US20020134242A1 - Method of treating exhaust gas - Google Patents

Method of treating exhaust gas Download PDF

Info

Publication number
US20020134242A1
US20020134242A1 US09/777,607 US77760701A US2002134242A1 US 20020134242 A1 US20020134242 A1 US 20020134242A1 US 77760701 A US77760701 A US 77760701A US 2002134242 A1 US2002134242 A1 US 2002134242A1
Authority
US
United States
Prior art keywords
dioxin
exhaust gas
carbon nanotubes
temperature
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/777,607
Other versions
US6511527B2 (en
Inventor
Ralph Yang
Ruiqiang Long
Tomonori Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US09/777,607 priority Critical patent/US6511527B2/en
Assigned to NGK INSULATORS, LTD. reassignment NGK INSULATORS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LONG, RUIQIANG, TAKAHASHI, TOMONORI, YANG, RALPH T.
Priority to JP2002021030A priority patent/JP2002301334A/en
Publication of US20020134242A1 publication Critical patent/US20020134242A1/en
Application granted granted Critical
Publication of US6511527B2 publication Critical patent/US6511527B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2064Chlorine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/30Halogen; Compounds thereof
    • F23J2215/301Dioxins; Furans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure

Definitions

  • the present invention relates to a method for treating an exhaust gas, in particular a dioxin-containing exhaust gas emitted from a waste incinerator.
  • Dioxins are mainly generated from combustion of organic compounds in waste incinerators, such as municipal waste, medical waste, hazardous waste, and army stockpile (chemical agents).
  • FIG. 1 is a diagram illustrating a typical method for removing particulate matter (e.g., flyash) from exhaust gas produced by a waste incinerator.
  • Burning waste e.g., municipal waste
  • an incinerator creates byproducts of (i) ash and (ii) exhaust gas and flyash, the former residing in the incinerator itself and the latter passing through the stack of the incinerator.
  • the resultant exhaust gas is then passed through a scrubber and emitted to the environment through a stack.
  • flyash is the catalyst. It is also believed that the catalytic reaction occurs when the temperature of the exhaust gas drops below 400° C., which typically occurs at a location between the boiler and the bag filter.
  • sorbent materials are materials that adsorb or absorb dioxin or dioxin precursors, and examples of such sorbents include certain cements (JP 97-2678543 B), activated carbon and activated white clay (JP 92-87624 A and JP 96-243341 A), activated coke (JP 97-29046 A), silicates (JP 97-75719 A and JP 97-75667 A), and zeolites (JP 97-248425 A).
  • the vaporization temperature of dioxin is about 220° C.
  • the temperature at which dioxin desorbs from materials such as silicates and zeolites ranges from about 220° C. to 260° C. Sorption of dioxin is most effective when the dioxin is in a gaseous state, and the sorption efficiency of a sorbent depends largely upon how close the dioxin desorption temperature of the material is to the vaporization temperature of dioxin. Accordingly, the sorption efficiency of materials such as silicates and zeolites is relatively poor, because the desorption temperature of those materials is too close to the vaporization temperature of dioxin.
  • carbon nanotubes are used as a sorbent to remove dioxin from an exhaust gas.
  • a method of removing dioxin from an exhaust gas includes the steps of introducing carbon nanotubes into a stream of the dioxin-containing exhaust gas, and sorbing dioxin on the carbon nanotubes.
  • the carbon nanotubes used in the present invention may be either of the single-wall or multi-wall variety.
  • the walls are typically comprised of hexagonal arrays of carbon atoms in graphene sheets that surround the tube axis. It is believed that a strong interaction between the benzene ring of dioxin and the surface of the carbon sheet is responsible for the strong sorption characteristics.
  • FIG. 1 is a diagram illustrating a conventional waste incinerator system
  • FIG. 2 is a diagram illustrating a waste incinerator system, where carbon nanotubes are introduced into the exhaust gas stream upstream of the bag filter;
  • FIG. 3 are temperature-programed desorption (TPD) curves of dioxin with activated carbon and carbon nanotubes.
  • FIG. 4 is a plot showing the relationship between the maximum desorption temperature (Tm) and heating rate (b) for dioxin and carbon nanotubes.
  • FIG. 2 is identical to the diagram shown in FIG. 1, but shows the location of where carbon nanotubes in particulate form would be introduced into the exhaust gas stream, in the same manner as activated carbon of the prior art. It is preferable to granulate the carbon nanotubes to improve the handling and flow properties of the powder. It is also preferable to introduce the nanotubes at this location so as to make use of the collection function of the gas bag filter that is typically standard equipment in munnicipal waste incinerator systems. It is possible to introduce the particulate carbon nanotube material downstream of the bag filter, but such an operation would require a secondary filter to collect them.
  • the exact configuration of the carbon nanotubes is not critical, it is preferred that they have an average particle diameter of 1 to 100 microns. It is also preferred, from the viewpoint of handling ease, that the carbon nanotubes have a granulated particle size of 1 micron to 100 microns.
  • the diameter of single-wall carbon nanotubes is usually 1-5 nm, while the diamter of multi-wall carbon nanotubes is greater.
  • the volume of particulate carbon nanotubes introduced into the exhaust stream depends on the volume of exhaust gas to be treated and the concentration of toxic material to be removed. Generally speaking however, a sufficient amount of carbon nanotubes should be added to provide for 0.3 m 2 surface area of carbon nanotubes for every 1Nm 3 of exhaust gas to be treated. This is in comparison to 3m 2 surface area in the case of using activated carbon (i.e., the sorption capacity of carbon nanotubes is approximately 10 times that of activated carbon).
  • TPD experiments of dioxin were carried out from room temperature to 800° C. at different heating rates from 2 to 20° C./min.
  • 0.1 g of carbon nanotubes was loaded in a stainless steel tubing (1 ⁇ 8-in) with an inner diameter of 2 mm. The length of the column was approximately 5 cm.
  • Non-chloro dioxin was used as the model compound for dioxins.
  • Dioxin solution in N, N-dimethylformamide (DMF: 5 ml) was used as the adsorbate.
  • the solution consisted of 50 mg of dibenzo-p-dioxin (99%, Chem. Service Co.) dissolved in 1 ml of DMF (99.8%, Aldrich).
  • the solution was then loaded at the inlet of the sorbent column and the column was purged with helium (50 ml/min) at room temperature.
  • the He gas (ultra high purity) was pretreated with a 5A molecular sieve column and a model 1000 oxygen trap column before entering the sorbent column.
  • the sample was heated in the He flow at a constant heating rate.
  • the dioxin at the inlet was vaporized and was subsequently adsorbed in the carbon nanotubes bed.
  • the dioxin was eventually desorbed.
  • the effluent or the desorption products were analyzed continuously by both a thermal conductivity detector (TCD) and a flame ionization detector (FID) in a gas chromatograph.
  • TCD thermal conductivity detector
  • FID flame ionization detector
  • the carbon nanotubes were prepared using catalytic decomposition of methane.
  • the obtained material was treated with 6M nitric acid for 24 h to dissolve the catalyst particles and then calcined at 400° C. for 1 h in air. Transmission electron microscopy images showed that the ends of some of the prepared carbon nanotubes were open.
  • the carbon nanotubes have a BET surface area of 155 m 2 /g and a pore size distribution from 2.5 to 30 nm (with the first peak at 2.9 nm), obtained from N 2 adsorption isotherms at ⁇ 196° C.
  • FIG. 3 shows the TPD spectra of dioxin on carbon nanotubes at different heating rates.
  • the peak desorption temperatures are substantially higher than all other known sorbents, suggesting very strong interactions between dioxin and carbon nanotubes.
  • the activation energy for dioxin desorption can be calculated.
  • the plot of [2 1n T m ⁇ 1n b] vs. 1/T m is given in FIG. 4. From this plot, the activation energy (E) for desorption of dioxin on the carbon nanotubes is 315 kJ/mol.

Abstract

A method of removing dioxins from an exhaust gas, including the steps of introducing carbon nanotubes into a stream of the dioxin-containing exhaust gas, and sorbing dioxins on the carbon nanotubes.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a method for treating an exhaust gas, in particular a dioxin-containing exhaust gas emitted from a waste incinerator. Dioxins are mainly generated from combustion of organic compounds in waste incinerators, such as municipal waste, medical waste, hazardous waste, and army stockpile (chemical agents). [0001]
  • FIG. 1 is a diagram illustrating a typical method for removing particulate matter (e.g., flyash) from exhaust gas produced by a waste incinerator. Burning waste (e.g., municipal waste) in an incinerator creates byproducts of (i) ash and (ii) exhaust gas and flyash, the former residing in the incinerator itself and the latter passing through the stack of the incinerator. It is standard operating procedure to flow the exhaust gas and flyash through a boiler to quench the exhaust gas and reduce the temperature thereof to a sufficiently low level so that a bag filter can be used to remove the flyash from the exhaust gas. The resultant exhaust gas is then passed through a scrubber and emitted to the environment through a stack. [0002]
  • It is well known that the incineration of municipal waste materials creates large volumes of organic compounds and hydrocarbons. These materials serve as precursors for various compounds, some of which are highly toxic. For example, aromatic compounds such as phenol or benzene, or chlorinated aromatic compounds such as chlorophenol or chlorobenzene, react in the presence of flyash to form dioxin, which is highly toxic. They are formed downstream of the combustion zone and decompose at temperatures only above 1200° C. The typical concentrations in the effluents from incinerators are in the range of 10-500 ng/Nm[0003] 3.
  • Current regulations on dioxin emissions are complex, depending on the toxic equivalency of the actual compounds and O[0004] 2 concentration, and vary in different countries. Nonetheless, removal to well below 1 ng/Nm3 is generally required. Since 1991, activated carbon adsorption has been widely adopted for dioxin removal from municipal and other waste incinerators in Europe and Japan.
  • It is believed that formation of dioxin in the presence of flyash is the result of a catalytic reaction wherein flyash is the catalyst. It is also believed that the catalytic reaction occurs when the temperature of the exhaust gas drops below 400° C., which typically occurs at a location between the boiler and the bag filter. [0005]
  • While it would seem logical to simply remove the flyash from the exhaust gas before the temperature of the exhaust gas drops below 400° C., and thus prevent the formation of dioxin in the first instance, there is no industrially practical method or apparatus for accomplishing such a goal. Accordingly, the industry has adopted various methods by which dioxin is removed from incinerator exhaust gas prior to being emitted to the environment through the stack of the incinerator. [0006]
  • The use of sorbent materials is the most common method for removing dioxin from incinerator exhaust gas. Sorbents are materials that adsorb or absorb dioxin or dioxin precursors, and examples of such sorbents include certain cements (JP 97-2678543 B), activated carbon and activated white clay (JP 92-87624 A and JP 96-243341 A), activated coke (JP 97-29046 A), silicates (JP 97-75719 A and JP 97-75667 A), and zeolites (JP 97-248425 A). [0007]
  • While it is most common to add such sorbents to the exhaust gas at an exhaust gas temperature of less than 400° C., to thereby sorb dioxin per se, another known method (EP 0 764 457) discloses adding sorbents to the exhaust gas at an exhaust temperature of greater than 400° C. to remove dioxin precursors from the exhaust gas. Subsequent to the sorption, the sorbent may be removed from the exhaust stream and heated to decompose the dioxin. Typically, this occurs above 600° C. [0008]
  • While all of the above-described methods are effective to remove dioxin from the exhaust gas to some degree, there are problems associated with each method. The main problem with using activated carbon-based sorbents is that they release dioxin at lower temperatures and thus have the potential to desorb prematurely and be emitted out of the incinerator stack. The dioxin-containing atmosphere resulting from the use of activated carbon thus needs to be managed to a level of precision too great to be of practical use in a large scale manufacturing process. [0009]
