Papst Mulfingen Gmbh & Co. Kg Flow rectifier for an axial fan
US10627121B2 (en) * 2015-03-27 2020-04-21 Mitsubishi Electric Corporation Indoor unit for air-conditioning apparatus
WO2016199195A1 (en) * 2015-06-08 2016-12-15 三菱電機株式会社 Axial fan
US20170114803A1 (en) * 2015-10-26 2017-04-27 Nec Platforms, Ltd. Cooling device, guard unit, and server
US10655643B2 (en) * 2015-10-26 2020-05-19 Nec Platforms, Ltd. Cooling device, guard unit, and server
US10578126B2 (en) * 2016-04-26 2020-03-03 Acme Engineering And Manufacturing Corp. Low sound tubeaxial fan
US11168899B2 (en) 2016-05-03 2021-11-09 Carrier Corporation Vane axial fan with intermediate flow control rings
US11226114B2 (en) 2016-05-03 2022-01-18 Carrier Corporation Inlet for axial fan
CN107489649A (en) * 2017-09-07 2017-12-19 珠海格力电器股份有限公司 Axial flow blower
WO2019065679A1 (en) * 2017-09-28 2019-04-04 パナソニックIpマネジメント株式会社 Fan

Similar Documents

Publication Publication Date Title
US20020159883A1 (en) Combination airflow straightener and finger guard for use with a fan
US7014420B2 (en) Composite heat-dissipating system and its used fan guard with additional supercharging function
US6860713B2 (en) Fan with collapsible blades, redundant fan system, and related method
US6174232B1 (en) Helically conforming axial fan check valve
US9777736B2 (en) Backflow prevention device and a fan having the same
US8025490B2 (en) Serial fan assembly and connection structure thereof
US7740446B2 (en) Serial fan with a plurality of rotor vanes
US6244818B1 (en) Fan guard structure for additional supercharging function
US6508621B1 (en) Enhanced performance air moving assembly
US20080112127A1 (en) Cooling system with angled blower housing and centrifugal, frusto-conical impeller
US9989072B2 (en) Fan
US20080138201A1 (en) Flow-guiding device and fan assembly
US20070231145A1 (en) Multiple Fans of Cascade Connection
US6652230B1 (en) Serial fan with a plurality of rotor vanes
JP2008175099A (en) Fan unit structure for computer
US20020105786A1 (en) Cooling system for removing heat from an object
CN105351219B (en) fan device and electronic equipment
US7959413B2 (en) Fan and impeller thereof
CN108268102B (en) Computing system
US20090000774A1 (en) Integrated heat exchanger and diffuser
US10989221B2 (en) Cooling system for streamlined airflow
US7018175B2 (en) Airflow guiding structure for a heat dissipation fan
US7377751B2 (en) Cooling fan and shroud with modified profiles
US20190024675A1 (en) Fan front intake for server fan module
US10371161B2 (en) Impeller and centrifugal fan with same

Legal Events

Date Code Title Description
AS Assignment

Owner name: HEWLETT-PACKARD COMPANY, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SIMON, GLENN C.;DAVIES, DOUGLAS L.;LANGLEY, PHILIP D.;REEL/FRAME:011959/0127;SIGNING DATES FROM 20010117 TO 20010516

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION