US20020128618A1 - Hydrogels - Google Patents
Hydrogels Download PDFInfo
- Publication number
- US20020128618A1 US20020128618A1 US10/028,907 US2890701A US2002128618A1 US 20020128618 A1 US20020128618 A1 US 20020128618A1 US 2890701 A US2890701 A US 2890701A US 2002128618 A1 US2002128618 A1 US 2002128618A1
- Authority
- US
- United States
- Prior art keywords
- water
- hydrogels
- acid
- absorbent
- sfc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000017 hydrogel Substances 0.000 title claims abstract description 88
- 239000000499 gel Substances 0.000 claims abstract description 49
- 125000006850 spacer group Chemical group 0.000 claims abstract description 32
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000011780 sodium chloride Substances 0.000 claims abstract description 13
- 239000011248 coating agent Substances 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 230000014759 maintenance of location Effects 0.000 claims abstract description 10
- 229920000642 polymer Polymers 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 33
- 239000002250 absorbent Substances 0.000 claims description 30
- 239000000463 material Substances 0.000 claims description 23
- 239000012530 fluid Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 14
- 230000035699 permeability Effects 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 206010021639 Incontinence Diseases 0.000 claims description 4
- 229920006317 cationic polymer Polymers 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 229920005594 polymer fiber Polymers 0.000 claims description 4
- 238000001228 spectrum Methods 0.000 claims description 3
- 230000002708 enhancing effect Effects 0.000 claims description 2
- 239000010457 zeolite Substances 0.000 claims description 2
- 235000012216 bentonite Nutrition 0.000 claims 1
- 239000000243 solution Substances 0.000 description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 39
- 239000000047 product Substances 0.000 description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- 239000000178 monomer Substances 0.000 description 24
- 238000006116 polymerization reaction Methods 0.000 description 21
- 239000008367 deionised water Substances 0.000 description 20
- 229910021641 deionized water Inorganic materials 0.000 description 20
- -1 urine Substances 0.000 description 19
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 18
- 239000004971 Cross linker Substances 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 18
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 16
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 15
- 229920003023 plastic Polymers 0.000 description 15
- 239000004033 plastic Substances 0.000 description 15
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000002253 acid Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- 239000000377 silicon dioxide Substances 0.000 description 14
- 229920005601 base polymer Polymers 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- 239000003999 initiator Substances 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 229920001223 polyethylene glycol Polymers 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 229910052751 metal Chemical class 0.000 description 10
- 239000002184 metal Chemical class 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 9
- 239000002202 Polyethylene glycol Substances 0.000 description 9
- 239000011668 ascorbic acid Substances 0.000 description 9
- 235000010323 ascorbic acid Nutrition 0.000 description 9
- 229960005070 ascorbic acid Drugs 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 150000002148 esters Chemical class 0.000 description 9
- 125000000524 functional group Chemical group 0.000 description 9
- 229920000768 polyamine Polymers 0.000 description 9
- UWFRVQVNYNPBEF-UHFFFAOYSA-N 1-(2,4-dimethylphenyl)propan-1-one Chemical compound CCC(=O)C1=CC=C(C)C=C1C UWFRVQVNYNPBEF-UHFFFAOYSA-N 0.000 description 8
- 229920005372 Plexiglas® Polymers 0.000 description 8
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000004926 polymethyl methacrylate Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 229920002873 Polyethylenimine Polymers 0.000 description 7
- 230000002745 absorbent Effects 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 6
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 6
- 150000001412 amines Chemical group 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 6
- 235000013772 propylene glycol Nutrition 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 6
- 239000000600 sorbitol Substances 0.000 description 6
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229920003043 Cellulose fiber Polymers 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- 239000013065 commercial product Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 4
- FYRWKWGEFZTOQI-UHFFFAOYSA-N 3-prop-2-enoxy-2,2-bis(prop-2-enoxymethyl)propan-1-ol Chemical compound C=CCOCC(CO)(COCC=C)COCC=C FYRWKWGEFZTOQI-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000003863 ammonium salts Chemical class 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 229920006037 cross link polymer Polymers 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 229940052303 ethers for general anesthesia Drugs 0.000 description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 4
- 239000003505 polymerization initiator Substances 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 3
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- NJSSICCENMLTKO-HRCBOCMUSA-N [(1r,2s,4r,5r)-3-hydroxy-4-(4-methylphenyl)sulfonyloxy-6,8-dioxabicyclo[3.2.1]octan-2-yl] 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)O[C@H]1C(O)[C@@H](OS(=O)(=O)C=2C=CC(C)=CC=2)[C@@H]2OC[C@H]1O2 NJSSICCENMLTKO-HRCBOCMUSA-N 0.000 description 3
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 125000004386 diacrylate group Chemical group 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 239000007863 gel particle Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 3
- 229920000962 poly(amidoamine) Polymers 0.000 description 3
- 229920000223 polyglycerol Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- NXLOLUFNDSBYTP-UHFFFAOYSA-N retene Chemical compound C1=CC=C2C3=CC=C(C(C)C)C=C3C=CC2=C1C NXLOLUFNDSBYTP-UHFFFAOYSA-N 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- IAUGBVWVWDTCJV-UHFFFAOYSA-N 1-(prop-2-enoylamino)propane-1-sulfonic acid Chemical compound CCC(S(O)(=O)=O)NC(=O)C=C IAUGBVWVWDTCJV-UHFFFAOYSA-N 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- HXVJQEGYAYABRY-UHFFFAOYSA-N 1-ethenyl-4,5-dihydroimidazole Chemical class C=CN1CCN=C1 HXVJQEGYAYABRY-UHFFFAOYSA-N 0.000 description 2
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical class C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 2
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 2
- SJIXRGNQPBQWMK-UHFFFAOYSA-N 2-(diethylamino)ethyl 2-methylprop-2-enoate Chemical compound CCN(CC)CCOC(=O)C(C)=C SJIXRGNQPBQWMK-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229920005682 EO-PO block copolymer Polymers 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 229910021485 fumed silica Inorganic materials 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N iron (II) ion Substances [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- QYZFTMMPKCOTAN-UHFFFAOYSA-N n-[2-(2-hydroxyethylamino)ethyl]-2-[[1-[2-(2-hydroxyethylamino)ethylamino]-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound OCCNCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCNCCO QYZFTMMPKCOTAN-UHFFFAOYSA-N 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- FBCQUCJYYPMKRO-UHFFFAOYSA-N prop-2-enyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC=C FBCQUCJYYPMKRO-UHFFFAOYSA-N 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 230000001698 pyrogenic effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- MLIWQXBKMZNZNF-PWDIZTEBSA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]-4-methylcyclohexan-1-one Chemical compound O=C1\C(=C\C=2C=CC(=CC=2)N=[N+]=[N-])CC(C)C\C1=C/C1=CC=C(N=[N+]=[N-])C=C1 MLIWQXBKMZNZNF-PWDIZTEBSA-N 0.000 description 1
- UZNOMHUYXSAUPB-UNZYHPAISA-N (2e,6e)-2,6-bis[(4-azidophenyl)methylidene]cyclohexan-1-one Chemical compound C1=CC(N=[N+]=[N-])=CC=C1\C=C(/CCC\1)C(=O)C/1=C/C1=CC=C(N=[N+]=[N-])C=C1 UZNOMHUYXSAUPB-UNZYHPAISA-N 0.000 description 1
- NOBYOEQUFMGXBP-UHFFFAOYSA-N (4-tert-butylcyclohexyl) (4-tert-butylcyclohexyl)oxycarbonyloxy carbonate Chemical compound C1CC(C(C)(C)C)CCC1OC(=O)OOC(=O)OC1CCC(C(C)(C)C)CC1 NOBYOEQUFMGXBP-UHFFFAOYSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- XVOUMQNXTGKGMA-OWOJBTEDSA-N (E)-glutaconic acid Chemical compound OC(=O)C\C=C\C(O)=O XVOUMQNXTGKGMA-OWOJBTEDSA-N 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- RQHGZNBWBKINOY-PLNGDYQASA-N (z)-4-tert-butylperoxy-4-oxobut-2-enoic acid Chemical compound CC(C)(C)OOC(=O)\C=C/C(O)=O RQHGZNBWBKINOY-PLNGDYQASA-N 0.000 description 1
- 0 *C(C[2*])CO[1*] Chemical compound *C(C[2*])CO[1*] 0.000 description 1
- FTLTTYGQIYQDEL-UHFFFAOYSA-N 1,1-bis(ethenyl)urea Chemical compound NC(=O)N(C=C)C=C FTLTTYGQIYQDEL-UHFFFAOYSA-N 0.000 description 1
- MWZJGRDWJVHRDV-UHFFFAOYSA-N 1,4-bis(ethenoxy)butane Chemical compound C=COCCCCOC=C MWZJGRDWJVHRDV-UHFFFAOYSA-N 0.000 description 1
- VZXPHDGHQXLXJC-UHFFFAOYSA-N 1,6-diisocyanato-5,6-dimethylheptane Chemical compound O=C=NC(C)(C)C(C)CCCCN=C=O VZXPHDGHQXLXJC-UHFFFAOYSA-N 0.000 description 1
- HSOOIVBINKDISP-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(CCC)OC(=O)C(C)=C HSOOIVBINKDISP-UHFFFAOYSA-N 0.000 description 1
- OGBWMWKMTUSNKE-UHFFFAOYSA-N 1-(2-methylprop-2-enoyloxy)hexyl 2-methylprop-2-enoate Chemical compound CCCCCC(OC(=O)C(C)=C)OC(=O)C(C)=C OGBWMWKMTUSNKE-UHFFFAOYSA-N 0.000 description 1
- QGWRQLKBHWIPAF-UHFFFAOYSA-N 1-(4-azidonaphthalen-1-yl)-3-(dimethylamino)propan-1-one Chemical compound C1=CC=C2C(C(=O)CCN(C)C)=CC=C(N=[N+]=[N-])C2=C1 QGWRQLKBHWIPAF-UHFFFAOYSA-N 0.000 description 1
- LZJPDRANSVSGOR-UHFFFAOYSA-N 1-(4-azidophenyl)-2-bromoethanone Chemical compound BrCC(=O)C1=CC=C(N=[N+]=[N-])C=C1 LZJPDRANSVSGOR-UHFFFAOYSA-N 0.000 description 1
- LGJCFVYMIJLQJO-UHFFFAOYSA-N 1-dodecylperoxydodecane Chemical compound CCCCCCCCCCCCOOCCCCCCCCCCCC LGJCFVYMIJLQJO-UHFFFAOYSA-N 0.000 description 1
- FWQVHBXYJCMRDM-UHFFFAOYSA-N 1-ethenyl-2-ethyl-4,5-dihydroimidazole Chemical compound CCC1=NCCN1C=C FWQVHBXYJCMRDM-UHFFFAOYSA-N 0.000 description 1
- VDSAXHBDVIUOGV-UHFFFAOYSA-N 1-ethenyl-2-methyl-4,5-dihydroimidazole Chemical compound CC1=NCCN1C=C VDSAXHBDVIUOGV-UHFFFAOYSA-N 0.000 description 1
- BDHGFCVQWMDIQX-UHFFFAOYSA-N 1-ethenyl-2-methylimidazole Chemical compound CC1=NC=CN1C=C BDHGFCVQWMDIQX-UHFFFAOYSA-N 0.000 description 1
- QBUVVHDWVUMJOZ-UHFFFAOYSA-N 1-ethenyl-2-propyl-4,5-dihydroimidazole Chemical compound CCCC1=NCCN1C=C QBUVVHDWVUMJOZ-UHFFFAOYSA-N 0.000 description 1
- JWYVGKFDLWWQJX-UHFFFAOYSA-N 1-ethenylazepan-2-one Chemical compound C=CN1CCCCCC1=O JWYVGKFDLWWQJX-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- SXLNNJJQGLHPFZ-UHFFFAOYSA-N 2,2,3,6-tetramethylpiperidin-4-one Chemical compound CC1CC(=O)C(C)C(C)(C)N1 SXLNNJJQGLHPFZ-UHFFFAOYSA-N 0.000 description 1
- IVIDDMGBRCPGLJ-UHFFFAOYSA-N 2,3-bis(oxiran-2-ylmethoxy)propan-1-ol Chemical compound C1OC1COC(CO)COCC1CO1 IVIDDMGBRCPGLJ-UHFFFAOYSA-N 0.000 description 1
- PRAMZQXXPOLCIY-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)ethanesulfonic acid Chemical compound CC(=C)C(=O)OCCS(O)(=O)=O PRAMZQXXPOLCIY-UHFFFAOYSA-N 0.000 description 1
- JJBFVQSGPLGDNX-UHFFFAOYSA-N 2-(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(C)COC(=O)C(C)=C JJBFVQSGPLGDNX-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- BDYSAIUVMBSFPU-UHFFFAOYSA-N 2-(dimethylamino)ethyl 3-(4-azidophenyl)prop-2-enoate Chemical compound CN(C)CCOC(=O)C=CC1=CC=C(N=[N+]=[N-])C=C1 BDYSAIUVMBSFPU-UHFFFAOYSA-N 0.000 description 1
- PQKIJCOGSCWWMN-UHFFFAOYSA-N 2-(dimethylamino)ethyl 4-azidobenzoate Chemical compound CN(C)CCOC(=O)C1=CC=C(N=[N+]=[N-])C=C1 PQKIJCOGSCWWMN-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical compound CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 1
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 1
- HDPLHDGYGLENEI-UHFFFAOYSA-N 2-[1-(oxiran-2-ylmethoxy)propan-2-yloxymethyl]oxirane Chemical compound C1OC1COC(C)COCC1CO1 HDPLHDGYGLENEI-UHFFFAOYSA-N 0.000 description 1
- SZTBMYHIYNGYIA-UHFFFAOYSA-N 2-chloroacrylic acid Chemical compound OC(=O)C(Cl)=C SZTBMYHIYNGYIA-UHFFFAOYSA-N 0.000 description 1
- CKSAKVMRQYOFBC-UHFFFAOYSA-N 2-cyanopropan-2-yliminourea Chemical compound N#CC(C)(C)N=NC(N)=O CKSAKVMRQYOFBC-UHFFFAOYSA-N 0.000 description 1
- GTELLNMUWNJXMQ-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO GTELLNMUWNJXMQ-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- ZACVGCNKGYYQHA-UHFFFAOYSA-N 2-ethylhexoxycarbonyloxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOC(=O)OCC(CC)CCCC ZACVGCNKGYYQHA-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- SQVSEQUIWOQWAH-UHFFFAOYSA-N 2-hydroxy-3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCC(O)CS(O)(=O)=O SQVSEQUIWOQWAH-UHFFFAOYSA-N 0.000 description 1
- MAQHZPIRSNDMAT-UHFFFAOYSA-N 2-hydroxy-3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CC(O)COC(=O)C=C MAQHZPIRSNDMAT-UHFFFAOYSA-N 0.000 description 1
- IEVADDDOVGMCSI-UHFFFAOYSA-N 2-hydroxybutyl 2-methylprop-2-enoate Chemical compound CCC(O)COC(=O)C(C)=C IEVADDDOVGMCSI-UHFFFAOYSA-N 0.000 description 1
- RAWISQFSQWIXCW-UHFFFAOYSA-N 2-methylbutan-2-yl 2,2-dimethyloctaneperoxoate Chemical compound CCCCCCC(C)(C)C(=O)OOC(C)(C)CC RAWISQFSQWIXCW-UHFFFAOYSA-N 0.000 description 1
- NDAJNMAAXXIADY-UHFFFAOYSA-N 2-methylpropanimidamide Chemical compound CC(C)C(N)=N NDAJNMAAXXIADY-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- GQTFHSAAODFMHB-UHFFFAOYSA-N 2-prop-2-enoyloxyethanesulfonic acid Chemical compound OS(=O)(=O)CCOC(=O)C=C GQTFHSAAODFMHB-UHFFFAOYSA-N 0.000 description 1
- VFZKVQVQOMDJEG-UHFFFAOYSA-N 2-prop-2-enoyloxypropyl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(=O)C=C VFZKVQVQOMDJEG-UHFFFAOYSA-N 0.000 description 1
- WDGCBNTXZHJTHJ-UHFFFAOYSA-N 2h-1,3-oxazol-2-id-4-one Chemical class O=C1CO[C-]=N1 WDGCBNTXZHJTHJ-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- KFNGWPXYNSJXOP-UHFFFAOYSA-N 3-(2-methylprop-2-enoyloxy)propane-1-sulfonic acid Chemical compound CC(=C)C(=O)OCCCS(O)(=O)=O KFNGWPXYNSJXOP-UHFFFAOYSA-N 0.000 description 1
- UWHCZFSSKUSDNV-UHFFFAOYSA-N 3-(aziridin-1-yl)propanoic acid;2-ethyl-2-(hydroxymethyl)propane-1,3-diol Chemical compound OC(=O)CCN1CC1.OC(=O)CCN1CC1.OC(=O)CCN1CC1.CCC(CO)(CO)CO UWHCZFSSKUSDNV-UHFFFAOYSA-N 0.000 description 1
- BXAAQNFGSQKPDZ-UHFFFAOYSA-N 3-[1,2,2-tris(prop-2-enoxy)ethoxy]prop-1-ene Chemical compound C=CCOC(OCC=C)C(OCC=C)OCC=C BXAAQNFGSQKPDZ-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 description 1
- NYUTUWAFOUJLKI-UHFFFAOYSA-N 3-prop-2-enoyloxypropane-1-sulfonic acid Chemical compound OS(=O)(=O)CCCOC(=O)C=C NYUTUWAFOUJLKI-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- SSMVDPYHLFEAJE-UHFFFAOYSA-N 4-azidoaniline Chemical compound NC1=CC=C(N=[N+]=[N-])C=C1 SSMVDPYHLFEAJE-UHFFFAOYSA-N 0.000 description 1
- PQXPAFTXDVNANI-UHFFFAOYSA-N 4-azidobenzoic acid Chemical compound OC(=O)C1=CC=C(N=[N+]=[N-])C=C1 PQXPAFTXDVNANI-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- JHWGFJBTMHEZME-UHFFFAOYSA-N 4-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OCCCCOC(=O)C=C JHWGFJBTMHEZME-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- HSOIBVBQTDPPJU-UHFFFAOYSA-N C1=CC(=S(=O)=O)CC(N=[N+]=[N-])=C1N1C(=O)C=CC1=O Chemical compound C1=CC(=S(=O)=O)CC(N=[N+]=[N-])=C1N1C(=O)C=CC1=O HSOIBVBQTDPPJU-UHFFFAOYSA-N 0.000 description 1
- YNLNUDICLOWMRO-UHFFFAOYSA-N C1OC1COP(=O)OCC1CO1 Chemical class C1OC1COP(=O)OCC1CO1 YNLNUDICLOWMRO-UHFFFAOYSA-N 0.000 description 1
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical class [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Natural products CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 1
- JEAIVVDKUUARLF-UHFFFAOYSA-N acetyloxycarbonylperoxycarbonyl acetate Chemical compound CC(=O)OC(=O)OOC(=O)OC(C)=O JEAIVVDKUUARLF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005370 alkoxysilyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- JQRRFDWXQOQICD-UHFFFAOYSA-N biphenylen-1-ylboronic acid Chemical compound C12=CC=CC=C2C2=C1C=CC=C2B(O)O JQRRFDWXQOQICD-UHFFFAOYSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- MPMBRWOOISTHJV-UHFFFAOYSA-N but-1-enylbenzene Chemical compound CCC=CC1=CC=CC=C1 MPMBRWOOISTHJV-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- BLCKNMAZFRMCJJ-UHFFFAOYSA-N cyclohexyl cyclohexyloxycarbonyloxy carbonate Chemical compound C1CCCCC1OC(=O)OOC(=O)OC1CCCCC1 BLCKNMAZFRMCJJ-UHFFFAOYSA-N 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- 229940057404 di-(4-tert-butylcyclohexyl)peroxydicarbonate Drugs 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- IOMDIVZAGXCCAC-UHFFFAOYSA-M diethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](CC)(CC)CC=C IOMDIVZAGXCCAC-UHFFFAOYSA-M 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000003983 fluorenyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229920001002 functional polymer Polymers 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004680 hydrogen peroxides Chemical class 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- CYPPCCJJKNISFK-UHFFFAOYSA-J kaolinite Chemical compound [OH-].[OH-].[OH-].[OH-].[Al+3].[Al+3].[O-][Si](=O)O[Si]([O-])=O CYPPCCJJKNISFK-UHFFFAOYSA-J 0.000 description 1
- 229910052622 kaolinite Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- DUVTXUGBACWHBP-UHFFFAOYSA-N methyl 2-(1h-benzimidazol-2-ylmethoxy)benzoate Chemical compound COC(=O)C1=CC=CC=C1OCC1=NC2=CC=CC=C2N1 DUVTXUGBACWHBP-UHFFFAOYSA-N 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- NKHAVTQWNUWKEO-IHWYPQMZSA-N methyl hydrogen fumarate Chemical compound COC(=O)\C=C/C(O)=O NKHAVTQWNUWKEO-IHWYPQMZSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 1
- ACWYYHCAVOWFOG-UHFFFAOYSA-N n,n'-bis(hydroxymethyl)-2,6-dimethylhepta-2,5-dienediamide Chemical compound OCNC(=O)C(C)=CCC=C(C)C(=O)NCO ACWYYHCAVOWFOG-UHFFFAOYSA-N 0.000 description 1
- LAMPJGYMSJKLJM-UHFFFAOYSA-N n-azido-4-sulfonylcyclohexa-1,5-dien-1-amine Chemical compound [N-]=[N+]=NNC1=CCC(=S(=O)=O)C=C1 LAMPJGYMSJKLJM-UHFFFAOYSA-N 0.000 description 1
- XLFLLEVLKYYSIF-UHFFFAOYSA-N n-azido-n-(4-sulfonylcyclohexa-1,5-dien-1-yl)acetamide Chemical compound [N-]=[N+]=NN(C(=O)C)C1=CCC(=S(=O)=O)C=C1 XLFLLEVLKYYSIF-UHFFFAOYSA-N 0.000 description 1
- PNLUGRYDUHRLOF-UHFFFAOYSA-N n-ethenyl-n-methylacetamide Chemical compound C=CN(C)C(C)=O PNLUGRYDUHRLOF-UHFFFAOYSA-N 0.000 description 1
- RQAKESSLMFZVMC-UHFFFAOYSA-N n-ethenylacetamide Chemical compound CC(=O)NC=C RQAKESSLMFZVMC-UHFFFAOYSA-N 0.000 description 1
- ZQXSMRAEXCEDJD-UHFFFAOYSA-N n-ethenylformamide Chemical compound C=CNC=O ZQXSMRAEXCEDJD-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 229920000765 poly(2-oxazolines) Polymers 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- UIIIBRHUICCMAI-UHFFFAOYSA-N prop-2-ene-1-sulfonic acid Chemical compound OS(=O)(=O)CC=C UIIIBRHUICCMAI-UHFFFAOYSA-N 0.000 description 1
- RZKYDQNMAUSEDZ-UHFFFAOYSA-N prop-2-enylphosphonic acid Chemical compound OP(O)(=O)CC=C RZKYDQNMAUSEDZ-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- VBOFDBONKAERAE-UHFFFAOYSA-M sodium;sulfenatooxymethanol Chemical compound [Na+].OCOS[O-] VBOFDBONKAERAE-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229920000247 superabsorbent polymer Polymers 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- OPQYOFWUFGEMRZ-UHFFFAOYSA-N tert-butyl 2,2-dimethylpropaneperoxoate Chemical compound CC(C)(C)OOC(=O)C(C)(C)C OPQYOFWUFGEMRZ-UHFFFAOYSA-N 0.000 description 1
- VSJBBIJIXZVVLQ-UHFFFAOYSA-N tert-butyl 3,5,5-trimethylhexaneperoxoate Chemical compound CC(C)(C)CC(C)CC(=O)OOC(C)(C)C VSJBBIJIXZVVLQ-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- CSKKAINPUYTTRW-UHFFFAOYSA-N tetradecoxycarbonyloxy tetradecyl carbonate Chemical compound CCCCCCCCCCCCCCOC(=O)OOC(=O)OCCCCCCCCCCCCCC CSKKAINPUYTTRW-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- VPYJNCGUESNPMV-UHFFFAOYSA-N triallylamine Chemical compound C=CCN(CC=C)CC=C VPYJNCGUESNPMV-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- JLGLQAWTXXGVEM-UHFFFAOYSA-N triethylene glycol monomethyl ether Chemical compound COCCOCCOCCO JLGLQAWTXXGVEM-UHFFFAOYSA-N 0.000 description 1
- RRHXZLALVWBDKH-UHFFFAOYSA-M trimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azanium;chloride Chemical compound [Cl-].CC(=C)C(=O)OCC[N+](C)(C)C RRHXZLALVWBDKH-UHFFFAOYSA-M 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- ZTWTYVWXUKTLCP-UHFFFAOYSA-N vinylphosphonic acid Chemical compound OP(O)(=O)C=C ZTWTYVWXUKTLCP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
- Y10T428/31975—Of cellulosic next to another carbohydrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31971—Of carbohydrate
- Y10T428/31975—Of cellulosic next to another carbohydrate
- Y10T428/31978—Cellulosic next to another cellulosic
Definitions
- This invention relates to hydrogels, to water-absorbent compositions containing same, to processes for their production, to their use in hygiene articles and to methods for determining suitable water-absorbent compositions.