  • The problem with using other sorbents such as silicates and zeolites, for example, is that the desorption temperature of those materials is too close to the vaporization temperature of dioxin itself. Specifically, the vaporization temperature of dioxin is about 220° C., whereas the temperature at which dioxin desorbs from materials such as silicates and zeolites ranges from about 220° C. to 260° C. Sorption of dioxin is most effective when the dioxin is in a gaseous state, and the sorption efficiency of a sorbent depends largely upon how close the dioxin desorption temperature of the material is to the vaporization temperature of dioxin. Accordingly, the sorption efficiency of materials such as silicates and zeolites is relatively poor, because the desorption temperature of those materials is too close to the vaporization temperature of dioxin. [0010]
  • It would be desirable to provide a method for removing dioxin from incinerator exhaust gases without the problems of post-sorbtion treatment (associated with activated carbon) and of sorption inefficiency (associated with materials such as silicates and zeolites). Desirable is a sorbent which sorbs dioxin more strongly, and desorbs dioxin at a higher temperature (near or greater than the decomposition temperature of dioxin). To date, however, the industry has not provided any such method or sorbent. [0011]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a method for removing dioxin from an exhaust gas that overcomes the above-discussed problems associated with the prior art methods. [0012]
  • In accordance with one embodiment of the present invention, carbon nanotubes are used as a sorbent to remove dioxin from an exhaust gas. [0013]
  • In accordance with another embodiment of the present invention, a method of removing dioxin from an exhaust gas includes the steps of introducing carbon nanotubes into a stream of the dioxin-containing exhaust gas, and sorbing dioxin on the carbon nanotubes. [0014]
  • The inventors discovered that carbon nanotubes sorb dioxin more strongly than activated carbon, and, thus, can be used effectively as a sorbent of dioxin contained in an exhaust gas. Additionally, since dioxin desorbs at a higher temperature from carbon nanotubes than from activated carbon, it is easier and more effective to deompose the dioxin during the post-sorption treating step to remove the dioxin form the sorbent material. [0015]
  • The inventors have discovered that carbon nanotubes are better sorbents for dioxin than activated carbon insofar as the nanotubes desorb dioxin at a higher temperature than the activated carbon. This provides for easier handling of the dioxin-containing exhaust and provides for more efficient post-sorption treatment of the dioxin-sorbed sorbent material. The desorption temperatures of carbon nanotubes and activated carbon, using the well-known temperature-programmed desorption (TPD) technique, are shown in Table I. [0016]
    TABLE I
    Heating rate (° C./mm)
    Sorbent 2 5 10 20
    Desorption temperature 588 609 620 634
    from carbon nanotubes (C)
    Desorption temperature 481 517 543
    from activated carbon (C)
  • The principal problem associated with the use of activated carbon is that of desorption of the dioxin prior to its decompostion. Table I demonstrates that, regardless of the heating rate, carbon nanotubes desorb dioxin at a higher temperature than that of activated carbon. Thus, when attempting to decompose the dioxin, carbon nanotubes do not require strict atmospheric control, or inordinately steep heating rates. The use of carbon nanotubes therefore is easier and less expensive in treating exhaust gas. [0017]
  • The carbon nanotubes used in the present invention may be either of the single-wall or multi-wall variety. The walls are typically comprised of hexagonal arrays of carbon atoms in graphene sheets that surround the tube axis. It is believed that a strong interaction between the benzene ring of dioxin and the surface of the carbon sheet is responsible for the strong sorption characteristics.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a fuller understanding of the nature and objects of the invention, reference should be made to the following detailed description of a preferred mode of practicing the invention, read in connection with the accompanying drawings, in which: [0019]
  • FIG. 1 is a diagram illustrating a conventional waste incinerator system; [0020]
  • FIG. 2 is a diagram illustrating a waste incinerator system, where carbon nanotubes are introduced into the exhaust gas stream upstream of the bag filter; [0021]
  • FIG. 3 are temperature-programed desorption (TPD) curves of dioxin with activated carbon and carbon nanotubes; and [0022]
  • FIG. 4 is a plot showing the relationship between the maximum desorption temperature (Tm) and heating rate (b) for dioxin and carbon nanotubes.[0023]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2 is identical to the diagram shown in FIG. 1, but shows the location of where carbon nanotubes in particulate form would be introduced into the exhaust gas stream, in the same manner as activated carbon of the prior art. It is preferable to granulate the carbon nanotubes to improve the handling and flow properties of the powder. It is also preferable to introduce the nanotubes at this location so as to make use of the collection function of the gas bag filter that is typically standard equipment in munnicipal waste incinerator systems. It is possible to introduce the particulate carbon nanotube material downstream of the bag filter, but such an operation would require a secondary filter to collect them. [0024]
