US20020121638A1 - Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds - Google Patents

Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds Download PDF

Info

Publication number
US20020121638A1
US20020121638A1 US09879014 US87901401A US2002121638A1 US 20020121638 A1 US20020121638 A1 US 20020121638A1 US 09879014 US09879014 US 09879014 US 87901401 A US87901401 A US 87901401A US 2002121638 A1 US2002121638 A1 US 2002121638A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
compound
layer
iridium
compounds
cf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09879014
Inventor
Vladimir Grushin
Viacheslav Petrov
Ying Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wang Ying
E I du Pont de Nemours and Co
Original Assignee
E I du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/26Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulfur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with heteroatoms or with carbon atoms having three bonds to hetero atoms, with at the most one to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with heteroatoms or with carbon atoms having three bonds to hetero atoms, with at the most one to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/68One oxygen atom attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H01L51/0085Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5012Electroluminescent [EL] layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

The present invention is generally directed to electroluminescent Ir(III) compounds, the substituted 2-phenylpyridines, phenylpyrimidines, and phenylquinolines that are used to make the Ir(III) compounds, and devices that are made with the Ir(III) compounds.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    This invention relates to electroluminescent complexes of iridium(III) with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines. It also relates to electronic devices in which the active layer includes an electroluminescent Ir(III) complex.
  • [0003]
    2. Description of the Related Art
  • [0004]
    Organic electronic devices that emit light, such as light-emitting diodes that make up displays, are present in many different kinds of electronic equipment. In all such devices, an organic active layer is sandwiched between two electrical contact layers. At least one of the electrical contact layers is light-transmitting so that light can pass through the electrical contact layer. The organic active layer emits light through the light-transmitting electrical contact layer upon application of electricity across the electrical contact layers.
  • [0005]
    It is well known to use organic electroluminescent compounds as the active component in light-emitting diodes. Simple organic molecules such as anthracene, thiadiazole derivatives, and coumarin derivatives are known to show electroluminescence. Semiconductive conjugated polymers have also been used as electroluminescent components, as has been disclosed in, for example, Friend et al., U.S. Pat. No. 5,247,190, Heeger et al., U.S. Pat. No. 5,408,109, and Nakano et al., Published European Patent Application 443 861. Complexes of 8-hydroxyquinolate with trivalent metal ions, particularly aluminum, have been extensively used as electroluminescent components, as has been disclosed in, for example, Tang et al., U.S. Pat. No. 5,552,678.
  • [0006]
    Burrows and Thompson have reported that fac-tris(2-phenylpyridine) iridium can be used as the active component in organic light-emitting devices. (Appl. Phys. Lett. 1999, 75, 4.) The performance is maximized when the iridium compound is present in a host conductive material. Thompson has further reported devices in which the active layer is poly(N-vinyl carbazole) doped with fac-tris[2-(4′,5′-difluorophenyl)pyridine-C′2,N]iridium(III). (Polymer Preprints 2000, 41(1), 770.)
  • [0007]
    However, there is a continuing need for electroluminescent compounds having improved efficiency.
  • SUMMARY OF THE INVENTION
  • [0008]
    The present invention is directed to an iridium compound (generally referred as “Ir(III) compounds”) having at least two 2-phenylpyridine ligands in which there is at least one fluorine or fluorinated group on the ligand. The iridium compound has the following First Formula:
  • IrLaLbLc xL′yL″z  (First Formula)
  • [0009]
    where:
  • [0010]
    x=0 or 1, y=0, 1 or 2, and z=0 or 1, with the proviso that:
  • [0011]
    x=0 or y+z=0 and
  • [0012]
    when y=2 then z=0;
  • [0013]
    L′=a bidentate ligand or a monodentate ligand, and is not a phenylpyridine, phenylpyrimidine, or phenylquinoline; with the proviso that:
  • [0014]
    when L′ is a monodentate ligand, y+z=2, and
  • [0015]
    when L′ is a bidentate ligand, z=0;
  • [0016]
    L″=a monodentate ligand, and is not a phenylpyridine, and phenylpyrimidine, or phenylquinoline; and
  • [0017]
    La, Lb and Lc are alike or different from each other and each of La, Lb and Lc has structure (I) below:
    Figure US20020121638A1-20020905-C00001
  • [0018]
    wherein:
  • [0019]
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring,
  • [0020]
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X=H, Cl, or Br, and
  • [0021]
    A=C or N, provided that when A=N, there is no R1.
  • [0022]
    In another embodiment, the present invention is directed to substituted 2-phenylpyridine, phenylpyrimidine, and phenylquinoline precursor compounds from which the above Ir(III) compounds are made. The precursor compounds have a structure (II) or (III) below:
    Figure US20020121638A1-20020905-C00002
  • [0023]
    where A and R1-R8 are as defined in structure (I) above, and R9 is H.
    Figure US20020121638A1-20020905-C00003
  • [0024]
    where:
  • [0025]
    at least one of R10-R19 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X=H, Cl, or Br, and R20 is H.
  • [0026]
    It is understood that there is free rotation about the phenyl-pyridine, phenyl-pyrimidine and the phenyl-quinoline bonds. However, for the discussion herein, the compounds will be described in terms of one orientation.
  • [0027]
    In another embodiment, the present invention is directed to an organic electronic device having at least one emitting layer comprising the above Ir(III) compound, or combinations of the above Ir(III) compounds.
  • [0028]
    As used herein, the term “compound” is intended to mean an electrically uncharged substance made up of molecules that further consist of atoms, wherein the atoms cannot be separated by physical means. The term “ligand” is intended to mean a molecule, ion, or atom that is attached to the coordination sphere of a metallic ion. The term “complex”, when used as a noun, is intended to mean a compound having at least one metallic ion and at least one ligand. The term “group” is intended to mean a part of a compound, such a substituent in an organic compound or a ligand in a complex. The term “facial” is intended to mean one isomer of a complex, Ma3b3, having octahedral geometry, in which the three “a” groups are all adjacent, i.e. at the corners of one face of the octahedron. The term “meridional” is intended to mean one isomer of a complex, Ma3b3, having octahedral geometry, in which the three “a” groups occupy three positions such that two are trans to each other. The phrase “adjacent to,” when used to refer to layers in a device, does not necessarily mean that one layer is immediately next to another layer. On the other hand, the phrase “adjacent R groups,” is used to refer to R groups that are next to each other in a chemical formula (i.e., R groups that are on atoms joined by a bond). The term “photoactive” refers to any material that exhibits electroluminescence and/or photosensitivity.
  • DESCRIPTION OF THE DRAWINGS
  • [0029]
    [0029]FIG. 1 is a schematic diagram of a light-emitting device (LED).
  • [0030]
    [0030]FIG. 2 is a schematic diagram of an LED testing apparatus.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0031]
    The Ir(III) compounds of the invention have the First Formula Ir(III)LaLbLc xL′y above.
  • [0032]
    The above Ir(III) compounds are frequently referred to as cyclometalated complexes: Ir(III) compounds having the following Second Formula is also frequently referred to as a bis-cyclometalated complex.:
  • IrLaLbL′yL″z  (Second Formula)
  • [0033]
    where:
  • [0034]
    y, z, La, Lb,L′, and L″ are as defined in the First Formula above.
  • [0035]
    Ir(III) compounds having the following Third Formula is also frequently referred to as a tris-cyclometalated complex.:
  • IrLaLbLc  (Third Formula)
  • [0036]
    where:
  • [0037]
    La, Lb and Lc are as defined in the First Formula described above.
  • [0038]
    The preferred cyclometalated complexes are neutral and non-ionic, and can be sublimed intact. Thin films of these materials obtained via vacuum deposition exhibit good to excellent electroluminescent properties. Introduction of fluorine substituents into the ligands on the iridium atom increases both the stability and volatility of the complexes. As a result, vacuum deposition can be carried out at lower temperatures and decomposition of the complexes can be avoided. Introduction of fluorine substituents into the ligands can often reduce the non-radiative decay rate and the self-quenching phenomenon in the solid state. These reductions can lead to enhanced luminescence efficiency. Variation of substituents with electron-donating and electron-withdrawing properties allows for fine-tuning of electroluminescent properties of the compound and hence optimization of the brightness and efficiency in an electroluminescent device.
  • [0039]
    While not wishing to be bound by theory, it is believed that the emission from the iridium compounds is ligand-based, resulting from metal-to-ligand charge transfer. Therefore, compounds that can exhibit electroluminescence include those of compounds of the Second Formula IrLaLbL′ yL″z above, and the Third Formula IrLaLbLc above, where all La, Lb, and Lc in the Third Formula are phenylpyridines, phenylpyrimidines, or phenylquinolines. The R1-R8 groups of structures (I) and (II), and the R10-R19 groups of structure (III) above may be chosen from conventional substitutents for organic compounds, such as alkyl, alkoxy, halogen, nitro, and cyano groups, as well as fluoro, fluorinated alkyl and fluorinated alkoxy groups. The groups can be partially or fully fluorinated (perfluorinated). Preferred iridium compounds have all R1-R8 and R10-R19 substituents selected from fluoro, perfluorinated alkyl (CnF2n+1) and perfluorinated alkoxy groups (OCnF2n+1), where the perfluorinated alkyl and alkoxy groups have 1-6 carbon atoms, or a group of the formula OCF2X, where X═H, Cl, or Br.
  • [0040]
    It has been found that the electroluminescent properties of the cyclometalated iridium complexes are poorer when any one or more of the R1-R8 and R10-R19 groups is a nitro group. Therefore, it is preferred that none of the R1-R8 and R10-R19 groups is a nitro group.
  • [0041]
    The nitrogen-containing ring can be a pyridine ring, a pyrimidine or a quinoline. It is preferred that at least one fluorinated substituent is on the nitrogen-containing ring; most preferably CF3.
  • [0042]
    Any conventional ligands known to transition metal coordination chemistry is suitable as the L′ and L″ ligands. Examples of bidentate ligands include compounds having two coordinating groups, such as ethylenediamine and acetylacetonate, which may be substituted. Examples of monodentate ligands include chloride and nitrate ions and mono-amines. It is preferred that the iridium complex be neutral and sublimable. If a single bidentate ligand is used, it should have a net charge of minus one (−1). If two monodentate ligands are used, they should have a combined net charge of minus one (−1). The bis-cyclometalated complexes can be useful in preparing tris-cyclometalated complexes where the ligands are not all the same.
  • [0043]
    In a preferred embodiment, the iridium compound has the Third Formula IrLaLbLc as described above.
  • [0044]
    In a more preferred embodiment, La=Lb=LC. These more preferred compounds frequently exhibit a facial geometry, as determined by single crystal X-ray diffraction, in which the nitrogen atoms coordinated to the iridium are trans with respect to carbon atoms coordinated to the iridium. These more preferred compounds have the following Fourth Formula:
  • fac-Ir(La)3  (Fourth Formula)
  • [0045]
    where La has structure (I) above.
  • [0046]
    The compounds can also exhibit a meridional geometry in which two of the nitrogen atoms coordinated to the iridium are trans to each other. These compounds have the following Fifth Formula:
  • mer-Ir(La)3  (Fifth Formula)
  • [0047]
    where La has structure (I) above.
  • [0048]
    Examples of compounds of the Fourth Formula and Fifth Formula above are given in Table I below:
    TABLE 1
    Compound A R1 R2 R3 R4 R5 R6 R7 R8 Formula
    1-a C H H CF3 H H H H H Fourth
    1-b C H H CF3 H H H F H Fourth
    1-c C H H CF3 H F H H H Fourth
    1-d C H H H H F H H H Fourth
    1-e C H H CF3 H H CF3 H H Fourth
    1-f C H H H H H CF3 H H Fourth
    1-g C H H H H H H F H Fourth
    1-h C Cl H CF3 H H H H H Fourth
    1-i C H H CF3 H H H OCH3 H Fourth
    1-j C H H CF3 H H F H H Fourth
    1-k C H H NO2 H H CF3 H H Fourth
    1-1 C H H CF3 H H H OCF3 H Fourth
    1-m N CF3 H H H H F H Fourth
    1-q C H H CF3 H H OCH3 H H Fourth
    1-r C H OCH3 H H H H CF3 H Fourth
    1-s C H H H H F H F H Fourth
    and
    Fifth
    1-t C H H CF3 H H F H F Fifth
    1-u C H H CF3 H F H F H Fifth
    1-v C H H CF3 H H H F H Fifth
  • [0049]
    Examples compounds of the Second Formula IrLaLbL′yL″z above include compounds 1-n, 1-o, 1-p, 1-w and 1-x, respectively having structure (IV), (V), (VI), (IX) and (X) below:
    Figure US20020121638A1-20020905-C00004
  • [0050]
    The iridium complexes of the Third Formula IrLaLbLc above are generally prepared from the appropriate substituted 2-phenylpyridine, phenylpyrimidine, or phenylquinoline. The substituted 2-phenylpyridines, phenylpyrimidines, and phenylquinolines, as shown in Structure (II) above, are prepared, in good to excellent yield, using the Suzuki coupling of the substituted 2-chloropyridine, 2-chloropyrimidine or 2-chloroquinoline with arylboronic acid as described in O. Lohse, P.Thevenin, E. Waldvogel Synlett, 1999, 45-48. This reaction is illustrated for the pyridine derivative, where X and Y represent substituents, in Equation (1) below:
    Figure US20020121638A1-20020905-C00005
  • [0051]
    Examples of 2-phenylpyridine and 2-phenylpyrimidine compounds, having structure (II) above, are given in Table 2 below:
    TABLE 2
    Compound A R1 R2 R3 R4 R5 R6 R7 R8 R9
    2-a C H H CF3 H F H H H H
    2-b C H H CF3 H H CF3 H H H
    2-c C H H NO2 H H CF3 H H H
    2-d C H H CF3 H H F H H H
    2-e C H H CF3 H H H CH3O H H
    2-f C Cl H CF3 H H H H H H
    2-g C H H H CH3 H H F H H
    2-h N H H H H H F H H
    2-i C H H CF3 H H H CF3O H H
    2-j N CF3 H H F H H H H
    2-k C H H CF3 H H H F H H
    2-l C CF3 H H H H H H H H
    2-m C Cl H CF3 H H H F H H
    2-n C CF3 H H H H H F H H
    2-o C CF3 H H H H H CH3O H H
    2-p C Cl H CF3 H H H CH3O H H
    2-q N CF3 H H H H F H H
    2-r C Cl H CF3 H H H H H F
    2-s C H H CF3 H H H H H H
    2-t C Cl H H H F H H H H
    2-v C H H CF3 H H CH3O H H H
    2-w C H CH3O H H H H CF3 H H
    2-x C H H H H H F F H H
    2-y C H H CF3 H H F H F H
    2-z C H H CF3 H F H F H H
    2-aa C H H Br H H H Br H H
  • [0052]
    One example of a substituted 2-phenylquinoline compound, having structure (III) above, is compound 2-u, which has R17═CF3 and R10-R16 and R18-R20═H.
  • [0053]
    The 2-phenylpyridines, pyrimidines, and quinolines thus prepared are used for the synthesis of the cyclometalated iridium complexes. A convenient one-step method has been developed employing commercially available iridium trichloride hydrate and silver trifluoroacetate. The reactions are generally carried out with an excess of 2-phenylpyridine, pyrimidine, or quinoline, without a solvent, in the presence of 3 equivalents of AgOCOCF3. This reaction is illustrated for a 2-phenylpyridine in Equation (2) below:
    Figure US20020121638A1-20020905-C00006
  • [0054]
    The tris-cyclometalated iridium complexes were isolated, purified, and fully characterized by elemental analysis, 1H and 19F NMR spectral data, and, for compounds 1-b, 1-c, and 1-e, single crystal X-ray diffraction. In some cases, mixtures of isomers are obtained. Often the mixture can be used without isolating the individual isomers.
  • [0055]
    The iridium complexes having the Second Formula IrLaLbL′YL″z above, may, in some cases, be isolated from the reaction mixture using the same synthetic procedures as preparing those having Third Formula IrLaLbLc above. The complexes can also be prepared by first preparing an intermediate iridium dimer having structure VII below:
    Figure US20020121638A1-20020905-C00007
  • [0056]
    wherein:
  • [0057]
    B═H, CH3, or C2H5, and
  • [0058]
    La, Lb, LC, and Ld can be the same or different from each other and each of La, Lb, LC, and Ld has structure (I) above.
  • [0059]
    The iridium dimers can generally be prepared by first reacting iridium trichloride hydrate with the 2-phenylpyridine, phenylpyrimidine or phenylquinoline, and adding NaOB.
  • [0060]
    One particularly useful iridium dimer is the hydroxo iridium dimer, having structure VIII below:
    Figure US20020121638A1-20020905-C00008
  • [0061]
    This intermediate can be used to prepare compound 1-p by the addition of ethyl acetoacetate.
  • [0062]
    Electronic Device
  • [0063]
    The present invention also relates to an electronic device comprising at least one photoactive layer positioned between two electrical contact layers, wherein the at least one layer of the device includes the iridium complex of the invention. Devicesfrequently have additional hole transport and electron transport layers. A typical structure is shown in FIG. 1. The device 100 has an anode layer 110 and a cathode layer 150. Adjacent to the anode is a layer 120 comprising hole transport material. Adjacent to the cathode is a layer 140 comprising an electron transport material. Between the hole transport layer and the electron transport layer is the photoactive layer 130.
  • [0064]
    Depending upon the application of the device 100, the photoactive layer 130 can be a light-emitting layer that is activated by an applied voltage (such as in a light-emitting diode or light-emitting electrochemical cell), a layer of material that responds to radiant energy and generates a signal with or without an applied bias voltage (such as in a photodetector). Examples of photodetectors include photoconductive cells, photoresistors, photoswitches, phototransistors, and phototubes, and photovoltaic cells, as these terms are describe in Markus, John, Electronics and Nucleonics Dictionary, 470 and 476 (McGraw-Hill, Inc. 1966).
  • [0065]
    The iridium compounds of the invention are particularly useful as the photoactive material in layer 130, or as electron transport material in layer 140. Preferably the iridium complexes of the invention are used as the light-emitting material in diodes. It has been found that in these applications, the fluorinated compounds of the invention do not need to be in a solid matrix diluent in order to be effective. A layer that is greater than 20% by weight iridium compound, based on the total weight of the layer, up to 100% iridium compound, can be used as the emitting layer. This is in contrast to the non-fluorinated iridium compound, tris(2-phenylpyridine) iridium (III), which was found to achieve maximum efficiency when present in an amount of only 6-8% by weight in the emitting layer. This was necessary to reduce the self-quenching effect. Additional materials can be present in the emitting layer with the iridium compound. For example, a fluorescent dye may be present to alter the color of emission. A diluent may also be added. The diluent can be a polymeric material, such as poly(N-vinyl carbazole) and polysilane. It can also be a small molecule, such as 4,4′-N,N′-dicarbazole biphenyl or tertiary aromatic amines. When a diluent is used, the iridium compound is generally present in a small amount, usually less than 20% by weight, preferably less than 10% by weight, based on the total weight of the layer.
  • [0066]
    In some cases the iridium complexes may be present in more than one isomeric form, or mixtures of different complexes may be present. It will be understood that in the above discussion of OLEDs, the term “the iridium compound” is intended to encompass mixtures of compounds and/or isomers.
  • [0067]
    To achieve a high efficiency LED, the HOMO (highest occupied molecular orbital) of the hole transport material should align with the work function of the anode, the LUMO (lowest un-occupied molecular orbital) of the electron transport material should align with the work function of the cathode. Chemical compatibility and sublimation temp of the materials are also important considerations in selecting the electron and hole transport materials.
  • [0068]
    The other layers in the OLED can be made of any materials which are known to be useful in such layers. The anode 110, is an electrode that is particularly efficient for injecting positive charge carriers. It can be made of, for example materials containing a metal, mixed metal, alloy, metal oxide or mixed-metal oxide, or it can be a conducting polymer. Suitable metals include the Group 11 metals, the metals in Groups 4, 5, and 6, and the Group 8-10 transition metals. If the anode is to be light-transmitting, mixed-metal oxides of Groups 12, 13 and 14 metals, such as indium-tin-oxide, are generally used. The IUPAC numbering system is used throughout, where the groups from the Periodic Table are numbered from left to right as 1-18 (CRC Handbook of Chemistry and Physics, 81 st Edition, 2000). The anode 110 may also comprise an organic material such as polyaniline as described in “Flexible light-emitting diodes made from soluble conducting polymer,” Nature vol. 357, pp 477-479 (June 11, 1992). At least one of the anode and cathode should be at least partially transparent to allow the generated light to be observed.
  • [0069]
    Examples of hole transport materials for layer 120 have been summarized for example, in Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Vol. 18, p. 837-860, 1996, by Y. Wang. Both hole transporting molecules and polymers can be used. Commonly used hole transporting molecules are: N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′-diamine (TPD), 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), N,N′-bis(4-methylphenyl)-N,N′-bis(4-ethylphenyl)-[1,1′-(3,3′-dimethyl)biphenyl]-4,4′-diamine (ETPD), tetrakis-(3-methylphenyl)-N,N,N′,N′-2,5-phenylenediamine (PDA), a-phenyl-4-N,N-diphenylaminostyrene (TPS), p-(diethylamino)-benzaldehyde diphenylhydrazone (DEH), triphenylamine (TPA), bis[4-(N,N-diethylamino)-2-methylphenyl](4-methylphenyl)methane (MPMP), 1-phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazoline (PPR or DEASP), 1,2-trans-bis(9H-carbazol-9-yl)cyclobutane (DCZB), N,N,N′,N′-tetrakis(4-methyl-phenyl)-(1,1′-biphenyl)-4,4′-diamine (TTB), and porphyrinic compounds, such as copper phthalocyanine. Commonly used hole transporting polymers are polyvinylcarbazole, (phenylmethyl)polysilane, and polyaniline. It is also possible to obtain hole transporting polymers by doping hole transporting molecules such as those mentioned above into polymers such as polystyrene and polycarbonate.
  • [0070]
    Examples of electron transport materials for layer 140 include metal chelated oxinoid compounds, such as tris(8-hydroxyquinolato)aluminum (Alq3); phenanthroline-based compounds, such as 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (DDPA) or 4,7-diphenyl-1,10-phenanthroline (DPA), and azole compounds such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-l,3,4-oxadiazole (PBD) and 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole (TAZ). Layer 140 can function both to facilitate electron transport, and also serve as a buffer layer or confinement layer to prevent quenching of the exciton at layer interfaces. Preferably, this layer promotes electron mobility and reduces exciton quenching.
  • [0071]
    The cathode 150, is an electrode that is particularly efficient for injecting electrons or negative charge carriers. The cathode can be any metal or nonmetal having a lower work function than the anode. Materials for the cathode can be selected from alkali metals of Group 1 (e.g., Li, Cs), the Group 2 (alkaline earth) metals, the Group 12 metals, including the rare earth elements and lanthanides, and the actinides. Materials such as aluminum, indium, calcium, barium, samarium and magnesium, as well as combinations, can be used. Li-containing organometallic compounds can also be deposited between the organic layer and the cathode layer to lower the operating voltage.
  • [0072]
    It is known to have other layers in organic electronic devices. For example, there can be a layer (not shown) between the conductive polymer layer 120 and the active layer 130 to facilitate positive charge transport and/or band-gap matching of the layers, or to function as a protective layer. Similarly, there can be additional layers (not shown) between the active layer 130 and the cathode layer 150 to facilitate negative charge transport and/or band-gap matching between the layers, or to function as a protective layer. Layers that are known in the art can be used. In addition, any of the above-described layers can be made of two or more layers. Alternatively, some or all of inorganic anode layer 110, the conductive polymer layer 120, the active layer 130, and cathode layer 150, may be surface treated to increase charge carrier transport efficiency. The choice of materials for each of the component layers is preferably determined by balancing the goals of providing a device with high device efficiency.
  • [0073]
    It is understood that each functional layer may be made up of more than one layer.
  • [0074]
    The device can be prepared by sequentially vapor depositing the individual layers on a suitable substrate. Substrates such as glass and polymeric films can be used. Conventional vapor deposition techniques can be used, such as thermal evaporation, chemical vapor deposition, and the like. Alternatively, the organic layers can be coated from solutions or dispersions in suitable solvents, using any conventional coating technique. In general, the different layers will have the following range of thicknesses: anode 110, 500-5000 Å, preferably 1000-2000 Å; hole transport layer 120, 50-1000 Å, preferably 200-800 Å; light-emitting layer 130, 10-1000 Å, preferably 100-800 Å; electron transport layer 140, 50-1000 Å, preferably 200-800 Å; cathode 150, 200-10000 Å, preferably 300-5000 Å. The location of the electron-hole recombination zone in the device, and thus the emission spectrum of the device, can be affected by the relative thickness of each layer. Thus the thickness of the electron-transport layer should be chosen so that the electron-hole recombination zone is in the light-emitting layer. The desired ratio of layer thicknesses will depend on the exact nature of the materials used.