- Hygiene articles such as infant diapers or sanitary napkins have long been utilizing highly swellable hydrogels. This has substantially reduced hygiene article bulk.
- a possible way to provide improved transportation properties and avoid gel blocking is to shift the particle size spectrum to higher values. However, this leads to a decrease in the swell rate, since the surface area of the absorbent material is reduced. This is undesirable.
- Another way to obtain improved gel permeability is surface post-crosslinking, which confers higher gel strength on the hydrogel body in the swollen state. Gels having insufficient strength are deformable by pressure, for example pressure due to the body-weight of the wearer of the hygiene article, and so clog the pores in the hydrogel/cellulose fiber absorbent and so prevent continued absorption of fluid. Since, for the above reasons, an increased crosslink density in the starting polymer is out of the question, surface postcrosslinking is an elegant way to increase gel strength. Surface postcrosslinking increases the crosslink density in the shell of the hydrogel particles, as a result of which Absorbency Under Load (AUL) by the base polymer thus generated is raised to a higher level. Whereas absorption capacity decreases in the hydrogel shell, the core of the hydrogel particles has an improved absorption capacity (compared to the shell) owing to the presence of mobile polymer chains, so that shell construction ensures improved fluid transmission.
- AUL Absorbency Under Load
- DE-A-3 523 617 relates to the addition of finely divided amorphous silicas to dry hydrogel powder following surface postcrosslinking with carboxyl-reactive crosslinker substances.
- WO 95/22356 relates to the modification of absorbent polymers with other polymers to improve the absorption properties.
- Preferred modifiers are polyamines and polyimines.
- the effects with regard to SFC are minimal according to Tables 1 and 2.
- WO 95/26209 relates to absorbent structures having at least one region containing 60-100% of highly swellable hydrogel having an SFC of at least 30 ⁇ 10 ⁇ 7 cm 3 s/g and a PUP 0.7 psi of at least 23 g/g. It is exemplified that such highly swellable hydrogels are obtainable by surface postcrosslinking. As is evident from Tables 1 and 2, this type of treatment can provide an increased SFC only at the expense of a decreased gel volume, i.e., there is a reciprocal relationship between retention and gel permeability.
- the novel highly swellable hydrogels to be generated shall combine the contrary parameters.
- Highly swellable hydrogels shall be generated for this purpose that simultaneously exhibit a high swell or absorption rate, a high gel permeability and a high retention. Given the excellent fluid distribution present, the high total capacity of the inventive highly swellable hydrogels in the absorption layer should be optimally utilizable.
- AUL Absorbency Under Load
- coated hydrogels additionally preferably have the following features:
- Saline Flow Conductivity of at least 30 ⁇ 10 ⁇ 7 , preferably at least 60 ⁇ 10 ⁇ 7 cm 3 s/g and
- water-absorbent relates to water and aqueous systems which may contain organic or inorganic compounds in solution, especially to body fluids such as urine, blood or fluids containing same.
- the hydrogels of the invention and water-absorbent compositions containing same are useful for producing hygiene articles or other articles for absorbing aqueous fluids.
- the invention consequently further relates to hygiene articles containing a water-absorbent composition according to the invention between a liquid-pervious topsheet and a liquid-impervious backsheet.
- the hygiene articles may be present in the form of diapers, sanitary napkins and incontinence products.
- the invention also provides a method for improving the performance profile of water-absorbent compositions by enhancing the permeability, capacity and swell rate of the water-absorbent compositions by use of water-insoluble water-swellable hydrogels as defined above.
- the invention further provides a method for determining water-absorbent compositions possessing high permeability, capacity and swell rate by measuring the absorbency under load (AUL) and the gel strength of uncoated hydrogels and determining the centrifuge retention capacity (CRC), Saline Flow Conductivity (SFC) and Free Swell Rate (FSR) of the coated hydrogels for given water-absorbent compositions and determining the water-absorbent compositions for which the hydrogels exhibit the property spectrum mentioned above.
- AUL absorbency under load
- CRC centrifuge retention capacity
- SFC Saline Flow Conductivity
- FSR Free Swell Rate
- the invention further provides for the use of hydrogels as defined above in hygiene articles or other articles for absorbing aqueous fluids to enhance the permeability, capacity and swell rate.
- Base polymers having these properties ensure that, under a restraining force, the spacer effect is not offset by excessively ready gel particle deformability.
- hydrogels with electrostatic spacers also possess improved binding to cellulose fibers, since the latter have a weak negative charge on the surface. This fact is particularly advantageous, since it enables said property profile of hydrogels with electrostatic spacers and cellulose fibers to produce an absorption layer without additional assistants to fix the hydrogel within the fiber matrix.
- the binding to the cellulose fibers automatically effects fixation of the hydrogel material, so that there is no undesirable redistribution of the hydrogel material, for example to the surface of the absorbent core.
- the highly swellable polymer particles of the invention are notable for high absorption capacities, improved liquid transportation performance and a higher swell rate. For this reason, the hygiene article can be made extremely thin.
- the increased level of high-capacity highly swellable hydrogels of the invention provides enormous absorption performance, so that the leakage problem is circumvented as well.
- the improved liquid distribution performance ensures that the high absorption capacity is fully utilized.
- the present invention relates to the production of novel highly swellable hydrogels by
- Coating these preselected hydrogels provides highly swellable hydrogels which, contrary to the prior art, combine a high swell or absorption rate with high gel permeability and a high retention.
- CRC not less than 24 g/g preferably not less than 26 g/g, more preferably not less than 28 g/g, even more preferably not less than 30 g/g, particularly preferably CRC not less than 32 g/g and most preferably CRC not less than 35 g/g and
- SFC not less than 30 ⁇ 10 ⁇ 7 cm 3 s/g, preferably not less than 60 ⁇ 10 ⁇ 7 cm 3 s/g, preferably not less than 80 ⁇ 10 ⁇ 7 cm 3 s/g, more preferably not less than 100 ⁇ 10 ⁇ 7 cm 3 s/g, even more preferably not less than 120 ⁇ 10 ⁇ 7 cm 3 s/g, especially preferably not less than 150 ⁇ 10 ⁇ 7 cm 3 s/g, very preferably not less than 200 ⁇ 10 ⁇ 7 cm 3 s/g, most preferably not less than 300 ⁇ 10 ⁇ 7 cm 3 s/g, and
- Free Swell Rate not less than 0.15 g/gs, preferably not less than 0.20 g/gs, more preferably not less than 0.30 g/gs, even more preferably not less than 0.50 g/gs, especially preferably not less than 0.70 g/gs, most preferably not less than 1.00 g/gs or
- Vortex Time not more than 160 s preferably Vortex Time not more than 120 s, more preferably Vortex Time not more than 90 s, particularly preferably Vortex Time not more than 60 s, most preferably Vortex Time not more than 30 s.
- Hydrogel-forming polymers are in particular polymers of (co)polymerized hydrophilic monomers, graft (co)polymers of one or more hydrophilic monomers on a suitable grafting base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products that are swellable in aqueous fluids, for example guar derivatives, alginates and carrageenans.
- Suitable grafting bases can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and also other polysaccharides and oligosacchardies, polyvinyl alcohol, polyalkylene oxides, especially polyethylene oxides and polypropylene oxides, polyamines, polyamides and also hydrophilic polyesters. Suitable polyalkylene oxides have for example the formula
- R 1 and R 2 are independently hydrogen, alkyl, alkenyl or aryl,
- X is hydrogen or methyl
- n is an integer from 1 to 10 000.
- R 1 and R 2 are each preferably hydrogen, (C 1 -C 4 )-alkyl, (C 2 -C 6 )-alkenyl or phenyl.
- Preferred hydrogel-forming polymers are crosslinked polymers having acid groups which are predominantly in the form of their salts, generally alkali metal or ammonium salts. Such polymers swell particularly strongly on contact with aqueous fluids to form gels.
- Examples of such monomers bearing acid groups are monoethylenically unsaturated C 3 - to C 25 -carboxylic acids or anhydrides such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid.
- monoethylenically unsaturated C 3 - to C 25 -carboxylic acids or anhydrides such as acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid.
- monoethylenically unsaturated sulfonic or phosphonic acids for example vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloyloxypropylsulfonic acid, 2-hydroxy-3-methacryloyloxypropylsulfonic acid, vinylphosphonic acid, allylphosphonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid.
- the monomers may be used alone or mixed.
- Preferred monomers are acrylic acid, methacrylic acid, vinylsulfonic acid, acrylamidopropanesulfonic acid or mixtures thereof, for example mixtures of acrylic and methacrylic acid, mixtures of acrylic acid and acrylamidopropanesulfonic acid or mixtures of acrylic acid and vinylsulfonic acid.
- monoethylenically unsaturated compounds which do not bear an acid group but are copolymerizable with the monomers bearing acid groups.
- Such compounds include for example the amides and nitriles of monoethylenically unsaturated carboxylic acids, for example acrylamide, methacrylamide and N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, acrylonitrile and methacrylonitrile.
- Examples of further suitable compounds are vinyl esters of saturated C 1 - to C 4 -carboxylic acids such as vinyl formate, vinyl acetate or vinyl propionate, alkyl vinyl ethers having at least 2 carbon atoms in the alkyl group, for example ethyl vinyl ether or butyl vinyl ether, esters of monoethylenically unsaturated C 3 - to C 6 -carboxylic acids, for example esters of monohydric C 1 - to C 18 -alcohols and acrylic acid, methacrylic acid or maleic acid, monoesters of maleic acid, for example methyl hydrogen maleate, N-vinyllactams such as N-vinylpyrrolidone or N-vinylcaprolactam, acrylic and methacrylic esters of alkoxylated monohydric saturated alcohols, for example of alcohols having from 10 to 25 carbon atoms which have been reacted with from 2 to 200 mol of ethylene oxide and/or propylene oxide per mole of
- These monomers without acid groups may also be used in mixture with other monomers, for example mixtures of vinyl acetate and 2-hydroxyethyl acrylate in any proportion. These monomers without acid groups are added to the reaction mixture in amounts within the range from 0 to 50% by weight, preferably less than 20% by weight.
- Possible crosslinkers include compounds containing at least two ethylenically unsaturated double bonds.
- compounds of this type are N,N′-methylenebisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates each derived from polyethylene glycols having a molecular weight of from 106 to 8 500, preferably from 400 to 2 000, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, butanediol diacrylate, butanediol dimethacrylate, hexanediol diacrylate, hexanediol dimethacrylate, allyl methacrylate, diacrylates and dimethacrylates of block copolymers of ethylene oxide and propylene oxide, polyhydric alcohols, such as glycerol
- water-soluble crosslinkers for example N,N′-methylenebisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates derived from addition products of from 2 to 400 mol of ethylene oxide with 1 mol of a diol or polyol, vinyl ethers of addition products of from 2 to 400 mol of ethylene oxide with 1 mol of a diol or polyol, ethylene glycol diacrylate, ethylene glycol dimethacrylate or triacrylates and trimethacrylates of addition products of from 6 to 20 mol of ethylene oxide with 1 mol of glycerol, pentaerythritol triallyl ether and/or divinylurea.
- N,N′-methylenebisacrylamide polyethylene glycol diacrylates and polyethylene glycol dimethacrylates derived from addition products of from 2 to 400 mol of ethylene oxide with 1 mol of a diol or polyol
- Possible crosslinkers also include compounds containing at least one polymerizable ethylenically unsaturated group and at least one further functional group.
- the functional group of these crosslinkers has to be capable of reacting with the functional groups, essentially the acid groups, of the monomers. Suitable functional groups include for example hydroxyl, amino, epoxy and aziridino groups.
- hydroxyalkyl esters of the abovementioned monoethylenically unsaturated carboxylic acids e.g., 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate and hydroxybutyl methacrylate, allylpiperidinium bromide, N-vinylimidazoles, for example N-vinylimidazole, 1-vinyl-2-methylimidazole and N-vinylimidazolines such as N-vinylimidazoline, 1-vinyl-2-methylimidazoline, 1-vinyl-2-ethylimidazoline or 1-vinyl-2-propylimidazoline, which can be used in the form of the free bases, in quaternized form or as salt in the polymerization.
- N-vinylimidazoles for example N-vinylimidazole, 1-vinyl
- dialkylaminoalkyl acrylates and dialkylaminoalkyl methacrylates such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate and diethylaminoethyl methacrylate.
- the basic esters are preferably used in quaternized form or as salt. It is also possible to use glycidyl (meth)acrylate, for example.
- Useful crosslinkers further include compounds containing at least two functional groups capable of reacting with the functional groups, essentially the acid groups, of the monomers. Suitable functional groups were already mentioned above, i.e., hydroxyl, amino, epoxy, isocyanate, ester, amido and aziridino groups.
- crosslinkers examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerol, polyglycerol, triethanolamine, propylene glycol, polypropylene glycol, block copolymers of ethylene oxide and propylene oxide, ethanolamine, sorbitan fatty acid esters, ethoxylated sorbitan fatty acid esters, trimethylolpropane, pentaerythritol, 1,3-butanediol, 1,4-butanediol, polyvinyl alcohol, sorbitol, starch, polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbi
- the crosslinkers are present in the reaction mixture for example from 0.001 to 20%, preferably from 0.01 to 14%, by weight.
- the polymerization is initiated in the generally customary manner, by means of an initiator. But the polymerization may also be initiated by electron beams acting on the polymerizable aqueous mixture. However, the polymerization may also be initiated in the absence of initiators of the abovementioned kind, by the action of high energy radiation in the presence of photoinitiators.
- Useful polymerization initiators include all compounds which decompose into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxides, persulfates, azo compounds and redox catalysts. The use of water-soluble initiators is preferred.
- mixtures of different polymerization initiators for example mixtures of hydrogen peroxide and sodium peroxodisulfate or potassium peroxodisulfate.
- Mixtures of hydrogen peroxide and sodium peroxodisulfate may be used in any proportion.
- Suitable organic peroxides are acetylacetone peroxide, methyl ethyl ketone peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-amyl perpivalate, tert-butyl perpivalate, tert-butyl perneohexanoate, tert-butyl perisobutyrate, tert-butyl per-2-ethylhexanoate, tert-butyl perisononanoate, tert-butyl permaleate, tert-butyl perbenzoate, di(2-ethylhexyl) peroxydicarbonate, dicyclohexyl peroxydicarbonate, di(4-tert-butylcyclohexyl) peroxydicarbonate, dimyristyl peroxydicarbonate, diacetyl peroxydicarbonate, allyl peresters, cum
- Particularly suitable polymerization initiators are water-soluble azo initiators, e.g., 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis(N,N′-dimethylene)isobutyramidine dihydrochloride, 2-(carbamoylazo)isobutyronitrile, 2,2′-azobis[2-(2′-imidazolin-2-yl)propane]dihydrochloride and 4,4′-azobis(4-cyanovaleric acid).
- the polymerization initiators mentioned are used in customary amounts, for example in amounts of from 0.01 to 5%, preferably from 0.05 to 2.0%, by weight, based on the monomers to be polymerized.
- Useful initiators also include redox catalysts.
- the oxidizing component is at least one of the above-specified per compounds and the reducing component is for example ascorbic acid, glucose, sorbose, ammonium or alkali metal bisulfite, sulfite, thiosulfate, hyposulfite, pyrosulfite or sulfide, or a metal salt, such as iron(II) ions or sodium hydroxymethylsulfoxylate.
- the reducing component in the redox catalyst is preferably ascorbic acid or sodium sulfite.
- From 3 ⁇ 10 ⁇ 6 to 1 mol % may be used for the reducing component of the redox catalyst system and from 0.001 to 5.0 mol % for the oxidizing component of the redox catalyst, for example.
- the initiator used is customarily a photoinitiator.
- Photoinitiators include for example x-splitters, H-abstracting systems or else azides.
- examples of such initiators are benzophenone derivatives such as Michler's ketone, phenanthrene derivatives, fluorene derivatives, anthraquinone derivatives, thioxanthone derivatives, coumarin derivatives, benzoin ethers and derivatives thereof, azo compounds such as the abovementioned free-radical formers, substituted hexaarylbisimidazoles or acylphosphine oxides.
- azides are:
- the subsequent crosslinking stage comprises polymers which were prepared by polymerization of the abovementioned monoethylenically unsaturated acids and optionally monoethylenically unsaturated comonomers and which have a molecular weight of more than 5 000, preferably more than 50 000, being reacted with compounds having at least two groups which are reactive toward acid groups. This reaction can take place at room temperature or else at elevated temperatures of up to 220° C.
- Suitable functional groups were already mentioned above, i.e., hydroxyl, amino, epoxy, isocyante, ester, amido and aziridino groups, as well examples of such crosslinkers.
- Crosslinkers are added to the acid-functional polymers or salts in amounts of from 0.5 to 25% by weight, preferably from 1 to 15% by weight, based on the amount of polymer used.
- Crosslinked polymers are preferably used in fully neutralized form.
- neutralization may also be partial only.
- the degree of neutralization is preferably within the range from 25 to 100%, especially within the range from 50 to 100%.
- Useful neutralizing agents include alkali metal bases or ammonia/amines. Preference is given to the use of aqueous sodium hydroxide solution or aqueous potassium hydroxide solution.
- neutralization may also be effected using sodium carbonate, sodium bicarbonate, potassium carbonate or potassium bicarbonate or other carbonates or bicarbonates or ammonia.
- primary, secondary and tertiary amines may be used.
- Industrial processes useful for making these products include all processes which are customarily used to make superabsorbents, as described for example in Chapter 3 of “Modern Superabsorbent Polymer Technology”, F. L. Buchholz and A. T. Graham, Wiley-VCH, 1998.
- Polymerization in aqueous solution is preferably conducted as a gel polymerization. It involves 10-70% strength by weight aqueous solutions of the monomers and optionally of a suitable grafting base being polymerized in the presence of a free-radical initiator by utilizing the Trommsdorff-Norrish effect.
- the polymerization reaction may be carried out at from 0 to 150° C., preferably at from 10 to 100° C., not only at atmospheric pressure but also at superatmospheric or reduced pressure.
- the polymerization may also be conducted in a protective gas atmosphere, preferably under nitrogen.
- the performance characteristics of the polymers can be further improved.
- hydrogel-forming polymers which have been surface postcrosslinked.
- Surface postcrosslinking may be carried out in a conventional manner using dried, ground and classified polymer particles.
- aqueous solution may contain water-miscible organic solvents. Suitable solvents are alcohols such as methanol, ethanol, i-propanol or acetone.
- Suitable surface postcrosslinkers include for example:
- di- or polyglycidyl compounds such as diglycidyl phosphonates or ethylene glycol diglycidyl ether, bischlorohydrin ethers of polyalkylene glycols,
- polyaziridines aziridine compounds based on polyethers or substituted hydrocarbons, for example bis-N-aziridinomethane,
- polyols such as ethylene glycol, 1,2-propanediol, 1,4-butanediol, glycerol, methyltriglycol, polyethylene glycols having an average molecular weight M w of 200-10 000, di- and polyglycerol, pentaerythritol, sorbitol, the ethoxylates of these polyols and their esters with carboxylic acids or carbonic acid such as ethylene carbonate or propylene carbonate,
- carbonic acid derivatives such as urea, thiourea, guanidine, dicyandiamide, 2-oxazolidinone and its derivatives, bisoxazoline, polyoxazolines, di- and polyisocyanates,
- di- and poly-N-methylol compounds such as, for example, methylenebis(N-methylolmethacrylamide) or melamine-formaldehyde resins,
- compounds having two or more blocked isocyanate groups such as, for example, trimethylhexamethylene diisocyanate blocked with 2,2,3,6-tetramethylpiperidin-4-one.