  • While the exact configuration of the carbon nanotubes is not critical, it is preferred that they have an average particle diameter of 1 to 100 microns. It is also preferred, from the viewpoint of handling ease, that the carbon nanotubes have a granulated particle size of 1 micron to 100 microns. The diameter of single-wall carbon nanotubes is usually 1-5 nm, while the diamter of multi-wall carbon nanotubes is greater. [0025]
  • The volume of particulate carbon nanotubes introduced into the exhaust stream depends on the volume of exhaust gas to be treated and the concentration of toxic material to be removed. Generally speaking however, a sufficient amount of carbon nanotubes should be added to provide for 0.3 m[0026] 2 surface area of carbon nanotubes for every 1Nm3 of exhaust gas to be treated. This is in comparison to 3m2 surface area in the case of using activated carbon (i.e., the sorption capacity of carbon nanotubes is approximately 10 times that of activated carbon).
  • After the dioxin has been sorbed by the carbon nanotubes, that material is collected in the bag filter along with the flyash and is heated up to a temperature exceeding 500° C. to desorb the dioxin from the carbon nanotubes and thermally decompose the dioxin into non-toxic byproducts, which can then be emitted into the environment through the incinerator stack. [0027]
  • EXAMPLE
  • The following example is provided to illustrate the inventive concepts of the present invention, and is not intended to in any way limit the present invention in scope or spirit. [0028]
  • TPD experiments of dioxin were carried out from room temperature to 800° C. at different heating rates from 2 to 20° C./min. In each experiment, 0.1 g of carbon nanotubes was loaded in a stainless steel tubing (⅛-in) with an inner diameter of 2 mm. The length of the column was approximately 5 cm. Non-chloro dioxin was used as the model compound for dioxins. Dioxin solution in N, N-dimethylformamide (DMF: 5 ml) was used as the adsorbate. The solution consisted of 50 mg of dibenzo-p-dioxin (99%, Chem. Service Co.) dissolved in 1 ml of DMF (99.8%, Aldrich). The solution was then loaded at the inlet of the sorbent column and the column was purged with helium (50 ml/min) at room temperature. The He gas (ultra high purity) was pretreated with a 5A molecular sieve column and a model 1000 oxygen trap column before entering the sorbent column. [0029]
  • Subsequently, the sample was heated in the He flow at a constant heating rate. As the temperature was increased, the dioxin at the inlet was vaporized and was subsequently adsorbed in the carbon nanotubes bed. As the temperature was further increased, the dioxin was eventually desorbed. The effluent or the desorption products were analyzed continuously by both a thermal conductivity detector (TCD) and a flame ionization detector (FID) in a gas chromatograph. The tubes between the sorbent column and TCD/FID detectors were heat treated at 300° C. to prevent deposition of dioxin (b.p. 266° C. and m.p. 122° C.). [0030]
  • The carbon nanotubes were prepared using catalytic decomposition of methane. The obtained material was treated with 6M nitric acid for 24 h to dissolve the catalyst particles and then calcined at 400° C. for 1 h in air. Transmission electron microscopy images showed that the ends of some of the prepared carbon nanotubes were open. The carbon nanotubes have a BET surface area of 155 m[0031] 2/g and a pore size distribution from 2.5 to 30 nm (with the first peak at 2.9 nm), obtained from N2 adsorption isotherms at −196° C.
  • FIG. 3 shows the TPD spectra of dioxin on carbon nanotubes at different heating rates. The peak desorption temperatures are substantially higher than all other known sorbents, suggesting very strong interactions between dioxin and carbon nanotubes. The maximum desorption temperature increased from 588 to 634° C. as the heating rate was increased from 2° C./min to 20° C./min. According to the following equation [0032] 2 ln T m - ln b = E RT m + ln Z
    Figure US20020134242A1-20020926-M00001
  • (where T[0033] m is the peak desorption temperature, b is heating rate, E is activation energy for desorption, R is gas constant and Z is a constant that depends on the desorption kinetics), the activation energy for dioxin desorption can be calculated. The plot of [2 1n Tm−1n b] vs. 1/Tm is given in FIG. 4. From this plot, the activation energy (E) for desorption of dioxin on the carbon nanotubes is 315 kJ/mol.
  • While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims. [0034]