  • [0075]
    It is understood that the efficiency of devices made with the iridium compounds of the invention, can be further improved by optimizing the other layers in the device. For example, more efficient cathodes such as Ca, Ba or LiF can be used. Shaped substrates and novel hole transport materials that result in a reduction in operating voltage or increase quantum efficiency are also applicable. Additional layers can also be added to tailor the energy levels of the various layers and facilitate electroluminescence.
  • [0076]
    The iridium complexes of the invention often are phosphorescent and photoluminescent and may be useful in applications other than OLEDs. For example, organometallic complexes of iridium have been used as oxygen sensitive indicators, as phosphorescent indicators in bioassays, and as catalysts. The bis cyclometalated complexes can be used to sythesize tris cyclometalated complexes where the third ligand is the same or different.
  • EXAMPLES
  • [0077]
    The following examples illustrate certain features and advantages of the present invention. They are intended to be illustrative of the invention, but not limiting. All percentages are by weight, unless otherwise indicated.
  • Example 1
  • [0078]
    This example illustrates the preparation of the 2-phenylpyridines and 2-phenylpyrimidines which are used to form the iridium compounds.
  • [0079]
    The general procedure used was described in O. Lohse, P. Thevenin, E. Waldvogel Synlett, 1999, 45-48. In a typical experiment, a mixture of 200 ml of degassed water, 20 g of potassium carbonate, 150 ml of 1,2-dimethoxyethane, 0.5 g of Pd(PPh3)4, 0.05 mol of a substituted 2-chloropyridine (quinoline or pyrimidine) and 0.05 mol of a substituted phenylboronic acid was refluxed (80-90° C.) for 16-30 h. The resulting reaction mixture was diluted with 300 ml of water and extracted with CH2Cl2 (2×100 ml). The combined organic layers were dried over MgSO4, and the solvent removed by vacuum. The liquid products were purified by fractional vacuum distillation. The solid materials were recrystallized from hexane. The typical purity of isolated materials was >98%.
  • [0080]
    The starting materials, yields, melting and boiling points of the new materials are given in Table 3. NMR data and analytical data are given in Table 4.
    TABLE 3
    Preparation of 2-Phenyl Pyridines,
    Phenylpyrimidines and Phenylquinolines
    Compound Yield in % B.p./mm Hg (m.p.) in ° C.
    2-s  70
    2-a  72
    2-b 48
    2-u 75 (76-78)
    2-c  41 (95-96)
    2-d 38 (39-40)
    2-e  55 74.5/0.1
    2-g 86 71-73/0.07
    2-t 65 77-78/0.046
    2-k 50 (38-40)
     2-m 80 72-73/0.01
    2-f 22 52-33/0.12
    2-v 63 95-96/13
    2-w 72
    2-x 35 61-62/0.095
    2-y 62 (68-70)
    2-z  42 66-67/0.06 (58-60)
    2-aa 60
  • [0081]
    [0081]
    TABLE 4
    Properties of 2-Phenyl Pyridines, Phenylpyrimidines and Phenylquinolines
    Analysis %,
    found (calc.)
    Compound 1H NMR 19F NMR or MS (M+)
    2-s  7.48 (3H), −62.68 C, 64.50
    7.70 (1H), (64.57)
    7.83 (1H), H, 3.49
    7.90 (2H), (3.59)
    8.75 (1H)  N, 6.07
    (6.28)
    2-a  7.19 (1H), −60.82 (3F, s), C, 59.56
    7.30 (1H), −116.96 (1F, m) (59.75)
    7.43 (1H), H, 3.19
    7.98 (2H), (2.90)
    8.07 (1H)  N, 5.52
    9.00 (1H)  (5.81)
    2-b 7.58 (1H), −62.75 (3F, s), C, 53.68
    7.66 (1H), −63.10 (3F, s) (53.60)
    7.88 (1H), H, 2.61
    8.03 (1H), (2.40)
    8.23 (1H), N, 4.53
    8.35 (1H)  (4.81)
    8.99 (1H) 
    2-u 7.55 (1H), −62.89 (s) C, 69.17
    7.63 (1H), (70.33)
    7.75 (2H), H, 3.79
    7.89 (2H), (3.66)
    8.28 (2H), N, 4.88
    8.38 (1H), (5.12)
    8.50 (1H) 
    2-c  7.53 (1H), −62.14 (s) C, 53.83 (53.73)
    7.64 (1H), H, 2.89
    7.90 (1H), (2.61)
    8.18 (1H), N, 9.99
    8.30 (1H), (10.44)
    8.53 (1H),
    9.43 (1H) 
    2-d 7.06 (1H), −62.78 (3F, s), C, 59.73
    7.48 (1H), −112.61 (59.75)
    7.81 (3H), H, 2.86
    8.01 (1H), (1F, m) (2.90)
    8.95 (1H), N, 5.70
    (5.81)
    2-e  3.80 (3H)  −62.63 C, 61.66
    6.93 (2H), (s) (61.90)
    7.68 (1H), H, 3.95
    7.85 (1H), (4.04)
    7.96 (2H), N, 5.53
    8.82 (1H), (5.38)
    2-g 2.70 (3H)  −114.03 C, 76.56
    7.10 (3H), (m) (77.00)
    7.48 (1H), H, 5.12
    7.60 (1H), (5.30)
    8.05 (2H), N, 5.43
    (7.50)
    2-t 7.10 (2H), −62.73 C, 50.51
    7.35 (2H), (3F, s) (52.17)
    7.96 (1H), −113.67 H, 1.97
    8.78 (1H), (1F, m) (2.17)
    N, 5.09
    (5.07)
    2-k 7.08 (2H), −62.75 C, 60.39
    7.62 (1H), (3F, s) (59.75), H, 3.38
    7.90 (3H), −111.49 (2.90),
    8.80 (1H), (m) N, 5.53
    (5.51)
     2-m 7.10 (2H), −62.63 C, 52.13
    7.80 (2H), (3F, s) (52.17)
    8.00 (1H), −111.24 H, 2.16
    8.75 (1H), (m) (2.17)
    N, 4.85
    (5.07)
    2-f 7.55 (3H), −62.57 (s) 257 (M+,
    7.77 (2H), Cl2H7F3ClN+),
    8.06 (1H), 222 (M-Cl)
    8.87 (1H) 
    2-v  3.8 (3H), −62.70 ppm C, 61.66 (61.37),
    6.95 (1H), H, 3.98 (3.67),
    7.30 (1H), N, 5.53 (5.48)
    7.50 (1H),
    7.58 (1H),
    7.75 (1H),
    7.90 (1H),
    8.87 (1H) 
    2-w   8.54 (1H, d), −63.08 (3F, s)
      8.21 (2H, d),
      7.70 (2H, d),
     7.24 (1H, s), 
       6.82 (1H, dd),
    3.91 (3H, s)
    2-x     6.9 (2H, m), −109.70 (1F, m),
       7.18 (2H, m), −113.35 (1F, m).
       7.68 (2H, m),
       7.95 (1H, m),
       8.65 (1H, m);
    2-y 6.94 (1H), −62.72 ( 3F, s),
    7.62 (2H), −109.11 (2F, m)
    7.82 (1H),
    8.03 (1H),
    8.96 (1H);
    2-z  6.85 (1H), −62.80 (3F, s),
    6.93 (1H), −107.65 (1F, m),
    7.80, 7.90, −112.45 (1F, m).
    8.05 (3H),
    8.89 (1H);
    2-aa    7.70 (3H, m),
       7.85 (3H, m),
    7.80, 7.90,
       8.85 (1H, m).
  • Example 2
  • [0082]
    This example illustrates the preparation of iridium compounds of the Fourth Formula fac-Ir(La)3 above.
  • [0083]
    In a typical experiment, a mixture of IrCl3.·nH2O (53-55% Ir), AgOCOCF3 (3.1 equivalents per Ir), 2-arylpyridine (excess), and (optionally) a small amount of water was vigorously stirred under N2 at 180-195° C. (oil bath) for 2-8 hours. The resulting mixture was thoroughly extracted with CH2Cl2 until the extracts were colorless. The extracts were filtered through a silica column to produce a clear yellow solution. Evaporation of this solution gave a residue which was treated with methanol to produce colored crystalline tris-cyclometalated Ir complexes. The complexes were separated by filtration, washed with methanol, dried under vacuum, and (optionally) purified by crystallization, vacuum sublimation, or Soxhlet extraction. Yields: 10-82%. All materials were characterized by NMR spectroscopic data and elemental analysis, and the results are given in Table 5 below. Single-crystal X-ray structures were obtained for three complexes of the series.
  • [0084]
    Compound 1-b
  • [0085]
    A mixture of IrCl3.·nH2O (54% Ir; 508 mg), 2-(4-fluorophenyl)-5-trifluoromethylpyridine, compound kk (2.20 g), AgOCOCF3 (1.01 g), and water (1 mL) was vigorously stirred under a flow of N2 as the temperature was slowly (30 min) brought up to 185° C. (oil bath). After 2 hours at 185-190° C. the mixture solidified. The mixture was cooled down to room temperature. The solids were extracted with dichloromethane until the extracts decolorized. The combined dichloromethane solutions were filtered through a short silica column and evaporated. After methanol (50 mL) was added to the residue the flask was kept at −10° C. overnight. The yellow precipitate of the tris-cyclometalated complex, compound b, was separated, washed with methanol, and dried under vacuum. Yield: 1.07 g (82%). X-Ray quality crystals of the complex were obtained by slowly cooling its warm solution in 1,2-dichloroethane.
  • [0086]
    Compound 1-e
  • [0087]
    A mixture of IrCl3.·nH2O (54% Ir; 504 mg), 2-(3-trifluoromethylphenyl)-5-trifluoromethylpyridine, compound bb (1.60 g), and AgOCOCF3 (1.01 g) was vigorously stirred under a flow of N2 as the temperature was slowly (15 min) brought up to 192° C. (oil bath). After 6 hours at 190-195° C. the mixture solidified. The mixture was cooled down to room temperature. The solids were placed on a silica column which was then washed with a large quantity of dichloromethane. The residue after evaporation of the filtrate was treated with methanol to produce yellow solid. The solid was collected and purified by extraction with dichloromethane in a 25-mL micro-Soxhlet extractor. The yellow precipitate of the tris-cyclometalated complex, compound e, was separated, washed with methanol, and dried under vacuum. Yield: 0.59 g (39%). X-Ray quality crystals of the complex were obtained from hot 1,2-dichloroethane.
  • [0088]
    Compound 1-d
  • [0089]
    A mixture of IrCl3.·nH2O (54% Ir; 508 mg), 2-(2-fluorophenyl)-5-trifluoromethylpyridine, compound aa (1.53 g), and AgOCOCF3 (1.01 g) was vigorously stirred under a flow of N2 at 190-195° C. (oil bath) for 6 h 15 min. The mixture was cooled down to room temperature and then extracted with hot 1,2-dichloroethane. The extracts were filtered through a short silica column and evaporated. Treatment of the residue with methanol (20 mL) resulted in precipitation of the desired product, compound d, which was separated by filtration, washed with methanol, and dried under vacuum. Yield: 0.63 g (49%). X-Ray quality crystals of the complex were obtained from dichloromethane/methanol.
  • [0090]
    Compound 1-i
  • [0091]
    A mixture of IrCl3·nH2O (54% Ir; 503 mg), 2-(4-trifluoromethoxyphenyl)-5-trifluoromethylpyridine, compound ee (2.00 g), and AgOCOCF3 (1.10 g) was vigorously stirred under a flow of N2 at 190-195° C. (oil bath) for 2 h 45 min. The mixture was cooled down to room temperature and then extracted with dichloromethane. The extracts were filtered through a short silica column and evaporated. Treatment of the residue with methanol (20 mL) resulted in precipitation of the desired product, compound i, which was separated by filtration, washed with methanol, and dried under vacuum. The yield was 0.86 g. Additionally, 0.27 g of the complex was obtained by evaporating the mother liquor and adding petroleum ether to the residue. Overall yield: 1.13 g (72%).
  • [0092]
    Compound 1-q
  • [0093]
    A mixture of IrCl3.·nH2O (54% Ir; 530 mg), 2-(3-methoxyphenyl)-5-trifluoromethylpyridine (2.50 g), AgOCOCF3 (1.12 g), and water (1 mL) was vigorously stirred under a flow of N2 as the temperature was slowly (30 min) brought up to 185° C. (oil bath). After 1 hour at 185° C. the mixture solidified. The mixture was cooled down to room temperature. The solids were extracted with dichloromethane until the extracts decolorized. The combined dichloromethane solutions were filtered through a short silica column and evaporated. The residue was washed with hexanes and then recrystallized from 1,2-dichloroethane-hexanes (twice). Yield: 0.30 g. 19F NMR (CD2Cl2, 20° C.), δ: −63 (s). 1H NMR (CD2Cl2, 20° C.), δ: 8.1 (1H), 7.9 (1H), 7.8 (1H), 7.4(1H), 6.6 (2H), 4.8 (3H). X-Ray quality crystals of the complex (1,2-dichloroethane, hexane solvate) were obtained from 1,2-dichloroethane-hexanes. This facial complex was orange-photoluminescent.
  • [0094]
    Compounds 1-a, 1-c, 1-f through 1-h, 1-j through 1-m and 1-r were similarly prepared. In the preparation of compound 1-j, a mixture of isomers was obtained with the fluorine in either the R6 or R8 position.
    TABLE 5
    Analysis NMR
    Compound (calcd (found) (CD2Cl2, 25° C.)
    1-a  C: 50.3 (50.1) 1H: 6.8 (1H), 6.9 (1H), 7.0 (1H), 7.8
    H: 2.5 (2.7) (2H), 7.95 (1H), 8.1 (1H)
    N: 4.9 (4.9) 19F: −63.4
    Cl: 0.0 (0.2)
    1-b C: 47.4 (47.3) 1H: 6.4 (1H), 6.75 (1H), 7.7 (1H), 7.8
    H: 2.0 (2.1) (1H), 7.95 (1H), 8.05 (1H)
    N: 4.6 (4.4) 19F: −63.4 (s); −109.5 (ddd)
    1-c  C: 47.4 (47.2) 1H: 6.6 (1H), 6.7 (1H), 6.9 (1H), 7.8
    H: 2.0 (2.0) (1H), 8.0 (1H), 8.6 (1H)
    N: 4.6 (4.5) 19F: −63.5 (s); −112.8 (ddd)
    1-d C: 55.9 (56.1) 1H: 6.6 (2H), 6.8 (1H), 7.0 (1H), 7.6
    H: 3.0 (3.2) (1H), 7.7 (1H), 8.4 (1H)
    N: 5.9 (5.8) 19F: −115.0 (ddd)
    1-e  C: 44.1 (43.3) 1H: 6.9 (1H), 7.1 (1H), 7.8 (1H), 8.0
    H: 1.7 (2.1) (2H), 8.2 (1H)
    N: 3.9 (3.6) 19F: −63.0 (1F), −63.4 (1F)
    1-f C: 50.4 (50.5) 1H: 6.9 (1H), 7.1 (2H), 7.6 (1H), 7.8
    H: 2.5 (2.7) (1H), 7.9 (1H), 8.1 (1H)
    N: 4.9 (4.9) 19F: −62.4
    1-g C: 55.9 (56.3) 1H; 6.4 (1H), 6.7 (1H), 7.0 (1H), 7.6
    H: 3.0 (3.2) (1H), 7.7 (2H), 7.9 (1H)
    N: 5.9 (6.0) 19F: −112.6 (ddd)
    1-h C: 51.0 (45.2) 1H: 6.8 (1H), 6.95 (1H), 7.05 (1H), 7.7
    H: 2.1 (2.3) (1H), 8.0 (1H), 8.9 (1H)
    N: 4.9 (4.2) 19F: −63.3
    1-i C: 49.4 (49.3) 1H: 3.6 (3H), 6.3 (1H), 6.6 (1H), 7.7
    H: 2.9 (2.8) (2H), 7.85 (1H), 7.95 (1H)
    N: 4.4 (4.4) 19F: −63.2
    1-j C: 47.4 (47.4) 1H: 6.7 (m), 7.1 (m), 7.5 (m), 7.6 (m),
    H: 2.0 (2.3) 7.7 (m), 8.0 (m), 8.2 (m)
    N: 4.6 (4.7) 19F: 8 s resonances (−63.0-−63.6) and
    8 ddd resonances (−92.2-−125.5)
    1-k C: 43.5 (44.0) 1H: 6.9 (1H), 7.15 (1H), 8.1 (1H), 8.3
    H: 1.8 (2.1) (1H), 8.45 (1H), 8.6 (1H)
    N: 8.5 (8.4) 19F: −62.9
    1-l C: 42.2 (42.1) 1H: 6.5 (1H), 6.7 (1H), 7.75 (1H), 7.85
    H: 16. (1.8) (1H), 8.0 (1H), 8.1 (1H)
    N: 3.8 (3.7) 19F: −58.1 (1F), −63.4 (1F)
  • Example 3
  • [0095]
    This example illustrates the preparation of iridium complexes of the Second Formula IrLaLbLc xL′yL″z above,
  • [0096]
    Compound 1-n
  • [0097]
    A mixture of IrCl3.·nH2O (54% Ir; 510 mg), 2-(3-trifluoromethylphenyl)-quinoline (1.80 g), and silver trifluoroacetate (1.10 g) was vigorously stirred at 190-195° C. for 4 hours. The resulting solid was chromatographed on silica with dichloromethane to produce a mixture of the dicyclometalated complex and the unreacted ligand. The latter was removed from the mixture by extraction with warm hexanes. After the extracts became colorless the hexane-insoluble solid was collected and dried under vacuum. The yield was 0.29 g. 19F NMR: −63.5 (s, 6F), −76.5 (s, 3F). The structure of this complex was established by a single crystal X ray diffraction study.
  • [0098]
    Compound 1-o
  • [0099]
    A mixture of IrCl3.·nH2O (54% Ir; 500 mg), 2-(2-fluorophenyl)-3-chloro-5-trifluoromethylpyridine (2.22 g), water (0.3 mL), and silver trifluoroacetate (1.00 g) was stirred at 190° C. for 1.5 hours. The solid product was chromatographed on silica with dichloromethane to produce 0.33 g of a 2:1 co-crystallized adduct of the dicyclometalated aqua trifluoroacetato complex, compound 1-p, and the unreacted ligand. 19F NMR: −63.0 (9F), −76.5 (3F), −87.7 (2F), −114.4 (1F). The co-crystallized phenylpyridine ligand was removed by recrystallization from dichloromethane-hexanes. The structures of both the adduct and the complex were established by a single crystal X-ray diffraction study.
  • Example 4
  • [0100]
    This example illustrates the preparation of an hydroxo iridium dimer, having structure (VIII) above.
  • [0101]
    A mixture of IrCl3.·nH2O (54% Ir; 510 mg), 2-(4-fluorophenyl)-5-trifluoromethylpyridine (725 mg), water (5 mL), and 2-ethoxyethanol (20 mL) was vigorously stirred under reflux for 4.5 hours. After a solution of NaOH (2.3 g) in water (5 mL) was added, followed by 20 mL of water, the mixture was stirred under reflux for 2 hours. The mixture was cooled down to room temperature, diluted with 50 mL of water, and filtered. The solid was vigorously stirred under reflux with 30 mL of 1,2-dichloroethane and aqueous NaOH (2.2 g in 8 mL of water) for 6 hours. The organic solvent was evaporated from the mixture to leave a suspension of an orange solid in the aqueous phase. The orange solid was separated by filtration, thoroughly washed with water, and dried under vacuum to produce 0.94 g (95%) of the iridium hydroxo dimer (spectroscopically pure). 1H NMR (CD2Cl2): −1.0 (s, 1H, IrOH), 5.5 (dd, 2H), 6.6 (dt, 2H), 7.7 (dd, 2H), 7.9 (dd, 2H), 8.0 (d, 2H), 9.1 (d, 2H). 19F NMR (CD2Cl2): −62.5 (s, 3F), −109.0 (ddd, 1F).
  • Example 5
  • [0102]
    This example illustrates the preparation of bis-cyclometalated complexes from an iridium dimer.
  • [0103]
    Compound 1-p
  • [0104]
    A mixture of the iridium hydroxo dimer (100 mg) from Example 4, ethyl acetoacetate (0.075 mL; 4-fold excess), and dichloromethane (4 mL) was stirred at room temperature overnight. The solution was filtered through a short silica plug and evaporated to give an orange-yellow solid which was washed with hexanes and dried. The yield of the complex was 109 mg (94%). 1H NMR (CD2Cl2): 1.1 (t, CH3), 3.9 (dm, CH2), 4.8 (s, CH3COCH), 5.9 (m), 6.7 (m), 7.7 (m), 8.0 (m), 8.8 (d). 19F NMR (CD2Cl2): −63.1 (s, 3F), −63.2 (s, 3F), −109.1 (ddd, 1F), −109.5 (ddd). Analysis: Calcd: C, 44.9; H, 2.6; N, 3.5. Found: C, 44.4; H, 2.6; N, 3.3.
  • [0105]
    Compound 1-w
  • [0106]
    A solution of hydroxo iridium dimer from Example 4 (0.20 g) in THF (6 mL) was treated with 50 mg of trifluoroacetic acid, filtered through a short silica plug, evaporated to ca. 0.5 mL, treated with hexanes (8 mL), and left overnight. The yellow crystalline solid was separated, washed with hexanes, and dried under vacuum. Yield (1:1 THF solvate): 0.24 g (96%). 19F NMR (CD2Cl2, 20° C.), δ: −63.2 (s, 3F), −76.4 (s, 3F), −107.3 (ddd, 1F). 1H NMR (CD2Cl2, 20° C.), δ: 9.2 (br s, 1H), 8.2 (dd, 1H), 8.1 (d, 1H), 7.7 (m, 1H), 6.7 (m, 1H), 5.8 (dd, 1H), 3.7 (m, 2H, THF), 1.8 (m, 2H, THF).
  • [0107]
    Compound 1-x
  • [0108]
    A mixture of the trifluoroacetate intermediate, compound 1-w (75 mg), and 2-(4-bromophenyl)-5-bromopyridine (130 mg) was stirred under N2 at 150-155° C. for 30 min. The resulting solid was cooled to room temperature and dissolved in CH2Cl2. The resulting solution was filtered through silica gel and evaporated. The residue was washed several times with warm hexanes and dried under vacuum to leave a yellow, yellow-photoluminescent solid. Yield: 74 mg (86%). 19F NMR (CD2Cl2, 20° C.), δ: −63.1 (s, 3F), −63.3 (s, 3F), −108.8 (ddd, 1F), −109.1 (ddd, 1F). 1H NMR (CD2Cl2, 20° C.), δ: 8.2 (s), 7.9 (m), 7.7 (m), 7.0 (m), (d), 6.7 (m), 6.2 (dd), 6.0 (dd). The complex was meridional, with the nitrogens of the fluorinated ligands being trans, as confirmed by X-ray analysis.
  • Example 6
  • [0109]
    This example illustrates the preparation of iridium compounds of the Fifth Formula mer-Ir(La)3 above.
  • [0110]
    Compound 1-s
  • [0111]
    This complex was synthesized in a manner similar to compound 1-n. According to the NMR, TLC, and TGA data, the result was an approximately 1:1 mixture of the facial and meridional isomers.
  • [0112]
    Compound 1-t
  • [0113]
    A mixture of IrCl3.·nH2O (54% Ir; 0.40 g), 2-(3,5-difluorophenyl)-5-trifluoromethylpyridine (1.40 g), AgOCOCF3 (0.81 g), and water (0.5 mL) was vigorously stirred under a flow of N2 as the temperature was slowly (30-40 min) brought up to 165° C. (oil bath). After 40 min at 165° C. the mixture solidified. The mixture was cooled down to room temperature. The solids were extracted with dichloromethane until the extracts decolorized. The combined dichloromethane solutions were filtered through a short silica column and evaporated. The residue was thoroughly washed with hexanes and dried under vacuum. Yield: 0.53 g (49%). 19F NMR (CD2Cl2, 20° C.), δ: −63.55 (s, 3F), −63.57 (s, 3F), −63.67 (s, 3F), −89.1 (t, 1F), −100.6 (t, 1F), −102.8 (dd, 1F), −118.6 (ddd, 1F), −119.3 (ddd, 1F), −123.3 (ddd, 1F). 1H NMR (CD2Cl2, 20° C.), δ: 8.4 (s), 8.1 (m), 7.9 (m), 7.6 (s), 7.5 (m), 6.6 (m), 6.4 (m). The complex was meridional, as was also confirmed by X-ray analysis.
  • [0114]
    Compound 1-u
  • [0115]
    This complex was prepared and isolated similarly to compound 1-q, then purified by crystallization from 1,2-dichloroethane-hexanes. The yield of the purified product was 53%. The complex is mer, as follows from the NMR data. 19F NMR (CD2Cl2, 20° C.), δ: −63.48 (s, 3F), −63.52 (s, 6F), −105.5 (ddd, 1F) −105.9 (ddd, 1F), −106.1 (ddd, 1F), −107.4 (t, 1F), −107.9 (t, 1F), −109.3 (t, 1F). 1H NMR (CD2Cl2, 20° C.), δ: 8.6 (m), 8.3 (s), 8.2 (s), 8.1 (m), 7.9 (m), 7.6 (m), 6.6 (m), 6.4 (m), 6.0 (m), 5.8 (m).
  • [0116]
    Compound 1-v
  • [0117]
    This mer-complex was prepared in a manner similar to compound 1-w, using the trifluoroacetate dicyclometalated intermediate, compound 1-x, and 2-(4-fluorophenyl)-5-trifluoromethylpyridine. 19F NMR (CD2Cl2, 20° C.), δ: −63.30 (s, 3F), −63.34 (s, 3F), −63.37 (s, 3F), −108.9 (ddd, 1F), −109.0 (ddd, 1F), −109.7 (ddd, 1F). 1H NMR (CD2Cl2, 20° C.), δ: 8.3-7.6 (m), 6.7 (m), 6.6 (dd), 6.3 (dd), 6.0 (dd). This yellow-luminescent merisional complex isomerised to the green luminescent facial isomer, compound 1-b, upon sublimation at 1 atm.
  • Example 7
  • [0118]
    This example illustrates the formation of OLEDs using the iridium complexes of the invention.
  • [0119]
    Thin film OLED devices including a hole transport layer (HT layer), electroluminescent layer (EL layer) and at least one electron transport layer (ET layer) were fabricated by the thermal evaporation technique. An Edward Auto 306 evaporator with oil diffusion pump was used. The base vacuum for all of the thin film deposition was in the range of 10−6 torr. The deposition chamber was capable of depositing five different films without the need to break up the vacuum.
  • [0120]
    An indium tin oxide (ITO) coated glass substrate was used, having an ITO layer of about 1000-2000 Å. The substrate was first patterned by etching away the unwanted ITO area with 1N HCl solution, to form a first electrode pattern. Polyimide tape was used as the mask. The patterned ITO substrates were then cleaned ultrasonically in aqueous detergent solution. The substrates were then rinsed with distilled water, followed by isopropanol, and then degreased in toluene vapor for ˜3 hours.
  • [0121]
    The cleaned, patterned ITO substrate was then loaded into the vacuum chamber and the chamber was pumped down to 10−6 torr. The substrate was then further cleaned using an oxygen plasma for about 5-10 minutes. After cleaning, multiple layers of thin films were then deposited sequentially onto the substrate by thermal evaporation. Finally, patterned metal electrodes of Al were deposited through a mask. The thickness of the film was measured during deposition using a quartz crystal monitor (Sycon STC-200). All film thickness reported in the Examples are nominal, calculated assuming the density of the material deposited to be one. The completed OLED device was then taken out of the vacuum chamber and characterized immediately without encapsulation.
  • [0122]
    A summary of the device layers and thicknesses is given in Table 6. In all cases the anode was ITO as discussed above, and the cathode was Al having a thickness in the range of 700-760 Å. In some of the samples, a two-layer electron transport layer was used. The layer indicated first was applied adjacent to the EL layer.
    TABLE 6
    HT layer EL layer ET layer
    Sample (Thickness, Å) (Thickness, Å) (Thickness, Å)
    Compar- MPMP (528) Ir(ppy)3 (408) DDPA (106) + Alq3 (320)
    ative
    1 MPMP (520) Compound 1-b DDPA (125) + Alq3 (365)
    (499)
    2 MPMP (541) Compound 1-b DDPA (407)
    (580)
    3 MPMP (540) Compound 1-e DDPA (112) + Alq3 (340)
    (499)
    4 MPMP (525) Compound 1-k DDPA (106) Alq3 (341)
    (406)
    5 MPMP (570) Compound 1-i DDPA (107) + Alq3 (339)
    (441)
    6 MPMP (545) Compound 1-j DDPA (111) + Alq3 (319)
    (462)
    7 MPMP (643) Compound 1-g DDPA (112) + Alq3 (361)
    (409)
    8 MPMP (539) Compound 1-f DDPA (109) + Alq3 (318)
    (430)
    9 MPMP (547) Compound 1-a DDPA (105) + Alq3 (300)
    (412)
    10 MPMP (532) Compound 1-h DDPA (108) + Alq3 (306)
    (457)
    11 MPMP (603) Compound 1-d DDPA (111) + Alq3 (303)
    (415)
    12 MPMP (551) Compound 1-c DDPA (106) + Alq3 (313)
    (465)
    13 MPMP (520) Compound 1-l DDPA (410)
    (405)
    14 MPMP (504) Compound 1-b DDPA (393)
    (400)
    15 MPMP (518) Compound 1-b DDPA (418)
    (153)
    16 MPMP (556) Compound 1-m DDPA (430)
    (416)
    17 MPMP (520) Compound 1-n DDPA (420)
    (419)
    18 MPMP (511) Compound 1-o DDPA (413)
    (412)
    19 MPMP (527) Compound 1-p DDPA (412)
    (425)
    20 MPMP (504) Compound 1-q DPA (407)
    (417)
    21 MPMP Compound 1-t DPA (416)
    (525) (419)
    22 MPMP Compound 1-u DPA (405)
    (520) (421)
  • [0123]
    The OLED samples were characterized by measuring their (1) current-voltage (I-V) curves, (2) electroluminescence radiance versus voltage, and (3) electroluminescence spectra versus voltage. The apparatus used, 200, is shown in FIG. 2. The I-V curves of an OLED sample, 220, were measured with a Keithley Source-Measurement Unit Model 237, 280. The electroluminescence radiance (in the unit of Cd/m2) vs. voltage was measured with a Minolta LS-110 luminescence meter, 210, while the voltage was scanned using the Keithley SMU. The electroluminescence spectrum was obtained by collecting light using a pair of lenses 230, through an electronic shutter, 240, dispersed through a spectrograph, 250, and then measured with a diode array detector, 260. All three measurements were performed at the same time and controlled by a computer, 270. The efficiency of the device at certain voltage is determined by dividing the electroluminescence radiance of the LED by the current density needed to run the device. The unit is in Cd/A.
  • [0124]
    The result are given in Table 7 below:
    TABLE 7
    Electroluminescent Properties of Iridium Compounds
    Approximate
    Peak Efficiency at Peak Peak
    Radiance, peak radiance, efficiency, Wavelengths,
    Sample Cd/m2 Cd/A Cd/A nm
    Comparative 540 0.39 0.48 522
    at 22 V
    1 1400 3.4 11 525
    at 21 V
    2 1900 5.9 13 525
    at 25 V
    3 830 1.7 13.5 525
    at 18 V
    4 7.6 0.005 0.13 521
    at 27 V
    5 175 0.27 1.8 530, 563
    at 25 V
    6 514 1.5 2.2 560
    at 20 V
    7 800 0.57 1.9 514
    at 26 V
    8 1200 0.61 2 517
    at 28 V
    9 400 1.1 4 545
    at 18 V
    10 190 2.3 3.3 575
    at 16 V
    11 1150 1.2 3.8 506, 526
    at 25 V
    12 340 0.49 2.1 525
    at 20 V
    13 400 3 5 520
    at 21 V
    14 1900 5 9 525
    15 2500 6 11 525
    16 100 0.17 0.2 560
    at 27 V
    17 3.5 0.005 0.014 575
    at 28 V
    18 30 0.08 0.16 590
    at 26 V
    19 2000 6 8 532
    at 21 V
    20 350 0.60 1.6 595
    at 26 V
    21 1200 5 545
    at 22 V
    22 80 1 540
    at 19 V
  • [0125]
    The peak efficiency is the best indication of the value of the electroluminescent compound in a device. It gives a measure of how many electrons have to be input into a device in order to get a certain number of photons out radience). It is a fundamentally important number, which reflects the intrinsic efficiency of the light-emitting material. It is also important for practical applications, since higher efficiency means that fewer electrons are needed in order to achieve the same radiance, which in turn means lower power consumption. Higher efficiency devices also tend to have longer lifetimes, since a higher portion of injected electrons are converted to photons, instead of generating heat or causing an undesirable chemical side reactions. Most of the iridium complexes of the invention have much higher peak efficiencies than the parent fac-tris(2-phenylpyridine) iridium complex. Those complexes with lower efficiencies may also find utility as phosphorescent or photoluminescent materials, or as catalysts, as discussed above.