- acidic catalysts may be added, for example p-toluenesulfonic acid, phosphoric acid, boric acid or ammonium dihydrogenphosphate.
- Particularly suitable surface postcrosslinkers are di- or polyglycidyl compounds such as ethylene glycol diglycidyl ether, the reaction products of polyamidoamines with epichlorohydrin and 2-oxazolidinone.
- the crosslinker solution is preferably applied by spraying with a solution of the crosslinker in conventional reaction mixers or mixing and drying equipment such as Patterson-Kelly mixers, DRAIS turbulence mixers, Lödige mixers, screw mixers, plate mixers, fluidized bed mixers and Schugi Mix.
- the spraying of the crosslinker solution may be followed by a heat treatment step, preferably in a downstream dryer, at from 80 to 230° C., preferably 80-190° C., particularly preferably at from 100 to 160° C., for from 5 minutes to 6 hours, preferably from 10 minutes to 2 hours, particularly preferably from 10 minutes to 1 hour, during which not only cracking products but also solvent fractions can be removed.
- the drying may also take place in the mixer itself, by heating the jacket or by blowing in a preheated carrier gas.
- Useful steric spacers include inert materials (powders) for example silicates having a band, chain or sheet structure (montmorillonite, kaolinite, talc), zeolites, active carbons or silicas.
- Inorganic inert spacers further include for example magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, titanium dioxide and iron(II) oxide.
- Organic inert spacers include for example polyalkyl methacrylates or thermoplastics such as for example polyvinyl chloride. Preference is given to using silicas, which divide into precipitated silicas and pyrogenic silicas according to their method of preparation.
- AEROSIL® pyrogenic silicas
- Silica FK sipernat®
- Wessalon® precipitated silica
- the surface of the silica particles bears siloxane and silanol groups. There are more of the siloxane groups. They are the reason for the substantially inert character of this synthetic silica.
- Specific types of silica are available for different applications. For instance, silane may be added to chemically modify the silica surface so that the originally hydrophilic silica is transformed into hydrophobic variants.
- Some silica grades are available as mixed oxides, for example in a blend with aluminum oxide.
- the spacer function can be controlled according to the surface constitution of the primary particles. Pyrogenic silica (for example AEROSIL®) is available in particle size fractions of from 7 to 40 nm.
- Silica under the tradenames of Silica FK, Sipernat® and Wessalon® can be obtained as a powder of particle size fraction 5-100 ⁇ m and a specific surface area of 50-450 m 2 /g.
- the particle size of the inert powders is preferably at least 1 ⁇ m, more preferably at least 4 ⁇ m, particularly preferably at least 20 ⁇ m, very preferably at least 50 ⁇ m.
- the use of precipitated silicas is particularly preferred.
- the base polymers coated with inert spacer material may be produced by applying the inert spacers in an aqueous or water-miscible medium or else by applying the inert spacers in powder form to pulverulent base polymer material.
- the aqueous or water-miscible media are preferably applied by spraying onto dry polymer powder.
- pure powder/powder blends are produced from pulverulent inert spacer material and base polymer.
- the inert spacer material is applied to the surface of the base polymer in a proportion of 0.05 to 5% by weight, preferably from 0.1 to 1.5% by weight, particularly preferably from 0.3 to 1% by weight, based on the total weight of the coated hydrogel.
- Cationic components may be added as electrostatic spacers.
- cationic polymers for the purpose of electrostatic repulsion. This is accomplished for example with polyethyleneimines, polyvinylamines, polyamines such as polyalkylenepolyamines, cationic derivatives of polyacrylamides, polyethyleneimines, polyquaternary amines, for example, condensation products of hexamethylenediamine, dimethylamine and epichlorohydrin, condensation products of dimethylamine and epichlorohydrin, copolymers of hydroxyethylcellulose and diallyldimethylammonium chloride, copolymers of acrylamide and ⁇ -methacryloxyethyltrimethylammonium chloride, hydroxycellulose reacted with epichlorohydrin and then quaternized with trimethylamine, homopolymers of diallyldimethylammonium chloride or addition products of epichlorohydrin with amidoamines.
- polyethyleneimines polyvinylamines, polyamines such as polyalkylenepolyamines
- Polyquaternary amines may further be synthesized by reaction of dimethyl sulfate with polymers, such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate.
- Polyquaternary amines are available in a wide molecular weight range.
- Electrostatic spacers are also generated by applying a crosslinked, cationic sheath, either by means of reagents capable of forming a network with themselves, for example addition products of epichlorohydrin with polyamidoamines, or by applying cationic polymers capable of reacting with an added crosslinker, for example polyamines or polyimines combined with polyepoxides, multifunctional esters, multifunctional acids or multifunctional (meth)acrylates. It is also possible to use any multifunctional amines having primary or secondary amino groups, for example polyethyleneimine, polyallylamine, polylysine, preferably polyvinylamine.
- polyamines are ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and polyethyleneimines and also polyamines having molar masses of up to 4 000 000 in each case.
- Electrostatic spacers may also be applied by adding solutions of divalent or more highly valent metal salt solutions.
- divalent or more highly valent metal cations are Mg 2+ , Ca 2+ , Al 3+ , Sc 3+ , Ti 4+ , Mn 2 +Fe 2+/3+ , Co 2+ , Ni 2+ , Cu +/2+ , Zn 2+ , Y 3+ , Zr 4+ , Ag + , La 3+ , Ce 4+ , Hf 4+ and Au +/3+
- preferred metal cations are Mg 2+ , Ca 2+ , Al 3+ , Ti 4+ , Zr 4+ and La 3+ and particularly preferred metal cations are Al 3+ , Ti 4+ and Zr 4+ .
- the metal cations may be used not only alone but also mixed with each other.
- all salts are suitable that possess adequate solubility in the solvent to be used.
- metal salts with weakly complexing anions such as for example chloride, nitrate and sulfate.
- Useful solvents for the metal salts include water, alcohols, DMF, DMSO and also mixtures thereof. Particular preference is given to water and water-alcohol mixtures, for example water-methanol or water-1,2-propanediol.
- the electrostatic spacers may be applied like the inert spacers by application in an aqueous or water-miscible medium. This is the preferred production process in the case of the addition of metal salts.
- Cationic polymers are applied to pulverulent base polymer material by applying an aqueous solution or in a water-miscible solvent, optionally also as dispersion, or else by application in powder form.
- the aqueous or water-miscible media are preferably applied by spraying onto dry polymer powder.
- the polymer powder may optionally be subsequently dried, in which case the coated base polymers are exclusively dried at temperatures of not more than 100° C.
- the cationic spacers are applied to the surface of the base polymer in a proportion of from 0.05 to 5% by weight, preferably from 0.1 to 1.5% by weight, particularly preferably from 0.1 to 1% by weight, based on the total weight of the coated hydrogel.
- hydrogels mentioned are notable for high absorbency for water and aqueous solutions and therefore are preferentially used as absorbents in hygiene articles.
- the water-swellable hydrogels may be present in conjunction with a box material for the hydrogels, preferably embedded as particles in a polymer fiber matrix or an open-celled polymer foam, fixed on a sheetlike base material or present as particles in chambers formed from a base material.
- the invention also provides a process for producing water-absorbent compositions by
- the hygiene articles producible from the water-absorbent compositions of the invention are known per se and have been described. They are preferably diapers, sanitary napkins and incontinence products such as incontinence liners. The construction of such products is known.
- This method measures the free swellability of the hydrogel in a teabag.
- 0.2000 ⁇ 0.0050 g of dried hydrogel (particle size fraction 106-850 ⁇ m) is sealed into a teabag 60 ⁇ 85 mm in size.
- the teabag is then soaked for 30 minutes in an excess of 0.9% by eight sodium chloride solution (at least 0.83 l of sodium chloride solution/l g of polymer powder).
- the teabag is then centrifuged for three minutes at 250 g. The amount of liquid is determined by weighing the centrifuged teabag.
- the measuring cell for determining AUL 0.7 psi is a Plexiglas cylinder 60 mm in internal diameter and 50 mm in height. Adhesively attached to its underside is a stainless steel sieve bottom having a mesh size of 36 ⁇ m.
- the measuring cell further includes a plastic plate having a diameter of 59 mm and a weight which can be placed in the measuring cell together with the plastic plate. The weight of the plastic plate and of the weight totals 1345 g.
- AUL 0.7 psi is determined by measuring the weight of the empty Plexiglas cylinder and of the plastic plate and recorded as W 0 .
- 0.900 ⁇ 0.005 g of hydrogel-forming polymer (particle size distribution: 150-800 ⁇ m) is then weighed into the Plexiglas cylinder and distributed very uniformly over the stainless steel sieve.
- the plastic plate is then carefully placed in the Plexiglas cylinder, the entire unit is weighed and the weight is recorded as W a .
- the weight is then placed on the plastic plate in the Plexiglas cylinder.
- a ceramic filter plate 120 mm in diameter and 0 in porosity is then placed in the middle of a Petri dish 200 mm in diameter and 30 mm in height and sufficient 0.9% by weight sodium chloride solution is introduced for the surface of the liquid to be level with the filter plate surface without the surface of the filter plate being wetted.
- a round filter paper 90 mm in diameter and ⁇ 20 ⁇ m in pore size (S&S 589 Schwarzband from Schleicher & Schüll) is subsequently placed on the ceramic plate.
- the Plexiglas cylinder containing hydrogel-forming polymer is then placed with plastic plate and weight on top of the filter paper and left there for 60 minutes. At the end of this period, the complete unit is removed from the filter paper in the Petri dish and subsequently the weight is removed from the Plexiglas cylinder.
- the Plexiglas cylinder containing swollen hydrogel is weighed together with the plastic plate and the weight recorded as W b .
- AUL is calculated by the following equation:
- test method for determining SFC is described in WO 95/262/9.
- the gel strength is determined using the Carrimed CS rheometer via the oscillation mode using a plate-45 plate geometry (diameter 6 cm). To avoid the slip effect, sand-blasted plate systems are used for this purpose. The sample is placed on the baseplate and the ramp is slowly lifted to enable the gap to be closed slowly. The measuring gap measures 1 mm and has to be absolutely completely filled with sample material.
- Gel strength is the modulus of elasticity of the hydrogel preswollen as defined and is measured similarly to the modulus of elasticity in the linearly viscoelastic region of the sample, which is determined in a preliminary test on the same sample.
- a torque sweep is carried out within the linearly viscoelastic region at a constant frequency (1 Hz) in the oscillation mode.
- the measuring curve obtained is a straight line which quantifies the gel strength as a material constant of the elastic solid.
- the reported measurements are number averages of 3 series of determinations.
- a 10 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 3 600 g of deionized water and 1 400 g of acrylic acid, followed by 4.0 g of tetraallyloxyethane and 5.0 g of allyl methacrylate.
- the initiators consisting of 2.2 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 20 g of deionized water), 4 g of potassium peroxodisulfate (dissolved in 150 g of deionized water) and 0.4 g of ascorbic acid (dissolved in 20 g of deionized water) are successively added and stirred in at 4° C. The reaction solution is then left to stand without stirring.
- the ensuing polymerization in the course of which the temperature rises up to about 9 0° C., produces a firm gel. This is subsequently subjected to mechanical comminution and adjusted to pH 6.0 with 50% by weight aqueous sodium hydroxide solution. The gel is then dried, ground and classified to a particle size distribution of 100-850 ⁇ m. 1 kg of this dried hydrogel is sprayed with a solution consisting of 60 g of demineralized water, 40 g of i-propanol and 1.0 g of ethylene glycol diglycidyl ether in a plowshare mixer and subsequently heat treated at 140° C. for 60 minutes.
- the herein described product has the following properties:
- a 30 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 14 340g of demineralized water and 42 g of sorbitol triallyl ether. 3 700 g of sodium bicarbonate are suspended in this initial charge and 5 990 g of acrylic acid are gradually added at a rate such that overfoaming of the reaction solution is avoided; the reaction solution cools down to about 3-5° C.
- the initiators 6.0 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 60 g of demineralized water), 12 g of potassium peroxodisulfate (dissolved in 450 g of demineralized water) and also 1.2 g of ascorbic acid (dissolved in 50 g of demineralized water) are successively added and thoroughly stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 85° C., produces a gel. This gel is subsequently transferred into a kneader and adjusted to a pH of 6.2 by addition of 50% by weight aqueous sodium hydroxide solution.
- the comminuted gel is then dried in an airstream at 170° C., ground and classified to a particle size distribution of 100-850 ⁇ m. 1 kg of this product is sprayed with a solution of 2 g of RETEN 204 LS (polyamidoamine-epichlorohydrin adduct from Hercules), 30 g of demineralized water and 30 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 150° C. for 60 minutes. The following properties were measured:
- a WERNER & PFLEIDERER laboratory kneader having a working capacity of 2 l is evacuated to 980 mbar absolute by means of a vacuum pump and a previously separately prepared monomer solution which has been cooled to about 25° C. and inertized by passing nitrogen into it is sucked into the kneader.
- the monomer solution has the following composition: 825.5 g of deionized water, 431 g of acrylic acid, 335 g of NaOH 50%, 4.5 g of ethoxylated trimethylolpropane triacrylate (SR 9035 oligomer from SARTOMER) and 1.5 g of pentaerythritol triallyl ether (P-30 from Daiso).
- the kneader is evacuated and subsequently refilled with nitrogen. This operation is repeated three times. A solution of 1.2 g of sodium persulfate (dissolved in 6.8 g of deionized water) is then sucked in, followed after a further 30 seconds by a further solution consisting of 0.024 g of ascorbic acid dissolved in 4.8 g of deionized water. After a nitrogen urge a preheated jacket heating circuit on bypass at 75° C. is switched over to the kneader jacket and the stirrer speed increased to 96 rpm.
- the jacket heating circuit is switched back to bypass, and the batch is supplementarily polymerized for 15 minutes without heating/cooling, subsequently cooled and discharged.
- the resultant gel particles are dried at above 100° C., ground and classified to a particle size distribution of 100-850 ⁇ m.
- 500 g of this product are sprayed with a solution of 2 g of 2-oxazolidinone, 25 g of deionized water and 10 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 185° C. for 70 minutes.
- the following properties were measured:
- a 10 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 3 600 g of deionized water and 1 400 g of acrylic acid, followed by 14 g of tetraallylammonium chloride.
- the initiators consisting of 2.2 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 20 g of deionized water), 4 g of potassium peroxodisulfate (dissolved in 150 g of deionized water) and 0.4 g of ascorbic acid (dissolved in 20 g of deionized water) are successively added and stirred in at 4° C. The reaction solution is then left to stand without stirring.
- the ensuing polymerization in the course of which the temperature rises up to about 90° C., produces a firm gel. This is subsequently subjected to mechanical comminution and adjusted to pH 6.0 with 50% by weight aqueous sodium hydroxide solution. The gel is then dried, ground and classified to a particle size distribution of 100-850 ⁇ m. 1 kg of this dried hydrogel is sprayed with a solution consisting of 40 g of demineralized water, 40 g of i-propanol and 0.5 g of ethylene glycol diglycidyl ether in a plowshare mixer and subsequently heat treated at 140° C. for 60 minutes.
- the herein described product has the following properties:
- WERNER & PFLEIDERER laboratory kneader having a working capacity of 2 l is evacuated to 980 mbar absolute by means of a vacuum pump and a previously separately prepared monomer solution which has been cooled to about 25° C. and inertized by passing nitrogen into it is sucked into the kneader.
- the monomer solution has the following composition: 825.5 g of deionized water, 431 g of acrylic acid, 335 g of NaOH 50%, 3.0 g of methylenebisacrylamide.
- the kneader is evacuated and subsequently refilled with nitrogen. This operation is repeated three times.
- a preheated jacket heating circuit on bypass at 75° C. is switched over to the kneader jacket and the stirrer speed increased to 96 rpm.
- the jacket heating circuit is switched back to bypass, and the batch is supplementarily polymerized for 15 minutes without heating/cooling, subsequently cooled and discharged.
- the resultant gel particles are dried at above 100° C., ground and classified to a particle size distribution of 100-850 ⁇ m. The following properties were measured:
- a 30 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 14 340 g of demineralized water and 42 g of sorbitol triallyl ether. 3 700 g of sodium bicarbonate are suspended in this initial charge and 5 990 g of acrylic acid are gradually added at a rate such that overfoaming of the reaction solution is avoided; the reaction solution cools down to about 3-5° C.
- the initiators 6.0 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 60 g of demineralized water), 12 g of potassium peroxodisulfate (dissolved in 450 g of demineralized water) and also 1.2 g of ascorbic acid (dissolved in 50 g of demineralized water) are successively added and thoroughly stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 85° C., produces a gel. This gel is subsequently transferred into a kneader and adjusted to a pH of 6.2 by addition of 50% by weight aqueous sodium hydroxide solution.
- the comminuted gel is then dried in an airstream at 170° C., ground and classified to a particle size distribution of 100-850 ⁇ m and homogeneously mixed with 1.0% by weight of Aerosil 200 (pyrogenic silica, commercial product of Degussa AG, average primary particle size 12 nm). 1 kg of this product is sprayed with a solution of 2 g of RETEN 204 LS (polyamidoamine-epichlorohydrin adduct from Hercules), 30 g of demineralized water and 30 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 150° C. for 60 minutes. The following properties were measured:
- a 30 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 14 340 g of demineralized water and 42 g of sorbitol triallyl ether. 3 700 g of sodium bicarbonate are suspended in this initial charge and 5 990 g of acrylic acid are gradually added at a rate such that overfoaming of the reaction solution is avoided; the reaction solution cools down to about 3-5° C.
- the initiators 6.0 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 60 g of demineralized water), 12 g of potassium peroxodisulfate (dissolved in 450 g of demineralized water) and also 1.2 g of ascorbic acid (dissolved in 50 g of demineralized water) are successively added and thoroughly stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 85° C., produces a gel. This gel is subsequently transferred into a kneader and adjusted to a pH of 6.2 by addition of 50% by weight aqueous sodium hydroxide solution.
- the comminuted gel is then dried in an airstream at 170° C., ground and classified to a particle size distribution of 100-850 ⁇ m. 1 kg of this product is sprayed with a solution of 2 g of RETEN 204 LS (polyamidoamine-epichlorohydrin adduct from Hercules), 5 g of aluminum sulfate Al 2 (SO 4 ) 3 , 30 g of demineralized water and 30 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 150° C. for 60 minutes. The following properties were measured:
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Described are water-insoluble water-swellable hydrogels which have been coated with steric or electrostatic spacers and which have the following pre-coating features:
Absorbency Under Load (AUL) (0.7 psi) of at least 20 g/g,
Gel strength of at least 1 600 Pa,
and preferably the following post-coating features:
Centrifuge Retention Capacity (CRC) of at least 24 g/g,
Saline Flow Conductivity (SFC) of at least 30×10−7 cm3s/g and
Free Swell Rate (FSR) of at least 0.15 g/g s and/or vortex Time of not more than 160 s.
Description
- This invention relates to hydrogels, to water-absorbent compositions containing same, to processes for their production, to their use in hygiene articles and to methods for determining suitable water-absorbent compositions.
- Hygiene articles such as infant diapers or sanitary napkins have long been utilizing highly swellable hydrogels. This has substantially reduced hygiene article bulk.
- The current trend in diaper design is toward even thinner constructions having a reduced cellulose fiber content and an increased hydrogel content. The advantage of thinner constructions shows itself not only in improved wear comfort, but also in reduced costs for packaging and warehousing. The trend toward ever thinner diaper constructions has substantially changed the profile of properties required of the water-swellable hydrophilic polymers. The decisive property is now the ability of the hydrogel to conduct and distribute imbibed fluid. The greater amount of polymer per unit area in the hygiene article must not cause the swollen polymer to form a barrier layer for subsequent fluid (gel blocking). Gel blocking occurs when fluid wets the surface of the highly absorbent hydrogel particles and the outer sheath swells. The result is the formation of a barrier layer which reduces diffusion of liquids into the particle interior and thus leads to leakage. Good gel permeability and thus good transportation properties ensures optimum utilization of the entire hygiene article.
- The objective of higher use levels for highly swellable hydrogels has led through targeted adjustment of the degree of crosslinking in the starting polymer and subsequent postcrosslinking to an optimization of absorbency and gel strength. Improved gel permeability values can be generated only from a higher crosslink density in the starting polymer. Higher crosslink densities, however, go hand in hand with reduced absorption capacity and a decrease in the swell rate in the polymer. The consequence is that an increase in the hydrogel content of the hygiene article necessitates the incorporation of additional layers to prevent leakage, which in turn leads to bulky hygiene articles and is contrary to the actual objective of manufacturing thinner hygiene products.
- A possible way to provide improved transportation properties and avoid gel blocking is to shift the particle size spectrum to higher values. However, this leads to a decrease in the swell rate, since the surface area of the absorbent material is reduced. This is undesirable.
- Another way to obtain improved gel permeability is surface post-crosslinking, which confers higher gel strength on the hydrogel body in the swollen state. Gels having insufficient strength are deformable by pressure, for example pressure due to the body-weight of the wearer of the hygiene article, and so clog the pores in the hydrogel/cellulose fiber absorbent and so prevent continued absorption of fluid. Since, for the above reasons, an increased crosslink density in the starting polymer is out of the question, surface postcrosslinking is an elegant way to increase gel strength. Surface postcrosslinking increases the crosslink density in the shell of the hydrogel particles, as a result of which Absorbency Under Load (AUL) by the base polymer thus generated is raised to a higher level. Whereas absorption capacity decreases in the hydrogel shell, the core of the hydrogel particles has an improved absorption capacity (compared to the shell) owing to the presence of mobile polymer chains, so that shell construction ensures improved fluid transmission.
- However, high use levels of highly swellable hydrogels still give rise to the phenomenon of gel blocking. An important criterion must therefore be the ability to conduct fluid in the swollen state. Only good fluid conductance ensures full exploitations of the actual advantages of highly swellable hydrogels, namely their pronounced absorption and retention capacity for aqueous body fluids. However, it is important that fluid conductance take place in the intended use period of the hygiene article. And the full absorption capacity of the hydrogel should be utilized in the process. The ability of a hydrogel to conduct fluid is quantified in terms of the Saline Flow Conductivity (SFC). SFC measures the ability of the formed hydrogel layer to conduct fluid under a given pressure. It is believed that, at high use levels, hydrogel particles are in mutual contact in the swollen state to form a continuous absorption layer within which fluid distribution takes place.