Claims (7)

We claim:
1. A method of using carbon nanotubes to remove dioxins from an exhaust gas.
2. A method of removing dioxins from an exhaust gas, comprising the steps of:
introducing carbon nanotubes into a stream of dioxin-containing exhaust gas; and
sorbing dioxins on the carbon nanotubes.
3. The method of claim 2, wherein said carbon nanotubes are introduced into the stream of dioxin-containing exhaust gas at an exhaust gas temperature of not greater than 300° C.
4. The method of claim 3, wherein said carbon nanotubes are introduced into the stream of dioxin-containing exhaust gas at an exhaust gas temperature of not less than 100° C.
5. The method of claim 2, further comprising the step of passing the stream of dioxin-containing exhaust gas through a filter to remove particulate matter therefrom, and said carbon nanotubes are introduced into the stream of dioxin-containing exhaust gas at a position upstream of the filter.
6. The method of claim 2, further comprising the step of passing the stream of dioxin-containing exhaust gas through a filter to remove particulate matter therefrom, and said carbon nanotubes are introduced into the stream of dioxin-containing exhaust gas at a position downstream of the filter.
7. The method of claim 2, wherein said carbon nanotubes are introduced into the stream of dioxin-containing exhaust gas in particulate form.
US09/777,607 2001-02-06 2001-02-06 Method of treating exhaust gas Expired - Lifetime US6511527B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/777,607 US6511527B2 (en) 2001-02-06 2001-02-06 Method of treating exhaust gas
JP2002021030A JP2002301334A (en) 2001-02-06 2002-01-30 Method for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/777,607 US6511527B2 (en) 2001-02-06 2001-02-06 Method of treating exhaust gas