Claims (22)

    What is claimed is:
  1. 1. An organic electronic device comprising an emitting layer wherein at least 20% by weight of the emitting layer comprises at least one compound having a formula below:
    IrLaLbLc xL′yL″z,
    where:
    x=0 or 1, y=0, 1 or 2, and z=0 or 1, with the proviso that:
    x=0 or y+z=0 and
    when y=2 then z=0;
    L′=a bidentate ligand or a monodentate ligand, and is not a phenylpyridine, phenylpyrimidine, or phenylquinoline; with the proviso that:
    when L′ is a monodentate ligand, y+z=2, and
    when L′ is a bidentate ligand, z=0;
    L″ a monodentate ligand, and is not a phenylpyridine, and phenylpyrimidine, or phenylquinoline; and
    La, Lb and Lc are alike or different from each other and each of La, Lb and Lc has structure (I) below:
    Figure US20020121638A1-20020905-C00009
    wherein:
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring,
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X=H, Cl, or Br, and
    A=C or N, provided that when A=N, there is no R1.
  2. 2. The device of claim 1 wherein x=1, y=0, and z=0.
  3. 3. The device of claim 2 wherein A=C and none of R1-R8 is selected from nitro.
  4. 4. The device of claim 1 wherein R3 is CF3.
  5. 5. The device of claim 4 wherein at least one of R5-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X═H, Cl, or Br.
  6. 6. The device of claim 2 wherein A=C, R3═CF3, R7═F, and R1, R2, R4-R6 and R8═H.
  7. 7. The device of claim 2 wherein A=C, R3 and R6═CF3, and R1, R2, R4, R5, R7 and R8═H.
  8. 8. The device of claim 2 wherein A=C, R3=CF3, R6 and R8═F, and R1, R2, R4, R5, and R7═H.
  9. 9. The device of claim 1 wherein x=0 and y=1 having a structure (VI) below:
    Figure US20020121638A1-20020905-C00010
  10. 10. An organic electronic device comprising an emitting layer wherein the emitting layer comprises a diluent and less than 20% by weight of at least one compound that has a formula below:
    IrLaLbLc,
    where:
    La, Lb and Lc are alike or different from each other and each of La, Lb and Lc has structure (I) below:
    Figure US20020121638A1-20020905-C00011
    wherein:
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring,
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X═H, Cl, or Br, and
    A=C or N, provided that when A=N, there is no R1.
  11. 11. The device of claim 10 wherein the diluent is selected from poly(N-vinyl carbazole), polysilane, 4,4′-N,N′-dicarbazole biphenyl, and tertiary aromatic amines.
  12. 12. The device of claim 1, further comprising a hole transport layer selected from N,N′-diphenyl-N,N′-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′-diamine (TPD), 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), N,N′-bis(4-methylphenyl)-N,N′-bis(4-ethylphenyl)-[1,1′-(3,3′-dimethyl)biphenyl]-4,4′-diamine (ETPD), tetrakis-(3-methylphenyl)-N,N,N′,N′-2,5-phenylenediamine (PDA), -phenyl-4-N,N-diphenylaminostyrene (TPS), p-(diethylamino)-benzaldehyde diphenylhydrazone (DEH), triphenylamine (TPA), bis[4-(N,N-diethylamino)-2-methylphenyl](4-methylphenyl)methane (MPMP), 1-phenyl-3-[p-(diethylamino)styryl]-5-[p-(diethylamino)phenyl]pyrazoline (PPR or DEASP), 1,2-trans-bis(9H-carbazol-9-yl)cyclobutane (DCZB), N,N,N′,N′-tetrakis(4-methylphenyl)-(1,1′-biphenyl)-4,4′-diamine (TTB), porphyrinic compounds, and combinations thereof.
  13. 13. The device of claim 1, further comprising an electron transport layer selected from tris(8-hydroxyquinolato)aluminum, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (DDPA), 4,7-diphenyl-1,1 0-phenanthroline (DPA), 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD), 3-(4-biphenylyl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazole (TAZ), and combinations thereof.
  14. 14. A compound having a formula selected from fac-Ir(L)3, mer-Ir(L)3, and combinations thereof, where L is selected from group 1-a through 1-m and 1-q through 1-v as shown in Table 1, and has structure (I) below:
    Figure US20020121638A1-20020905-C00012
    wherein:
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring,
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X═H, Cl, or Br, and
    A=C or N, provided that when A=N, there is no R1.
  15. 15. A compound having a structure selected from structures (IV), (V), (VI), (IX) and (X) below:
    Figure US20020121638A1-20020905-C00013
  16. 16. An organic electronic device comprising an emitting layer that comprises a compound selected from the following (i) and (ii):
    (i) a compound having a formula selected from fac-Ir(L)3, mer-Ir(L)3, and combinations thereof, where L is a group selected from 1-a through 1-m and 1-q through 1-v, as shown in Table 1 and has structure (I) below:
    Figure US20020121638A1-20020905-C00014
    wherein:
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring,
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X═H, Cl, or Br, and
    A=C or N, provided that when A=N, there is no R1;
    (ii) a compound having one of structures (IV), (V), (VI), (IX), and (X) below:
    Figure US20020121638A1-20020905-C00015
  17. 17. The device of claim 16 wherein the emitting layer further comprises a diluent.
  18. 18. The device of claim 17 wherein the diluent is selected from poly(N-vinyl carbazole), polysilane, 4,4′-N,N′-dicarbazole biphenyl, and tertiary aromatic amines.
  19. 19. A compound selected from compounds 2-a through 2-aa as shown in Table 2, having structure (II) below:
    Figure US20020121638A1-20020905-C00016
    wherein:
    R9 is H;
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring;
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X═H, Cl, or Br, and
    A=C or N, provided that when A=N, there is no R1.
  20. 20. A compound having structure (III) below:
    Figure US20020121638A1-20020905-C00017
    wherein R17═CF3 and R10-R16 and R18-R20═H.
  21. 21. A compound having structure VII below:
    Figure US20020121638A1-20020905-C00018
    wherein:
    B=H, CH3, or C2H5;
    La, Lb, Lc, and Ld are the same or different from each other; and each of La, Lb, Lc, and Ld has structure (I) below:
    Figure US20020121638A1-20020905-C00019
    wherein:
    adjacent pairs of R1-R4 and R5-R8 can be joined to form a five- or six-membered ring,
    at least one of R1-R8 is selected from F, CnF2n+1, OCnF2n+1, and OCF2X, where n=1-6 and X═H, Cl, or Br, and
    A=C or N, provided that when A=N, there is no R1.
  22. 22. The compound of claim 21 wherein:
    La=Lb=Lc=Ld;
    B=H;
    R3═CF3;
    R7═F;
    R1, R2, R4-R6 and R8═H.
US09879014 2000-06-30 2001-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds Abandoned US20020121638A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US21536200 true 2000-06-30 2000-06-30
US22427300 true 2000-08-10 2000-08-10
US09879014 US20020121638A1 (en) 2000-06-30 2001-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US09879014 US20020121638A1 (en) 2000-06-30 2001-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10027421 US6670645B2 (en) 2000-06-30 2001-12-20 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10366295 US20030197183A1 (en) 2000-06-30 2003-02-13 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10459946 US6979739B2 (en) 2000-06-30 2003-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10696060 US7129518B2 (en) 2000-06-30 2003-10-29 Electroluminescent iridium compounds with fluorinated phenylpryidines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10696095 US7075102B2 (en) 2000-06-30 2003-10-29 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10696048 US7595501B2 (en) 2000-06-30 2003-10-29 Electroluminescent iridium compounds with fluorinated phenylpryidines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10696003 US6946688B2 (en) 2000-06-30 2003-10-29 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10696401 US7078725B2 (en) 2000-06-30 2003-10-29 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10696349 US7276726B2 (en) 2000-06-30 2003-10-29 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10699411 US7199392B2 (en) 2000-06-30 2003-10-30 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylprimidines, and phenylquinolines and devices made with such compounds
US10720954 US7161172B2 (en) 2000-06-30 2003-11-24 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10720967 US7132681B2 (en) 2000-06-30 2003-11-24 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10774286 US7476452B2 (en) 2000-06-30 2004-02-06 Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds
US10983119 US20050095457A1 (en) 2000-06-30 2004-11-05 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made such compounds

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10027421 Continuation-In-Part US6670645B2 (en) 2000-06-30 2001-12-20 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10366295 Continuation US20030197183A1 (en) 2000-06-30 2003-02-13 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds

Publications (1)

Publication Number Publication Date
US20020121638A1 true true US20020121638A1 (en) 2002-09-05

Family

ID=26909953

Family Applications (5)