- A subsequent modification of the surface of the base polymers (surface-postcrosslinked starting polymers) is known.
- DE-A-3 523 617 relates to the addition of finely divided amorphous silicas to dry hydrogel powder following surface postcrosslinking with carboxyl-reactive crosslinker substances.
- In the prior art, aluminum sulfate is used as sole crosslinker or combined with other crosslinkers in surface postcrosslinking.
- WO 95/22356 relates to the modification of absorbent polymers with other polymers to improve the absorption properties. Preferred modifiers are polyamines and polyimines. However, the effects with regard to SFC are minimal according to Tables 1 and 2.
- WO 95/26209 relates to absorbent structures having at least one region containing 60-100% of highly swellable hydrogel having an SFC of at least 30×10 −7 cm3s/g and a PUP 0.7 psi of at least 23 g/g. It is exemplified that such highly swellable hydrogels are obtainable by surface postcrosslinking. As is evident from Tables 1 and 2, this type of treatment can provide an increased SFC only at the expense of a decreased gel volume, i.e., there is a reciprocal relationship between retention and gel permeability.
- SFC increases with increasing particle size of the highly swellable hydrogel. As particle size increases, the surface area of the highly swellable hydrogel particles decreases relative to their volume, and this results in a decreased swell rate. It is therefore possible to deduce from the results of these experiments that swell rate too has a reciprocal dependency on SFC.
- It is an object of the present invention to provide highly swellable hydrogels or water-absorbent compositions having good transportation properties and high permeability coupled with a high ultimate absorption capacity and a high swell rate when used in hygiene articles. Contrary to the prior art, where high absorption capacities on the part of the hydrogels, high liquid transportation performance and rapid swellability are mutually exclusive, the novel highly swellable hydrogels to be generated shall combine the contrary parameters. In addition, it shall be possible to produce thin hygiene articles through high use levels for the highly swellable hydrogels of the invention. Highly swellable hydrogels shall be generated for this purpose that simultaneously exhibit a high swell or absorption rate, a high gel permeability and a high retention. Given the excellent fluid distribution present, the high total capacity of the inventive highly swellable hydrogels in the absorption layer should be optimally utilizable.
- We have found that this object is achieved according to the invention by water-insoluble water-swellable hydrogels coated with steric or electrostatic spacers, characterized by the following pre-coating features:
- Absorbency Under Load (AUL) (0.7 psi) of at least 20 g/g,
- Gel strength of at least 1 600 Pa.
- The coated hydrogels additionally preferably have the following features:
- Centrifuge Retention Capacity (CRC) of at least 24 g/g,
- Saline Flow Conductivity (SFC) of at least 30×10 −7, preferably at least 60×10−7 cm3s/g and
- Free Swell Rate (FSR) of at least 0.15 g/g and/or Vortex Time of not more than 160 s.
- The term “water-absorbent” relates to water and aqueous systems which may contain organic or inorganic compounds in solution, especially to body fluids such as urine, blood or fluids containing same.
- The hydrogels of the invention and water-absorbent compositions containing same are useful for producing hygiene articles or other articles for absorbing aqueous fluids. The invention consequently further relates to hygiene articles containing a water-absorbent composition according to the invention between a liquid-pervious topsheet and a liquid-impervious backsheet. The hygiene articles may be present in the form of diapers, sanitary napkins and incontinence products.
- The invention also provides a method for improving the performance profile of water-absorbent compositions by enhancing the permeability, capacity and swell rate of the water-absorbent compositions by use of water-insoluble water-swellable hydrogels as defined above.
- The invention further provides a method for determining water-absorbent compositions possessing high permeability, capacity and swell rate by measuring the absorbency under load (AUL) and the gel strength of uncoated hydrogels and determining the centrifuge retention capacity (CRC), Saline Flow Conductivity (SFC) and Free Swell Rate (FSR) of the coated hydrogels for given water-absorbent compositions and determining the water-absorbent compositions for which the hydrogels exhibit the property spectrum mentioned above.
- The invention further provides for the use of hydrogels as defined above in hygiene articles or other articles for absorbing aqueous fluids to enhance the permeability, capacity and swell rate.
- It was found that, surprisingly, the above object is achieved in full on using base polymers having an AUL (0.7 psi) of at least 20 g/g, preferably at least 22 g/g, particularly preferably at least 24 g/g, very preferably at least 26 g/g, and a gel strength of at least 1 600 Pa, preferably at least 1 800 Pa, particularly preferably at least 2 000 Pa, whose surface is subsequently coated with a steric (inert) or electrostatic spacer. Base polymers having these properties ensure that, under a restraining force, the spacer effect is not offset by excessively ready gel particle deformability.
- The technique of adding steric or electrostatic spacers makes it possible to produce hygiene articles having a high hydrogel content within the absorption layer. In addition, hydrogels with electrostatic spacers also possess improved binding to cellulose fibers, since the latter have a weak negative charge on the surface. This fact is particularly advantageous, since it enables said property profile of hydrogels with electrostatic spacers and cellulose fibers to produce an absorption layer without additional assistants to fix the hydrogel within the fiber matrix. The binding to the cellulose fibers automatically effects fixation of the hydrogel material, so that there is no undesirable redistribution of the hydrogel material, for example to the surface of the absorbent core.
- The highly swellable polymer particles of the invention are notable for high absorption capacities, improved liquid transportation performance and a higher swell rate. For this reason, the hygiene article can be made extremely thin. The increased level of high-capacity highly swellable hydrogels of the invention provides enormous absorption performance, so that the leakage problem is circumvented as well. At the same time, the improved liquid distribution performance ensures that the high absorption capacity is fully utilized.
- The present invention relates to the production of novel highly swellable hydrogels by
- (1) preselecting highly swellable base polymers having an AUL (0.7 psi) of at least 20 g/g, preferably at least 22 g/g, particularly preferably at least 24 g/g, very preferably at least 26 g/g, and a gel strength of at least 1 600 Pa, preferably at least 1 800 Pa, particularly preferably at least 2 000 Pa,
- (2) aftertreating (coating) the surface of the base polymers selected according to the above criteria with steric or electrostatic spacers.
- Coating these preselected hydrogels provides highly swellable hydrogels which, contrary to the prior art, combine a high swell or absorption rate with high gel permeability and a high retention.
- This accordingly generates hydrogels having the following combinations of properties:
- CRC not less than 24 g/g, preferably not less than 26 g/g, more preferably not less than 28 g/g, even more preferably not less than 30 g/g, particularly preferably CRC not less than 32 g/g and most preferably CRC not less than 35 g/g and
- SFC not less than 30×10 −7 cm3s/g, preferably not less than 60×10−7 cm3s/g, preferably not less than 80×10−7 cm3 s/g, more preferably not less than 100×10−7 cm3 s/g, even more preferably not less than 120×10−7 cm3 s/g, especially preferably not less than 150×10−7 cm3 s/g, very preferably not less than 200×10−7 cm3 s/g, most preferably not less than 300×10−7 cm3 s/g, and
- Free Swell Rate not less than 0.15 g/gs, preferably not less than 0.20 g/gs, more preferably not less than 0.30 g/gs, even more preferably not less than 0.50 g/gs, especially preferably not less than 0.70 g/gs, most preferably not less than 1.00 g/gs or
- Vortex Time not more than 160 s, preferably Vortex Time not more than 120 s, more preferably Vortex Time not more than 90 s, particularly preferably Vortex Time not more than 60 s, most preferably Vortex Time not more than 30 s.
- Water-Swellable Hydrogels with Spacers
- Hydrogel-forming polymers are in particular polymers of (co)polymerized hydrophilic monomers, graft (co)polymers of one or more hydrophilic monomers on a suitable grafting base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products that are swellable in aqueous fluids, for example guar derivatives, alginates and carrageenans.
- Suitable grafting bases can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and also other polysaccharides and oligosacchardies, polyvinyl alcohol, polyalkylene oxides, especially polyethylene oxides and polypropylene oxides, polyamines, polyamides and also hydrophilic polyesters. Suitable polyalkylene oxides have for example the formula
- where
- R 1 and R2 are independently hydrogen, alkyl, alkenyl or aryl,
- X is hydrogen or methyl and
- n is an integer from 1 to 10 000.
- R 1 and R2 are each preferably hydrogen, (C1-C4)-alkyl, (C2-C6)-alkenyl or phenyl.
- Preferred hydrogel-forming polymers are crosslinked polymers having acid groups which are predominantly in the form of their salts, generally alkali metal or ammonium salts. Such polymers swell particularly strongly on contact with aqueous fluids to form gels.
- Preference is given to polymers which are obtained by crosslinking polymerization or copolymerization of acid-functional monoethylenically unsaturated monomers or salts thereof. It is further possible to (co)polymerize these monomers without crosslinkers and to crosslink subsequently.
- Examples of such monomers bearing acid groups are monoethylenically unsaturated C 3- to C25-carboxylic acids or anhydrides such as acrylic acid, methacrylic acid, ethacrylic acid, α-chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid. It is also possible to use monoethylenically unsaturated sulfonic or phosphonic acids, for example vinylsulfonic acid, allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloyloxypropylsulfonic acid, 2-hydroxy-3-methacryloyloxypropylsulfonic acid, vinylphosphonic acid, allylphosphonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid. The monomers may be used alone or mixed.
- Preferred monomers are acrylic acid, methacrylic acid, vinylsulfonic acid, acrylamidopropanesulfonic acid or mixtures thereof, for example mixtures of acrylic and methacrylic acid, mixtures of acrylic acid and acrylamidopropanesulfonic acid or mixtures of acrylic acid and vinylsulfonic acid.
- To optimize properties, it can be sensible to use additional monoethylenically unsaturated compounds which do not bear an acid group but are copolymerizable with the monomers bearing acid groups. Such compounds include for example the amides and nitriles of monoethylenically unsaturated carboxylic acids, for example acrylamide, methacrylamide and N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylacetamide, acrylonitrile and methacrylonitrile. Examples of further suitable compounds are vinyl esters of saturated C 1- to C4-carboxylic acids such as vinyl formate, vinyl acetate or vinyl propionate, alkyl vinyl ethers having at least 2 carbon atoms in the alkyl group, for example ethyl vinyl ether or butyl vinyl ether, esters of monoethylenically unsaturated C3- to C6-carboxylic acids, for example esters of monohydric C1- to C18-alcohols and acrylic acid, methacrylic acid or maleic acid, monoesters of maleic acid, for example methyl hydrogen maleate, N-vinyllactams such as N-vinylpyrrolidone or N-vinylcaprolactam, acrylic and methacrylic esters of alkoxylated monohydric saturated alcohols, for example of alcohols having from 10 to 25 carbon atoms which have been reacted with from 2 to 200 mol of ethylene oxide and/or propylene oxide per mole of alcohol, and also monoacrylic esters and monomethacrylic esters of polyethylene glycol or polypropylene glycol, the molar masses (Mn) of the polyalkylene glycols being up to 2 000, for example. Further suitable monomers are styrene and alkyl-substituted styrenes such as ethylstyrene or tert-butylstyrene.
- These monomers without acid groups may also be used in mixture with other monomers, for example mixtures of vinyl acetate and 2-hydroxyethyl acrylate in any proportion. These monomers without acid groups are added to the reaction mixture in amounts within the range from 0 to 50% by weight, preferably less than 20% by weight.
- Preference is given to crosslinked polymers of monoethylenically unsaturated monomers which bear acid groups and which are optionally converted into their alkali metal or ammonium salts before or after polymerization and 0-40% by weight, based on their total weight, of monoethylenically unsaturated monomers which do not bear acid groups.
- Preference is given to crosslinked polymers of monoethylenically unsaturated C 3-C12-carboxylic acids and/or their alkali metal or ammonium salts. Preference is given in particular to crosslinked polyacrylic acids, 25-100% of whose acid groups are present as alkali metal or ammonium salts.
- Possible crosslinkers include compounds containing at least two ethylenically unsaturated double bonds. Examples of compounds of this type are N,N′-methylenebisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates each derived from polyethylene glycols having a molecular weight of from 106 to 8 500, preferably from 400 to 2 000, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, butanediol diacrylate, butanediol dimethacrylate, hexanediol diacrylate, hexanediol dimethacrylate, allyl methacrylate, diacrylates and dimethacrylates of block copolymers of ethylene oxide and propylene oxide, polyhydric alcohols, such as glycerol or pentaerythritol, doubly or more highly esterified with acrylic acid or methacrylic acid, triallylamine, dialkyldiallylammonium halides such as dimethyldiallylammonium chloride and diethyldiallylammonium chloride, tetraallylethylenediamine, divinylbenzene, diallyl phthalate, polyethylene glycol divinyl ethers of polyethylene glycols having a molecular weight of from 106 to 4 000, trimethylolpropane diallyl ether, butanediol divinyl ether, pentaerythritol triallyl ether, reaction products of 1 mol of ethylene glycol diglycidyl ether or polyethylene glycol diglycidyl ether with 2 mol of pentaerythritol triallyl ether or allyl alcohol, and/or divinylethyleneurea. Preference is given to using water-soluble crosslinkers, for example N,N′-methylenebisacrylamide, polyethylene glycol diacrylates and polyethylene glycol dimethacrylates derived from addition products of from 2 to 400 mol of ethylene oxide with 1 mol of a diol or polyol, vinyl ethers of addition products of from 2 to 400 mol of ethylene oxide with 1 mol of a diol or polyol, ethylene glycol diacrylate, ethylene glycol dimethacrylate or triacrylates and trimethacrylates of addition products of from 6 to 20 mol of ethylene oxide with 1 mol of glycerol, pentaerythritol triallyl ether and/or divinylurea.
- Possible crosslinkers also include compounds containing at least one polymerizable ethylenically unsaturated group and at least one further functional group. The functional group of these crosslinkers has to be capable of reacting with the functional groups, essentially the acid groups, of the monomers. Suitable functional groups include for example hydroxyl, amino, epoxy and aziridino groups. Useful are for example hydroxyalkyl esters of the abovementioned monoethylenically unsaturated carboxylic acids, e.g., 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate and hydroxybutyl methacrylate, allylpiperidinium bromide, N-vinylimidazoles, for example N-vinylimidazole, 1-vinyl-2-methylimidazole and N-vinylimidazolines such as N-vinylimidazoline, 1-vinyl-2-methylimidazoline, 1-vinyl-2-ethylimidazoline or 1-vinyl-2-propylimidazoline, which can be used in the form of the free bases, in quaternized form or as salt in the polymerization. It is also possible to use dialkylaminoalkyl acrylates and dialkylaminoalkyl methacrylates such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate and diethylaminoethyl methacrylate. The basic esters are preferably used in quaternized form or as salt. It is also possible to use glycidyl (meth)acrylate, for example.
- Useful crosslinkers further include compounds containing at least two functional groups capable of reacting with the functional groups, essentially the acid groups, of the monomers. Suitable functional groups were already mentioned above, i.e., hydroxyl, amino, epoxy, isocyanate, ester, amido and aziridino groups. Examples of such crosslinkers are ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerol, polyglycerol, triethanolamine, propylene glycol, polypropylene glycol, block copolymers of ethylene oxide and propylene oxide, ethanolamine, sorbitan fatty acid esters, ethoxylated sorbitan fatty acid esters, trimethylolpropane, pentaerythritol, 1,3-butanediol, 1,4-butanediol, polyvinyl alcohol, sorbitol, starch, polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether, polyaziridine compounds such as 2,2-bishydroxymethylbutanol tris[3-(1-aziridinyl)propionate], 1,6-hexamethylenediethyleneurea, diphenylmethanebis-4,4′-N,N′-diethyleneurea, halo epoxy compounds such as epichlorohydrin and a-methylepifluorohydrin, polyisocyanates such as 2,4-toluylene diisocyanate and hexamethylene diisocyanate, alkylene carbonates such as 1,3-dioxolan-2-one and 4-methyl-1,3-dioxolan-2-one, also bisoxazolines and oxazolidones, polyamidoamines and also their reaction products with epichlorohydrin, also polyquaternary amines such as condensation products of dimethylamine with epichlorohydrin, homo- and copolymers of diallyldimethylammonium chloride and also homo- and copolymers of dimethylaminoethyl (meth)acrylate which are optionally quaternized with, for example, methyl chloride.
- The crosslinkers are present in the reaction mixture for example from 0.001 to 20%, preferably from 0.01 to 14%, by weight.
- The polymerization is initiated in the generally customary manner, by means of an initiator. But the polymerization may also be initiated by electron beams acting on the polymerizable aqueous mixture. However, the polymerization may also be initiated in the absence of initiators of the abovementioned kind, by the action of high energy radiation in the presence of photoinitiators. Useful polymerization initiators include all compounds which decompose into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxides, persulfates, azo compounds and redox catalysts. The use of water-soluble initiators is preferred. In some cases it is advantageous to use mixtures of different polymerization initiators, for example mixtures of hydrogen peroxide and sodium peroxodisulfate or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate may be used in any proportion. Examples of suitable organic peroxides are acetylacetone peroxide, methyl ethyl ketone peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-amyl perpivalate, tert-butyl perpivalate, tert-butyl perneohexanoate, tert-butyl perisobutyrate, tert-butyl per-2-ethylhexanoate, tert-butyl perisononanoate, tert-butyl permaleate, tert-butyl perbenzoate, di(2-ethylhexyl) peroxydicarbonate, dicyclohexyl peroxydicarbonate, di(4-tert-butylcyclohexyl) peroxydicarbonate, dimyristyl peroxydicarbonate, diacetyl peroxydicarbonate, allyl peresters, cumyl peroxyneodecanoate, tert-butyl per-3,5,5-trimethylhexanoate, acetylcyclohexylsulfonyl peroxide, dilauryl peroxide, dibenzoyl peroxide and tert-amyl perneodecanoate. Particularly suitable polymerization initiators are water-soluble azo initiators, e.g., 2,2′-azobis(2-amidinopropane) dihydrochloride, 2,2′-azobis(N,N′-dimethylene)isobutyramidine dihydrochloride, 2-(carbamoylazo)isobutyronitrile, 2,2′-azobis[2-(2′-imidazolin-2-yl)propane]dihydrochloride and 4,4′-azobis(4-cyanovaleric acid). The polymerization initiators mentioned are used in customary amounts, for example in amounts of from 0.01 to 5%, preferably from 0.05 to 2.0%, by weight, based on the monomers to be polymerized.
- Useful initiators also include redox catalysts. In redox catalysts, the oxidizing component is at least one of the above-specified per compounds and the reducing component is for example ascorbic acid, glucose, sorbose, ammonium or alkali metal bisulfite, sulfite, thiosulfate, hyposulfite, pyrosulfite or sulfide, or a metal salt, such as iron(II) ions or sodium hydroxymethylsulfoxylate. The reducing component in the redox catalyst is preferably ascorbic acid or sodium sulfite. Based on the amount of monomers used in the polymerization, from 3×10 −6 to 1 mol % may be used for the reducing component of the redox catalyst system and from 0.001 to 5.0 mol % for the oxidizing component of the redox catalyst, for example.
- When the polymerization is initiated using high energy radiation, the initiator used is customarily a photoinitiator. Photoinitiators include for example x-splitters, H-abstracting systems or else azides. Examples of such initiators are benzophenone derivatives such as Michler's ketone, phenanthrene derivatives, fluorene derivatives, anthraquinone derivatives, thioxanthone derivatives, coumarin derivatives, benzoin ethers and derivatives thereof, azo compounds such as the abovementioned free-radical formers, substituted hexaarylbisimidazoles or acylphosphine oxides. Examples of azides are:
- 2-(N,N-dimethylamino)ethyl 4-azidocinnamate, 2-(N,N-dimethylamino)ethyl 4-azidonaphthyl ketone, 2-(N,N-dimethylamino)ethyl 4-azidobenzoate, 5-azido-1-naphthyl 2′-(N,N-dimethylamino)ethyl sulfone, N-( 4-sulfonylazidophenyl)maleimide, N-acetyl-4-sulfonylazidoaniline, 4-sulfonylazidoaniline, 4-azidoaniline, 4-azidophenacyl bromide, p-azidobenzoic acid, 2,6-bis(p-azidobenzylidene)cyclohexanone and 2,6-bis(p-azidobenzylidene)-4-methylcyclohexanone. Photoinitiators, if used, are customarily used in amounts of from 0.01 to 5% of the weight of the monomers to be polymerized.
- The subsequent crosslinking stage comprises polymers which were prepared by polymerization of the abovementioned monoethylenically unsaturated acids and optionally monoethylenically unsaturated comonomers and which have a molecular weight of more than 5 000, preferably more than 50 000, being reacted with compounds having at least two groups which are reactive toward acid groups. This reaction can take place at room temperature or else at elevated temperatures of up to 220° C.
- Suitable functional groups were already mentioned above, i.e., hydroxyl, amino, epoxy, isocyante, ester, amido and aziridino groups, as well examples of such crosslinkers.
- Crosslinkers are added to the acid-functional polymers or salts in amounts of from 0.5 to 25% by weight, preferably from 1 to 15% by weight, based on the amount of polymer used.
- Crosslinked polymers are preferably used in fully neutralized form. However, neutralization may also be partial only. The degree of neutralization is preferably within the range from 25 to 100%, especially within the range from 50 to 100%. Useful neutralizing agents include alkali metal bases or ammonia/amines. Preference is given to the use of aqueous sodium hydroxide solution or aqueous potassium hydroxide solution. However, neutralization may also be effected using sodium carbonate, sodium bicarbonate, potassium carbonate or potassium bicarbonate or other carbonates or bicarbonates or ammonia. Moreover primary, secondary and tertiary amines may be used.
- Industrial processes useful for making these products include all processes which are customarily used to make superabsorbents, as described for example in Chapter 3 of “Modern Superabsorbent Polymer Technology”, F. L. Buchholz and A. T. Graham, Wiley-VCH, 1998.
- Polymerization in aqueous solution is preferably conducted as a gel polymerization. It involves 10-70% strength by weight aqueous solutions of the monomers and optionally of a suitable grafting base being polymerized in the presence of a free-radical initiator by utilizing the Trommsdorff-Norrish effect.