Publications (2)

Publication Number Publication Date
US20020134242A1 true US20020134242A1 (en) 2002-09-26
US6511527B2 US6511527B2 (en) 2003-01-28

Family

ID=25110718

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/777,607 Expired - Lifetime US6511527B2 (en) 2001-02-06 2001-02-06 Method of treating exhaust gas

Country Status (2)

Country Link
US (1) US6511527B2 (en)
JP (1) JP2002301334A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030154858A1 (en) * 2000-05-08 2003-08-21 Kleut Dirk Van De Process for the purfication of flue gas
US6818043B1 (en) * 2003-01-23 2004-11-16 Electric Power Research Institute, Inc. Vapor-phase contaminant removal by injection of fine sorbent slurries
US20060021510A1 (en) * 2004-07-27 2006-02-02 University Of North Texas Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
US20090297413A1 (en) * 2004-08-30 2009-12-03 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20100047146A1 (en) * 2004-08-30 2010-02-25 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US9662629B2 (en) 2012-04-23 2017-05-30 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
US9669355B2 (en) 2013-03-06 2017-06-06 Energy & Environmental Research Center Foundation Activated carbon sorbent including nitrogen and methods of using the same
US10124293B2 (en) 2010-10-25 2018-11-13 ADA-ES, Inc. Hot-side method and system
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
US10159931B2 (en) 2012-04-11 2018-12-25 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US10343114B2 (en) 2004-08-30 2019-07-09 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10427096B2 (en) 2010-02-04 2019-10-01 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US10465137B2 (en) 2011-05-13 2019-11-05 Ada Es, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
CN110756014A (en) * 2019-11-20 2020-02-07 新昌县麦迪环保科技有限公司 Dioxin processing apparatus in flue waste gas
US10767130B2 (en) 2012-08-10 2020-09-08 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003805A1 (en) * 1999-07-14 2001-01-18 Taylor Tommy G Innovative incineration system for refuse-derived fuels, coal and petroleum coke, or chlorinated hydrocarbons
JP2001219056A (en) * 2000-02-14 2001-08-14 Miura Co Ltd Adsorbent for dioxins
CA2424969C (en) 2000-10-06 2008-05-27 Fullerene International Corporation Double-walled carbon nanotubes and methods for production and application
ES2291859T3 (en) * 2003-03-07 2008-03-01 Seldon Technologies, Llc PURIFICATION OF FLUIDS WITH NANOMATERIALS.
US20100098877A1 (en) * 2003-03-07 2010-04-22 Cooper Christopher H Large scale manufacturing of nanostructured material
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
CN100555529C (en) * 2005-11-04 2009-10-28 清华大学 A kind of field emission component and preparation method thereof
US7993524B2 (en) * 2008-06-30 2011-08-09 Nanoasis Technologies, Inc. Membranes with embedded nanotubes for selective permeability
US8192685B2 (en) * 2008-11-04 2012-06-05 Advanced Concepts And Technologies International, L.L.C. Molecular separators, concentrators, and detectors preparatory to sensor operation, and methods of minimizing false positives in sensor operations
JP6150679B2 (en) * 2013-08-29 2017-06-21 日立造船株式会社 Fluidized bed heat recovery device and heat transporter used therefor
US10464044B1 (en) 2016-05-27 2019-11-05 Precision Combustion, Inc. High capacity regenerable graphene-based sorbent