Application Number Title Priority Date Filing Date
US09879014 Abandoned US20020121638A1 (en) 2000-06-30 2001-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10366295 Abandoned US20030197183A1 (en) 2000-06-30 2003-02-13 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10459946 Active 2021-06-29 US6979739B2 (en) 2000-06-30 2003-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10720954 Active US7161172B2 (en) 2000-06-30 2003-11-24 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10983119 Abandoned US20050095457A1 (en) 2000-06-30 2004-11-05 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made such compounds

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10366295 Abandoned US20030197183A1 (en) 2000-06-30 2003-02-13 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10459946 Active 2021-06-29 US6979739B2 (en) 2000-06-30 2003-06-12 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10720954 Active US7161172B2 (en) 2000-06-30 2003-11-24 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US10983119 Abandoned US20050095457A1 (en) 2000-06-30 2004-11-05 Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made such compounds

Country Status (8)

Country Link
US (5) US20020121638A1 (en)
EP (4) EP1431288A3 (en)
JP (4) JP5174310B2 (en)
KR (1) KR100838010B1 (en)
CN (1) CN100438123C (en)
CA (1) CA2411624A1 (en)
DE (2) DE60121950T2 (en)
WO (1) WO2002002714A3 (en)

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020028329A1 (en) * 2000-07-17 2002-03-07 Fuji Photo Film Co., Ltd. Light emitting element and azole compound
US20020051894A1 (en) * 2000-08-31 2002-05-02 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
US20020193532A1 (en) * 2001-03-27 2002-12-19 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same
US20030040627A1 (en) * 2001-06-15 2003-02-27 Hiroyuki Fujii Luminescent organometallic compound and light emitting device
WO2004016711A1 (en) * 2002-08-16 2004-02-26 The University Of Southern California Organic light emitting materials and devices
US20040086742A1 (en) * 2002-11-06 2004-05-06 Bin Ma Organic light emitting materials and devices
US20040127710A1 (en) * 2002-12-28 2004-07-01 Soo-Jin Park Red luminescent compound and organic electroluminescent device using the same
US20040138455A1 (en) * 2001-02-24 2004-07-15 Philipp Stossel Rhodium and iridium complexes
US6808827B2 (en) * 2000-09-21 2004-10-26 Fuji Photo Film Co., Ltd. Light-emitting device and iridium complex
US20040214038A1 (en) * 2003-04-22 2004-10-28 Raymond Kwong Organic light emitting devices having reduced pixel shrinkage
US6815091B2 (en) * 2000-09-26 2004-11-09 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US6821645B2 (en) * 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US6821646B2 (en) * 2000-09-26 2004-11-23 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US6835469B2 (en) * 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US20050025995A1 (en) * 2003-07-30 2005-02-03 Chien-Hong Cheng Light-emitting element and iridium complex
US20050095450A1 (en) * 2003-11-04 2005-05-05 Eastman Kodak Company Organic element for electroluminescent devices
US6939624B2 (en) * 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
US20050208335A1 (en) * 2000-11-30 2005-09-22 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20050221123A1 (en) * 2004-04-02 2005-10-06 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light emitting element using the complex, light emitting device using the element, and electric apparatus using the device
US20050258742A1 (en) * 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
US20050260445A1 (en) * 2004-05-18 2005-11-24 Robert Walters OLEDs utilizing macrocyclic ligand systems
US20050260446A1 (en) * 2004-05-18 2005-11-24 Mackenzie Peter B Cationic metal-carbene complexes
US20050260448A1 (en) * 2004-05-18 2005-11-24 Chun Lin Novel organometallic compounds for use in electroluminescent devices
US20050260447A1 (en) * 2004-05-18 2005-11-24 Jason Brooks Cyclometallated iridium carbene complexes for use as hosts
US20050258433A1 (en) * 2004-05-18 2005-11-24 Entire Interest Carbene metal complexes as OLED materials
US20050266268A1 (en) * 2000-12-01 2005-12-01 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
US20060041126A1 (en) * 2002-10-30 2006-02-23 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
US20060065370A1 (en) * 2004-09-24 2006-03-30 P.E. S.R.L. Labeling machine for heat-shrink labels
US20060138447A1 (en) * 2003-06-17 2006-06-29 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Light emitting diode
US20060139342A1 (en) * 2004-12-29 2006-06-29 Gang Yu Electronic devices and processes for forming electronic devices
US20060141135A1 (en) * 2004-12-29 2006-06-29 Jian Wang Processes for forming layers for electronic devices using heating elements
US20060144276A1 (en) * 2004-12-30 2006-07-06 Macpherson Charles D Electronic devices and processes for forming the same
US20060144277A1 (en) * 2004-12-30 2006-07-06 Macpherson Charles D Processes for printing layers for electronic devices and printing apparatuses for performing the processes
US20060146079A1 (en) * 2004-12-30 2006-07-06 Macpherson Charles D Process and apparatus for forming an electronic device
US20060177694A1 (en) * 2000-11-30 2006-08-10 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20060228466A1 (en) * 2004-12-30 2006-10-12 Gang Yu Solution dispense and patterning process and apparatus
US20060237715A1 (en) * 2005-04-21 2006-10-26 Park Soo J Organic metal compounds in which compounds for host and compounds for dopant are connected, organic electroluminesence display devices using the compounds and method for preparation of the devices
US20060237714A1 (en) * 2005-04-21 2006-10-26 Park Soo J Organic metal compounds in which compounds for host and compounds for dopant are connected, organic electroluminesence display devices using the compounds and method for preparation of the devices
US20060240278A1 (en) * 2005-04-20 2006-10-26 Eastman Kodak Company OLED device with improved performance
US20060240282A1 (en) * 2005-04-21 2006-10-26 Cheng-Hung Lin Emission material and organic electroluminescent device using the same
WO2006134113A1 (en) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Method for the isomerisation of transition metal complexes containing cyclometallated, carbene ligands
KR100669718B1 (en) 2004-07-29 2007-01-16 삼성에스디아이 주식회사 Organic electroluminescence device
US7208233B2 (en) 2004-03-16 2007-04-24 Eastman Kodak Company Organic element for electroluminescent devices
US20070122657A1 (en) * 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing a phenanthroline derivative
US20070122655A1 (en) * 2004-09-20 2007-05-31 Eastman Kodak Company Electroluminescent device with quinazoline complex emitter
US20070129545A1 (en) * 2005-12-05 2007-06-07 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
US20070181648A1 (en) * 2005-12-29 2007-08-09 Parker Ian D Electronic device and process for forming same
US20070181944A1 (en) * 2005-12-27 2007-08-09 Macpherson Charles D Electronic device including space-apart radiation regions and a process for forming the same
US20070207345A1 (en) * 2006-03-01 2007-09-06 Eastman Kodak Company Electroluminescent device including gallium complexes
US7268006B2 (en) 2004-12-30 2007-09-11 E.I. Du Pont De Nemours And Company Electronic device including a guest material within a layer and a process for forming the same
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US20070244320A1 (en) * 2006-03-21 2007-10-18 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light emitting element, light emitting device, and electronic device using the organometallic complex
US20070252522A1 (en) * 2005-11-30 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
US7306856B2 (en) * 2000-07-17 2007-12-11 Fujifilm Corporation Light-emitting element and iridium complex
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
US20080284317A1 (en) * 2007-05-17 2008-11-20 Liang-Sheng Liao Hybrid oled having improved efficiency
US20080305361A1 (en) * 2007-06-05 2008-12-11 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex, and Light-Emitting Material, Light-Emitting Element, Light-Emitting Device and Electronic Device
US20080315753A1 (en) * 2007-06-20 2008-12-25 Liang-Sheng Liao Phosphorescent oled having double exciton-blocking layers
US20090004365A1 (en) * 2005-04-21 2009-01-01 Liang-Sheng Liao Contaminant-scavenging layer on oled anodes
US20090015143A1 (en) * 2005-03-17 2009-01-15 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex, and Light-Emitting Element, Light-Emitting Device and Electronic- Device Using the Organometallic Complex
US7491823B2 (en) 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
KR100884039B1 (en) 2000-08-11 2009-02-19 더 트러스티즈 오브 프린스턴 유니버시티 Organometallic compounds and emission-shifting organic electrophosphorescence
US20090092854A1 (en) * 2007-10-04 2009-04-09 Entire Interest Complexes with tridentate ligands
US20090115322A1 (en) * 2007-10-04 2009-05-07 Walters Robert W Complexes with tridentate ligands
US20090162612A1 (en) * 2007-12-19 2009-06-25 Hatwar Tukaram K Oled device having two electron-transport layers
US20090163743A1 (en) * 2003-12-22 2009-06-25 Yousuke Hoshi Luminescence system, method of luminescence, and chemical substance for luminescence
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
US20090309487A1 (en) * 2008-06-12 2009-12-17 Royster Jr Tommie L Phosphorescent oled device with mixed hosts
US20100019671A1 (en) * 2005-10-26 2010-01-28 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US20100052516A1 (en) * 2008-08-28 2010-03-04 Xiaofan Ren Emitting complex for electroluminescent devices
EP2161272A1 (en) 2008-09-05 2010-03-10 Basf Se Phenanthrolines
US20100084647A1 (en) * 2006-04-27 2010-04-08 Kondakova Marina E Electroluminescent devices including organic eil layer
US20100188459A1 (en) * 2008-12-27 2010-07-29 E. I. Du Pont De Nemours And Company. Apparatus and method for preventing splatter for continuous printing
US20100243959A1 (en) * 2009-03-31 2010-09-30 Semiconductor Energy Laboratory Co., Ltd. Derivative With Heteroaromatic Ring, and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using Derivative With Heteroaromatic Ring
US20100277060A1 (en) * 2007-09-20 2010-11-04 Basf Se Electroluminescent device
EP2276089A2 (en) 2004-07-27 2011-01-19 Global OLED Technology LLC Method for reducing moisture contamination in a top-emitting oled using a dessicant
US20110086164A1 (en) * 2008-05-19 2011-04-14 Lang Charles D Apparatus and method for solution coating thin layers
EP2355198A1 (en) 2006-05-08 2011-08-10 Global OLED Technology LLC OLED electron-injecting layer
US20110193066A1 (en) * 2009-08-13 2011-08-11 E. I. Du Pont De Nemours And Company Current limiting element for pixels in electronic devices
US20110223340A1 (en) * 2008-11-19 2011-09-15 E. I. Du Pont De Nemours And Company Electro-form nozzle apparatus and method for solution coating
WO2012041851A1 (en) 2010-09-29 2012-04-05 Basf Se Security element
WO2012045710A1 (en) 2010-10-07 2012-04-12 Basf Se Phenanthro[9,10-b]furans for electronic applications
US8253126B2 (en) 1999-12-31 2012-08-28 Lg Chem. Ltd. Organic electronic device
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units
US8691667B1 (en) 2004-12-30 2014-04-08 E. I. Du Pont De Nemours And Company Method and apparatus for depositing a pattern on a substrate
US20140138663A1 (en) * 2011-07-12 2014-05-22 Hitachi, Ltd. Material for forming organic light-emitting layer, coating liquid for forming organic light-emitting element, organic light-emitting element and light source device, and method for manufacturing same
US9028979B2 (en) 2009-06-18 2015-05-12 Basf Se Phenanthroazole compounds as hole transporting materials for electro luminescent devices
US9079872B2 (en) 2010-10-07 2015-07-14 Basf Se Phenanthro[9, 10-B]furans for electronic applications
KR101553590B1 (en) 2013-03-22 2015-09-18 주식회사 네패스 Process for the preparation of ligand of blue phosphorescence
US9231217B2 (en) 2013-11-28 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Synthesis method of organometallic complex, synthesis method of pyrazine derivative, 5,6-diaryl-2-pyrazyl triflate, light-emitting element, light-emitting device, electronic device, and lighting device
US9923148B2 (en) 2002-10-30 2018-03-20 Udc Ireland Limited Electroluminescent device