- The polymerization reaction may be carried out at from 0 to 150° C., preferably at from 10 to 100° C., not only at atmospheric pressure but also at superatmospheric or reduced pressure. As is customary, the polymerization may also be conducted in a protective gas atmosphere, preferably under nitrogen.
- By subsequently heating the polymer gels at from 50 to 130° C., preferably at from 70 to 100° C., for several hours, the performance characteristics of the polymers can be further improved.
- Preference is given to hydrogel-forming polymers which have been surface postcrosslinked. Surface postcrosslinking may be carried out in a conventional manner using dried, ground and classified polymer particles.
- To effect surface postcrosslinking, compounds capable of reacting with the functional groups of the polymers by crosslinking are applied to the surface of the hydrogel particles, preferably in the form of an aqueous solution. The aqueous solution may contain water-miscible organic solvents. Suitable solvents are alcohols such as methanol, ethanol, i-propanol or acetone.
- Suitable surface postcrosslinkers include for example:
- di- or polyglycidyl compounds such as diglycidyl phosphonates or ethylene glycol diglycidyl ether, bischlorohydrin ethers of polyalkylene glycols,
- alkoxysilyl compounds,
- polyaziridines, aziridine compounds based on polyethers or substituted hydrocarbons, for example bis-N-aziridinomethane,
- polyols such as ethylene glycol, 1,2-propanediol, 1,4-butanediol, glycerol, methyltriglycol, polyethylene glycols having an average molecular weight M w of 200-10 000, di- and polyglycerol, pentaerythritol, sorbitol, the ethoxylates of these polyols and their esters with carboxylic acids or carbonic acid such as ethylene carbonate or propylene carbonate,
- carbonic acid derivatives such as urea, thiourea, guanidine, dicyandiamide, 2-oxazolidinone and its derivatives, bisoxazoline, polyoxazolines, di- and polyisocyanates,
- di- and poly-N-methylol compounds such as, for example, methylenebis(N-methylolmethacrylamide) or melamine-formaldehyde resins,
- compounds having two or more blocked isocyanate groups such as, for example, trimethylhexamethylene diisocyanate blocked with 2,2,3,6-tetramethylpiperidin-4-one.
- If necessary, acidic catalysts may be added, for example p-toluenesulfonic acid, phosphoric acid, boric acid or ammonium dihydrogenphosphate.
- Particularly suitable surface postcrosslinkers are di- or polyglycidyl compounds such as ethylene glycol diglycidyl ether, the reaction products of polyamidoamines with epichlorohydrin and 2-oxazolidinone.
- The crosslinker solution is preferably applied by spraying with a solution of the crosslinker in conventional reaction mixers or mixing and drying equipment such as Patterson-Kelly mixers, DRAIS turbulence mixers, Lödige mixers, screw mixers, plate mixers, fluidized bed mixers and Schugi Mix. The spraying of the crosslinker solution may be followed by a heat treatment step, preferably in a downstream dryer, at from 80 to 230° C., preferably 80-190° C., particularly preferably at from 100 to 160° C., for from 5 minutes to 6 hours, preferably from 10 minutes to 2 hours, particularly preferably from 10 minutes to 1 hour, during which not only cracking products but also solvent fractions can be removed. But the drying may also take place in the mixer itself, by heating the jacket or by blowing in a preheated carrier gas.
- Steric Spacers
- Useful steric spacers include inert materials (powders) for example silicates having a band, chain or sheet structure (montmorillonite, kaolinite, talc), zeolites, active carbons or silicas. Inorganic inert spacers further include for example magnesium carbonate, calcium carbonate, barium sulfate, aluminum oxide, titanium dioxide and iron(II) oxide. Organic inert spacers include for example polyalkyl methacrylates or thermoplastics such as for example polyvinyl chloride. Preference is given to using silicas, which divide into precipitated silicas and pyrogenic silicas according to their method of preparation. Both variants are commercially available under the name AEROSIL® (pyrogenic silicas) or Silica FK, Sipernat®, Wessalon® (precipitated silica). The surface of the silica particles bears siloxane and silanol groups. There are more of the siloxane groups. They are the reason for the substantially inert character of this synthetic silica. Specific types of silica are available for different applications. For instance, silane may be added to chemically modify the silica surface so that the originally hydrophilic silica is transformed into hydrophobic variants. Some silica grades are available as mixed oxides, for example in a blend with aluminum oxide. The spacer function can be controlled according to the surface constitution of the primary particles. Pyrogenic silica (for example AEROSIL®) is available in particle size fractions of from 7 to 40 nm.
- Silica under the tradenames of Silica FK, Sipernat® and Wessalon® can be obtained as a powder of particle size fraction 5-100 μm and a specific surface area of 50-450 m 2/g.
- For use as steric spacer, the particle size of the inert powders is preferably at least 1 μm, more preferably at least 4 μm, particularly preferably at least 20 μm, very preferably at least 50 μm. The use of precipitated silicas is particularly preferred.
- The handling of inert silica grades is generally physiologically safe. This permits unreserved use of materials of this kind in a hygiene article.
- The base polymers coated with inert spacer material may be produced by applying the inert spacers in an aqueous or water-miscible medium or else by applying the inert spacers in powder form to pulverulent base polymer material. The aqueous or water-miscible media are preferably applied by spraying onto dry polymer powder. In a particularly preferred version of the production process, pure powder/powder blends are produced from pulverulent inert spacer material and base polymer. The inert spacer material is applied to the surface of the base polymer in a proportion of 0.05 to 5% by weight, preferably from 0.1 to 1.5% by weight, particularly preferably from 0.3 to 1% by weight, based on the total weight of the coated hydrogel.
- Electrostatic Spacers
- Cationic components may be added as electrostatic spacers.
- It is generally possible to add cationic polymers for the purpose of electrostatic repulsion. This is accomplished for example with polyethyleneimines, polyvinylamines, polyamines such as polyalkylenepolyamines, cationic derivatives of polyacrylamides, polyethyleneimines, polyquaternary amines, for example, condensation products of hexamethylenediamine, dimethylamine and epichlorohydrin, condensation products of dimethylamine and epichlorohydrin, copolymers of hydroxyethylcellulose and diallyldimethylammonium chloride, copolymers of acrylamide and β-methacryloxyethyltrimethylammonium chloride, hydroxycellulose reacted with epichlorohydrin and then quaternized with trimethylamine, homopolymers of diallyldimethylammonium chloride or addition products of epichlorohydrin with amidoamines. Polyquaternary amines may further be synthesized by reaction of dimethyl sulfate with polymers, such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate. Polyquaternary amines are available in a wide molecular weight range. Electrostatic spacers are also generated by applying a crosslinked, cationic sheath, either by means of reagents capable of forming a network with themselves, for example addition products of epichlorohydrin with polyamidoamines, or by applying cationic polymers capable of reacting with an added crosslinker, for example polyamines or polyimines combined with polyepoxides, multifunctional esters, multifunctional acids or multifunctional (meth)acrylates. It is also possible to use any multifunctional amines having primary or secondary amino groups, for example polyethyleneimine, polyallylamine, polylysine, preferably polyvinylamine. Further examples of polyamines are ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and polyethyleneimines and also polyamines having molar masses of up to 4 000 000 in each case.
- Electrostatic spacers may also be applied by adding solutions of divalent or more highly valent metal salt solutions. Examples of divalent or more highly valent metal cations are Mg 2+, Ca2+, Al3+, Sc3+, Ti4+, Mn2+Fe2+/3+, Co2+, Ni2+, Cu+/2+, Zn2+, Y3+, Zr4+, Ag+, La3+, Ce4+, Hf4+ and Au+/3+, preferred metal cations are Mg2+, Ca2+, Al3+, Ti4+, Zr4+ and La3+ and particularly preferred metal cations are Al3+, Ti4+ and Zr4+. The metal cations may be used not only alone but also mixed with each other. Of the metal cations mentioned, all salts are suitable that possess adequate solubility in the solvent to be used. Of particular suitability are metal salts with weakly complexing anions such as for example chloride, nitrate and sulfate. Useful solvents for the metal salts include water, alcohols, DMF, DMSO and also mixtures thereof. Particular preference is given to water and water-alcohol mixtures, for example water-methanol or water-1,2-propanediol.
- In the production process, the electrostatic spacers may be applied like the inert spacers by application in an aqueous or water-miscible medium. This is the preferred production process in the case of the addition of metal salts. Cationic polymers are applied to pulverulent base polymer material by applying an aqueous solution or in a water-miscible solvent, optionally also as dispersion, or else by application in powder form. The aqueous or water-miscible media are preferably applied by spraying onto dry polymer powder. The polymer powder may optionally be subsequently dried, in which case the coated base polymers are exclusively dried at temperatures of not more than 100° C. Higher temperatures would lead to the formation of covalent bonds between the polyamine component and the polycarboxylate, which should be avoided under any circumstances in order that the additional crosslinking brought about as a result may not excessively lower the capacity of the product. For this reason, there is preferably no heat treatment step involved when coating with polyamines. When an additional crosslinker is used, the heat treatment conditions are chosen in such a way that it is only the polyamine coating layer which is crosslinked, but not the polycarboxylate underneath.
- The cationic spacers are applied to the surface of the base polymer in a proportion of from 0.05 to 5% by weight, preferably from 0.1 to 1.5% by weight, particularly preferably from 0.1 to 1% by weight, based on the total weight of the coated hydrogel.
- The hydrogels mentioned are notable for high absorbency for water and aqueous solutions and therefore are preferentially used as absorbents in hygiene articles.
- The water-swellable hydrogels may be present in conjunction with a box material for the hydrogels, preferably embedded as particles in a polymer fiber matrix or an open-celled polymer foam, fixed on a sheetlike base material or present as particles in chambers formed from a base material.
- The invention also provides a process for producing water-absorbent compositions by
- preparing the water-swellable hydrogels,
- optionally coating the hydrogels with a steric or electrostatic spacer and
- introducing the hydrogels into a polymer fiber matrix or an open-celled polymer foam or into chambers formed from a base material or fixing on a sheetlike base material.
- The hygiene articles producible from the water-absorbent compositions of the invention are known per se and have been described. They are preferably diapers, sanitary napkins and incontinence products such as incontinence liners. The construction of such products is known.
- Description of Test Methods
- Centrifuge Retention Capacity (CRC)
- This method measures the free swellability of the hydrogel in a teabag. 0.2000±0.0050 g of dried hydrogel (particle size fraction 106-850 μm) is sealed into a teabag 60×85 mm in size. The teabag is then soaked for 30 minutes in an excess of 0.9% by eight sodium chloride solution (at least 0.83 l of sodium chloride solution/l g of polymer powder). The teabag is then centrifuged for three minutes at 250 g. The amount of liquid is determined by weighing the centrifuged teabag.
- Absorbency Under Load (AUL) 0.7 psi
- The measuring cell for determining AUL 0.7 psi is a Plexiglas cylinder 60 mm in internal diameter and 50 mm in height. Adhesively attached to its underside is a stainless steel sieve bottom having a mesh size of 36 μm. The measuring cell further includes a plastic plate having a diameter of 59 mm and a weight which can be placed in the measuring cell together with the plastic plate. The weight of the plastic plate and of the weight totals 1345 g. AUL 0.7 psi is determined by measuring the weight of the empty Plexiglas cylinder and of the plastic plate and recorded as W 0. 0.900±0.005 g of hydrogel-forming polymer (particle size distribution: 150-800 μm) is then weighed into the Plexiglas cylinder and distributed very uniformly over the stainless steel sieve. The plastic plate is then carefully placed in the Plexiglas cylinder, the entire unit is weighed and the weight is recorded as Wa. The weight is then placed on the plastic plate in the Plexiglas cylinder. A ceramic filter plate 120 mm in diameter and 0 in porosity is then placed in the middle of a Petri dish 200 mm in diameter and 30 mm in height and sufficient 0.9% by weight sodium chloride solution is introduced for the surface of the liquid to be level with the filter plate surface without the surface of the filter plate being wetted. A round filter paper 90 mm in diameter and <20 μm in pore size (S&S 589 Schwarzband from Schleicher & Schüll) is subsequently placed on the ceramic plate. The Plexiglas cylinder containing hydrogel-forming polymer is then placed with plastic plate and weight on top of the filter paper and left there for 60 minutes. At the end of this period, the complete unit is removed from the filter paper in the Petri dish and subsequently the weight is removed from the Plexiglas cylinder. The Plexiglas cylinder containing swollen hydrogel is weighed together with the plastic plate and the weight recorded as Wb.
- AUL is calculated by the following equation:
- AUL 0.7 psi[g/g]=[W b −W a ]/[W a −W 0]
- Free Swell Rate (FSR)
- 1.00 g (W H) of hydrogel is uniformly spread out on the bottom of a plastic weighing boat having a round bottom of about 6 cm. The plastic weighing boat is round and about 6 cm in diameter at the bottom, about 2.5 cm deep and about 7.5 cm×7.5 cm square at the top. A funnel is then used to add 20 g (Wu) of a synthetic urine solution preparable by dissolving 2.0 g of KCl, 2.0 g of Na2SO4, 0.85 g of NH4H2PO4, 0.15 g of (NH4)2HPO4, 0.19 g of CaCl2, and 0.23 g of MgCl2 in 1 liter of distilled water to the center of the weighing boat. The time for the hydrogel to absorb all of the fluid, as indicated by the absence of pooled fluid, is recorded and noted as tA. The Free Swell Rate then computes from
- FSR=W U/(W H ×t A)
- Saline Flow Conductivity (SFC)
- The test method for determining SFC is described in WO 95/262/9.
- Vortex Time
- 50 ml of 0.9% by weight NaCl solution are measured into a 100 ml beaker. While the saline solution is being stirred with a magnetic stirrer at 600 rpm 2.00 g of hydrogel is poured in quickly in such a way that clumping is avoided. The time in seconds is taken for the vortex created by the stirring to close and for the surface of the saline solution to become flat.
- Gel Strength
- The rheological studies to determine the gel strength were carried out on a CSL 100 controlled stress rheometer from Carrimed. All measurements are carried out at room temperature.
- Sample Preparation:
- The measurements are carried out on hydrogel particles of the sieve fraction 300-400 μm which had previously been preswelled for 1 hour in 0.9% by weight NaCl solution in a ratio of 1:60. To prepare the samples to be measured, the NaCl solution is initially charged to 100 ml beakers and the dry hydrogel particles are gradually added with (magnetic) stirring so that there is no clumping. The stirring bar is subsequently removed, and the beaker is sealed with a film and set aside for 1 hour in that state at room temperature for swelling. To ensure the same conditions prior to the measurement being carried out, this preparative method has to be complied with exactly, or the rheological measurement would be impaired and the measured results distorted.
- Measurement Procedure:
- The gel strength is determined using the Carrimed CS rheometer via the oscillation mode using a plate-45 plate geometry (diameter 6 cm). To avoid the slip effect, sand-blasted plate systems are used for this purpose. The sample is placed on the baseplate and the ramp is slowly lifted to enable the gap to be closed slowly. The measuring gap measures 1 mm and has to be absolutely completely filled with sample material. Gel strength is the modulus of elasticity of the hydrogel preswollen as defined and is measured similarly to the modulus of elasticity in the linearly viscoelastic region of the sample, which is determined in a preliminary test on the same sample. To subsequently determine the gel strength, a torque sweep is carried out within the linearly viscoelastic region at a constant frequency (1 Hz) in the oscillation mode. Given elastic behavior, the measuring curve obtained is a straight line which quantifies the gel strength as a material constant of the elastic solid.
- The reported measurements are number averages of 3 series of determinations.
- The examples which follow illustrate the invention.
- A 10 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 3 600 g of deionized water and 1 400 g of acrylic acid, followed by 4.0 g of tetraallyloxyethane and 5.0 g of allyl methacrylate. The initiators, consisting of 2.2 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 20 g of deionized water), 4 g of potassium peroxodisulfate (dissolved in 150 g of deionized water) and 0.4 g of ascorbic acid (dissolved in 20 g of deionized water) are successively added and stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 90° C., produces a firm gel. This is subsequently subjected to mechanical comminution and adjusted to pH 6.0 with 50% by weight aqueous sodium hydroxide solution. The gel is then dried, ground and classified to a particle size distribution of 100-850 μm. 1 kg of this dried hydrogel is sprayed with a solution consisting of 60 g of demineralized water, 40 g of i-propanol and 1.0 g of ethylene glycol diglycidyl ether in a plowshare mixer and subsequently heat treated at 140° C. for 60 minutes. The herein described product has the following properties:
- CRC=28.4 g/g
- AUL 0.7 psi=25.1 g/g
- Gel strength=2 350 Pa
- SFC=35×10 −7 cm3s/g
- A 30 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 14 340g of demineralized water and 42 g of sorbitol triallyl ether. 3 700 g of sodium bicarbonate are suspended in this initial charge and 5 990 g of acrylic acid are gradually added at a rate such that overfoaming of the reaction solution is avoided; the reaction solution cools down to about 3-5° C. The initiators, 6.0 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 60 g of demineralized water), 12 g of potassium peroxodisulfate (dissolved in 450 g of demineralized water) and also 1.2 g of ascorbic acid (dissolved in 50 g of demineralized water) are successively added and thoroughly stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 85° C., produces a gel. This gel is subsequently transferred into a kneader and adjusted to a pH of 6.2 by addition of 50% by weight aqueous sodium hydroxide solution. The comminuted gel is then dried in an airstream at 170° C., ground and classified to a particle size distribution of 100-850 μm. 1 kg of this product is sprayed with a solution of 2 g of RETEN 204 LS (polyamidoamine-epichlorohydrin adduct from Hercules), 30 g of demineralized water and 30 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 150° C. for 60 minutes. The following properties were measured:
- CRC=32.3 g/g
- AUL 0.7 psi=26.4 g/g
- Gel strength=1 975 Pa
- SFC=25×10 −7 cm3s/g
- A WERNER & PFLEIDERER laboratory kneader having a working capacity of 2 l is evacuated to 980 mbar absolute by means of a vacuum pump and a previously separately prepared monomer solution which has been cooled to about 25° C. and inertized by passing nitrogen into it is sucked into the kneader. The monomer solution has the following composition: 825.5 g of deionized water, 431 g of acrylic acid, 335 g of NaOH 50%, 4.5 g of ethoxylated trimethylolpropane triacrylate (SR 9035 oligomer from SARTOMER) and 1.5 g of pentaerythritol triallyl ether (P-30 from Daiso). To improve the inertization, the kneader is evacuated and subsequently refilled with nitrogen. This operation is repeated three times. A solution of 1.2 g of sodium persulfate (dissolved in 6.8 g of deionized water) is then sucked in, followed after a further 30 seconds by a further solution consisting of 0.024 g of ascorbic acid dissolved in 4.8 g of deionized water. After a nitrogen urge a preheated jacket heating circuit on bypass at 75° C. is switched over to the kneader jacket and the stirrer speed increased to 96 rpm. Following the onset of polymerization and the reaching of T max, the jacket heating circuit is switched back to bypass, and the batch is supplementarily polymerized for 15 minutes without heating/cooling, subsequently cooled and discharged. The resultant gel particles are dried at above 100° C., ground and classified to a particle size distribution of 100-850 μm. 500 g of this product are sprayed with a solution of 2 g of 2-oxazolidinone, 25 g of deionized water and 10 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 185° C. for 70 minutes. The following properties were measured:
- CRC=26.3 g/g
- AUL 0.7 psi=23.8 g/g
- Gel strength=2 680 Pa
- SFC=50×10 −7 cm3s/g
- 1 000 g of the polymer of inventive example 1 were plowshare mixed for 15 minutes with 10 g of Sipernat D 17 (hydrophobic precipitated silica, commercial product of Degussa AG, average particle size 10 μm). The product thus coated has the following properties:
- CRC=28.9 g/g
- SFC=115×10 −7 cm3s/g
- Vortex Time=80 s
- 1 000 g of the polymer of inventive example 1 were sprayed with 50 g of a solution consisting of 90 parts by weight of deionized water and 10 parts by weight of aluminum sulfate (Al2(So 4)3) in a plowshare mixer and subsequently supplementarily mixed therein for 30 minutes. The product thus obtained has the following properties:
- CRC=27.2 g/g
- SFC=160×10 −7 cm3s/g
- Free Swell Rate=0.25 g/gs
- 1 000 g of the polymer of inventive example 1 were plowshare ixed for 15 minutes with 8 g of Sipernat 22 (hydrophilic precipitated silica, commercial product of Degussa AG, average article size 100 μm). The product thus coated has the following roperties:
- CRC=29.5 g/g
- SFC=x 10 −7 cm3s/g
- Free Swell Rate=0.56 g/gs
- 1 000 g of the polymer of inventive example 2 were plowshare mixed for 15 minutes with 10 g of Kieselsaure FK 320 (hydrophilic precipitated silica, commercial product of Degussa AG, average particle size 15 μm). The product thus coated has the following properties:
- CRC=32.6 g/g
- SFC=95×10 −7 cm3s/g
- Vortex Time=58 s
- 1 000 g of the polymer of inventive example 2 were sprayed with a solution consisting of 40 g of deionized water, 20 g of Polymin G 100 solution and 0.5 g of SPAN 20 in a plowshare mixer and subsequently supplementarily mixed therein for 20 minutes. The product thus obtained has the following properties:
- CRC=35.4 g/g
- SFC=90×10 −7 cm3s/g
- Vortex Time=45
- 1 000 g of the polymer of inventive example 3 were plowshare mixed for 15 minutes with 10 g of Sipernat D 17. The product thus coated has the following properties:
- CRC=25.8 g/g
- SFC=210×10 −7 cm3s/g
- Vortex Time=105 s
- 1 000 g of the polymer of inventive example 3 were sprayed with a solution consisting of 50 g of deionized water, 10 g of polyvinylamine (K 88), 0.1 g of ethylene glycol diglycidyl ether and 0.5 g of SPAN 20 in a plowshare mixer and subsequently supplementarily mixed therein for 20 minutes. After heat treatment in a laboratory drying cabinet at 80° C. for 1 hour, the product has the following properties:
- CRC=25.6 g/g
- SFC=330×10 −7 cm3s/g
- Vortex Time=20 s
- A 10 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 3 600 g of deionized water and 1 400 g of acrylic acid, followed by 14 g of tetraallylammonium chloride. The initiators, consisting of 2.2 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 20 g of deionized water), 4 g of potassium peroxodisulfate (dissolved in 150 g of deionized water) and 0.4 g of ascorbic acid (dissolved in 20 g of deionized water) are successively added and stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 90° C., produces a firm gel. This is subsequently subjected to mechanical comminution and adjusted to pH 6.0 with 50% by weight aqueous sodium hydroxide solution. The gel is then dried, ground and classified to a particle size distribution of 100-850 μm. 1 kg of this dried hydrogel is sprayed with a solution consisting of 40 g of demineralized water, 40 g of i-propanol and 0.5 g of ethylene glycol diglycidyl ether in a plowshare mixer and subsequently heat treated at 140° C. for 60 minutes. The herein described product has the following properties:
- CRC=36.2 g/g
- AUL 0.7 psi=25.9 g/g
- Gel strength=1 580 Pa
- SFC=8×10 −7 cm3s/g
- WERNER & PFLEIDERER laboratory kneader having a working capacity of 2 l is evacuated to 980 mbar absolute by means of a vacuum pump and a previously separately prepared monomer solution which has been cooled to about 25° C. and inertized by passing nitrogen into it is sucked into the kneader. The monomer solution has the following composition: 825.5 g of deionized water, 431 g of acrylic acid, 335 g of NaOH 50%, 3.0 g of methylenebisacrylamide. To improve the inertization, the kneader is evacuated and subsequently refilled with nitrogen. This operation is repeated three times. A solution of 1.2 g of sodium persulfate (dissolved in 6.8 g of deionized water) is then sucked in, followed after a further 30 seconds by a further solution consisting of 0.024 g of ascorbic acid dissolved in 4.8 g of deionized water. After a nitrogen purge a preheated jacket heating circuit on bypass at 75° C. is switched over to the kneader jacket and the stirrer speed increased to 96 rpm. Following the onset of polymerization and the reaching of T max, the jacket heating circuit is switched back to bypass, and the batch is supplementarily polymerized for 15 minutes without heating/cooling, subsequently cooled and discharged. The resultant gel particles are dried at above 100° C., ground and classified to a particle size distribution of 100-850 μm. The following properties were measured:
- CRC=29.4 g/g
- AUL 0.7 psi=15.8 g/g
- Gel strength=1 920 Pa
- SFC=5×10 −7 cm3s/g
- 1 000 g of the polymer of comparative example 1 were plowshare mixed for 15 minutes with 10 g of Sipernat D 17 (hydrophobic precipitated silica, commercial product of Degussa AG, average particle size 10 μm). The product thus coated has the following properties:
- CRC=35.8 g/g
- SFC=11×10 −7 cm3s/g
- Vortex Time=85 s
- 1 000 g of the polymer of comparative example 1 were sprayed with 50 g of a solution consisting of 90 parts by weight of deionized water and 10 parts by weight of aluminum sulfate (Al2(SO 4)3) in a plowshare mixer and subsequently supplementarily mixed therein for 30 minutes. The product thus obtained has the following properties:
- CRC=34.6 g/g
- SFC=9×10 −7 cm3s/g
- Free Swell Rate=0.48 g/gs
- 1 000 g of the polymer of comparative example 2 were plowshare mixed for 15 minutes with 10 g of Sipernat D 17. The product thus coated has the following properties:
- CRC=29.7 g/g
- SFC=6×10 −7 cm3s/g
- Vortex Time=78 s
- 1 000 g of the polymer of comparative example 2 were sprayed with a solution consisting of 50 g of deionized water, 10 g of polyvinylamine (K 88), 0.1 g of ethylene glycol diglycidyl ether and 0.5 g of SPAN 20 in a plowshare mixer and subsequently supplementarily mixed therein for 20 minutes. After heat treatment in a laboratory drying cabinet at 80° C. for 1 hour, the product has the following properties:
- CRC=27.8 g/g
- SFC=15×10 −7 cm3s/g
- Vortex Time=35 s
- A 30 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 14 340 g of demineralized water and 42 g of sorbitol triallyl ether. 3 700 g of sodium bicarbonate are suspended in this initial charge and 5 990 g of acrylic acid are gradually added at a rate such that overfoaming of the reaction solution is avoided; the reaction solution cools down to about 3-5° C. The initiators, 6.0 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 60 g of demineralized water), 12 g of potassium peroxodisulfate (dissolved in 450 g of demineralized water) and also 1.2 g of ascorbic acid (dissolved in 50 g of demineralized water) are successively added and thoroughly stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 85° C., produces a gel. This gel is subsequently transferred into a kneader and adjusted to a pH of 6.2 by addition of 50% by weight aqueous sodium hydroxide solution. The comminuted gel is then dried in an airstream at 170° C., ground and classified to a particle size distribution of 100-850 μm and homogeneously mixed with 1.0% by weight of Aerosil 200 (pyrogenic silica, commercial product of Degussa AG, average primary particle size 12 nm). 1 kg of this product is sprayed with a solution of 2 g of RETEN 204 LS (polyamidoamine-epichlorohydrin adduct from Hercules), 30 g of demineralized water and 30 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 150° C. for 60 minutes. The following properties were measured:
- CRC 31.8 g/g
- SFC=25×10 −7 cm3s/g
- Vortex Time=65 s
- A 30 l capacity polyethylene vessel thoroughly insulated by foamed plastic material is charged with 14 340 g of demineralized water and 42 g of sorbitol triallyl ether. 3 700 g of sodium bicarbonate are suspended in this initial charge and 5 990 g of acrylic acid are gradually added at a rate such that overfoaming of the reaction solution is avoided; the reaction solution cools down to about 3-5° C. The initiators, 6.0 g of 2,2′-azobisamidinopropane dihydrochloride (dissolved in 60 g of demineralized water), 12 g of potassium peroxodisulfate (dissolved in 450 g of demineralized water) and also 1.2 g of ascorbic acid (dissolved in 50 g of demineralized water) are successively added and thoroughly stirred in at 4° C. The reaction solution is then left to stand without stirring. The ensuing polymerization, in the course of which the temperature rises up to about 85° C., produces a gel. This gel is subsequently transferred into a kneader and adjusted to a pH of 6.2 by addition of 50% by weight aqueous sodium hydroxide solution. The comminuted gel is then dried in an airstream at 170° C., ground and classified to a particle size distribution of 100-850 μm. 1 kg of this product is sprayed with a solution of 2 g of RETEN 204 LS (polyamidoamine-epichlorohydrin adduct from Hercules), 5 g of aluminum sulfate Al 2(SO4)3, 30 g of demineralized water and 30 g of 1,2-propanediol in a plowshare mixer and subsequently heat treated at 150° C. for 60 minutes. The following properties were measured:
- CRC=31.5 g/g
- SFC=24×10 −7 cm3s/g
- Vortex Time 73 s
Claims (14)
1. Water-insoluble water-swellable hydrogels coated with steric or electrostatic spacers, characterized by the following pre-coating features:
Absorbency Under Load (AUL) (0.7 psi) of at least 20 g/g,
Gel strength of at least 1 600 Pa.
2. Hydrogels as claimed in claim 1 , characterized by the following post-coating features:
Centrifuge Retention Capacity (CRC) of at least 24 g/g,
Saline Flow Conductivity (SFC) of at least 30×10−7 cm3s/g and
Free Swell Rte (FSR) of at least 0.15 g/g and/or Vortex Time of not more than 160 s.
3. Hydrogels as claimed in claim 1 or 2, wherein the steric spacers are selected from bentonites, zeolites, active carbons and silicas.
4. Hydrogels as claimed in claim 1 or 2, wherein the electrostatic spacers are cationic polymers.
5. Hydrogels as claimed in claim 3 , wherein the steric spacers are applied to the surface of the hydrogel in an amount of from 0.05 to 5% by weight, based on the total weight of the coated hydrogels.
6. A water-absorbent composition containing water-insoluble water-swellable hydrogels as claimed in any of claims 1 to 5 .
7. A water-absorbent composition as claimed in claim 6 , wherein the water-swellable hydrogels are embedded as particles in a polymer fiber matrix or an open-celled polymer foam, fixed on a sheetlike base material or present as particles in chambers formed from a base material.
8. The process for producing water-absorbent compositions as claimed in claim 6 by
preparing the water-swellable hydrogels,
coating the hydrogels with a steric or electrostatic spacer and
introducing the hydrogels into a polymer fiber matrix or an open-celled polymer foam or into chambers formed from a base material or fixing on a sheetlike base material.
9. The use of water-absorbent compositions as claimed in either of claims 6 and 7 for producing hygiene articles or other articles for absorbing aqueous fluids.
10. Hygiene articles containing a water-absorbent composition as claimed in either of claims 6 and 7 between a liquid-pervious topsheet and a liquid-impervious backsheet.
11. Hygiene articles as claimed in claim 10 in the form of diapers, sanitary napkins and incontinence products.
12. The method for improving the performance profile of water-absorbent compositions by enhancing the permeability, capacity and swell rate of the water-absorbent compositions by use of water-insoluble water-swellable hydrogels as defined in any of claims 1 to 5 .
13. The method for determining water-absorbent compositions possessing high permeability, capacity and swell rate by measuring the Absorbency Under Load (AUL) and the gel strength of uncoated hydrogels and determining the Centrifuge Retention Capacity (CRC), Saline Flow Conductivity (SFC) and Free Swell Rate (FSR) of the coated hydrogels for given water-absorbent compositions and determining the water-absorbent compositions for which the hydrogels exhibit the property spectrum mentioned in claim 1 or 2.
14. The use of water-insoluble water-swellable hydrogels as defined in any of claims 1 to 5 in hygiene articles or other articles for absorbing aqueous fluids to enhance the permeability, capacity and swell rate.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10065252.2 | 2000-12-29 | ||
| DE10065252 | 2000-12-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020128618A1 true US20020128618A1 (en) | 2002-09-12 |
Family
ID=7669160
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/028,907 Abandoned US20020128618A1 (en) | 2000-12-29 | 2001-12-28 | Hydrogels |
| US10/028,908 Expired - Lifetime US6849665B2 (en) | 2000-12-29 | 2001-12-28 | Absorbent compositions |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/028,908 Expired - Lifetime US6849665B2 (en) | 2000-12-29 | 2001-12-28 | Absorbent compositions |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20020128618A1 (en) |
| EP (1) | EP1347790A1 (en) |
| JP (1) | JP4315680B2 (en) |
| WO (1) | WO2002053198A1 (en) |
Cited By (93)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030139715A1 (en) * | 2001-12-14 | 2003-07-24 | Richard Norris Dodge | Absorbent materials having high stiffness and fast absorbency rates |
| WO2004043505A1 (en) * | 2002-11-08 | 2004-05-27 | Kimberly-Clark Worldwide, Inc. | Freeze dried superabsorbent materials |
| US6835325B1 (en) * | 1999-10-21 | 2004-12-28 | Daiso Co., Ltd. | Crosslinking agent based on polyallyl ether compound |
| US20050031872A1 (en) * | 2003-08-06 | 2005-02-10 | Mattias Schmidt | Process for making water-swellable material comprising coated water-swellable polymers |
| US20050033255A1 (en) * | 2003-08-06 | 2005-02-10 | The Procter & Gamble Company | Absorbent structures comprising coated water-swellable material |
| WO2005014697A1 (en) * | 2003-08-06 | 2005-02-17 | The Procter & Gamble Company | Coated water-swellable material |
| US20050070671A1 (en) * | 2003-09-19 | 2005-03-31 | Kazushi Torii | Water-absorbent resin having treated surface and process for producing the same |
| US20050101928A1 (en) * | 2003-09-25 | 2005-05-12 | The Procter & Gamble Company | Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating |
| US20050113252A1 (en) * | 2003-09-05 | 2005-05-26 | Koji Miyake | Method of producing particle-shape water-absorbing resin material |
| US20050142965A1 (en) * | 2003-12-29 | 2005-06-30 | Kimberly-Clark Worldwide, Inc. | Surface charge manipulation for improved fluid intake rates of absorbent composites |
| EP1563002A2 (en) | 2002-10-25 | 2005-08-17 | Stockhausen GmbH | Absorbent polymer structure provided with an improved retention capacity and permeability |
| US20050215966A1 (en) * | 2004-03-29 | 2005-09-29 | The Procter & Gamble Company | Absorbent member for absorbent articles comprising swellable polymers of high permeability which are capable of forming hydrogels |
| WO2005092955A1 (en) * | 2004-03-29 | 2005-10-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent with irregularly pulverized shape |
| US20050235336A1 (en) * | 2004-04-15 | 2005-10-20 | Kenneth Ma | Data storage system and method that supports personal video recorder functionality |
| US20050288182A1 (en) * | 2004-06-18 | 2005-12-29 | Kazushi Torii | Water absorbent resin composition and production method thereof |
| EP1622655A1 (en) | 2003-04-25 | 2006-02-08 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
| US20060073969A1 (en) * | 2003-02-10 | 2006-04-06 | Kazushi Torii | Vater-absorbent resin composition and its production process |
| US20060173432A1 (en) * | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| US20060173431A1 (en) * | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| US20060177647A1 (en) * | 2005-02-04 | 2006-08-10 | Mattias Schmidt | Absorbent structure with improved water-swellable material |
| WO2006082197A1 (en) * | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
| US20060204755A1 (en) * | 2003-02-10 | 2006-09-14 | Kazushi Torii | Walter-absorbing agent |
| US20060229413A1 (en) * | 2001-01-26 | 2006-10-12 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production process therfor, and water-absorbent structure |
| WO2006134085A1 (en) * | 2005-06-14 | 2006-12-21 | Basf Aktiengesellschaft | Hydrogel-forming polymers with increased permeability and high absorption capacity |
| EP1736508A1 (en) * | 2005-06-22 | 2006-12-27 | Basf Aktiengesellschaft | Hydrogel-forming polymers with increased permeability and high absorption capacity |
| US20070066947A1 (en) * | 2003-10-31 | 2007-03-22 | Basf Aktiengesellschaft | Hydrogel capable of absorbing blood and/or body fluids |
| WO2007037522A1 (en) | 2005-09-30 | 2007-04-05 | Nippon Shokubai Co., Ltd. | Water-absorbent agent composition and method for manufacturing same |
| US20070106013A1 (en) * | 2003-06-24 | 2007-05-10 | Yoshifumi Adachi | Water absorbent resin composition and production method thereof |
| US20070123658A1 (en) * | 2003-09-19 | 2007-05-31 | Kazushi Torii | Water absorbent and producing method of same |
| US20070129495A1 (en) * | 1999-03-05 | 2007-06-07 | Stockhausen Gmbh | Powdery, cross-linked absorbent polymers, method for the production thereof, and their use |
| WO2007065834A1 (en) * | 2005-12-05 | 2007-06-14 | Basf Se | Process for preparing water-absorbing polymers with high absorption capacity and high permeability |
| US20070161759A1 (en) * | 2004-02-24 | 2007-07-12 | Basf Aktiengesellschaft | Postcrosslinking of water-absorbing polymers |
| US20070173610A1 (en) * | 2003-12-12 | 2007-07-26 | Katsuyuki Wada | Water-absorbing agent, manufacture method thereof, and absorbent and absorbent article made therefrom |
| US20070207924A1 (en) * | 2004-03-31 | 2007-09-06 | Hiroyuki Ikeuchi | Aqueous-Liquid-Absorbing Agent and its Production Process |
| WO2007116777A1 (en) | 2006-03-27 | 2007-10-18 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent |
| EP1690556A3 (en) * | 2005-02-01 | 2007-11-21 | Kimberly Clark Worldwide, Inc. | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| US20080032888A1 (en) * | 2004-05-07 | 2008-02-07 | Masatoshi Nakamura | Water Absorbing Agent and Production Method Thereof |
| US20080075937A1 (en) * | 2004-09-24 | 2008-03-27 | Katsuyuki Wada | Particulate Water-Absorbing Agent Containing Water-Absorbent Resin as a Main Component |
| US20080124551A1 (en) * | 2005-02-04 | 2008-05-29 | Basf Aktiengesellschaft | Process For Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers |
| US20080139693A1 (en) * | 2003-11-07 | 2008-06-12 | Hiroyuki Ikeuchi | Particulate Water-Absorbent Resin Composition and its Production Process |
| US20080154224A1 (en) * | 2005-02-04 | 2008-06-26 | Basf Aktiengesellschaft | Process for Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers |
| US20080161499A1 (en) * | 2005-02-04 | 2008-07-03 | Basf Aktiengesellschaft | Water Swellable Material |
| US20080187756A1 (en) * | 2005-02-04 | 2008-08-07 | Basf Aktiengesellschaft | Water-Absorbing Material Having a Coating of Elastic Film-Forming Polymers |
| US20080221229A1 (en) * | 2007-03-05 | 2008-09-11 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production method thereof |
| US7427437B2 (en) | 2003-08-06 | 2008-09-23 | The Procter & Gamble Company | Absorbent article comprising coated water-swellable polymer |
| US20080234645A1 (en) * | 2007-03-23 | 2008-09-25 | Dodge Richard N | Absorbent articles comprising high permeability superabsorbent polymer compositions |
| US20090036855A1 (en) * | 2004-08-06 | 2009-02-05 | Katsuyuki Wada | Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article |
| WO2009041731A1 (en) | 2007-09-28 | 2009-04-02 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US20090239071A1 (en) * | 2006-07-19 | 2009-09-24 | Uwe Stueven | Method for Producing Water-Absorbent Polymer Particles with a Higher Permeability by Polymerising Droplets of a Monomer Solution |
| WO2009119754A1 (en) | 2008-03-28 | 2009-10-01 | 株式会社日本触媒 | Process for production of water-absorbing resins |
| US20090281232A1 (en) * | 2005-09-30 | 2009-11-12 | Nippon Shokubai Co., Ltd. | Water-absorbing agent having water-absorbent resin as a main component and production method of the water-absorbing agent |
| US20090317442A1 (en) * | 2006-07-10 | 2009-12-24 | Medipacs, Inc. | Super Elastic Epoxy Hydrogel |
| WO2010032694A1 (en) | 2008-09-16 | 2010-03-25 | 株式会社日本触媒 | Water-absorbent resin manufacturing method and liquid permeability improvement method |
| US20100270501A1 (en) * | 2008-03-07 | 2010-10-28 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US7847144B2 (en) | 2003-09-25 | 2010-12-07 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with superabsorbent polymers |
| WO2011034147A1 (en) | 2009-09-16 | 2011-03-24 | 株式会社日本触媒 | Method for producing water absorbent resin powder |
| US20110180755A1 (en) * | 2007-09-28 | 2011-07-28 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| WO2011090130A1 (en) | 2010-01-20 | 2011-07-28 | 株式会社日本触媒 | Method for producing water absorbent resin |