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4502396A (en) * 1983-04-25 1985-03-05 Teller Environmental Systems, Inc. Control of dioxin emissions from incineration
DK158376C (en) * 1986-07-16 1990-10-08 Niro Atomizer As METHOD OF REDUCING THE CONTENT OF MERCURY Vapor AND / OR VAPORS OF Harmful Organic Compounds And / Or Nitrogen Oxides In Combustion Plant
US5113772A (en) 1990-07-16 1992-05-19 University Of Water Of Waterloo Suppression of dioxin production in the incineration of waste material
JPH0487624A (en) 1990-07-31 1992-03-19 Ebara Corp Treatment of waste gas generated by combustion of municipal refuse
US5626650A (en) * 1990-10-23 1997-05-06 Catalytic Materials Limited Process for separating components from gaseous streams
JP2678534B2 (en) 1991-06-19 1997-11-17 エスオーエンジニアリング株式会社 Exhaust gas treatment method after incineration of garbage
DE4233303C1 (en) * 1992-10-03 1994-01-20 Metallgesellschaft Ag Process for the separation of dioxins and furans from waste gases from incineration plants
CA2130317C (en) * 1993-10-01 2000-01-18 Bernard J. Lerner System for the prevention of dioxin formation in combustion flue gases
US5505766A (en) * 1994-07-12 1996-04-09 Electric Power Research, Inc. Method for removing pollutants from a combustor flue gas and system for same
JPH08243341A (en) 1995-03-13 1996-09-24 Ebara Corp Treatment of waste gas
JPH0929046A (en) 1995-07-21 1997-02-04 Kubota Corp Exhaust gas treatment using adsorbent
JPH0975667A (en) 1995-09-13 1997-03-25 Sangyo Shinko Kk Treatment of exhaust gas
JPH0975719A (en) 1995-09-13 1997-03-25 Sangyo Shinko Kk Adsorbent of organochlorine compound
US5968467A (en) 1995-09-22 1999-10-19 Kurita Water Industries, Co., Ltd. Dioxin formation preventative in incinerators and method for preventing the formation of dioxins
JP3497319B2 (en) 1996-03-18 2004-02-16 株式会社タクマ Dioxin removal material recycling method
US5843205A (en) * 1996-12-06 1998-12-01 Kabushiki Kaisha Kawasaki Giken Method of removing dioxins in a waste incineration plant
WO2001003805A1 (en) * 1999-07-14 2001-01-18 Taylor Tommy G Innovative incineration system for refuse-derived fuels, coal and petroleum coke, or chlorinated hydrocarbons
US6279491B1 (en) * 1999-10-05 2001-08-28 Ngk Insulators, Ltd. Method of treating exhaust gas

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030154858A1 (en) * 2000-05-08 2003-08-21 Kleut Dirk Van De Process for the purfication of flue gas
US6843831B2 (en) * 2000-05-08 2005-01-18 Norit Nederland B.V. Process for the purification of flue gas
US6818043B1 (en) * 2003-01-23 2004-11-16 Electric Power Research Institute, Inc. Vapor-phase contaminant removal by injection of fine sorbent slurries
US11806665B2 (en) 2003-04-23 2023-11-07 Midwwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US11179673B2 (en) 2003-04-23 2021-11-23 Midwwest Energy Emission Corp. Sorbents for the oxidation and removal of mercury
US10828596B2 (en) 2003-04-23 2020-11-10 Midwest Energy Emissions Corp. Promoted ammonium salt-protected activated carbon sorbent particles for removal of mercury from gas streams
US20060021510A1 (en) * 2004-07-27 2006-02-02 University Of North Texas Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
US7468097B2 (en) * 2004-07-27 2008-12-23 University Of North Texas Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
US8821819B2 (en) * 2004-08-30 2014-09-02 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US8168147B2 (en) * 2004-08-30 2012-05-01 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US8512655B2 (en) 2004-08-30 2013-08-20 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US9468886B2 (en) 2004-08-30 2016-10-18 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20090297413A1 (en) * 2004-08-30 2009-12-03 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US20100047146A1 (en) * 2004-08-30 2010-02-25 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US9757689B2 (en) 2004-08-30 2017-09-12 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10933370B2 (en) 2004-08-30 2021-03-02 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10926218B2 (en) 2004-08-30 2021-02-23 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US8652235B2 (en) * 2004-08-30 2014-02-18 Energy & Environmental Research Center Foundation Sorbents for the oxidation and removal of mercury
US10343114B2 (en) 2004-08-30 2019-07-09 Midwest Energy Emissions Corp Sorbents for the oxidation and removal of mercury
US10668430B2 (en) 2004-08-30 2020-06-02 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10596517B2 (en) 2004-08-30 2020-03-24 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10589225B2 (en) 2004-08-30 2020-03-17 Midwest Energy Emissions Corp. Sorbents for the oxidation and removal of mercury
US10427096B2 (en) 2010-02-04 2019-10-01 ADA-ES, Inc. Method and system for controlling mercury emissions from coal-fired thermal processes
US10124293B2 (en) 2010-10-25 2018-11-13 ADA-ES, Inc. Hot-side method and system
US11298657B2 (en) 2010-10-25 2022-04-12 ADA-ES, Inc. Hot-side method and system
US10730015B2 (en) 2010-10-25 2020-08-04 ADA-ES, Inc. Hot-side method and system
US10465137B2 (en) 2011-05-13 2019-11-05 Ada Es, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US10731095B2 (en) 2011-05-13 2020-08-04 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US11118127B2 (en) 2011-05-13 2021-09-14 ADA-ES, Inc. Process to reduce emissions of nitrogen oxides and mercury from coal-fired boilers
US10159931B2 (en) 2012-04-11 2018-12-25 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US11065578B2 (en) 2012-04-11 2021-07-20 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US10758863B2 (en) 2012-04-11 2020-09-01 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
US9662629B2 (en) 2012-04-23 2017-05-30 Energy & Environmental Research Center Foundation Carbon nanocomposite sorbent and methods of using the same for separation of one or more materials from a gas stream
US10767130B2 (en) 2012-08-10 2020-09-08 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US11384304B2 (en) 2012-08-10 2022-07-12 ADA-ES, Inc. Method and additive for controlling nitrogen oxide emissions
US10130930B2 (en) 2013-03-06 2018-11-20 Midwest Energy Emissions Corp Sorbent comprising carbon and nitrogen and methods of using the same
US11059028B2 (en) 2013-03-06 2021-07-13 Midwwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same
US9669355B2 (en) 2013-03-06 2017-06-06 Energy & Environmental Research Center Foundation Activated carbon sorbent including nitrogen and methods of using the same
US10471412B2 (en) 2013-03-06 2019-11-12 Midwest Energy Emissions Corp. Activated carbon sorbent including nitrogen and methods of using the same
CN110756014A (en) * 2019-11-20 2020-02-07 新昌县麦迪环保科技有限公司 Dioxin processing apparatus in flue waste gas