Families Citing this family (586)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
KR100794975B1 (en) * 1999-12-01 2008-01-16 더 트러스티즈 오브 프린스턴 유니버시티 Complexes of form l2mx as phosphorescent dopants for organic leds
JP4701191B2 (en) * 1999-12-27 2011-06-15 富士フイルム株式会社 Light emitting device material comprising a ortho-metalated iridium complex, the light emitting element and the novel iridium complex
US7595501B2 (en) 2000-06-30 2009-09-29 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpryidines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US7476452B2 (en) * 2000-06-30 2009-01-13 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US7132681B2 (en) 2000-06-30 2006-11-07 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US7816016B1 (en) 2003-02-13 2010-10-19 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds and devices made therefrom
KR20040004397A (en) 2000-10-10 2004-01-13 이 아이 듀폰 디 네모아 앤드 캄파니 Polymers having attached luminescent metal complexes and devices made with such polymers
DE10104426A1 (en) 2001-02-01 2002-08-08 Covion Organic Semiconductors A process for the preparation of high purity, tris-ortho-metalated organo-iridium compounds
EP1371708A4 (en) * 2001-02-14 2004-06-16 Sanyo Electric Co Organic electroluminescence device, lumincescent material, and organic compound
US7998595B2 (en) 2001-02-14 2011-08-16 Sanyo Electric Co., Ltd. Organic electroluminescent device, luminescent material and organic compound
JP4307000B2 (en) * 2001-03-08 2009-08-05 キヤノン株式会社 Metal coordination compounds, electroluminescent device and a display device
JP4438042B2 (en) * 2001-03-08 2010-03-24 キヤノン株式会社 Metal coordination compounds, electroluminescent device and a display device
JP2003007469A (en) 2001-06-25 2003-01-10 Canon Inc Light emitting element and display equipment
US7037598B2 (en) 2001-08-07 2006-05-02 Fuji Photo Film Co., Ltd. Light-emitting element and novel iridium complexes
JP5135660B2 (en) * 2001-09-27 2013-02-06 コニカミノルタホールディングス株式会社 The organic electroluminescence element
US7250512B2 (en) 2001-11-07 2007-07-31 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds having red-orange or red emission and devices made with such compounds
US7166368B2 (en) 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
US7320833B2 (en) 2001-11-07 2008-01-22 E.I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds
EP2306789A1 (en) * 2001-12-26 2011-04-06 E. I. du Pont de Nemours and Company Phenyl-pyridine compounds
US6919139B2 (en) 2002-02-14 2005-07-19 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds
JP4298517B2 (en) 2002-03-08 2009-07-22 キヤノン株式会社 Organic light-emitting element
DE10215010A1 (en) 2002-04-05 2003-10-23 Covion Organic Semiconductors Rhodium and iridium complexes
WO2003092334A1 (en) * 2002-04-26 2003-11-06 Nippon Hoso Kyokai Phosphorescent polymer compound, light emitting material and organic electroluminescent (el) device using the compound
DE10223337A1 (en) * 2002-05-25 2003-12-04 Covion Organic Semiconductors A process for the preparation of high purity, tris-ortho-metalated organo-iridium compounds
US7090929B2 (en) 2002-07-30 2006-08-15 E.I. Du Pont De Nemours And Company Metallic complexes covalently bound to conjugated polymers and electronic devices containing such compositions
US7098060B2 (en) * 2002-09-06 2006-08-29 E.I. Du Pont De Nemours And Company Methods for producing full-color organic electroluminescent devices
US7371336B2 (en) 2002-09-24 2008-05-13 E.I. Du Pont Nemours And Company Water dispersible polyanilines made with polymeric acid colloids for electronics applications
US7431866B2 (en) 2002-09-24 2008-10-07 E. I. Du Pont De Nemours And Company Water dispersible polythiophenes made with polymeric acid colloids
US20040124504A1 (en) 2002-09-24 2004-07-01 Che-Hsiung Hsu Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US7317047B2 (en) 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
GB0225244D0 (en) 2002-10-30 2002-12-11 Ciba Sc Holding Ag Electroluminescent device
GB0230076D0 (en) * 2002-12-24 2003-01-29 Elam T Ltd Electroluminescent materials and devices
JP5318347B2 (en) 2003-04-15 2013-10-16 メルク パテント ゲーエムベーハー Capable of emitting light, a mixture of matrix material and an organic semiconductor, use thereof, and an electronic component comprising the mixture
DE10320103A1 (en) 2003-05-05 2004-12-02 Basf Ag A process for preparing phenylpyridine-metal complexes and use of such complexes in OLEDs
KR100682858B1 (en) * 2003-06-26 2007-02-15 삼성에스디아이 주식회사 Organometallic compound and organic electroluminescent device employing the same
JP4773346B2 (en) 2003-07-07 2011-09-14 メルク パテント ゲーエムベーハー Mixture of an organic light-emitting semiconductor and the matrix material, their use and the electronic component containing the material.
US7686978B2 (en) 2003-09-24 2010-03-30 E. I. Du Pont De Nemours And Company Method for the application of active materials onto active surfaces and devices made with such methods
WO2005029923A1 (en) 2003-09-24 2005-03-31 Fuji Photo Film Co., Ltd. Electroluminescent device
US20050100657A1 (en) * 2003-11-10 2005-05-12 Macpherson Charles D. Organic material with a region including a guest material and organic electronic devices incorporating the same
JP2007511885A (en) * 2003-11-10 2007-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method of forming an organic layer having a region containing the guest material, and an organic electronic device incorporating it
KR101196683B1 (en) 2003-11-25 2012-11-06 메르크 파텐트 게엠베하 Organic electroluminescent element
KR100560790B1 (en) * 2003-11-25 2006-03-13 삼성에스디아이 주식회사 Electroluminescent display device having a good performance at high temperature
DE10356099A1 (en) 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh The organic electroluminescence
KR101187401B1 (en) 2003-12-02 2012-10-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic metal complex and light-emitting device using same
US7084425B2 (en) 2003-12-05 2006-08-01 Eastman Kodak Company Organic electroluminescent devices
DE10357315A1 (en) 2003-12-05 2005-07-07 Covion Organic Semiconductors Gmbh The organic electroluminescence
DE602005000031T2 (en) * 2004-01-13 2006-11-30 Lg Electronics Inc. Phenyl pyridine-iridium metal complex compounds for organic elektroluminizierende device, method for preparing the compounds and organic elektroluminizierende apparatus using these compounds
KR100657892B1 (en) 2004-02-11 2006-12-14 삼성에스디아이 주식회사 Organic electroluminescence device
GB0403322D0 (en) * 2004-02-14 2004-03-17 Elam T Ltd Electroluminescent materials and devices
US7365230B2 (en) 2004-02-20 2008-04-29 E.I. Du Pont De Nemours And Company Cross-linkable polymers and electronic devices made with such polymers
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
KR20060133056A (en) 2004-03-31 2006-12-22 이 아이 듀폰 디 네모아 앤드 캄파니 Triarylamine compounds for use as charge transport materials
US8147962B2 (en) 2004-04-13 2012-04-03 E. I. Du Pont De Nemours And Company Conductive polymer composites
JP4496357B2 (en) * 2004-06-04 2010-07-07 独立行政法人産業技術総合研究所 Fluorinated iridium complex and light emitting material using the same
JP4886177B2 (en) * 2004-06-08 2012-02-29 キヤノン株式会社 Oriented film of an organic metal complex having a pore
KR101233855B1 (en) * 2004-06-09 2013-02-15 이 아이 듀폰 디 네모아 앤드 캄파니 Organometallic compounds and devices made with such compounds
KR100730115B1 (en) * 2004-06-23 2007-06-19 삼성에스디아이 주식회사 Iridium compound and organic electroluminescence display employing the same
KR100738053B1 (en) 2004-06-29 2007-07-10 삼성에스디아이 주식회사 Iridium complexes having heteroatom linking group and organic electroluminescence device using the same
US20060040139A1 (en) 2004-08-18 2006-02-23 Norman Herron Electronic devices made with metal Schiff base complexes
US7402345B2 (en) 2004-09-14 2008-07-22 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds
EP1787338A4 (en) 2004-09-29 2010-06-02 Canon Kk Light-emitting device
CN101040174A (en) * 2004-10-15 2007-09-19 皇家飞利浦电子股份有限公司 Colour switching temperature indicator
EP1802950A1 (en) * 2004-10-15 2007-07-04 Philips Electronics N.V. Temperature indicator
US7449601B2 (en) 2004-12-16 2008-11-11 E. I. Du Pont De Nemours And Company Catalysts useful for catalyzing the coupling of arylhalides with arylboronic acids
US7273939B1 (en) 2004-12-22 2007-09-25 E. I. Du Pont De Nemours And Company Methods of making tris(N-aryl benzimidazoles)benzenes and their use in electronic devices
US8063230B1 (en) 2004-12-22 2011-11-22 E. I. Du Pont De Nemours And Company Tris(N-aryl benzimidazole)benzenes and their use in electronic devices
US7230107B1 (en) 2004-12-29 2007-06-12 E. I. Du Pont De Nemours And Company Metal quinoline complexes
US8950328B1 (en) 2004-12-29 2015-02-10 E I Du Pont De Nemours And Company Methods of fabricating organic electronic devices
US7838127B1 (en) 2004-12-29 2010-11-23 E. I. Du Pont De Nemours And Company Metal quinoline complexes
US7563392B1 (en) 2004-12-30 2009-07-21 E.I. Du Pont De Nemours And Company Organic conductive compositions and structures
US7781588B1 (en) 2004-12-30 2010-08-24 E.I. Du Pont De Nemours And Company Acridan monomers and polymers
US7732062B1 (en) 2004-12-30 2010-06-08 E. I. Du Pont De Nemours And Company Charge transport layers and organic electron devices comprising same
US7723546B1 (en) 2004-12-30 2010-05-25 E. I. Du Pont De Nemours And Company Arylamine compounds and their use in electronic devices
US8217181B2 (en) 2004-12-30 2012-07-10 E. I. Du Pont De Nemours And Company Dihalogen indolocarbazole monomers and poly (indolocarbazoles)
KR20070097085A (en) 2004-12-30 2007-10-02 이 아이 듀폰 디 네모아 앤드 캄파니 Device patterning using irradiation
US7670506B1 (en) 2004-12-30 2010-03-02 E. I. Du Pont De Nemours And Company Photoactive compositions for liquid deposition
US7781550B1 (en) 2004-12-30 2010-08-24 E. I. Du Pont De Nemours And Company Charge transport compositions and their use in electronic devices
US7811624B1 (en) 2004-12-30 2010-10-12 Dupont Displays, Inc. Self-assembled layers for electronic devices
US7759428B1 (en) 2004-12-30 2010-07-20 Dupont Displays, Inc. Conjugated heteroaryl-containing polymers
EP1836001A4 (en) 2004-12-30 2009-08-05 Du Pont Organic electronic devices and methods
US7524923B1 (en) 2004-12-30 2009-04-28 Dupont Displays, Inc. Suzuki polycondensation for preparing aryl polymers from dihalide monomers
US7838688B2 (en) 2004-12-30 2010-11-23 E.I. Du Pont De Nemours And Company Derivatized 3,4-Alkylenedioxythiophene monomers, methods of making them, and use thereof
JP2008527422A (en) 2004-12-30 2008-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Encapsulation tools and methods
JP2008527693A (en) 2004-12-30 2008-07-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Containment structures and methods
KR101265353B1 (en) 2004-12-30 2013-05-21 이 아이 듀폰 디 네모아 앤드 캄파니 Conditioning methods of the getter material
WO2006072002A3 (en) 2004-12-30 2007-03-01 Du Pont Organometallic complexes
US7736540B1 (en) 2004-12-30 2010-06-15 E. I. Du Pont De Nemours And Company Organic compositions for depositing onto fluorinated surfaces
US20060154180A1 (en) 2005-01-07 2006-07-13 Kannurpatti Anandkumar R Imaging element for use as a recording element and process of using the imaging element
KR101234226B1 (en) 2005-02-03 2013-02-18 삼성디스플레이 주식회사 Organometallic complexes and organic electroluminescence device using the same
KR101257780B1 (en) * 2005-02-16 2013-04-24 매사추세츠 인스티튜트 오브 테크놀로지 Light emitting device including semiconductor nanocrystals
JP5130606B2 (en) * 2005-02-25 2013-01-30 コニカミノルタホールディングス株式会社 The organic electroluminescence device, a method of manufacturing a display device and a lighting device
WO2006106842A1 (en) * 2005-03-31 2006-10-12 Idemitsu Kosan Co., Ltd. Transition metal complex compound and organic electroluminescence element using the same
US9070884B2 (en) 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
CN101208369B (en) 2005-06-28 2013-03-27 E.I.内穆尔杜邦公司 High work function transparent conductor
WO2007002740A3 (en) 2005-06-28 2009-04-16 Du Pont Buffer compositions
US8039124B2 (en) * 2005-06-30 2011-10-18 Koninklijke Philips Electronics N.V. Electro luminescent metal complexes
US7781075B2 (en) 2005-09-07 2010-08-24 Au Optronics Corporation Organic light-emitting material and organic light-emitting device
DE102005047397A1 (en) * 2005-10-04 2007-04-12 Consortium für elektrochemische Industrie GmbH phosphorescent mixtures
JP4802671B2 (en) * 2005-11-10 2011-10-26 凸版印刷株式会社 The organic el element having a low molecular organic thin film
JP4769551B2 (en) * 2005-11-10 2011-09-07 凸版印刷株式会社 Applying low-molecular carrier transporting material, light emitting material and ink
US8173995B2 (en) 2005-12-23 2012-05-08 E. I. Du Pont De Nemours And Company Electronic device including an organic active layer and process for forming the electronic device
US8440324B2 (en) 2005-12-27 2013-05-14 E I Du Pont De Nemours And Company Compositions comprising novel copolymers and electronic devices made with such compositions
US7807992B2 (en) 2005-12-28 2010-10-05 E.I. Du Pont De Nemours And Company Organic electronic device having dual emitter dopants
EP2412699A1 (en) 2005-12-28 2012-02-01 E.I. Du Pont De Nemours And Company Compositions comprising novel compounds and electronic devices made with such compositions
US7838627B2 (en) 2005-12-29 2010-11-23 E. I. Du Pont De Nemours And Company Compositions comprising novel compounds and polymers, and electronic devices made with such compositions
US8470208B2 (en) 2006-01-24 2013-06-25 E I Du Pont De Nemours And Company Organometallic complexes
US8216680B2 (en) 2006-02-03 2012-07-10 E I Du Pont De Nemours And Company Transparent composite conductors having high work function
KR20160030582A (en) 2006-02-10 2016-03-18 유니버셜 디스플레이 코포레이션 METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
JP4785594B2 (en) * 2006-03-31 2011-10-05 キヤノン株式会社 The method of manufacturing iridium complexes, organic electroluminescent element and a display device
CN100422285C (en) 2006-04-06 2008-10-01 友达光电股份有限公司 Luminescent layer of organic electroluminescent device and organic electroluminescent materials
US7737277B2 (en) * 2006-05-08 2010-06-15 E.I. Du Pont De Nemours And Company Electroluminescent bis-cyclometalled iridium compounds and devices made with such compounds
US7675228B2 (en) 2006-06-14 2010-03-09 E.I. Du Pont De Nemours And Company Electroluminescent iridium compounds with silylated, germanylated, and stannylated ligands, and devices made with such compounds
WO2008056799A1 (en) * 2006-11-07 2008-05-15 Showa Denko K.K. Iridium complex compound, organic electroluminescent device obtained by using the same, and uses of the device
WO2009073245A1 (en) 2007-12-06 2009-06-11 Universal Display Corporation Light-emitting organometallic complexes
CN104835914B (en) 2006-12-28 2018-02-09 通用显示公司 Long lifetime phosphorescence organic light emitting device (OLED) structure
US8062553B2 (en) 2006-12-28 2011-11-22 E. I. Du Pont De Nemours And Company Compositions of polyaniline made with perfuoropolymeric acid which are heat-enhanced and electronic devices made therewith
US20080191172A1 (en) 2006-12-29 2008-08-14 Che-Hsiung Hsu High work-function and high conductivity compositions of electrically conducting polymers
US20080166566A1 (en) * 2006-12-29 2008-07-10 Shiva Prakash Process for forming an organic light-emitting diode and devices made by the process
DE102007002714A1 (en) 2007-01-18 2008-07-31 Merck Patent Gmbh New materials for organic electroluminescent
JP5638246B2 (en) 2007-03-08 2014-12-10 ユニバーサル ディスプレイ コーポレイション Phosphorescent material
CN103319540B (en) 2007-05-18 2016-01-13 株式会社半导体能源研究所 The organic metal complex, a composition and a light emitting element comprising the organometallic complex of
JP5127300B2 (en) 2007-05-28 2013-01-23 キヤノン株式会社 Fluorene compound and an organic light emitting device and a display apparatus using the same
JP5053713B2 (en) 2007-05-30 2012-10-17 キヤノン株式会社 Phosphorescent material, an organic electroluminescence device and an image display apparatus using the same
JP5008470B2 (en) 2007-06-18 2012-08-22 キヤノン株式会社 The organic electroluminescent device
US8697255B2 (en) 2007-07-05 2014-04-15 Basf Se Organic light-emitting diodes comprising at least one disilyl compound selected from disilylcarbazoles, disilyldibenzofurans, disilyldibenzothiophenes, disilyldibenzopholes, disilyldibenzothiophene S-oxides and disilyldibenzothiophene S,S-dioxides
EP2200956B1 (en) 2007-08-08 2013-07-03 Universal Display Corporation Single triphenylene chromophores in phosphorescent light emitting diodes
KR101630883B1 (en) 2007-08-08 2016-06-15 유니버셜 디스플레이 코포레이션 Benzo-fused thiophene or benzo-fused furan compounds comprising a triphenylene group
US8012609B2 (en) 2007-08-29 2011-09-06 Fujifilm Corporation Organic electroluminescence device
JP5311785B2 (en) 2007-09-13 2013-10-09 キヤノン株式会社 The organic light emitting device and a display device
KR101548382B1 (en) 2007-09-14 2015-08-28 유디씨 아일랜드 리미티드 The organic EL device
JP5438941B2 (en) 2007-09-25 2014-03-12 ユー・ディー・シー アイルランド リミテッド The organic electroluminescent device
KR20090032250A (en) * 2007-09-27 2009-04-01 엘지디스플레이 주식회사 Red phosphorescence compound and organic electroluminescence device using the same
KR101577468B1 (en) 2007-10-02 2015-12-14 바스프 에스이 Use of acridine derivatives as matrix materials and/or an electron blocker in oleds
JP5337811B2 (en) 2007-10-26 2013-11-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Methods and materials for producing the confinement layer, and devices fabricated using it
DE102007053771A1 (en) 2007-11-12 2009-05-14 Merck Patent Gmbh organic electroluminescent
JP5489445B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and a display device using the same
JP5489446B2 (en) 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and a display device using the same
JP5082800B2 (en) * 2007-11-27 2012-11-28 コニカミノルタホールディングス株式会社 A method of manufacturing an organic el element
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
JP5438955B2 (en) 2007-12-14 2014-03-12 ユー・ディー・シー アイルランド リミテッド Platinum complex compound and an organic light emitting device using the same
WO2009082043A1 (en) * 2007-12-21 2009-07-02 Dongwoo Fine-Chem Co., Ltd. Iridium complex and organic electroluminescent device
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
WO2009085344A3 (en) 2007-12-28 2009-10-15 Universal Display Corporation Dibenzothiophene, dibenzofuran and/or carbazole-containing materials in phosphorescent light emitting diodes
US8040053B2 (en) 2008-02-09 2011-10-18 Universal Display Corporation Organic light emitting device architecture for reducing the number of organic materials
JP5243972B2 (en) 2008-02-28 2013-07-24 ユー・ディー・シー アイルランド リミテッド The organic electroluminescent device
JP4555358B2 (en) 2008-03-24 2010-09-29 富士フイルム株式会社 Thin film field effect transistor and a display device
DE102008015526A1 (en) 2008-03-25 2009-10-01 Merck Patent Gmbh metal complexes
DE102008017591A1 (en) 2008-04-07 2009-10-08 Merck Patent Gmbh New materials for organic electroluminescent
JP4531836B2 (en) 2008-04-22 2010-08-25 富士フイルム株式会社 The organic electroluminescence device as well as a novel platinum complex compounds and novel compounds which can be a ligand thereof
JP4531842B2 (en) 2008-04-24 2010-08-25 富士フイルム株式会社 The organic electroluminescent device
DE102008027005A1 (en) 2008-06-05 2009-12-10 Merck Patent Gmbh The organic electronic device comprising metal complexes
KR20170014010A (en) 2008-06-20 2017-02-07 바스프 에스이 Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP5609022B2 (en) * 2008-06-23 2014-10-22 住友化学株式会社 A polymer compound containing a residue of the metal complex and the device using the same
KR101676501B1 (en) 2008-06-30 2016-11-15 유니버셜 디스플레이 코포레이션 Hole transport materials containing triphenylene
DE102008033943A1 (en) 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent
DE102008036982A1 (en) 2008-08-08 2010-02-11 Merck Patent Gmbh The organic electroluminescent
WO2010027583A1 (en) 2008-09-03 2010-03-11 Universal Display Corporation Phosphorescent materials
CN102203977B (en) 2008-09-04 2014-06-04 通用显示公司 White phosphorescent organic light emitting devices
US9034483B2 (en) 2008-09-16 2015-05-19 Universal Display Corporation Phosphorescent materials
KR101804084B1 (en) 2008-09-25 2017-12-01 유니버셜 디스플레이 코포레이션 Organoselenium materials and their uses in organic light emitting devices
KR20170086704A (en) 2008-10-07 2017-07-26 바스프 에스이 Siloles substituted with condensed ring systems and use thereof in organic electronics
DE102008050841A1 (en) 2008-10-08 2010-04-15 Merck Patent Gmbh New materials for organic electroluminescent
US8053770B2 (en) 2008-10-14 2011-11-08 Universal Display Corporation Emissive layer patterning for OLED
DE102008056688A1 (en) 2008-11-11 2010-05-12 Merck Patent Gmbh Materials for organic electroluminescent
CN103396455B (en) 2008-11-11 2017-03-01 通用显示公司 Phosphorescent emitters
WO2010054730A1 (en) 2008-11-11 2010-05-20 Merck Patent Gmbh Organic electroluminescent devices
JP2010153820A (en) 2008-11-21 2010-07-08 Fujifilm Corp Organic electroluminescent element
EP2377181A1 (en) 2008-12-12 2011-10-19 Universal Display Corporation Improved oled stability via doped hole transport layer
US8815415B2 (en) 2008-12-12 2014-08-26 Universal Display Corporation Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes
DE102008063470A1 (en) 2008-12-17 2010-07-01 Merck Patent Gmbh The organic electroluminescent
DE102008063490A1 (en) 2008-12-17 2010-06-24 Merck Patent Gmbh The organic electroluminescent
US8766239B2 (en) 2008-12-27 2014-07-01 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US8785913B2 (en) 2008-12-27 2014-07-22 E I Du Pont De Nemours And Company Buffer bilayers for electronic devices
US9067947B2 (en) 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
DE102009005290A1 (en) 2009-01-20 2010-07-22 Merck Patent Gmbh Compounds for electronic devices
JP2010182449A (en) 2009-02-03 2010-08-19 Fujifilm Corp Organic electroluminescent display device
JP2010186723A (en) 2009-02-13 2010-08-26 Fujifilm Corp Organic el device and method of manufacturing the same
DE102009009277A1 (en) 2009-02-17 2010-08-19 Merck Patent Gmbh The organic electronic device
KR101705213B1 (en) 2009-02-26 2017-02-09 노발레드 게엠베하 Quinone compounds as dopants in organic electronics
DE102009011223A1 (en) 2009-03-02 2010-09-23 Merck Patent Gmbh metal complexes
JP2010232163A (en) 2009-03-03 2010-10-14 Fujifilm Corp Method of manufacturing light-emitting display device, light-emitting display device, and light-emitting display
JP2010205650A (en) 2009-03-05 2010-09-16 Fujifilm Corp Organic el display device
DE102009012346A1 (en) 2009-03-09 2010-09-16 Merck Patent Gmbh The organic electroluminescent
KR101561402B1 (en) 2009-03-12 2015-10-16 이 아이 듀폰 디 네모아 앤드 캄파니 Electrically conductive polymer compositions for coating applications
DE102009014513A1 (en) 2009-03-23 2010-09-30 Merck Patent Gmbh The organic electroluminescent
US8722205B2 (en) 2009-03-23 2014-05-13 Universal Display Corporation Heteroleptic iridium complex
KR101031314B1 (en) 2009-03-23 2011-04-29 한국세라믹기술원 Mercury ion detection sensor using phosphorescence, mercury ion detection sensor array comprising the same and method of preparing the same
KR20120001734A (en) 2009-03-27 2012-01-04 후지필름 가부시키가이샤 Coating solution for organic electroluminescent element
EP2417215B1 (en) 2009-04-06 2014-05-07 Universal Display Corporation Metal complex comprising novel ligand structures
DE102009017064A1 (en) 2009-04-09 2010-10-14 Merck Patent Gmbh The organic electroluminescent
US8845933B2 (en) 2009-04-21 2014-09-30 E I Du Pont De Nemours And Company Electrically conductive polymer compositions and films made therefrom
KR101581991B1 (en) 2009-04-24 2015-12-31 이 아이 듀폰 디 네모아 앤드 캄파니 Electrically conductive polymer compositions and films made therefrom
US8557400B2 (en) 2009-04-28 2013-10-15 Universal Display Corporation Iridium complex with methyl-D3 substitution
CN107325089A (en) 2009-05-12 2017-11-07 通用显示公司 2-azatriphenylene materials for organic light emitting diodes
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh organic electroluminescent
KR101778825B1 (en) 2010-05-03 2017-09-14 메르크 파텐트 게엠베하 Formulations and electronic devices
DE102009023156A1 (en) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymers containing substituted Indenofluorenderivate as a structural unit, processes for their preparation and their use
KR20180008912A (en) 2009-09-16 2018-01-24 메르크 파텐트 게엠베하 Formulations for the production of electronic devices
DE102009023154A1 (en) 2009-05-29 2011-06-16 Merck Patent Gmbh A composition comprising at least one emitter junction and at least one polymer having units konjugationsunterbrechenden
EP2445976A2 (en) 2009-06-22 2012-05-02 Merck Patent GmbH Conducting formulation
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent
DE102009032922A1 (en) 2009-07-14 2011-01-20 Merck Patent Gmbh Materials for organic electroluminescent
CN102470660B (en) 2009-07-27 2014-11-19 E.I.内穆尔杜邦公司 Process and materials for making contained layers and devices made with same
WO2011013626A1 (en) 2009-07-31 2011-02-03 富士フイルム株式会社 Vapor deposition material for organic device and method for manufacturing organic device
JP5778148B2 (en) 2009-08-04 2015-09-16 メルク パテント ゲーエムベーハー Electronic devices, including polycyclic carbohydrates
EP2471889A4 (en) * 2009-08-27 2013-06-26 Sumitomo Chemical Co Metal complex composition and complex polymer
US8993754B2 (en) 2009-08-27 2015-03-31 National Institute Of Advanced Industrial Science And Technology Iridium complex and light emitting material formed from same
JP5779318B2 (en) 2009-08-31 2015-09-16 ユー・ディー・シー アイルランド リミテッド The organic electroluminescent device
JP5473506B2 (en) 2009-09-14 2014-04-16 ユー・ディー・シー アイルランド リミテッド Color filters and light-emitting display device
JP5657243B2 (en) 2009-09-14 2015-01-21 ユー・ディー・シー アイルランド リミテッド Color filters and light-emitting display device
DE102009041289A1 (en) 2009-09-16 2011-03-17 Merck Patent Gmbh The organic electroluminescent
DE102009048791A1 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent
US8937300B2 (en) 2009-10-19 2015-01-20 E I Du Pont De Nemours And Company Triarylamine compounds for use in organic light-emitting diodes
US8545996B2 (en) 2009-11-02 2013-10-01 The University Of Southern California Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes
JP2011100944A (en) 2009-11-09 2011-05-19 Fujifilm Corp Organic electroluminescent element
DE102009052428A1 (en) 2009-11-10 2011-05-12 Merck Patent Gmbh Compound for electronic devices
DE102009053382A1 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
DE102009053645A1 (en) 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent
DE102009053644A1 (en) 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent
DE102009053836A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Materials for organic electroluminescent
US8580394B2 (en) 2009-11-19 2013-11-12 Universal Display Corporation 3-coordinate copper(I)-carbene complexes
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
JP5836970B2 (en) 2009-12-22 2015-12-24 メルク パテント ゲーエムベーハー Formulations containing a functional material
JP5897472B2 (en) 2009-12-22 2016-03-30 メルク パテント ゲーエムベーハー Electroluminescent functional surfactant
EP2517278A1 (en) 2009-12-22 2012-10-31 Merck Patent GmbH Electroluminescent formulations
KR20170091788A (en) 2009-12-23 2017-08-09 메르크 파텐트 게엠베하 Compositions comprising polymeric binders
EP2517273A1 (en) 2009-12-23 2012-10-31 Merck Patent GmbH Compositions comprising organic semiconducting compounds
DE102010004803A1 (en) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materials for organic electroluminescent
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
DE102010005697A1 (en) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Compounds for electronic devices
DE102010006377A1 (en) 2010-01-29 2011-08-04 Merck Patent GmbH, 64293 Styrene-based copolymers, in particular for use in optoelectronic devices
DE102010009193A1 (en) 2010-02-24 2011-08-25 Merck Patent GmbH, 64293 Fluorine-fluoro associates
US9156870B2 (en) 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Compounds for electronic devices
US9175211B2 (en) 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
DE102010010481A1 (en) 2010-03-06 2011-09-08 Merck Patent Gmbh The organic electroluminescent
WO2011110275A3 (en) 2010-03-11 2011-12-01 Merck Patent Gmbh Radiative fibers
KR20130020883A (en) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 Fibers in therapy and cosmetics
US9627632B2 (en) 2010-03-23 2017-04-18 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010012738A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent
WO2011119162A1 (en) 2010-03-25 2011-09-29 Universal Display Corporation Solution processable doped triarylamine hole injection materials
DE102010013068A1 (en) 2010-03-26 2011-09-29 Merck Patent Gmbh Compounds for electronic devices
US9379323B2 (en) 2010-04-12 2016-06-28 Merck Patent Gmbh Composition having improved performance
WO2011128035A1 (en) 2010-04-12 2011-10-20 Merck Patent Gmbh Composition and method for preparation of organic electronic devices
DE102010014933A1 (en) 2010-04-14 2011-10-20 Merck Patent Gmbh Materials for electronic devices
DE102010018321A1 (en) 2010-04-27 2011-10-27 Merck Patent Gmbh The organic electroluminescent
US8968887B2 (en) 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
US9040962B2 (en) 2010-04-28 2015-05-26 Universal Display Corporation Depositing premixed materials
DE102010019306A1 (en) 2010-05-04 2011-11-10 Merck Patent Gmbh organic electroluminescent
DE102010020044A1 (en) 2010-05-11 2011-11-17 Merck Patent Gmbh The organic electroluminescent
JP5944380B2 (en) 2010-05-27 2016-07-05 メルク パテント ゲーエムベーハー Composition comprising a quantum dot
JP6312433B2 (en) 2010-05-27 2018-04-18 メルク パテント ゲーエムベーハー Device comprising an array comprising a photoluminescent compound
EP2576724A1 (en) 2010-05-27 2013-04-10 Merck Patent GmbH Formulation and method for preparation of organic electronic devices
US8673458B2 (en) 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
US8742657B2 (en) 2010-06-11 2014-06-03 Universal Display Corporation Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications
US9142792B2 (en) 2010-06-18 2015-09-22 Basf Se Organic electronic devices comprising a layer comprising at least one metal organic compound and at least one metal oxide
KR20130120445A (en) 2010-06-18 2013-11-04 바스프 에스이 Organic electronic devices comprising a layer of a pyridine compound and a 8-hydroxyquinolinolato earth alkaline metal, or alkali metal complex
CN102947416B (en) 2010-06-18 2016-04-13 巴斯夫欧洲公司 Dibenzofuran and compounds containing 8-quinolinolato metal or alkali earth metal complex layer was an organic electronic device
DE102010024335A1 (en) 2010-06-18 2011-12-22 Merck Patent Gmbh Compounds for electronic devices
DE102010024542A1 (en) 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices
DE102010024897A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
US9093656B2 (en) 2010-07-26 2015-07-28 Merck Patent Gmbh Quantum dots and hosts
US9435021B2 (en) 2010-07-29 2016-09-06 University Of Southern California Co-deposition methods for the fabrication of organic optoelectronic devices
CN103053043B (en) 2010-07-30 2016-03-16 默克专利有限公司 The organic electroluminescent device
DE102010033080A1 (en) 2010-08-02 2012-02-02 Merck Patent Gmbh include polymers having structural units, the electron-transport properties
DE102010033548A1 (en) 2010-08-05 2012-02-09 Merck Patent Gmbh Materials for electronic devices
JP5299381B2 (en) * 2010-08-18 2013-09-25 コニカミノルタ株式会社 A method of manufacturing an organic el element
KR20170076819A (en) 2010-08-20 2017-07-04 유니버셜 디스플레이 코포레이션 Bicarbazole compounds for oleds
DE102010045369A1 (en) 2010-09-14 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent
DE102010045405A1 (en) 2010-09-15 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent
DE102010046412A1 (en) 2010-09-23 2012-03-29 Merck Patent Gmbh Metal-ligand coordination compounds
US8932734B2 (en) 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