| US20110198004A1 (en) * | 2005-10-20 | 2011-08-18 | Mark Banister | Micro thruster, micro thruster array and polymer gas generator |
| WO2011115221A1 (en) | 2010-03-17 | 2011-09-22 | 株式会社日本触媒 | Method of producing absorbent resin |
| WO2011126079A1 (en) | 2010-04-07 | 2011-10-13 | 株式会社日本触媒 | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
| WO2012045705A1 (en) | 2010-10-06 | 2012-04-12 | Basf Se | Method for producing thermally surface post-crosslinked water-absorbing polymer particles |
| US8236884B2 (en) | 2007-03-23 | 2012-08-07 | Evonik Stockhausen, Llc | High permeability superabsorbent polymer compositions |
| US8287999B2 (en) | 2005-02-04 | 2012-10-16 | The Procter & Gamble Company | Absorbent structure with improved water-absorbing material comprising polyurethane, coalescing aid and antioxidant |
| WO2013002387A1 (en) | 2011-06-29 | 2013-01-03 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same |
| WO2014021432A1 (en) | 2012-08-01 | 2014-02-06 | 株式会社日本触媒 | Process for producing polyacrylic acid (salt)-based water-absorbing resin |
| WO2014034897A1 (en) | 2012-08-30 | 2014-03-06 | 株式会社日本触媒 | Particulate water-absorbing agent and method for manufacturing same |
| WO2014084281A1 (en) | 2012-11-27 | 2014-06-05 | 株式会社日本触媒 | Method for producing polyacrylic acid (salt)-based water-absorbing resin |
| EP2814854A1 (en) | 2012-02-15 | 2014-12-24 | Basf Se | Water-absorbing polymer particles having a high swelling rate and high permeability |
| US8952116B2 (en) | 2009-09-29 | 2015-02-10 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for production thereof |
| CN104356256A (en) * | 2014-11-25 | 2015-02-18 | 江苏达胜加速器制造有限公司 | Method for synthesizing high-performance water-absorbent resin by virtue of electron beam irradiation spray method |
| US9012356B2 (en) | 2011-11-16 | 2015-04-21 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin |
| EP2870183A1 (en) | 2012-07-03 | 2015-05-13 | Basf Se | Method for producing water-absorbent polymer particles with improved properties |
| EP2881419A1 (en) | 2013-04-30 | 2015-06-10 | LG Chem, Ltd. | Highly absorbent resin |
| US9062140B2 (en) | 2005-04-07 | 2015-06-23 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin |
| US9090718B2 (en) | 2006-03-24 | 2015-07-28 | Nippon Shokubai Co., Ltd. | Water-absorbing resin and method for manufacturing the same |
| US9238102B2 (en) | 2009-09-10 | 2016-01-19 | Medipacs, Inc. | Low profile actuator and improved method of caregiver controlled administration of therapeutics |
| JP2016027846A (en) * | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | Water absorbent resin and absorbent article |
| US9500186B2 (en) | 2010-02-01 | 2016-11-22 | Medipacs, Inc. | High surface area polymer actuator with gas mitigating components |
| CN106471012A (en) * | 2014-07-11 | 2017-03-01 | 住友精化株式会社 | Water-absorbing resins and absorbent commodity |
| US9587081B2 (en) | 2012-02-15 | 2017-03-07 | Basf Se | Water-absorbing polymer particles with high free swell rate and high permeability |
| WO2017058698A1 (en) * | 2015-09-30 | 2017-04-06 | 3M Innovative Properties Company | Hydrogel compositions bonded to polymeric substrates |
| KR20170063818A (en) * | 2014-09-29 | 2017-06-08 | 가부시키가이샤 닛폰 쇼쿠바이 | Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder |
| KR20170103849A (en) | 2015-01-07 | 2017-09-13 | 가부시키가이샤 닛폰 쇼쿠바이 | Absorbent, method of making same, evaluation method and measuring method |
| US9926449B2 (en) | 2005-12-22 | 2018-03-27 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
| US9995295B2 (en) | 2007-12-03 | 2018-06-12 | Medipacs, Inc. | Fluid metering device |
| US10000605B2 (en) | 2012-03-14 | 2018-06-19 | Medipacs, Inc. | Smart polymer materials with excess reactive molecules |
| US10307732B2 (en) | 2013-04-10 | 2019-06-04 | Evonik Corporation | Particulate superabsorbent polymer composition having improved stability and fast absorption |
| US10335766B2 (en) | 2013-12-06 | 2019-07-02 | Lg Chem, Ltd. | Super absorbent polymer and manufacturing method thereof |
| US10342897B2 (en) * | 2012-05-17 | 2019-07-09 | Cartiheal (2009) Ltd | Biomatrix hydrogels and methods of use thereof |
| US10391195B2 (en) | 2011-11-17 | 2019-08-27 | Evonik Degussa Gmbh | Super-absorbing polymers with rapid absorption properties and method for producing the same |
| US10646612B2 (en) | 2013-12-20 | 2020-05-12 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water absorbent, and method for producing same |
| US10773237B2 (en) | 2016-03-11 | 2020-09-15 | Lg Chem, Ltd. | Method for preparing super absorbent polymer, and super absorbent polymer |
Families Citing this family (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7396584B2 (en) * | 2001-11-21 | 2008-07-08 | Basf Aktiengesellschaft | Crosslinked polyamine coating on superabsorbent hydrogels |
| KR20050036974A (en) * | 2002-08-23 | 2005-04-20 | 바스프 악티엔게젤샤프트 | Superabsorbent polymers and method of manufacturing the same |
| AU2003250155A1 (en) * | 2002-08-23 | 2004-03-11 | Basf Aktiengesellschaft | Superabsorbent polymers and method of manufacturing the same |
| US7193006B2 (en) | 2002-12-06 | 2007-03-20 | Nippon Shokubai Co., Ltd. | Process for continuous production of water-absorbent resin product |
| MXPA04009844A (en) | 2003-02-10 | 2004-12-07 | Nippon Catalytic Chem Ind | Particulate water absorbent containing water absorbent resin as a main component. |
| TWI302541B (en) * | 2003-05-09 | 2008-11-01 | Nippon Catalytic Chem Ind | Water-absorbent resin and its production process |
| CA2534265A1 (en) * | 2003-08-06 | 2005-02-17 | The Procter & Gamble Company | Process for making surface treated absorbent gelling material |
| EP1541568A1 (en) * | 2003-12-09 | 2005-06-15 | Deutsches Wollforschungsinstitut an der Rheinisch-Westfälischen Technischen Hochschule Aachen e.V. | Reactive cyclic carbonates and ureas for the modification of biomolecules, polymeres and surfaces |
| US20050211624A1 (en) * | 2004-03-23 | 2005-09-29 | Vane Leland M | Hydrophilic cross-linked polymeric membranes and sorbents |
| JP4790702B2 (en) * | 2004-03-31 | 2011-10-12 | ザ プロクター アンド ギャンブル カンパニー | Diapers with improved body fit |
| US7994384B2 (en) * | 2004-04-28 | 2011-08-09 | Kimberly-Clark Worldwide, Inc. | Absorbent composition having multiple surface treatments |
| DE102004038015A1 (en) * | 2004-08-04 | 2006-03-16 | Basf Ag | Process for the post-crosslinking of water-absorbing polymers with cyclic carbamates and / or cyclic ureas |
| US20060142480A1 (en) * | 2004-12-29 | 2006-06-29 | Mengkui Luo | Method of making carboxyalkyl cellulose polymer network |
| DE102005018922A1 (en) * | 2005-04-22 | 2006-10-26 | Stockhausen Gmbh | Polycation-surface-treated water-absorbing polymer structure |
| JP4658197B2 (en) * | 2005-07-26 | 2011-03-23 | ザ プロクター アンド ギャンブル カンパニー | A flexible absorbent article with further improved body fit |
| MX2008001103A (en) * | 2005-07-26 | 2008-03-11 | Procter & Gamble | Flexible absorbent article with improved body fit. |
| US8198505B2 (en) * | 2006-07-12 | 2012-06-12 | The Procter & Gamble Company | Disposable absorbent articles comprising non-biopersistent inorganic vitreous microfibers |
| JP5591448B2 (en) * | 2006-08-31 | 2014-09-17 | 株式会社日本触媒 | Water absorbing agent and method for producing the same |
| US8318306B2 (en) * | 2008-01-30 | 2012-11-27 | Evonik Stockhausen, Llc | Superabsorbent polymer compositions having a triggering composition |
| JP5730013B2 (en) | 2008-04-25 | 2015-06-03 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbing resin and method for producing the same |
| CN102292362A (en) * | 2008-11-21 | 2011-12-21 | 巴斯夫欧洲公司 | A process for the preparation of osmotic water-absorbing polymer particles by polymerization of monomer solution droplets |
| JP5718060B2 (en) | 2009-02-06 | 2015-05-13 | 株式会社日本触媒 | Polyacrylic acid (salt) -based hydrophilic resin and process for producing the same |
| EP2470226A1 (en) | 2009-08-28 | 2012-07-04 | Basf Se | Process for producing triclosan-coated superabsorbents |
| WO2012043821A1 (en) | 2010-09-30 | 2012-04-05 | 株式会社日本触媒 | Particulate water absorbent and production method for same |
| KR20120088246A (en) * | 2011-01-31 | 2012-08-08 | 주식회사 도루코 | Razer comprising a hydrophile sponge |
| EP2673011B2 (en) | 2011-02-07 | 2019-01-16 | Basf Se | Procedure for preparing water absorbing polymer particles having high free swell rate |
| US8420567B1 (en) * | 2011-12-30 | 2013-04-16 | Evonik Stockhausen, Llc | Process for superabsorbent polymer and crosslinker composition |
| US9375507B2 (en) | 2013-04-10 | 2016-06-28 | Evonik Corporation | Particulate superabsorbent polymer composition having improved stability |
| KR101700907B1 (en) | 2013-12-10 | 2017-01-31 | 주식회사 엘지화학 | Method for preparing super absorbent polymer |
| EP2930191B1 (en) * | 2014-04-07 | 2020-09-16 | Evonik Corporation | Superabsorbent polymer having fast absorption |
| BR102015007414B8 (en) * | 2014-04-07 | 2022-08-23 | Evonik Corp | SUPERABSORBENT POLYMER PRESENTING RAPID ABSORPTION, ITS MANUFACTURING PROCESS, AND ABSORBENT ARTICLE |
| WO2015169913A1 (en) * | 2014-05-08 | 2015-11-12 | Basf Se | Water-absorbing polymer particles |
| CN104327209A (en) * | 2014-11-25 | 2015-02-04 | 江苏达胜加速器制造有限公司 | Preparation method of super absorbent resin for sanitary material |
| US10264932B2 (en) | 2017-01-17 | 2019-04-23 | Hibbs Marketing Services LLC | Waste absorbing formulation with communication capabilities and toilet systems for use thereof |
| TWI642713B (en) | 2017-03-31 | 2018-12-01 | 臺灣塑膠工業股份有限公司 | Superabsorbent polymer and the method of fabricating the same |
| TWI625355B (en) | 2017-03-31 | 2018-06-01 | 臺灣塑膠工業股份有限公司 | superabsorbent polymer and the method of fabricating the same |
| US11857122B2 (en) | 2020-07-07 | 2024-01-02 | Coversan, Llc | Modular portable toilet with rotary agitator |
| TWI761904B (en) | 2020-08-10 | 2022-04-21 | 臺灣塑膠工業股份有限公司 | Superabsorbent polymer and method for producing the same |
| TWI777713B (en) | 2021-08-03 | 2022-09-11 | 臺灣塑膠工業股份有限公司 | Superabsorbent polymers and method of fabricating the same |
| TWI805461B (en) | 2022-08-04 | 2023-06-11 | 臺灣塑膠工業股份有限公司 | Superabsorbent polymer and method for producing the same |
| TWI882834B (en) | 2024-06-07 | 2025-05-01 | 臺灣塑膠工業股份有限公司 | Superabsorbent polymer and method of making the same |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5667635A (en) * | 1996-09-18 | 1997-09-16 | Kimberly-Clark Worldwide, Inc. | Flushable premoistened personal wipe |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2370380A (en) * | 1939-03-28 | 1945-02-27 | Conmar Prod Corp | Machine and method for making slide fasteners |
| CA2068519C (en) | 1990-01-23 | 1997-12-02 | Glen R. Lash | Absorbent structures containing thermally-bonded stiffened fiber layer and superabsorbent material layer |
| MX213505B (en) | 1993-02-24 | 2003-04-03 | ||
| TW320647B (en) * | 1993-02-24 | 1997-11-21 | ||
| US5599335A (en) | 1994-03-29 | 1997-02-04 | The Procter & Gamble Company | Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer |
| DE19540951A1 (en) * | 1995-11-03 | 1997-05-07 | Basf Ag | Water-absorbent, foam-like, crosslinked polymers, processes for their preparation and their use |
| AU6514398A (en) | 1997-04-18 | 1998-11-13 | Procter & Gamble Company, The | Absorbent members for body fluids using hydrogel-forming absorbent polymer |
| US6222091B1 (en) * | 1997-11-19 | 2001-04-24 | Basf Aktiengesellschaft | Multicomponent superabsorbent gel particles |
| DE69805208T2 (en) * | 1998-01-28 | 2002-12-05 | The Procter & Gamble Company, Cincinnati | ANTIMICROBIAL HYDROGEL-FORMING ABSORBENT POLYMERS |
| DE19909653A1 (en) | 1999-03-05 | 2000-09-07 | Stockhausen Chem Fab Gmbh | Powdery, crosslinked, aqueous liquids and blood-absorbing polymers, processes for their preparation and their use |
| US6387495B1 (en) * | 1999-04-16 | 2002-05-14 | Kimberly-Clark Worldwide, Inc. | Superabsorbent-containing composites |
| EP1175460A1 (en) * | 1999-04-20 | 2002-01-30 | Basf Aktiengesellschaft | Hydrogel-forming polymer mixture |
-
2001
- 2001-12-20 JP JP2002554147A patent/JP4315680B2/en not_active Expired - Fee Related
- 2001-12-20 EP EP01272659A patent/EP1347790A1/en not_active Ceased
- 2001-12-20 WO PCT/EP2001/015150 patent/WO2002053198A1/en not_active Ceased
- 2001-12-28 US US10/028,907 patent/US20020128618A1/en not_active Abandoned
- 2001-12-28 US US10/028,908 patent/US6849665B2/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5667635A (en) * | 1996-09-18 | 1997-09-16 | Kimberly-Clark Worldwide, Inc. | Flushable premoistened personal wipe |
Cited By (206)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8445596B2 (en) | 1999-03-05 | 2013-05-21 | Evonik Stockhausen Gmbh | Powdery, cross-linked absorbent polymers, method for the production thereof, and their use |
| US20070129495A1 (en) * | 1999-03-05 | 2007-06-07 | Stockhausen Gmbh | Powdery, cross-linked absorbent polymers, method for the production thereof, and their use |
| US6835325B1 (en) * | 1999-10-21 | 2004-12-28 | Daiso Co., Ltd. | Crosslinking agent based on polyallyl ether compound |
| US7495056B2 (en) | 2001-01-26 | 2009-02-24 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production process therefor, and water-absorbent structure |
| US20060229413A1 (en) * | 2001-01-26 | 2006-10-12 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production process therfor, and water-absorbent structure |
| US20030139715A1 (en) * | 2001-12-14 | 2003-07-24 | Richard Norris Dodge | Absorbent materials having high stiffness and fast absorbency rates |
| US7833624B2 (en) | 2002-10-25 | 2010-11-16 | Evonik Stockhuasen GmbH | Absorbent polymer structure with improved retention capacity and permeability |
| EP1563002A2 (en) | 2002-10-25 | 2005-08-17 | Stockhausen GmbH | Absorbent polymer structure provided with an improved retention capacity and permeability |
| US20060029782A1 (en) * | 2002-10-25 | 2006-02-09 | Jorg Harren | Absorbent polymer structure with improved retention capacity and permeability |
| EP1563002B1 (en) * | 2002-10-25 | 2014-07-16 | Evonik Degussa GmbH | Absorbent polymer structure provided with an improved retention capacity and permeability |
| WO2004043505A1 (en) * | 2002-11-08 | 2004-05-27 | Kimberly-Clark Worldwide, Inc. | Freeze dried superabsorbent materials |
| US6939914B2 (en) | 2002-11-08 | 2005-09-06 | Kimberly-Clark Worldwide, Inc. | High stiffness absorbent polymers having improved absorbency rates and method for making the same |
| US20060204755A1 (en) * | 2003-02-10 | 2006-09-14 | Kazushi Torii | Walter-absorbing agent |
| US8247491B2 (en) | 2003-02-10 | 2012-08-21 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition and its production process |
| US20060073969A1 (en) * | 2003-02-10 | 2006-04-06 | Kazushi Torii | Vater-absorbent resin composition and its production process |
| US7638570B2 (en) | 2003-02-10 | 2009-12-29 | Nippon Shokubai Co., Ltd. | Water-absorbing agent |
| US7169843B2 (en) * | 2003-04-25 | 2007-01-30 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
| US7795345B2 (en) * | 2003-04-25 | 2010-09-14 | Evonik Stockhausen, Llc | Superabsorbent polymer with high permeability |
| EP1622655A1 (en) | 2003-04-25 | 2006-02-08 | Stockhausen, Inc. | Superabsorbent polymer with high permeability |
| US7960469B2 (en) | 2003-06-24 | 2011-06-14 | Nippon Shokubai Co., Ltd. | Water absorbent resin composition and production method thereof |
| US20070106013A1 (en) * | 2003-06-24 | 2007-05-10 | Yoshifumi Adachi | Water absorbent resin composition and production method thereof |
| US8137746B2 (en) | 2003-08-06 | 2012-03-20 | The Procter & Gamble Company | Process for making water-swellable material comprising coated water-swellable polymers |
| US20080226898A1 (en) * | 2003-08-06 | 2008-09-18 | The Procter & Gamble Company | Coated Water-Swellable Material |
| US20090176099A1 (en) * | 2003-08-06 | 2009-07-09 | Mattias Schmidt | Coated Water-Swellable Material |
| US7524561B2 (en) | 2003-08-06 | 2009-04-28 | The Procter & Gamble Company | Coated water-swellable material |
| US7517586B2 (en) | 2003-08-06 | 2009-04-14 | Procter & Gamble Company | Absorbent structures comprising coated water-swellable material |
| US7700153B2 (en) | 2003-08-06 | 2010-04-20 | The Procter & Gamble Company | Process for making water-swellable material comprising coated water-swellable polymers |
| US7794839B2 (en) | 2003-08-06 | 2010-09-14 | The Procter & Gamble Company | Coated water-swellable material comprising hydrogel forming polymers |
| US20050031872A1 (en) * | 2003-08-06 | 2005-02-10 | Mattias Schmidt | Process for making water-swellable material comprising coated water-swellable polymers |
| US20090023838A1 (en) * | 2003-08-06 | 2009-01-22 | Mattias Schmidt | Process For Making Water-Swellable Material Comprising Coated Water-Swellable Polymers |
| US20050033255A1 (en) * | 2003-08-06 | 2005-02-10 | The Procter & Gamble Company | Absorbent structures comprising coated water-swellable material |
| US7445812B2 (en) | 2003-08-06 | 2008-11-04 | The Procter & Gamble Company | Process for making water-swellable material comprising coated water-swellable polymers |
| US7427437B2 (en) | 2003-08-06 | 2008-09-23 | The Procter & Gamble Company | Absorbent article comprising coated water-swellable polymer |
| US7049000B2 (en) | 2003-08-06 | 2006-05-23 | The Procter & Gamble Company | Water-swellable material comprising coated water-swellable polymers |
| US20050031852A1 (en) * | 2003-08-06 | 2005-02-10 | The Procter & Gamble Company | Absorbent article comprising coated water-swellable material |
| US7402339B2 (en) | 2003-08-06 | 2008-07-22 | The Procter & Gamble Company | Coated water-swellable material comprising hydrogel-forming polymeric core and polymeric coating agent |
| US7396585B2 (en) | 2003-08-06 | 2008-07-08 | The Procter & Gamble Company | Absorbent article comprising coated water-swellable material |
| US7947865B2 (en) | 2003-08-06 | 2011-05-24 | The Procter & Gamble Company | Absorbent structure comprising water-swellable material |
| US20050031868A1 (en) * | 2003-08-06 | 2005-02-10 | The Procter & Gamble Company | Water-swellable material comprising coated water-swellable polymers |
| WO2005014697A1 (en) * | 2003-08-06 | 2005-02-17 | The Procter & Gamble Company | Coated water-swellable material |
| US20070275235A1 (en) * | 2003-08-06 | 2007-11-29 | Mattias Schmidt | Coated water-swellable material |
| US7270881B2 (en) | 2003-08-06 | 2007-09-18 | The Procter & Gamble Company | Coated water-swellable material |
| US8309654B2 (en) | 2003-09-05 | 2012-11-13 | Nippon Shokubai Co., Ltd. | Method of producing particle-shape water-absorbing resin material |
| US20050113252A1 (en) * | 2003-09-05 | 2005-05-26 | Koji Miyake | Method of producing particle-shape water-absorbing resin material |
| US20050070671A1 (en) * | 2003-09-19 | 2005-03-31 | Kazushi Torii | Water-absorbent resin having treated surface and process for producing the same |
| US8497226B2 (en) | 2003-09-19 | 2013-07-30 | Nippon Shokubai Co., Ltd. | Water absorbent and producing method of same |
| US7803880B2 (en) | 2003-09-19 | 2010-09-28 | Nippon Shokubai Co., Ltd. | Water absorbent and producing method of same |
| US20100308263A1 (en) * | 2003-09-19 | 2010-12-09 | Kazushi Torii | Water absorbent and producing method of same |
| US7402643B2 (en) | 2003-09-19 | 2008-07-22 | Nippon Shokubai Co., Ltd. | Water-absorbent resin having treated surface and process for producing the same |
| US20070123658A1 (en) * | 2003-09-19 | 2007-05-31 | Kazushi Torii | Water absorbent and producing method of same |
| US7405341B2 (en) * | 2003-09-25 | 2008-07-29 | The Procter & Gamble Company | Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating |
| US7847144B2 (en) | 2003-09-25 | 2010-12-07 | The Procter & Gamble Company | Absorbent articles comprising fluid acquisition zones with superabsorbent polymers |
| US20050101928A1 (en) * | 2003-09-25 | 2005-05-12 | The Procter & Gamble Company | Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating |
| WO2005042039A3 (en) * | 2003-10-31 | 2007-06-28 | Basf Ag | Blood- and/or body fluid-absorbing hydrogel |
| US20070066947A1 (en) * | 2003-10-31 | 2007-03-22 | Basf Aktiengesellschaft | Hydrogel capable of absorbing blood and/or body fluids |
| US8063265B2 (en) * | 2003-10-31 | 2011-11-22 | Basf Aktiengesellschaft | Hydrogel capable of absorbing blood and/or body fluids |
| US20080139693A1 (en) * | 2003-11-07 | 2008-06-12 | Hiroyuki Ikeuchi | Particulate Water-Absorbent Resin Composition and its Production Process |
| US7872076B2 (en) | 2003-11-07 | 2011-01-18 | Nippon Shokubai Co., Ltd. | Particulate water-absorbent resin composition and its production process |
| US9308290B2 (en) | 2003-12-12 | 2016-04-12 | Nippon Shokubai Co., Ltd. | Water-absorbing agent, manufacture method thereof, and absorbent and absorbent article made therefrom |
| US20070173610A1 (en) * | 2003-12-12 | 2007-07-26 | Katsuyuki Wada | Water-absorbing agent, manufacture method thereof, and absorbent and absorbent article made therefrom |
| WO2005067995A1 (en) * | 2003-12-29 | 2005-07-28 | Kimberly-Clark Worldwide, Inc. | Surface charge manipulation for improved fluid intake rates of absorbent composites |
| US20050142965A1 (en) * | 2003-12-29 | 2005-06-30 | Kimberly-Clark Worldwide, Inc. | Surface charge manipulation for improved fluid intake rates of absorbent composites |
| US7981969B2 (en) * | 2004-02-24 | 2011-07-19 | Basf Aktiengesellschaft | Postcrosslinking of water-absorbing polymers |
| US8258223B2 (en) | 2004-02-24 | 2012-09-04 | Basf Se | Postcrosslinking of water-absorbing polymers |
| US20070161759A1 (en) * | 2004-02-24 | 2007-07-12 | Basf Aktiengesellschaft | Postcrosslinking of water-absorbing polymers |