Also Published As

Publication number Publication date
JP2002301334A (en) 2002-10-15
US6511527B2 (en) 2003-01-28

Similar Documents

Publication Publication Date Title
US6511527B2 (en) Method of treating exhaust gas
EP1509629B1 (en) Method for the removal of mercury from combustion gases
US10933370B2 (en) Sorbents for the oxidation and removal of mercury
AU781411B2 (en) Adsorption powder for removing mercury from high temperature, high moisture gas streams
US10668447B2 (en) High capacity regenerable graphene-based sorbent
Jurng et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents
US6595147B2 (en) Method for adsorbing contaminants from flue gas
US6582497B1 (en) Adsorption power for removing mercury from high temperature high moisture gas streams
CN1033689C (en) Process of purifying loaded waste gases from oil burning device
Cunliffe et al. De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases
KR100815175B1 (en) The method for nitrogen oxides and dioxins removal from exhaust gas using powder type impregnated Activated Carbon
DK158376B (en) METHOD OF REDUCING THE CONTENT OF MERCURY Vapor AND / OR VAPORS OF Harmful Organic Compounds And / Or Nitrogen Oxides In Combustion Plant
Liu et al. Simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator with a pilot plant
US7585353B2 (en) Method for reducing heavy metals in flue gases
KR100767161B1 (en) The apparatus for nitrogen oxides and dioxins removal from exhaust gas using powder type impregnated activated carbon
US6279491B1 (en) Method of treating exhaust gas
US7144556B2 (en) Method and apparatus for decomposition of substance contained in gas
Ie et al. Single and dual adsorption of vapor-phase Hg0 and/or HgCl2 by innovative composite activated carbons impregnated with both S0 and Na2S
JP2003305336A (en) Adsorbent packed-bed device
Janssens et al. Sampling incinerator effluents for PCDDs and PCDFs: a critical evaluation of existing sampling procedures
JPH0775718A (en) Method for simultaneously removing heavy metal, chlorinated hydrocarbon and acidic gas in waste gas
WO1998009716A1 (en) Process for reducing dioxin and furan emissions in the stack gas from an incinerator
JP2000317254A (en) Method for concentrating in contaminated gas using adsorption/desorption

Legal Events

Date Code Title Description
AS Assignment

Owner name: NGK INSULATORS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YANG, RALPH T.;LONG, RUIQIANG;TAKAHASHI, TOMONORI;REEL/FRAME:011704/0833

Effective date: 20010403

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 12