DE102010048074A1 (en) 2010-10-09 2012-04-12 Merck Patent Gmbh Materials for electronic devices
DE102010048497A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Formulations for organic electroluminescent
DE102010048498A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent
DE102010048607A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Compounds for electronic devices
DE102010048608A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent
US8269317B2 (en) 2010-11-11 2012-09-18 Universal Display Corporation Phosphorescent materials
KR20130130757A (en) 2010-11-24 2013-12-02 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
DE102010054316A1 (en) 2010-12-13 2012-06-14 Merck Patent Gmbh substituted Tetraarylbenzole
US8362246B2 (en) 2010-12-13 2013-01-29 Basf Se Bispyrimidines for electronic applications
WO2012080052A1 (en) 2010-12-13 2012-06-21 Basf Se Bispyrimidines for electronic applications
DE102010054525A1 (en) 2010-12-15 2012-04-26 Merck Patent Gmbh The organic electroluminescent
DE102010055901A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh The organic electroluminescent
DE102010055902A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh The organic electroluminescent
DE102010056151A1 (en) 2010-12-28 2012-06-28 Merck Patent Gmbh The materials as for organic electroluminescent
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
WO2012095143A1 (en) 2011-01-13 2012-07-19 Merck Patent Gmbh Compounds for organic electroluminescent devices
DE102012000064A1 (en) 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices
US8415031B2 (en) 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
US8751777B2 (en) 2011-01-28 2014-06-10 Honeywell International Inc. Methods and reconfigurable systems to optimize the performance of a condition based health maintenance system
DE102011010841A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh (1,3) -dioxane-5-one compounds
DE102011011104A1 (en) 2011-02-12 2012-08-16 Merck Patent Gmbh substituted Dibenzonaphtacene
JP2014507230A (en) 2011-02-14 2014-03-27 メルク パテント ゲーエムベーハー Device and method for the treatment of cells and cell tissues
DE102011011539A1 (en) 2011-02-17 2012-08-23 Merck Patent Gmbh Compounds for electronic devices
WO2012116231A3 (en) 2011-02-23 2013-03-21 Universal Display Corporation Novel tetradentate platinum complexes
US9005772B2 (en) 2011-02-23 2015-04-14 Universal Display Corporation Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials
US8563737B2 (en) 2011-02-23 2013-10-22 Universal Display Corporation Methods of making bis-tridentate carbene complexes of ruthenium and osmium
US8748011B2 (en) 2011-02-23 2014-06-10 Universal Display Corporation Ruthenium carbene complexes for OLED material
US8492006B2 (en) 2011-02-24 2013-07-23 Universal Display Corporation Germanium-containing red emitter materials for organic light emitting diode
US8883322B2 (en) 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
US9537107B2 (en) 2011-03-14 2017-01-03 Toray Industries, Inc. Light emitting device material and light emitting device
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
US9806270B2 (en) 2011-03-25 2017-10-31 Udc Ireland Limited 4H-imidazo[1,2-a]imidazoles for electronic applications
JP6072760B2 (en) 2011-03-25 2017-02-01 ユー・ディー・シー アイルランド リミテッド For electronics applications 4H- imidazo [1,2-a] imidazole
CN103477462B (en) 2011-04-05 2016-05-25 默克专利有限公司 The organic electroluminescent device
US8580399B2 (en) 2011-04-08 2013-11-12 Universal Display Corporation Substituted oligoazacarbazoles for light emitting diodes
JP6271417B2 (en) 2011-04-13 2018-01-31 メルク パテント ゲーエムベーハー Material for electronic element
CN103459391A (en) 2011-04-13 2013-12-18 默克专利有限公司 Compounds for electronic devices
CN103492383B (en) 2011-04-18 2017-05-10 默克专利有限公司 Material for the organic electroluminescent device
WO2012143079A1 (en) 2011-04-18 2012-10-26 Merck Patent Gmbh Compounds for electronic devices
WO2012149992A1 (en) 2011-05-04 2012-11-08 Merck Patent Gmbh Device for preserving fresh goods
JP6195823B2 (en) 2011-05-05 2017-09-13 メルク パテント ゲーエムベーハー Compounds for electronic devices
KR20170141810A (en) 2011-05-05 2017-12-26 메르크 파텐트 게엠베하 Compounds for electronic devices
US8432095B2 (en) 2011-05-11 2013-04-30 Universal Display Corporation Process for fabricating metal bus lines for OLED lighting panels
US8927308B2 (en) 2011-05-12 2015-01-06 Universal Display Corporation Method of forming bus line designs for large-area OLED lighting
US9391288B2 (en) 2011-05-12 2016-07-12 Toray Industries, Inc. Light emitting device material and light emitting device
JP6223961B2 (en) 2011-05-12 2017-11-01 メルク パテント ゲーエムベーハー Organic ionic functional material, composition and electronic device
US9212197B2 (en) 2011-05-19 2015-12-15 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants
US8795850B2 (en) 2011-05-19 2014-08-05 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology
US8748012B2 (en) 2011-05-25 2014-06-10 Universal Display Corporation Host materials for OLED
DE102011102586A1 (en) 2011-05-27 2012-11-29 Merck Patent Gmbh The organic electronic device
JP6092195B2 (en) 2011-06-03 2017-03-08 メルク パテント ゲーエムベーハー The organic electroluminescence element
JP2014523410A (en) 2011-06-08 2014-09-11 ユニバーサル ディスプレイ コーポレイション Heteroleptic iridium carbene complexes and light emitting device using the same
DE102011104745A1 (en) 2011-06-17 2012-12-20 Merck Patent Gmbh Materials for organic electroluminescent
US8659036B2 (en) 2011-06-17 2014-02-25 Universal Display Corporation Fine tuning of emission spectra by combination of multiple emitter spectra
US8884316B2 (en) 2011-06-17 2014-11-11 Universal Display Corporation Non-common capping layer on an organic device
WO2013009708A1 (en) 2011-07-14 2013-01-17 Universal Display Corporation Inorganic hosts in oleds
US9397310B2 (en) 2011-07-14 2016-07-19 Universal Display Corporation Organice electroluminescent materials and devices
US9023420B2 (en) 2011-07-14 2015-05-05 Universal Display Corporation Composite organic/inorganic layer for organic light-emitting devices
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US8409729B2 (en) 2011-07-28 2013-04-02 Universal Display Corporation Host materials for phosphorescent OLEDs
JP6100258B2 (en) 2011-07-29 2017-03-22 メルク パテント ゲーエムベーハー Compounds for electronic devices
US20130032785A1 (en) 2011-08-01 2013-02-07 Universal Display Corporation Materials for organic light emitting diode
WO2013017192A1 (en) 2011-08-03 2013-02-07 Merck Patent Gmbh Materials for electronic devices
US8926119B2 (en) 2011-08-04 2015-01-06 Universal Display Corporation Extendable light source with variable light emitting area
US8552420B2 (en) 2011-08-09 2013-10-08 Universal Display Corporation OLED light panel with controlled brightness variation
DE102012016192A1 (en) 2011-08-19 2013-02-21 Merck Patent Gmbh New compounds capable of forming hydrogen bonds are useful in electronic device, e.g. organic electroluminescent device, organic light-emitting transistor and organic light-emitting electrochemical cell
US9493698B2 (en) 2011-08-31 2016-11-15 Universal Display Corporation Organic electroluminescent materials and devices
CN103842339B (en) 2011-09-21 2017-08-08 默克专利有限公司 A carbazole derivative of the organic electroluminescent device
US20130088144A1 (en) * 2011-10-06 2013-04-11 Semiconductor Energy Laboratory Co., Ltd. Phosphorescent Iridium Metal Complex, Light-Emitting Element, Light-Emitting Device, Electronic Appliance, and Lighting Device
JP2013093541A (en) 2011-10-06 2013-05-16 Udc Ireland Ltd Organic electroluminescent element and compound and material for organic electroluminescent element usable therefor, and luminescent device, display device and lighting device using the element
JP6271434B2 (en) 2011-10-06 2018-01-31 メルク パテント ゲーエムベーハー The organic electroluminescence element
JP2013084732A (en) 2011-10-07 2013-05-09 Udc Ireland Ltd Organic field light-emitting element and light-emitting material for the same, and light-emitting device, display device and illuminating device
DE102011116165A1 (en) 2011-10-14 2013-04-18 Merck Patent Gmbh Benzodioxepin-3-one compounds
JP6165746B2 (en) 2011-10-20 2017-07-19 メルク パテント ゲーエムベーハー Materials for organic electro-Rumi Tsu sense element
KR101404240B1 (en) 2011-10-25 2014-06-09 울산대학교 산학협력단 Phosphorescent emitting material comprising vinyl-type polynorbornene copolymers and highly efficient phosphorescent organic light-emitting diode devices using the same
EP2782975B1 (en) 2011-10-27 2018-01-10 Merck Patent GmbH Materials for electronic devices
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, processes for their preparation and their use in electronic devices
CN104024371B (en) 2011-11-01 2015-11-25 默克专利有限公司 The organic electroluminescent device
JP2013118349A (en) 2011-11-02 2013-06-13 Udc Ireland Ltd Organic electroluminescent element, material for organic electroluminescent element, and light emitting device, display device and illumination device which employ said organic electroluminescent element
US9502664B2 (en) 2011-11-10 2016-11-22 Udc Ireland Limited 4H-imidazo[1,2-a]imidazoles for electronic applications
US8652656B2 (en) 2011-11-14 2014-02-18 Universal Display Corporation Triphenylene silane hosts
US9193745B2 (en) 2011-11-15 2015-11-24 Universal Display Corporation Heteroleptic iridium complex
WO2013083216A1 (en) 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro dihydroacridine derivatives and the use thereof as materials for organic electroluminescence devices
US9217004B2 (en) 2011-11-21 2015-12-22 Universal Display Corporation Organic light emitting materials
JP5913938B2 (en) 2011-11-30 2016-05-11 富士フイルム株式会社 Light diffusing transfer material, a method for forming a light diffusion layer, and a manufacturing method of an organic light emitting device
US9512355B2 (en) 2011-12-09 2016-12-06 Universal Display Corporation Organic light emitting materials
JP2015502960A (en) 2011-12-12 2015-01-29 メルク パテント ゲーエムベーハー Compounds for electronic devices
US20130146875A1 (en) 2011-12-13 2013-06-13 Universal Display Corporation Split electrode for organic devices
ES2648364T3 (en) 2011-12-19 2018-01-02 Inoviscoat Gmbh luminous elements with an electroluminescent arrangement and method for the production of a luminous element
DE102012022880A1 (en) 2011-12-22 2013-06-27 Merck Patent Gmbh Electronic device e.g. organic integrated circuits, organic field-effect transistors, organic thin-film transistors, organic light emitting transistors, comprises an organic layer comprising substituted heteroaryl compounds
US9461254B2 (en) 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US8987451B2 (en) 2012-01-03 2015-03-24 Universal Display Corporation Synthesis of cyclometallated platinum(II) complexes
US9163174B2 (en) 2012-01-04 2015-10-20 Universal Display Corporation Highly efficient phosphorescent materials
US8969592B2 (en) 2012-01-10 2015-03-03 Universal Display Corporation Heterocyclic host materials
JP5981770B2 (en) 2012-01-23 2016-08-31 ユー・ディー・シー アイルランド リミテッド The organic electroluminescent device, a charge transport material for an organic EL device, as well, the light emitting device using the the element, a display device and a lighting device
US9385337B2 (en) 2012-01-30 2016-07-05 Merck Patent Gmbh Nanocrystals on fibers
JP5978843B2 (en) 2012-02-02 2016-08-24 コニカミノルタ株式会社 Iridium complex compound, an organic electroluminescence device material, an organic electroluminescence element, an illumination device and a display device
JP6118034B2 (en) 2012-02-06 2017-04-19 ユー・ディー・シー アイルランド リミテッド The organic electroluminescent device and the compound and an organic electroluminescence element material may be used therefor, and a light-emitting device using the the element, a display device and a lighting device
EP3101088B1 (en) 2012-02-14 2017-11-29 Merck Patent GmbH Materials for organic electroluminescent devices
US9118017B2 (en) 2012-02-27 2015-08-25 Universal Display Corporation Host compounds for red phosphorescent OLEDs
US9054323B2 (en) 2012-03-15 2015-06-09 Universal Display Corporation Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds
EP2826079A1 (en) 2012-03-15 2015-01-21 Merck Patent GmbH Electronic devices
US9386657B2 (en) 2012-03-15 2016-07-05 Universal Display Corporation Organic Electroluminescent materials and devices
CN104203955B (en) 2012-03-23 2017-11-17 默克专利有限公司 - dioxa spiro anthracene derivative
US8723209B2 (en) 2012-04-27 2014-05-13 Universal Display Corporation Out coupling layer containing particle polymer composite
US9184399B2 (en) 2012-05-04 2015-11-10 Universal Display Corporation Asymmetric hosts with triaryl silane side chains
US9773985B2 (en) 2012-05-21 2017-09-26 Universal Display Corporation Organic electroluminescent materials and devices
DE102012011335A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Compounds of Organic devices Elekronische
US9670404B2 (en) 2012-06-06 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9502672B2 (en) 2012-06-21 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
JP5445629B2 (en) * 2012-06-27 2014-03-19 コニカミノルタ株式会社 A method of manufacturing an organic el element
US9725476B2 (en) 2012-07-09 2017-08-08 Universal Display Corporation Silylated metal complexes
US9231218B2 (en) 2012-07-10 2016-01-05 Universal Display Corporation Phosphorescent emitters containing dibenzo[1,4]azaborinine structure
CN104471020B (en) 2012-07-10 2017-03-08 默克专利有限公司 Material for the organic electroluminescent device
US9620724B2 (en) 2012-07-10 2017-04-11 Udc Ireland Limited Benzimidazo[1,2-A]benzimidazole derivatives for electronic applications
US9059412B2 (en) 2012-07-19 2015-06-16 Universal Display Corporation Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs
US9540329B2 (en) 2012-07-19 2017-01-10 Universal Display Corporation Organic electroluminescent materials and devices
EP2875699B1 (en) 2012-07-23 2017-02-15 Merck Patent GmbH Derivates of 2-diarylaminofluoren and organic electronic devices comprising the same
US9595681B2 (en) 2012-07-23 2017-03-14 Merck Patent Gmbh Compounds and organic electroluminescent devices
JP2015530363A (en) 2012-07-23 2015-10-15 メルク パテント ゲーエムベーハー Materials for organic electroluminescence element
KR101703016B1 (en) 2012-07-23 2017-02-06 메르크 파텐트 게엠베하 Fluorenes and electronic devices containing them
US9663544B2 (en) 2012-07-25 2017-05-30 Universal Display Corporation Organic electroluminescent materials and devices
EP2879196A4 (en) 2012-07-25 2016-02-24 Toray Industries Light emitting element material and light emitting element
US9318710B2 (en) 2012-07-30 2016-04-19 Universal Display Corporation Organic electroluminescent materials and devices
KR101693127B1 (en) 2012-08-10 2017-01-04 메르크 파텐트 게엠베하 Materials for organic electroluminescence devices
US9978958B2 (en) 2012-08-24 2018-05-22 Universal Display Corporation Phosphorescent emitters with phenylimidazole ligands
EP2890221A4 (en) 2012-08-24 2016-09-14 Konica Minolta Inc Transparent electrode, electronic device, and method for manufacturing transparent electrode
US8952362B2 (en) 2012-08-31 2015-02-10 The Regents Of The University Of Michigan High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
EP2898042B1 (en) 2012-09-18 2016-07-06 Merck Patent GmbH Materials for electronic devices
EP3318566A1 (en) 2012-09-20 2018-05-09 UDC Ireland Limited Azadibenzofurans for electronic applications
US9287513B2 (en) 2012-09-24 2016-03-15 Universal Display Corporation Organic electroluminescent materials and devices
US9312505B2 (en) 2012-09-25 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
US9741942B2 (en) 2012-10-11 2017-08-22 Merck Patent Gmbh Materials for organic electroluminescent devices
CN103044490B (en) * 2012-10-16 2015-10-28 中科院广州化学有限公司 A novel class of phenyl-cinnoline iridium complex and its preparation method and application
WO2014067614A1 (en) 2012-10-31 2014-05-08 Merck Patent Gmbh Electronic device
JP2016504754A (en) 2012-11-06 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Phenoxy marbling phosphorus compounds for electronic applications
US8692241B1 (en) 2012-11-08 2014-04-08 Universal Display Corporation Transition metal complexes containing triazole and tetrazole carbene ligands
US8946697B1 (en) 2012-11-09 2015-02-03 Universal Display Corporation Iridium complexes with aza-benzo fused ligands
US9634264B2 (en) 2012-11-09 2017-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US9685617B2 (en) 2012-11-09 2017-06-20 Universal Display Corporation Organic electronuminescent materials and devices
US9190623B2 (en) 2012-11-20 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
EP2923391A1 (en) 2012-11-20 2015-09-30 Merck Patent GmbH Formulation in high-purity solvent for producing electronic devices
US9512136B2 (en) 2012-11-26 2016-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US9166175B2 (en) 2012-11-27 2015-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US20150336959A1 (en) 2012-11-30 2015-11-26 Merck Patent Gmbh Electronic Device
US9196860B2 (en) 2012-12-04 2015-11-24 Universal Display Corporation Compounds for triplet-triplet annihilation upconversion
JP6321028B2 (en) 2012-12-05 2018-05-09 メルク パテント ゲーエムベーハー Electronic apparatus provided with the oxygen ion pump
US9209411B2 (en) 2012-12-07 2015-12-08 Universal Display Corporation Organic electroluminescent materials and devices
CN103087113B (en) * 2012-12-21 2015-09-02 南京邮电大学 A class of boron-containing iridium complex heteronuclear its preparation method and application
CN104871330A (en) 2012-12-28 2015-08-26 默克专利有限公司 Composition comprising polymeric organic semiconducting compounds
KR20150103241A (en) 2013-01-03 2015-09-09 메르크 파텐트 게엠베하 Materials for electronic devices
EP2941469A2 (en) 2013-01-03 2015-11-11 Merck Patent GmbH Materials for electronic devices
WO2014106523A1 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Electronic device
US20140231755A1 (en) 2013-02-21 2014-08-21 Universal Display Corporation Phosphorescent compound
US8927749B2 (en) 2013-03-07 2015-01-06 Universal Display Corporation Organic electroluminescent materials and devices
US9419225B2 (en) 2013-03-14 2016-08-16 Universal Display Corporation Organic electroluminescent materials and devices
KR20150127293A (en) 2013-03-20 2015-11-16 바스프 에스이 Azabenzimidazole carbene complexes as efficiency booster in oleds
EP2980878A4 (en) 2013-03-29 2016-11-09 Konica Minolta Inc Organic electroluminescent element, and lighting device and display device which are provided with same
US9537106B2 (en) 2013-05-09 2017-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US9735373B2 (en) 2013-06-10 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
WO2014199842A1 (en) 2013-06-14 2014-12-18 Semiconductor Energy Laboratory Co., Ltd. Organometallic iridium complex, light-emitting element, light-emitting device, and lighting device
US9673401B2 (en) 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2016532288A (en) 2013-07-02 2016-10-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se It monosubstituted diaza benzimidazole carbene metal complexes for use in organic light emitting diodes
US9761807B2 (en) 2013-07-15 2017-09-12 Universal Display Corporation Organic light emitting diode materials
US9324949B2 (en) 2013-07-16 2016-04-26 Universal Display Corporation Organic electroluminescent materials and devices
US9553274B2 (en) 2013-07-16 2017-01-24 Universal Display Corporation Organic electroluminescent materials and devices
US9224958B2 (en) 2013-07-19 2015-12-29 Universal Display Corporation Organic electroluminescent materials and devices
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
JP2016534551A (en) 2013-07-29 2016-11-04 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Electroluminescence element
WO2016016791A1 (en) 2014-07-28 2016-02-04 Idemitsu Kosan Co., Ltd (Ikc) 2,9-functionalized benzimidazolo[1,2-a]benzimidazoles as hosts for organic light emitting diodes (oleds)
US9831437B2 (en) 2013-08-20 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US9932359B2 (en) 2013-08-30 2018-04-03 University Of Southern California Organic electroluminescent materials and devices
US9735378B2 (en) 2013-09-09 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9748503B2 (en) 2013-09-13 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US9831447B2 (en) 2013-10-08 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US9293712B2 (en) 2013-10-11 2016-03-22 Universal Display Corporation Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same
US9853229B2 (en) 2013-10-23 2017-12-26 University Of Southern California Organic electroluminescent materials and devices
EP3063153B1 (en) 2013-10-31 2018-03-07 Idemitsu Kosan Co., Ltd. Azadibenzothiophenes for electronic applications
US9306179B2 (en) 2013-11-08 2016-04-05 Universal Display Corporation Organic electroluminescent materials and devices
US9647218B2 (en) 2013-11-14 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US9905784B2 (en) 2013-11-15 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
KR20150061975A (en) 2013-11-28 2015-06-05 삼성전자주식회사 Carbazole-based compound and organic light emitting diode including the same
EP3077382A2 (en) 2013-12-06 2016-10-12 Merck Patent GmbH Substituted oxepines
EP3077475A1 (en) 2013-12-06 2016-10-12 Merck Patent GmbH Compositions containing a polymeric binder which comprises acrylic and/or methacrylic acid ester units
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
CN103936792B (en) * 2013-12-12 2017-04-26 石家庄诚志永华显示材料有限公司 Pyrazole compounds containing a structural unit
JP2017502007A (en) 2013-12-12 2017-01-19 メルク パテント ゲーエムベーハー Material for electronic element
CN105829292A (en) 2013-12-19 2016-08-03 默克专利有限公司 Heterocyclic spiro compounds
US9847496B2 (en) 2013-12-23 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US9755159B2 (en) 2014-01-23 2017-09-05 Universal Display Corporation Organic materials for OLEDs
US9935277B2 (en) 2014-01-30 2018-04-03 Universal Display Corporation Organic electroluminescent materials and devices
US9590194B2 (en) 2014-02-14 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US9847497B2 (en) 2014-02-18 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US9647217B2 (en) 2014-02-24 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US9502656B2 (en) 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US9181270B2 (en) 2014-02-28 2015-11-10 Universal Display Corporation Method of making sulfide compounds
US9673407B2 (en) 2014-02-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9590195B2 (en) 2014-02-28 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US9190620B2 (en) 2014-03-01 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US9397309B2 (en) 2014-03-13 2016-07-19 Universal Display Corporation Organic electroluminescent devices
US9748504B2 (en) 2014-03-25 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
KR20160140831A (en) 2014-03-31 2016-12-07 유디씨 아일랜드 리미티드 Metal complexes, comprising carbene ligands having an o-substituted non-cyclometalated aryl group and their use in organic light emitting diodes
EP2927221A1 (en) 2014-03-31 2015-10-07 Commonwealth Scientific and Industrial Research Organisation Diamine compounds for phosphorescent diazaborole metal complexes and electroluminescent devices
EP2927300B1 (en) 2014-03-31 2016-11-16 Commonwealth Scientific and Industrial Research Organisation Phenylenediamine compounds for phosphorescent diazaborole metal complexes
US9929353B2 (en) 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US9691993B2 (en) 2014-04-09 2017-06-27 Universal Display Corporation Organic electroluminescent materials and devices
US9905785B2 (en) 2014-04-14 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9741941B2 (en) 2014-04-29 2017-08-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3137458A1 (en) 2014-04-30 2017-03-08 Merck Patent GmbH Materials for electronic devices
WO2015169412A1 (en) 2014-05-05 2015-11-12 Merck Patent Gmbh Materials for organic light emitting devices
JP5773033B2 (en) * 2014-05-26 2015-09-02 コニカミノルタ株式会社 Preparation and an organic electroluminescence device of the organic electroluminescence element
CN104004026A (en) * 2014-06-09 2014-08-27 江西冠能光电材料有限公司 Electronegative phosphor material
DE102014008722A1 (en) 2014-06-18 2015-12-24 Merck Patent Gmbh Compositions for electronic devices
CN106470997A (en) 2014-06-25 2017-03-01 默克专利有限公司 Materials for organic electroluminescent devices
US9911931B2 (en) 2014-06-26 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US9929357B2 (en) 2014-07-22 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
EP2982676B1 (en) 2014-08-07 2018-04-11 Idemitsu Kosan Co., Ltd. Benzimidazo[2,1-B]benzoxazoles for electronic applications
EP2993215A1 (en) 2014-09-04 2016-03-09 Idemitsu Kosan Co., Ltd. Azabenzimidazo[2,1-a]benzimidazoles for electronic applications
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US9397302B2 (en) 2014-10-08 2016-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US9484541B2 (en) 2014-10-20 2016-11-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3015469A1 (en) 2014-10-30 2016-05-04 Idemitsu Kosan Co., Ltd. 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications
WO2016074755A1 (en) 2014-11-11 2016-05-19 Merck Patent Gmbh Materials for organic electroluminescent devices
US9882151B2 (en) 2014-11-14 2018-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US9871212B2 (en) 2014-11-14 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
WO2016079667A1 (en) 2014-11-17 2016-05-26 Idemitsu Kosan Co., Ltd. Indole derivatives for electronic applications
US9761814B2 (en) 2014-11-18 2017-09-12 Universal Display Corporation Organic light-emitting materials and devices
US9444075B2 (en) 2014-11-26 2016-09-13 Universal Display Corporation Emissive display with photo-switchable polarization
EP3034506A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 4-functionalized carbazole derivatives for electronic applications
EP3034507A1 (en) 2014-12-15 2016-06-22 Idemitsu Kosan Co., Ltd 1-functionalized dibenzofurans and dibenzothiophenes for organic light emitting diodes (OLEDs)
US9450195B2 (en) 2014-12-17 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
US9312499B1 (en) 2015-01-05 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9406892B2 (en) 2015-01-07 2016-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US9748500B2 (en) 2015-01-15 2017-08-29 Universal Display Corporation Organic light emitting materials
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3250658A1 (en) 2015-01-30 2017-12-06 Merck Patent GmbH Materials for electronic devices
CN107532013A (en) 2015-01-30 2018-01-02 默克专利有限公司 Formulations with a low particle content
EP3053918B1 (en) 2015-02-06 2018-04-11 Idemitsu Kosan Co., Ltd. 2-carbazole substituted benzimidazoles for electronic applications
EP3054498B1 (en) 2015-02-06 2017-09-20 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3061759A1 (en) 2015-02-24 2016-08-31 Idemitsu Kosan Co., Ltd Nitrile substituted dibenzofurans
US9780316B2 (en) 2015-03-16 2017-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3070144B1 (en) 2015-03-17 2018-02-28 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US9871214B2 (en) 2015-03-23 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3072943B1 (en) 2015-03-26 2018-05-02 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
EP3278377A1 (en) 2015-03-30 2018-02-07 Merck Patent GmbH Formulation of an organic functional material comprising a siloxane solvent
EP3075737A1 (en) 2015-03-31 2016-10-05 Idemitsu Kosan Co., Ltd Benzimidazolo[1,2-a]benzimidazole carrying aryl- or heteroarylnitril groups for organic light emitting diodes
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
CN107635987A (en) 2015-05-18 2018-01-26 默克专利有限公司 Materials for organic electroluminescent devices
KR20180011845A (en) 2015-06-10 2018-02-02 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
US9978956B2 (en) 2015-07-15 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3323159A1 (en) 2015-07-15 2018-05-23 Merck Patent GmbH Composition comprising organic semiconducting compounds
WO2017012687A1 (en) 2015-07-22 2017-01-26 Merck Patent Gmbh Materials for organic electroluminescent devices
CN107922359A (en) 2015-07-30 2018-04-17 默克专利有限公司 Material for the organic electroluminescent device
KR20180039680A (en) 2015-08-13 2018-04-18 메르크 파텐트 게엠베하 Hexamethyl indane
CN107949561A (en) 2015-08-14 2018-04-20 默克专利有限公司 There phenoxazine derivatives for organic electroluminescent device
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150606A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
WO2017071791A1 (en) 2015-10-27 2017-05-04 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017078182A1 (en) 2015-11-04 2017-05-11 Idemitsu Kosan Co., Ltd. Benzimidazole fused heteroaryls
WO2017093958A1 (en) 2015-12-04 2017-06-08 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
WO2017097391A8 (en) 2015-12-10 2017-09-08 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017109727A1 (en) 2015-12-21 2017-06-29 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
JP2017123460A (en) 2016-01-06 2017-07-13 コニカミノルタ株式会社 Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device and lighting device
WO2017122516A1 (en) * 2016-01-14 2017-07-20 国立研究開発法人産業技術総合研究所 Method for producing cyclometallated iridium complex
WO2017133829A1 (en) 2016-02-05 2017-08-10 Merck Patent Gmbh Materials for electronic devices
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
WO2017148565A1 (en) 2016-03-03 2017-09-08 Merck Patent Gmbh Materials for organic electroluminescence devices
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation comprising at least one organic semiconductor
WO2017157983A1 (en) 2016-03-17 2017-09-21 Merck Patent Gmbh Compounds with spirobifluorene-structures
WO2017178311A1 (en) 2016-04-11 2017-10-19 Merck Patent Gmbh Heterocyclic compounds comprising dibenzofuran and/or dibenzothiophene structures
WO2017178864A1 (en) 2016-04-12 2017-10-19 Idemitsu Kosan Co., Ltd. Seven-membered ring compounds
WO2017186760A1 (en) 2016-04-29 2017-11-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017207596A1 (en) 2016-06-03 2017-12-07 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017221999A1 (en) 2016-06-22 2017-12-28 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
US9929360B2 (en) 2016-07-08 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018050583A1 (en) 2016-09-14 2018-03-22 Merck Patent Gmbh Compounds with carbazole structures
WO2018050584A1 (en) 2016-09-14 2018-03-22 Merck Patent Gmbh Compounds with spirobifluorene-structures
WO2018060307A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Compounds with diazadibenzofurane or diazadibenzothiophene structures
WO2018060218A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazoles with diazadibenzofurane or diazadibenzothiophene structures
WO2018069167A1 (en) 2016-10-10 2018-04-19 Merck Patent Gmbh Electronic device
DE102017008794A1 (en) 2016-10-17 2018-04-19 Merck Patent Gmbh Materials for use in electronic devices
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018083053A1 (en) 2016-11-02 2018-05-11 Merck Patent Gmbh Materials for electronic devices
WO2018087020A1 (en) 2016-11-08 2018-05-17 Merck Patent Gmbh Compounds for electronic devices
WO2018087022A1 (en) 2016-11-09 2018-05-17 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018087346A1 (en) 2016-11-14 2018-05-17 Merck Patent Gmbh Compounds with an acceptor and a donor group
WO2018091435A1 (en) 2016-11-17 2018-05-24 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718488A (en) * 1971-03-02 1973-02-27 Du Pont Precious metal decorating compositions containing bis-chelate derivatives of palladium
US5552678A (en) * 1994-09-23 1996-09-03 Eastman Kodak Company AC drive scheme for organic led
US20010019782A1 (en) * 1999-12-27 2001-09-06 Tatsuya Igarashi Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20010053462A1 (en) * 2000-05-02 2001-12-20 Masayuki Mishima Light-emitting device
US20020064681A1 (en) * 2000-09-26 2002-05-30 Takao Takiguchi Luminescence device, display apparatus and metal coordination compound