| US20050215966A1 (en) * | 2004-03-29 | 2005-09-29 | The Procter & Gamble Company | Absorbent member for absorbent articles comprising swellable polymers of high permeability which are capable of forming hydrogels |
| US20070141338A1 (en) * | 2004-03-29 | 2007-06-21 | Kunihiko Ishizaki | Particulate water absorbing agent with irregularly pulverized shape |
| KR100847553B1 (en) * | 2004-03-29 | 2008-07-21 | 니폰 쇼쿠바이 컴파니 리미티드 | Particulate water absorbing agent with irregularly pulverized shape |
| WO2005092955A1 (en) * | 2004-03-29 | 2005-10-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent with irregularly pulverized shape |
| US7473470B2 (en) | 2004-03-29 | 2009-01-06 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent with irregularly pulverized shape |
| AU2005226425B2 (en) * | 2004-03-29 | 2009-01-08 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent with irregularly pulverized shape |
| US7981833B2 (en) | 2004-03-31 | 2011-07-19 | Nippon Shokubai Co., Ltd. | Aqueous-liquid-absorbing agent and its production process |
| US20070207924A1 (en) * | 2004-03-31 | 2007-09-06 | Hiroyuki Ikeuchi | Aqueous-Liquid-Absorbing Agent and its Production Process |
| EP1729881A4 (en) * | 2004-03-31 | 2012-07-04 | Nippon Catalytic Chem Ind | AN AQUEOUS LIQUID ABSORBING AGENT AND METHOD FOR MANUFACTURING THE SAME |
| US20050235336A1 (en) * | 2004-04-15 | 2005-10-20 | Kenneth Ma | Data storage system and method that supports personal video recorder functionality |
| US20080032888A1 (en) * | 2004-05-07 | 2008-02-07 | Masatoshi Nakamura | Water Absorbing Agent and Production Method Thereof |
| US8846823B2 (en) | 2004-05-07 | 2014-09-30 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US20050288182A1 (en) * | 2004-06-18 | 2005-12-29 | Kazushi Torii | Water absorbent resin composition and production method thereof |
| US20090036855A1 (en) * | 2004-08-06 | 2009-02-05 | Katsuyuki Wada | Particulate water-absorbing agent with water-absorbing resin as main component, method for production of the same, and absorbing article |
| US20080075937A1 (en) * | 2004-09-24 | 2008-03-27 | Katsuyuki Wada | Particulate Water-Absorbing Agent Containing Water-Absorbent Resin as a Main Component |
| US7510988B2 (en) | 2004-09-24 | 2009-03-31 | Nippon Shokubai Co., Ltd. | Particulate water-absorbing agent containing water-absorbent resin as a main component |
| WO2006082197A1 (en) * | 2005-02-01 | 2006-08-10 | Basf Aktiengesellschaft | Polyamine-coated superabsorbent polymers |
| US20060173432A1 (en) * | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| US20080221237A1 (en) * | 2005-02-01 | 2008-09-11 | Basf Aktiengesellschaft | Polyamine-Coated Superabsorbent Polymers |
| US20060173431A1 (en) * | 2005-02-01 | 2006-08-03 | Laumer Jason M | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| EP1690555A3 (en) * | 2005-02-01 | 2007-11-21 | Kimberly Clark Worldwide, Inc. | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| EP1690556A3 (en) * | 2005-02-01 | 2007-11-21 | Kimberly Clark Worldwide, Inc. | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| EP1690555A2 (en) | 2005-02-01 | 2006-08-16 | Kimberly Clark Worldwide, Inc. | Absorbent articles comprising polyamine-coated superabsorbent polymers |
| US20080154224A1 (en) * | 2005-02-04 | 2008-06-26 | Basf Aktiengesellschaft | Process for Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers |
| US20080187756A1 (en) * | 2005-02-04 | 2008-08-07 | Basf Aktiengesellschaft | Water-Absorbing Material Having a Coating of Elastic Film-Forming Polymers |
| US20080124551A1 (en) * | 2005-02-04 | 2008-05-29 | Basf Aktiengesellschaft | Process For Producing a Water-Absorbing Material Having a Coating of Elastic Filmforming Polymers |
| US20060177647A1 (en) * | 2005-02-04 | 2006-08-10 | Mattias Schmidt | Absorbent structure with improved water-swellable material |
| US8287999B2 (en) | 2005-02-04 | 2012-10-16 | The Procter & Gamble Company | Absorbent structure with improved water-absorbing material comprising polyurethane, coalescing aid and antioxidant |
| WO2006083583A3 (en) * | 2005-02-04 | 2007-06-14 | Procter & Gamble | Absorbent structure with improved water-swellable material |
| US20080161499A1 (en) * | 2005-02-04 | 2008-07-03 | Basf Aktiengesellschaft | Water Swellable Material |
| US9062140B2 (en) | 2005-04-07 | 2015-06-23 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin |
| WO2006134085A1 (en) * | 2005-06-14 | 2006-12-21 | Basf Aktiengesellschaft | Hydrogel-forming polymers with increased permeability and high absorption capacity |
| EP1736508A1 (en) * | 2005-06-22 | 2006-12-27 | Basf Aktiengesellschaft | Hydrogel-forming polymers with increased permeability and high absorption capacity |
| CN101291995B (en) * | 2005-09-30 | 2012-11-07 | 株式会社日本触媒 | Water-absorbing agent having water-absorbing resin as main component and method for producing the water-absorbing agent |
| US9309375B2 (en) * | 2005-09-30 | 2016-04-12 | Nippon Shokubai Co., Ltd. | Water-absorbing agent having water-absorbent resin as a main component and production method of the water-absorbing agent |
| US20090215617A1 (en) * | 2005-09-30 | 2009-08-27 | Kazuki Kimura | Water-Absorbent Agent Composition and Method for Manufacturing Same |
| WO2007037522A1 (en) | 2005-09-30 | 2007-04-05 | Nippon Shokubai Co., Ltd. | Water-absorbent agent composition and method for manufacturing same |
| US20090281232A1 (en) * | 2005-09-30 | 2009-11-12 | Nippon Shokubai Co., Ltd. | Water-absorbing agent having water-absorbent resin as a main component and production method of the water-absorbing agent |
| US20110198004A1 (en) * | 2005-10-20 | 2011-08-18 | Mark Banister | Micro thruster, micro thruster array and polymer gas generator |
| US20080281049A1 (en) * | 2005-12-05 | 2008-11-13 | Basf Se | Process for Preparing Water-Absorbing Polymers with High Absorption Capacity and High Permeability |
| WO2007065834A1 (en) * | 2005-12-05 | 2007-06-14 | Basf Se | Process for preparing water-absorbing polymers with high absorption capacity and high permeability |
| US10358558B2 (en) | 2005-12-22 | 2019-07-23 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
| US9926449B2 (en) | 2005-12-22 | 2018-03-27 | Nippon Shokubai Co., Ltd. | Water-absorbent resin composition, method of manufacturing the same, and absorbent article |
| US9090718B2 (en) | 2006-03-24 | 2015-07-28 | Nippon Shokubai Co., Ltd. | Water-absorbing resin and method for manufacturing the same |
| US8198209B2 (en) | 2006-03-27 | 2012-06-12 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent |
| US9180220B2 (en) | 2006-03-27 | 2015-11-10 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent |
| US20090298685A1 (en) * | 2006-03-27 | 2009-12-03 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent |
| WO2007116777A1 (en) | 2006-03-27 | 2007-10-18 | Nippon Shokubai Co., Ltd. | Water absorbing agent, water absorbent core using the agent, and manufacturing method for water absorbing agent |
| EP3932541A1 (en) | 2006-03-27 | 2022-01-05 | Nippon Shokubai Co., Ltd. | Water absorbing agent, and water absorbent core using the agent |
| US20090317442A1 (en) * | 2006-07-10 | 2009-12-24 | Medipacs, Inc. | Super Elastic Epoxy Hydrogel |
| US10208158B2 (en) * | 2006-07-10 | 2019-02-19 | Medipacs, Inc. | Super elastic epoxy hydrogel |
| US20090239071A1 (en) * | 2006-07-19 | 2009-09-24 | Uwe Stueven | Method for Producing Water-Absorbent Polymer Particles with a Higher Permeability by Polymerising Droplets of a Monomer Solution |
| US10208149B2 (en) | 2006-07-19 | 2019-02-19 | Basf Se | Method for producing water-absorbent polymer particles with a higher permeability by polymerising droplets of a monomer solution |
| US20080221229A1 (en) * | 2007-03-05 | 2008-09-11 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production method thereof |
| US8252715B2 (en) | 2007-03-05 | 2012-08-28 | Nippon Shokubai Co., Ltd. | Water-absorbing agent and production method thereof |
| US20080234645A1 (en) * | 2007-03-23 | 2008-09-25 | Dodge Richard N | Absorbent articles comprising high permeability superabsorbent polymer compositions |
| US8236884B2 (en) | 2007-03-23 | 2012-08-07 | Evonik Stockhausen, Llc | High permeability superabsorbent polymer compositions |
| US7935860B2 (en) | 2007-03-23 | 2011-05-03 | Kimberly-Clark Worldwide, Inc. | Absorbent articles comprising high permeability superabsorbent polymer compositions |
| US8519041B2 (en) | 2007-03-23 | 2013-08-27 | Evonik Stockhausen, Llc | High permeability superabsorbent polymer compositions |
| US8822582B2 (en) | 2007-03-23 | 2014-09-02 | Evonik Corporation | High permeability superabsorbent polymer compositions |
| US20110114881A1 (en) * | 2007-09-28 | 2011-05-19 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US20110180755A1 (en) * | 2007-09-28 | 2011-07-28 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| WO2009041731A1 (en) | 2007-09-28 | 2009-04-02 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US8257610B2 (en) | 2007-09-28 | 2012-09-04 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US8845924B2 (en) | 2007-09-28 | 2014-09-30 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US9995295B2 (en) | 2007-12-03 | 2018-06-12 | Medipacs, Inc. | Fluid metering device |
| US20100270501A1 (en) * | 2008-03-07 | 2010-10-28 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| US8647528B2 (en) | 2008-03-07 | 2014-02-11 | Nippon Shokubai Co., Ltd. | Water absorbing agent and production method thereof |
| WO2009119756A1 (en) | 2008-03-28 | 2009-10-01 | 株式会社日本触媒 | Method of transporting absorbent resin powder |
| WO2009119758A1 (en) | 2008-03-28 | 2009-10-01 | 株式会社日本触媒 | Transport method for absorbend resin powder |
| WO2009119754A1 (en) | 2008-03-28 | 2009-10-01 | 株式会社日本触媒 | Process for production of water-absorbing resins |
| US20110166300A1 (en) * | 2008-09-16 | 2011-07-07 | Nippon Shokubai Co. Ltd | Water-absorbent resin manufacturing method and liquid permeability improvement method |
| US8436090B2 (en) | 2008-09-16 | 2013-05-07 | Nippon Shokubai Co., Ltd. | Production method and method for enhancing liquid permeability of water-absorbing resin |
| WO2010032694A1 (en) | 2008-09-16 | 2010-03-25 | 株式会社日本触媒 | Water-absorbent resin manufacturing method and liquid permeability improvement method |
| US9238102B2 (en) | 2009-09-10 | 2016-01-19 | Medipacs, Inc. | Low profile actuator and improved method of caregiver controlled administration of therapeutics |
| US8513378B2 (en) | 2009-09-16 | 2013-08-20 | Nippon Shokubai Co., Ltd. | Production method for water-absorbing resin powder |
| US9102804B2 (en) | 2009-09-16 | 2015-08-11 | Nippon Shokubai Co., Ltd | Production method for water-absorbing resin powder |
| WO2011034147A1 (en) | 2009-09-16 | 2011-03-24 | 株式会社日本触媒 | Method for producing water absorbent resin powder |
| WO2011034146A1 (en) | 2009-09-16 | 2011-03-24 | 株式会社日本触媒 | Method for producing water absorbent resin powder |
| US9775927B2 (en) | 2009-09-29 | 2017-10-03 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for production thereof |
| US8952116B2 (en) | 2009-09-29 | 2015-02-10 | Nippon Shokubai Co., Ltd. | Particulate water absorbent and process for production thereof |
| WO2011090130A1 (en) | 2010-01-20 | 2011-07-28 | 株式会社日本触媒 | Method for producing water absorbent resin |
| US9500186B2 (en) | 2010-02-01 | 2016-11-22 | Medipacs, Inc. | High surface area polymer actuator with gas mitigating components |
| WO2011115216A1 (en) | 2010-03-17 | 2011-09-22 | 株式会社日本触媒 | Method of producing absorbent resin |
| US9624322B2 (en) | 2010-03-17 | 2017-04-18 | Nippon Shukubai Co., Ltd. | Method of producing water absorbent resin |
| US9453091B2 (en) | 2010-03-17 | 2016-09-27 | Nippon Shokubai Co., Ltd. | Method of producing water absorbent resin |
| WO2011115221A1 (en) | 2010-03-17 | 2011-09-22 | 株式会社日本触媒 | Method of producing absorbent resin |
| US10434495B2 (en) | 2010-04-07 | 2019-10-08 | Nippon Shokubai Co., Ltd. | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
| WO2011126079A1 (en) | 2010-04-07 | 2011-10-13 | 株式会社日本触媒 | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
| US9447203B2 (en) | 2010-04-07 | 2016-09-20 | Nippom Shokubai Co., Ltd. | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
| EP3115382A1 (en) | 2010-04-07 | 2017-01-11 | Nippon Shokubai Co., Ltd. | Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder |
| WO2012045705A1 (en) | 2010-10-06 | 2012-04-12 | Basf Se | Method for producing thermally surface post-crosslinked water-absorbing polymer particles |
| WO2013002387A1 (en) | 2011-06-29 | 2013-01-03 | 株式会社日本触媒 | Polyacrylic acid (salt) water-absorbent resin powder, and method for producing same |
| US9044525B2 (en) | 2011-06-29 | 2015-06-02 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt)-based water absorbent resin powder and method for producing the same |
| KR20140038998A (en) | 2011-06-29 | 2014-03-31 | 가부시기가이샤 닛뽕쇼꾸바이 | Polyacrylic acid(salt) water-absorbent resin powder, and method for producing same |
| US9012356B2 (en) | 2011-11-16 | 2015-04-21 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin |
| US10391195B2 (en) | 2011-11-17 | 2019-08-27 | Evonik Degussa Gmbh | Super-absorbing polymers with rapid absorption properties and method for producing the same |
| EP2814854A1 (en) | 2012-02-15 | 2014-12-24 | Basf Se | Water-absorbing polymer particles having a high swelling rate and high permeability |
| US9587081B2 (en) | 2012-02-15 | 2017-03-07 | Basf Se | Water-absorbing polymer particles with high free swell rate and high permeability |
| EP2814854B1 (en) * | 2012-02-15 | 2019-01-23 | Basf Se | Wasserabsorbierende polymerpartikel mit hoher quellgeschwindigkeit und hoher permeabilität |
| US9738769B2 (en) | 2012-02-15 | 2017-08-22 | Basf Se | Water-absorbing polymer particles with high free swell rate and high permeability |
| US10000605B2 (en) | 2012-03-14 | 2018-06-19 | Medipacs, Inc. | Smart polymer materials with excess reactive molecules |
| US10342897B2 (en) * | 2012-05-17 | 2019-07-09 | Cartiheal (2009) Ltd | Biomatrix hydrogels and methods of use thereof |
| EP2870183A1 (en) | 2012-07-03 | 2015-05-13 | Basf Se | Method for producing water-absorbent polymer particles with improved properties |
| US9840598B2 (en) | 2012-07-03 | 2017-12-12 | Basf Se | Method for producing water-absorbent polymer particles with improved properties |
| US9644058B2 (en) | 2012-08-01 | 2017-05-09 | Nippon Shokubai Co. Ltd. | Process for producing polyacrylic acid (salt)-based water absorbent resin |
| KR20150040884A (en) | 2012-08-01 | 2015-04-15 | 가부시키가이샤 닛폰 쇼쿠바이 | Process for producing polyacrylic acid(salt)-based water-absorbing resin |
| WO2014021432A1 (en) | 2012-08-01 | 2014-02-06 | 株式会社日本触媒 | Process for producing polyacrylic acid (salt)-based water-absorbing resin |
| WO2014034897A1 (en) | 2012-08-30 | 2014-03-06 | 株式会社日本触媒 | Particulate water-absorbing agent and method for manufacturing same |
| US10189009B2 (en) | 2012-08-30 | 2019-01-29 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent and method for manufacturing same |
| US10525445B2 (en) | 2012-08-30 | 2020-01-07 | Nippon Shokubai Co., Ltd. | Particulate water absorbing agent and water absorbent article |
| WO2014084281A1 (en) | 2012-11-27 | 2014-06-05 | 株式会社日本触媒 | Method for producing polyacrylic acid (salt)-based water-absorbing resin |
| US9550843B2 (en) | 2012-11-27 | 2017-01-24 | Nippon Shokubai Co., Ltd. | Method for producing polyacrylic acid (salt)-based water absorbent resin |
| US10307732B2 (en) | 2013-04-10 | 2019-06-04 | Evonik Corporation | Particulate superabsorbent polymer composition having improved stability and fast absorption |
| US20150315321A1 (en) * | 2013-04-30 | 2015-11-05 | Lg Chem, Ltd. | Superabsorbent polymer |
| US9624328B2 (en) * | 2013-04-30 | 2017-04-18 | Lg Chem, Ltd. | Superabsorbent polymer |
| EP2881419A1 (en) | 2013-04-30 | 2015-06-10 | LG Chem, Ltd. | Highly absorbent resin |
| EP2881419B1 (en) | 2013-04-30 | 2017-09-13 | LG Chem, Ltd. | Highly absorbent resin |
| US10335766B2 (en) | 2013-12-06 | 2019-07-02 | Lg Chem, Ltd. | Super absorbent polymer and manufacturing method thereof |
| US10646612B2 (en) | 2013-12-20 | 2020-05-12 | Nippon Shokubai Co., Ltd. | Polyacrylic acid (salt) water absorbent, and method for producing same |
| CN106471012A (en) * | 2014-07-11 | 2017-03-01 | 住友精化株式会社 | Water-absorbing resins and absorbent commodity |
| EP3168241A1 (en) | 2014-07-11 | 2017-05-17 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbing resin and absorbent article |
| EP3168241A4 (en) * | 2014-07-11 | 2017-12-27 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbing resin and absorbent article |
| KR102256616B1 (en) * | 2014-07-11 | 2021-05-26 | 스미토모 세이카 가부시키가이샤 | Water-absorbing resin and absorbent article |
| TWI681976B (en) * | 2014-07-11 | 2020-01-11 | 日商住友精化股份有限公司 | Water-absorbing resin and absorbent articles |
| KR20170028890A (en) * | 2014-07-11 | 2017-03-14 | 스미토모 세이카 가부시키가이샤 | Water-absorbing resin and absorbent article |
| JP2016027846A (en) * | 2014-07-11 | 2016-02-25 | 住友精化株式会社 | Water absorbent resin and absorbent article |
| US10525443B2 (en) * | 2014-07-11 | 2020-01-07 | Sumitomo Seika Chemicals Co. Ltd. | Water-absorbent resin and absorbent article |
| US10300458B2 (en) * | 2014-09-29 | 2019-05-28 | Nippon Shokubai Co., Ltd. | Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder |
| KR20170063818A (en) * | 2014-09-29 | 2017-06-08 | 가부시키가이샤 닛폰 쇼쿠바이 | Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder |
| KR102472803B1 (en) | 2014-09-29 | 2022-12-01 | 가부시키가이샤 닛폰 쇼쿠바이 | Water-absorbable resin powder, and method for determining elastic modulus of water-absorbable resin powder |
| CN104356256A (en) * | 2014-11-25 | 2015-02-18 | 江苏达胜加速器制造有限公司 | Method for synthesizing high-performance water-absorbent resin by virtue of electron beam irradiation spray method |
| EP3984633A1 (en) | 2015-01-07 | 2022-04-20 | Nippon Shokubai Co., Ltd. | Water absorbent agent |
| KR20170103849A (en) | 2015-01-07 | 2017-09-13 | 가부시키가이샤 닛폰 쇼쿠바이 | Absorbent, method of making same, evaluation method and measuring method |
| US10695746B2 (en) | 2015-01-07 | 2020-06-30 | Nippon Shokubai Co., Ltd. | Water absorbent agent |
| JP2018536728A (en) * | 2015-09-30 | 2018-12-13 | スリーエム イノベイティブ プロパティズ カンパニー | Hydrogel composition bonded to a polymer substrate |
| WO2017058698A1 (en) * | 2015-09-30 | 2017-04-06 | 3M Innovative Properties Company | Hydrogel compositions bonded to polymeric substrates |
| CN108137841A (en) * | 2015-09-30 | 2018-06-08 | 3M创新有限公司 | It is bonded to the hydrogel composition of polymeric substrate |
| EP3356485A4 (en) * | 2015-09-30 | 2019-03-13 | 3M Innovative Properties Company | HYDROGEL COMPOSITIONS RELATED TO POLYMER SUBSTRATES |
| US11638775B2 (en) | 2015-09-30 | 2023-05-02 | 3M Innovative Properties Company | Hydrogel compositions bonded to polymeric substrates |
| US10773237B2 (en) | 2016-03-11 | 2020-09-15 | Lg Chem, Ltd. | Method for preparing super absorbent polymer, and super absorbent polymer |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004522491A (en) | 2004-07-29 |
| US20020165288A1 (en) | 2002-11-07 |
| WO2002053198A1 (en) | 2002-07-11 |
| JP4315680B2 (en) | 2009-08-19 |
| US6849665B2 (en) | 2005-02-01 |
| EP1347790A1 (en) | 2003-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20020128618A1 (en) | Hydrogels | |
| CA2433044A1 (en) | Hydrogels coated with steric or electrostatic spacers | |
| US6831122B2 (en) | Water-absorbing agent, method for the production and the utilization thereof | |
| US6414214B1 (en) | Mechanically stable hydrogel-forming polymers | |
| US20040265387A1 (en) | Super-absorbing hydrogel with specific particle size distribution | |
| US20050245684A1 (en) | Water absorbing agent and method for the production thereof | |
| JP4669127B2 (en) | Water-absorbing foam-like cross-linked polymer with improved distribution action, process for its production and use thereof | |
| CN105283490B (en) | With the particulate superabsorbent pinching polymer composition for improving stability | |
| CA2542491C (en) | Blood- and/or body fluid-absorbing hydrogel | |
| CN101072817B (en) | Method for surface-treatment of water absorbent resin | |
| JP4204196B2 (en) | Water-absorbing foam-like crosslinked polymer, process for producing the same and use thereof | |
| US20080166410A1 (en) | Acidic Superabsorbent Hydrogels | |
| CN101065422B (en) | Insoluble metal sulphates contained in water-absorbing polymer particles | |
| JP2010501697A (en) | Polyamine-coated superabsorbent polymer with transient hydrophobicity | |
| US20030144386A1 (en) | Mixtures of hydrogel-forming polymers and building materials | |
| JP2011505436A (en) | Superabsorbent foam with symbols on the surface | |
| CN101511395A (en) | Superabsorbent polymers having superior gel integrity, absorption capacity, and permeability | |
| CA2370380A1 (en) | Hydrogel-forming polymer mixture | |
| AU2002364396B2 (en) | Super-absorbing polymers containing tocopherol | |
| EP1024176A1 (en) | Cross-linked polymer composition swelling in water and process for producing the same | |
| JP3202703B2 (en) | Water absorbing agent and method for producing the same | |
| WO2006134085A1 (en) | Hydrogel-forming polymers with increased permeability and high absorption capacity | |
| EP1736508A1 (en) | Hydrogel-forming polymers with increased permeability and high absorption capacity |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: BASF AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRENZ, VOLKER;HERFERT, NORBERT;RIEGEL, ULRICH;AND OTHERS;REEL/FRAME:012909/0995;SIGNING DATES FROM 20020129 TO 20020308 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