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3655679A (en) * 1969-06-25 1972-04-11 Merck & Co Inc Certain aryl pyridine carboxylic acid derivatives
US3747300A (en) * 1971-10-14 1973-07-24 Mc Graw Edison Co Portable electrostatic air cleaner
US3886167A (en) * 1974-03-06 1975-05-27 Us Army 2-Aryl-6-trifluoromethyl-4-pyridylcarbinolamine antimalarials
US4210429A (en) * 1977-04-04 1980-07-01 Alpine Roomaire Systems, Inc. Air purifier
US4244712A (en) * 1979-03-05 1981-01-13 Tongret Stewart R Cleansing system using treated recirculating air
US4680299A (en) * 1984-04-30 1987-07-14 E.I. Du Pont De Nemours And Company 2-phenyl-4-quinolinecarboxylic acids and pharmaceutical compositions thereof
DE3688950D1 (en) * 1985-06-24 1993-10-07 Cancer Res Campaign Tech Substituted quinoline derivatives.
US4847381A (en) * 1987-08-31 1989-07-11 American Cyanamid Company 2-Phenyl-4-quinoline carboxylic acids
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
EP0443861B2 (en) 1990-02-23 2008-05-28 Sumitomo Chemical Company, Limited Organic electroluminescence device
US5322473A (en) * 1990-05-17 1994-06-21 Quality Air Systems, Inc. Modular wall apparatus and method for its use
US5160517A (en) * 1990-11-21 1992-11-03 Hicks Richard E System for purifying air in a room
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5192342A (en) * 1992-04-15 1993-03-09 Baron Robert A Apparatus for enhancing the environmental quality of work spaces
US5240478A (en) * 1992-06-26 1993-08-31 Messina Gary D Self-contained, portable room air treatment apparatus and method therefore
DE4323916A1 (en) * 1993-07-16 1995-01-19 Basf Ag Substituted 2-phenylpyridine
US5360469A (en) * 1993-09-09 1994-11-01 Baron Robert A Apparatus for air filtration and sound masking
CN1075817C (en) * 1994-07-25 2001-12-05 罗切诊断学有限公司 Hydro philic metal complexes
US5616172A (en) * 1996-02-27 1997-04-01 Nature's Quarters, Inc. Air treatment system
US5997619A (en) * 1997-09-04 1999-12-07 Nq Environmental, Inc. Air purification system
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
US6099607A (en) * 1998-07-22 2000-08-08 Haslebacher; William J. Rollably positioned, adjustably directable clean air delivery supply assembly, for use in weather protected environments to provide localized clean air, where activities require clean air quality per strict specifications
US6830828B2 (en) * 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
JP4619546B2 (en) 1999-03-23 2011-01-26 ザ ユニバーシティー オブ サザン カリフォルニア Cyclometallated metal complex as a phosphorescent dopant organic led
DE60031729D1 (en) 1999-05-13 2006-12-14 Univ Princeton Light emitting, organic based on electrophosphorescence arrangement with a very high quantum yield
CN1107098C (en) * 1999-09-05 2003-04-30 吉林大学 Phenolic group-pyridine or metal coordination compound of its derivative and their application as electroluminescence material
KR100794975B1 (en) 1999-12-01 2008-01-16 더 트러스티즈 오브 프린스턴 유니버시티 Complexes of form l2mx as phosphorescent dopants for organic leds
JP3929690B2 (en) * 1999-12-27 2007-06-13 富士フイルム株式会社 Light emitting device material comprising a ortho-metalated iridium complex, the light emitting element and the novel iridium complex
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
US6670645B2 (en) 2000-06-30 2003-12-30 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
EP1175128B1 (en) 2000-07-17 2010-09-22 FUJIFILM Corporation Light emitting element and azole compound
EP2566302B1 (en) 2000-08-11 2015-12-16 The Trustees of Princeton University Organometallic compounds and emission-shifting organic electrophosphorence
US6939624B2 (en) * 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154140B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Metal coordination compounds
US6464760B1 (en) * 2000-09-27 2002-10-15 John C. K. Sham Ultraviolet air purifier
KR20040004397A (en) * 2000-10-10 2004-01-13 이 아이 듀폰 디 네모아 앤드 캄파니 Polymers having attached luminescent metal complexes and devices made with such polymers
JP2004513116A (en) * 2000-11-06 2004-04-30 アストラゼネカ・アクチエボラーグ n- type calcium channel antagonists for the treatment of pain
WO2002045466A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
KR100825183B1 (en) * 2000-11-30 2008-04-24 캐논 가부시끼가이샤 Luminescent Element and Display
US6835469B2 (en) * 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US7250512B2 (en) * 2001-11-07 2007-07-31 E. I. Du Pont De Nemours And Company Electroluminescent iridium compounds having red-orange or red emission and devices made with such compounds
US7166368B2 (en) * 2001-11-07 2007-01-23 E. I. Du Pont De Nemours And Company Electroluminescent platinum compounds and devices made with such compounds

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718488A (en) * 1971-03-02 1973-02-27 Du Pont Precious metal decorating compositions containing bis-chelate derivatives of palladium
US5552678A (en) * 1994-09-23 1996-09-03 Eastman Kodak Company AC drive scheme for organic led
US20010019782A1 (en) * 1999-12-27 2001-09-06 Tatsuya Igarashi Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20010053462A1 (en) * 2000-05-02 2001-12-20 Masayuki Mishima Light-emitting device
US20020064681A1 (en) * 2000-09-26 2002-05-30 Takao Takiguchi Luminescence device, display apparatus and metal coordination compound

Cited By (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034935B2 (en) 1999-12-27 2011-10-11 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US8742108B2 (en) 1999-12-27 2014-06-03 Udc Ireland Limited Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7951472B2 (en) 1999-12-27 2011-05-31 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20070231602A1 (en) * 1999-12-27 2007-10-04 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7951947B2 (en) 1999-12-27 2011-05-31 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7951945B2 (en) 1999-12-27 2011-05-31 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7951946B2 (en) 1999-12-27 2011-05-31 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20100174069A1 (en) * 1999-12-27 2010-07-08 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7238437B2 (en) 1999-12-27 2007-07-03 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20100174070A1 (en) * 1999-12-27 2010-07-08 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20110071293A1 (en) * 1999-12-27 2011-03-24 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7994319B2 (en) 1999-12-27 2011-08-09 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US6821645B2 (en) * 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20100240895A1 (en) * 1999-12-27 2010-09-23 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20100174071A1 (en) * 1999-12-27 2010-07-08 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20100171113A1 (en) * 1999-12-27 2010-07-08 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US20050003233A1 (en) * 1999-12-27 2005-01-06 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US8247964B2 (en) 1999-12-27 2012-08-21 Fujifilm Corporation Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US8253126B2 (en) 1999-12-31 2012-08-28 Lg Chem. Ltd. Organic electronic device
US8022212B2 (en) 2000-07-17 2011-09-20 Fujifilm Corporation Light-emitting element and iridium complex
US20050260452A1 (en) * 2000-07-17 2005-11-24 Fuji Photo Film Co., Ltd. Light emitting element and azole compound
US6962755B2 (en) 2000-07-17 2005-11-08 Fuji Photo Film Co., Ltd. Light emitting element and azole compound
US8664394B2 (en) 2000-07-17 2014-03-04 Udc Ireland Limited Light-emitting element and iridium complex
US7838131B2 (en) 2000-07-17 2010-11-23 Fujifilm Corporation Light emitting element and azole compound
US7306856B2 (en) * 2000-07-17 2007-12-11 Fujifilm Corporation Light-emitting element and iridium complex
US7632579B2 (en) 2000-07-17 2009-12-15 Fujifilm Corporation Light emitting element and azole compound
US20020028329A1 (en) * 2000-07-17 2002-03-07 Fuji Photo Film Co., Ltd. Light emitting element and azole compound
US20050214576A1 (en) * 2000-08-11 2005-09-29 Sergey Lamansky Organometallic compounds and emission-shifting organic electrophosphorescence
US20080281098A1 (en) * 2000-08-11 2008-11-13 Sergey Lamansky Organometallic compounds and emission-shifting organic electrophosphorescence
US6939624B2 (en) * 2000-08-11 2005-09-06 Universal Display Corporation Organometallic compounds and emission-shifting organic electrophosphorescence
US7381479B2 (en) 2000-08-11 2008-06-03 The University Of Southern California Organometallic compounds and emission-shifting organic electrophosphorescence
US7553560B2 (en) 2000-08-11 2009-06-30 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
KR100884039B1 (en) 2000-08-11 2009-02-19 더 트러스티즈 오브 프린스턴 유니버시티 Organometallic compounds and emission-shifting organic electrophosphorescence
US7153592B2 (en) * 2000-08-31 2006-12-26 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
US20060204788A1 (en) * 2000-08-31 2006-09-14 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
US7208234B2 (en) 2000-08-31 2007-04-24 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
US20020051894A1 (en) * 2000-08-31 2002-05-02 Fujitsu Limited Organic EL element and method of manufacturing the same, organic EL display device using the element, organic EL material, and surface emission device and liquid crystal display device using the material
US6808827B2 (en) * 2000-09-21 2004-10-26 Fuji Photo Film Co., Ltd. Light-emitting device and iridium complex
US20050031904A1 (en) * 2000-09-21 2005-02-10 Fuji Photo Film Co., Ltd. Light-emitting device and iridium complex
US6815091B2 (en) * 2000-09-26 2004-11-09 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US20050014025A1 (en) * 2000-09-26 2005-01-20 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US7026062B2 (en) 2000-09-26 2006-04-11 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US7220495B2 (en) 2000-09-26 2007-05-22 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US6821646B2 (en) * 2000-09-26 2004-11-23 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US7534506B2 (en) 2000-09-26 2009-05-19 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US20050025996A1 (en) * 2000-09-26 2005-02-03 Canon Kabushiki Kaisha Luminescence device, display apparatus and metal coordination compound
US8920943B2 (en) 2000-11-30 2014-12-30 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20090184634A1 (en) * 2000-11-30 2009-07-23 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20060177694A1 (en) * 2000-11-30 2006-08-10 Canon Kabushiki Kaisha Luminescence device and display apparatus
US7687155B2 (en) 2000-11-30 2010-03-30 Canon Kabushiki Kaisha Luminescence device and display apparatus
US7527879B2 (en) 2000-11-30 2009-05-05 Canon Kabushiki Kaisha Luminescence device and display apparatus
US7094477B2 (en) 2000-11-30 2006-08-22 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20070212570A1 (en) * 2000-11-30 2007-09-13 Canon Kabushiki Kaisha Luminescence device and display apparatus
US7544426B2 (en) 2000-11-30 2009-06-09 Canon Kabushiki Kaisha Luminescence device and display apparatus
US6953628B2 (en) * 2000-11-30 2005-10-11 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20060228583A1 (en) * 2000-11-30 2006-10-12 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20050208335A1 (en) * 2000-11-30 2005-09-22 Canon Kabushiki Kaisha Luminescence device and display apparatus
US7147935B2 (en) * 2000-11-30 2006-12-12 Canon Kabushiki Kaisha Luminescence device and display apparatus
US20070216294A1 (en) * 2000-11-30 2007-09-20 Canon Kabushiki Kaisha Luminescence device and display apparatus
US7205054B2 (en) 2000-12-01 2007-04-17 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
US20050266268A1 (en) * 2000-12-01 2005-12-01 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
US6991857B2 (en) * 2000-12-01 2006-01-31 Canon Kabushiki Kaisha Metal coordination compound, luminescence device and display apparatus
US7125998B2 (en) 2001-02-24 2006-10-24 Merck Patent Gmbh Rhodium and iridium complexes
US20040138455A1 (en) * 2001-02-24 2004-07-15 Philipp Stossel Rhodium and iridium complexes
US20020193532A1 (en) * 2001-03-27 2002-12-19 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same
US7947340B2 (en) 2001-03-27 2011-05-24 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same
US20110187969A1 (en) * 2001-03-27 2011-08-04 Sumitomo Chemical Company, Limited Polymeric light emitting substance and polymer light emitting device using the same
US7067202B2 (en) * 2001-06-15 2006-06-27 Sanyo Electric Co., Ltd. Luminescent organometallic compound and light emitting device
US20030040627A1 (en) * 2001-06-15 2003-02-27 Hiroyuki Fujii Luminescent organometallic compound and light emitting device
US6835469B2 (en) * 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US7011897B2 (en) * 2002-08-16 2006-03-14 The University Of Southern California Organic light emitting materials and devices
WO2004016711A1 (en) * 2002-08-16 2004-02-26 The University Of Southern California Organic light emitting materials and devices
US20040121184A1 (en) * 2002-08-16 2004-06-24 Thompson Mark E. Organic light emitting materials and devices
US20060041126A1 (en) * 2002-10-30 2006-02-23 Ciba Specialty Chemicals Holding Inc. Electroluminescent device
US9923148B2 (en) 2002-10-30 2018-03-20 Udc Ireland Limited Electroluminescent device
US20100240892A1 (en) * 2002-10-30 2010-09-23 Schaefer Thomas Electroluminescent device
US8012602B2 (en) 2002-10-30 2011-09-06 Basf Se Electroluminescent device
US6916554B2 (en) 2002-11-06 2005-07-12 The University Of Southern California Organic light emitting materials and devices
US20040086742A1 (en) * 2002-11-06 2004-05-06 Bin Ma Organic light emitting materials and devices
US7265224B2 (en) 2002-12-28 2007-09-04 Samsung Sdi Co., Ltd. Red luminescent compound and organic electroluminescent device using the same
US20040127710A1 (en) * 2002-12-28 2004-07-01 Soo-Jin Park Red luminescent compound and organic electroluminescent device using the same
US7029765B2 (en) * 2003-04-22 2006-04-18 Universal Display Corporation Organic light emitting devices having reduced pixel shrinkage
US7087321B2 (en) * 2003-04-22 2006-08-08 Universal Display Corporation Organic light emitting devices having reduced pixel shrinkage
US20040241495A1 (en) * 2003-04-22 2004-12-02 Raymond Kwong Organic light emitting devices having reduced pixel shrinkage
US20040214038A1 (en) * 2003-04-22 2004-10-28 Raymond Kwong Organic light emitting devices having reduced pixel shrinkage
US8188485B2 (en) * 2003-06-17 2012-05-29 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Detection system having a light emitting diode
US20060138447A1 (en) * 2003-06-17 2006-06-29 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Light emitting diode
US7560176B2 (en) 2003-07-30 2009-07-14 Chi Mei Optoelectronics Corp. Light-emitting element and iridium complex
US20050025995A1 (en) * 2003-07-30 2005-02-03 Chien-Hong Cheng Light-emitting element and iridium complex
US7087320B2 (en) 2003-11-04 2006-08-08 Eastman Kodak Company Organic element for electroluminescent devices
US20050095450A1 (en) * 2003-11-04 2005-05-05 Eastman Kodak Company Organic element for electroluminescent devices
US20090163743A1 (en) * 2003-12-22 2009-06-25 Yousuke Hoshi Luminescence system, method of luminescence, and chemical substance for luminescence
US7208233B2 (en) 2004-03-16 2007-04-24 Eastman Kodak Company Organic element for electroluminescent devices
US8084145B2 (en) * 2004-04-02 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light emitting element using the complex, light emitting device using the element, and electric apparatus using the device
US20050221123A1 (en) * 2004-04-02 2005-10-06 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light emitting element using the complex, light emitting device using the element, and electric apparatus using the device
US20050258433A1 (en) * 2004-05-18 2005-11-24 Entire Interest Carbene metal complexes as OLED materials
US8114533B2 (en) 2004-05-18 2012-02-14 Universal Display Corporation Carbene metal complexes as OLED materials
US7154114B2 (en) 2004-05-18 2006-12-26 Universal Display Corporation Cyclometallated iridium carbene complexes for use as hosts
US7445855B2 (en) 2004-05-18 2008-11-04 The University Of Southern California Cationic metal-carbene complexes
US9356245B2 (en) 2004-05-18 2016-05-31 Universal Display Corporation Carbene metal complexes as OLED materials
US7655322B2 (en) 2004-05-18 2010-02-02 The University Of Southern California OLEDs utilizing macrocyclic ligand systems
US8007926B2 (en) * 2004-05-18 2011-08-30 The University Of Southern California Luminescent compounds with carbene ligands
US20050260447A1 (en) * 2004-05-18 2005-11-24 Jason Brooks Cyclometallated iridium carbene complexes for use as hosts
US7491823B2 (en) 2004-05-18 2009-02-17 The University Of Southern California Luminescent compounds with carbene ligands
US20050260448A1 (en) * 2004-05-18 2005-11-24 Chun Lin Novel organometallic compounds for use in electroluminescent devices
US20050260446A1 (en) * 2004-05-18 2005-11-24 Mackenzie Peter B Cationic metal-carbene complexes
US20050260445A1 (en) * 2004-05-18 2005-11-24 Robert Walters OLEDs utilizing macrocyclic ligand systems
US7601436B2 (en) 2004-05-18 2009-10-13 The University Of Southern California Carbene metal complexes as OLED materials
US7534505B2 (en) 2004-05-18 2009-05-19 The University Of Southern California Organometallic compounds for use in electroluminescent devices
US20050258742A1 (en) * 2004-05-18 2005-11-24 Yui-Yi Tsai Carbene containing metal complexes as OLEDs
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
US7956192B2 (en) 2004-05-18 2011-06-07 The University Of Southern California Carbene containing metal complexes as OLEDs
US20090140640A1 (en) * 2004-05-18 2009-06-04 Thompson Mark E Luminescent compounds with carbene ligands
US7393599B2 (en) 2004-05-18 2008-07-01 The University Of Southern California Luminescent compounds with carbene ligands
US7279704B2 (en) 2004-05-18 2007-10-09 The University Of Southern California Complexes with tridentate ligands
US7655323B2 (en) 2004-05-18 2010-02-02 The University Of Southern California OLEDs utilizing macrocyclic ligand systems
US8426041B2 (en) 2004-05-18 2013-04-23 Universal Display Corporation Carbene metal complexes as OLED materials
EP2276089A2 (en) 2004-07-27 2011-01-19 Global OLED Technology LLC Method for reducing moisture contamination in a top-emitting oled using a dessicant
KR100669718B1 (en) 2004-07-29 2007-01-16 삼성에스디아이 주식회사 Organic electroluminescence device
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
US20070122655A1 (en) * 2004-09-20 2007-05-31 Eastman Kodak Company Electroluminescent device with quinazoline complex emitter
US20060065370A1 (en) * 2004-09-24 2006-03-30 P.E. S.R.L. Labeling machine for heat-shrink labels
US20060141135A1 (en) * 2004-12-29 2006-06-29 Jian Wang Processes for forming layers for electronic devices using heating elements
US20060139342A1 (en) * 2004-12-29 2006-06-29 Gang Yu Electronic devices and processes for forming electronic devices
US20070075626A1 (en) * 2004-12-29 2007-04-05 Gang Yu Electronic devices and processes for forming electronic devices
US7420205B2 (en) 2004-12-30 2008-09-02 E. I. Du Pont De Nemours And Company Electronic device including a guest material within a layer and a process for forming the same
US8691667B1 (en) 2004-12-30 2014-04-08 E. I. Du Pont De Nemours And Company Method and apparatus for depositing a pattern on a substrate
US20060228466A1 (en) * 2004-12-30 2006-10-12 Gang Yu Solution dispense and patterning process and apparatus
US20060146079A1 (en) * 2004-12-30 2006-07-06 Macpherson Charles D Process and apparatus for forming an electronic device
US7469638B2 (en) 2004-12-30 2008-12-30 E.I. Du Pont De Nemours And Company Electronic devices and processes for forming the same
US7584701B2 (en) 2004-12-30 2009-09-08 E.I. Du Pont De Nemours And Company Processes for printing layers for electronic devices and printing apparatuses for performing the processes
US20060144276A1 (en) * 2004-12-30 2006-07-06 Macpherson Charles D Electronic devices and processes for forming the same
US20080173200A1 (en) * 2004-12-30 2008-07-24 Charles Douglas Macpherson Electronic devices and processes for forming the same
US20060144277A1 (en) * 2004-12-30 2006-07-06 Macpherson Charles D Processes for printing layers for electronic devices and printing apparatuses for performing the processes
US7268006B2 (en) 2004-12-30 2007-09-11 E.I. Du Pont De Nemours And Company Electronic device including a guest material within a layer and a process for forming the same
US20080282921A1 (en) * 2004-12-30 2008-11-20 Charles Douglas Macpherson Electronic devices and processes for forming the same
US20090015143A1 (en) * 2005-03-17 2009-01-15 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex, and Light-Emitting Element, Light-Emitting Device and Electronic- Device Using the Organometallic Complex
US8889266B2 (en) 2005-03-17 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and light-emitting element, light-emitting device and electronic-device using the organometallic complex
US20060240278A1 (en) * 2005-04-20 2006-10-26 Eastman Kodak Company OLED device with improved performance
US8057916B2 (en) 2005-04-20 2011-11-15 Global Oled Technology, Llc. OLED device with improved performance
US20060240282A1 (en) * 2005-04-21 2006-10-26 Cheng-Hung Lin Emission material and organic electroluminescent device using the same
US7951944B2 (en) 2005-04-21 2011-05-31 Au Optronics Corp. Emission material and organic electroluminescent device using the same
US7541100B2 (en) 2005-04-21 2009-06-02 Soo Jin Park Organic metal compounds in which compounds for host and compounds for dopant are connected, organic electroluminesence display devices using the compounds and method for preparation of the devices
US20060237715A1 (en) * 2005-04-21 2006-10-26 Park Soo J Organic metal compounds in which compounds for host and compounds for dopant are connected, organic electroluminesence display devices using the compounds and method for preparation of the devices
US20090004365A1 (en) * 2005-04-21 2009-01-01 Liang-Sheng Liao Contaminant-scavenging layer on oled anodes
US7537843B2 (en) 2005-04-21 2009-05-26 Au Optronics Corp. Emission material and organic electroluminescent device using the same
US20090216020A1 (en) * 2005-04-21 2009-08-27 Cheng-Hung Lin Emission material and organic electroluminescent device using the same
US7575818B2 (en) 2005-04-21 2009-08-18 Samsung Mobile Display Co., Ltd. Organic metal compounds in which compounds for host and compounds for dopant are connected, organic electroluminesence display devices using the compounds and method for preparation of the devices
US20060237714A1 (en) * 2005-04-21 2006-10-26 Park Soo J Organic metal compounds in which compounds for host and compounds for dopant are connected, organic electroluminesence display devices using the compounds and method for preparation of the devices
US20080200686A1 (en) * 2005-06-14 2008-08-21 Basf Aktiengesellschaft Method for the Isomerisation of Transition Metal Complexes Containing Cyclometallated, Carbene Ligands
WO2006134113A1 (en) * 2005-06-14 2006-12-21 Basf Aktiengesellschaft Method for the isomerisation of transition metal complexes containing cyclometallated, carbene ligands
US7803948B2 (en) * 2005-06-14 2010-09-28 Basf Aktiengesellschaft Method for the isomerisation of transition metal complexes containing cyclometallated, carbene ligands
US8956738B2 (en) 2005-10-26 2015-02-17 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
US20100019671A1 (en) * 2005-10-26 2010-01-28 Eastman Kodak Company Organic element for low voltage electroluminescent devices
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
US20070122657A1 (en) * 2005-11-30 2007-05-31 Eastman Kodak Company Electroluminescent device containing a phenanthroline derivative
US20070252522A1 (en) * 2005-11-30 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
US9187689B2 (en) 2005-12-05 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light-emitting element, light-emitting device, and electronic device using the same
US20070129545A1 (en) * 2005-12-05 2007-06-07 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
US20100145044A1 (en) * 2005-12-05 2010-06-10 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Same
US8247086B2 (en) 2005-12-05 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
US7923276B2 (en) 2005-12-27 2011-04-12 E. I. Du Pont De Nemours And Company Processes for forming electronic devices including spaced-apart radiation regions
US20100291721A1 (en) * 2005-12-27 2010-11-18 E. I. Du Pont De Nemours And Company Dupont Displays Inc Processes for forming electronic devices including spaced-apart radiation regions
US7795653B2 (en) 2005-12-27 2010-09-14 E. I. Du Pont De Nemours And Company Electronic device including space-apart radiation regions and a process for forming the same
US20070181944A1 (en) * 2005-12-27 2007-08-09 Macpherson Charles D Electronic device including space-apart radiation regions and a process for forming the same
US20070181648A1 (en) * 2005-12-29 2007-08-09 Parker Ian D Electronic device and process for forming same
US7960717B2 (en) 2005-12-29 2011-06-14 E.I. Du Pont De Nemours And Company Electronic device and process for forming same
US8680693B2 (en) 2006-01-18 2014-03-25 Lg Chem. Ltd. OLED having stacked organic light-emitting units
US20070207345A1 (en) * 2006-03-01 2007-09-06 Eastman Kodak Company Electroluminescent device including gallium complexes
US20070244320A1 (en) * 2006-03-21 2007-10-18 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light emitting element, light emitting device, and electronic device using the organometallic complex
US8999520B2 (en) 2006-03-21 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light emitting element, light emitting device, and electronic device using the organometallic complex
US9118020B2 (en) 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
US20100084647A1 (en) * 2006-04-27 2010-04-08 Kondakova Marina E Electroluminescent devices including organic eil layer
EP2355198A1 (en) 2006-05-08 2011-08-10 Global OLED Technology LLC OLED electron-injecting layer
US20080284317A1 (en) * 2007-05-17 2008-11-20 Liang-Sheng Liao Hybrid oled having improved efficiency
US20080284318A1 (en) * 2007-05-17 2008-11-20 Deaton Joseph C Hybrid fluorescent/phosphorescent oleds
US20080305361A1 (en) * 2007-06-05 2008-12-11 Semiconductor Energy Laboratory Co., Ltd. Organometallic Complex, and Light-Emitting Material, Light-Emitting Element, Light-Emitting Device and Electronic Device
US20080315753A1 (en) * 2007-06-20 2008-12-25 Liang-Sheng Liao Phosphorescent oled having double exciton-blocking layers
US8034465B2 (en) 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
US8628862B2 (en) 2007-09-20 2014-01-14 Basf Se Electroluminescent device
US20100277060A1 (en) * 2007-09-20 2010-11-04 Basf Se Electroluminescent device
US8067100B2 (en) 2007-10-04 2011-11-29 Universal Display Corporation Complexes with tridentate ligands
US20090092854A1 (en) * 2007-10-04 2009-04-09 Entire Interest Complexes with tridentate ligands
US8383249B2 (en) 2007-10-04 2013-02-26 Universal Display Corporation Complexes with tridentate ligands
US20090115322A1 (en) * 2007-10-04 2009-05-07 Walters Robert W Complexes with tridentate ligands
US20090162612A1 (en) * 2007-12-19 2009-06-25 Hatwar Tukaram K Oled device having two electron-transport layers
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
US9138771B2 (en) 2008-05-19 2015-09-22 E I Du Pont De Nemours And Company Apparatus and method for solution coating thin layers
US20110086164A1 (en) * 2008-05-19 2011-04-14 Lang Charles D Apparatus and method for solution coating thin layers
US8324800B2 (en) 2008-06-12 2012-12-04 Global Oled Technology Llc Phosphorescent OLED device with mixed hosts
US20090309487A1 (en) * 2008-06-12 2009-12-17 Royster Jr Tommie L Phosphorescent oled device with mixed hosts
US20100052516A1 (en) * 2008-08-28 2010-03-04 Xiaofan Ren Emitting complex for electroluminescent devices
US8247088B2 (en) 2008-08-28 2012-08-21 Global Oled Technology Llc Emitting complex for electroluminescent devices
EP2161272A1 (en) 2008-09-05 2010-03-10 Basf Se Phenanthrolines
US20110223340A1 (en) * 2008-11-19 2011-09-15 E. I. Du Pont De Nemours And Company Electro-form nozzle apparatus and method for solution coating
US8702202B2 (en) 2008-12-27 2014-04-22 E. I. Du Pont De Nemours And Company Apparatus and method for preventing splatter for continuous printing
US20100188459A1 (en) * 2008-12-27 2010-07-29 E. I. Du Pont De Nemours And Company. Apparatus and method for preventing splatter for continuous printing
US20100243959A1 (en) * 2009-03-31 2010-09-30 Semiconductor Energy Laboratory Co., Ltd. Derivative With Heteroaromatic Ring, and Light-Emitting Element, Light-Emitting Device, Lighting Device, and Electronic Device Using Derivative With Heteroaromatic Ring
US8551625B2 (en) 2009-03-31 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Derivative with heteroaromatic ring, and light-emitting element, light-emitting device, lighting device, and electronic device using derivative with heteroaromatic ring
US9028979B2 (en) 2009-06-18 2015-05-12 Basf Se Phenanthroazole compounds as hole transporting materials for electro luminescent devices
US20110193066A1 (en) * 2009-08-13 2011-08-11 E. I. Du Pont De Nemours And Company Current limiting element for pixels in electronic devices
WO2012041851A1 (en) 2010-09-29 2012-04-05 Basf Se Security element
US9310766B2 (en) 2010-09-29 2016-04-12 Basf Se Security element
WO2012045710A1 (en) 2010-10-07 2012-04-12 Basf Se Phenanthro[9,10-b]furans for electronic applications
US9079872B2 (en) 2010-10-07 2015-07-14 Basf Se Phenanthro[9, 10-B]furans for electronic applications
US9954193B2 (en) * 2011-07-12 2018-04-24 Hitachi, Ltd. Material for forming organic light-emitting layer, coating liquid for forming organic light-emitting element, organic light-emitting element and light source device, and method for manufacturing same
US20140138663A1 (en) * 2011-07-12 2014-05-22 Hitachi, Ltd. Material for forming organic light-emitting layer, coating liquid for forming organic light-emitting element, organic light-emitting element and light source device, and method for manufacturing same
KR101553590B1 (en) 2013-03-22 2015-09-18 주식회사 네패스 Process for the preparation of ligand of blue phosphorescence
US9586909B2 (en) 2013-11-28 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Compound of synthetic intermediate
US9231217B2 (en) 2013-11-28 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Synthesis method of organometallic complex, synthesis method of pyrazine derivative, 5,6-diaryl-2-pyrazyl triflate, light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date Type
EP1431289A2 (en) 2004-06-23 application
EP1431288A3 (en) 2008-12-24 application
US20050165235A1 (en) 2005-07-28 application
JP5536830B2 (en) 2014-07-02 grant
EP1431289B1 (en) 2013-01-02 grant
US20030197183A1 (en) 2003-10-23 application
CN1449640A (en) 2003-10-15 application
US7161172B2 (en) 2007-01-09 grant
CN100438123C (en) 2008-11-26 grant
CA2411624A1 (en) 2002-01-10 application
EP1431288A2 (en) 2004-06-23 application
JP2012176981A (en) 2012-09-13 application
JP2012176982A (en) 2012-09-13 application
EP1424382A2 (en) 2004-06-02 application
EP1431289A3 (en) 2008-12-24 application
US20040116696A1 (en) 2004-06-17 application
JP5174310B2 (en) 2013-04-03 grant
JP2004503059A (en) 2004-01-29 application
JP2012167124A (en) 2012-09-06 application
EP1295514A2 (en) 2003-03-26 application
WO2002002714A2 (en) 2002-01-10 application
JP5576431B2 (en) 2014-08-20 grant
KR20030011936A (en) 2003-02-11 application
DE60121950D1 (en) 2006-09-14 grant
US6979739B2 (en) 2005-12-27 grant
KR100838010B1 (en) 2008-06-12 grant
DE60121950T2 (en) 2007-03-15 grant
EP1424382A3 (en) 2008-12-24 application
WO2002002714A3 (en) 2002-10-24 application
EP1295514B1 (en) 2006-08-02 grant
US20050095457A1 (en) 2005-05-05 application
JP5615322B2 (en) 2014-10-29 grant

Similar Documents

Publication Publication Date Title
US6939624B2 (en) Organometallic compounds and emission-shifting organic electrophosphorescence
US7332232B2 (en) OLEDs utilizing multidentate ligand systems
US7087321B2 (en) Organic light emitting devices having reduced pixel shrinkage
US7220495B2 (en) Luminescence device, display apparatus and metal coordination compound
US6916554B2 (en) Organic light emitting materials and devices
US20040086743A1 (en) Organometallic compounds for use in electroluminescent devices
US20050170206A1 (en) OLEDs utilizing multidentate ligand systems
US7338722B2 (en) Phenyl and fluorenyl substituted phenyl-pyrazole complexes of Ir
US20060008673A1 (en) Electroluminescent efficiency
US20040091738A1 (en) Organic light emitting materials and devices
US20060220004A1 (en) Metal complexes
US20060280965A1 (en) Triphenylene hosts in phosphorescent light emitting diodes
US20070051944A1 (en) Organic electroluminescent element
US20040121184A1 (en) Organic light emitting materials and devices
US20110089407A1 (en) Electroluminiscent metal complexes with dibenzo[f,h] quinoxalines
US20040102632A1 (en) Organic light emitting materials with anionic ligand
WO2006014599A2 (en) Stable and efficient electroluminescent materials
WO2008073440A2 (en) Cross-linkable iridium complexes and organic light-emitting devices using the same
US6875523B2 (en) Photoactive lanthanide complexes with phosphine oxides, phosphine oxide-sulfides, pyridine N-oxides, and phosphine oxide-pyridine N-oxides, and devices made with such complexes
US20070292713A9 (en) Electroluminescent iridium compounds with fluorinated phenylpyridine ligands, and devices made with such compounds
JP2002235076A (en) Transition metal complex and light emission element material comprising the same, and light emission element
WO2009073245A1 (en) Light-emitting organometallic complexes
US20050221115A1 (en) Light emitting device and display apparatus using same
US20070003789A1 (en) Stable and efficient electroluminescent materials
US20040068115A1 (en) Charge transport compositions and electronic devices made with such compositions

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRUSHIN, VLADIMIR;PETROV, VIACHESLAV A.;WANG, YING;REEL/FRAME:012540/0501;SIGNING DATES FROM 20010906 TO 20010910