US20020079509A1 - Novel lateral double diffused metal oxide semiconductor device - Google Patents
Novel lateral double diffused metal oxide semiconductor device Download PDFInfo
- Publication number
- US20020079509A1 US20020079509A1 US10/001,119 US111901A US2002079509A1 US 20020079509 A1 US20020079509 A1 US 20020079509A1 US 111901 A US111901 A US 111901A US 2002079509 A1 US2002079509 A1 US 2002079509A1
- Authority
- US
- United States
- Prior art keywords
- region
- insulating layer
- gate insulating
- length
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductors Substances 0.000 title claims abstract description 35
- 229910044991 metal oxides Inorganic materials 0.000 title description 3
- 150000004706 metal oxides Chemical class 0.000 title description 3
- 239000010410 layers Substances 0.000 claims abstract description 78
- 239000000758 substrates Substances 0.000 claims abstract description 44
- 239000002019 doping agents Substances 0.000 claims abstract description 31
- 239000007943 implant Substances 0.000 description 15
- 230000015556 catabolic process Effects 0.000 description 11
- 238000000034 methods Methods 0.000 description 6
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical group   [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound   [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 239000012212 insulators Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 materials Substances 0.000 description 3
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphorous acid Chemical group   OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic Chemical compound   [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagrams Methods 0.000 description 2
- 238000005755 formation reactions Methods 0.000 description 2
- 230000000873 masking Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 230000003071 parasitic Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound   O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound   [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910001885 silicon dioxide Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N Silicon nitride Chemical compound   N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N Tantalum nitride Chemical compound   [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N Tantalum pentoxide Chemical compound   O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound   [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound   [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 description 1
- 239000004020 conductors Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 239000000203 mixtures Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N silicate Chemical compound   [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum Chemical compound   [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910001937 tantalum pentoxide Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound   [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N titanium nitride Chemical compound   [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound   [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66537—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a self aligned punch through stopper or threshold implant under the gate region
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0856—Source regions
- H01L29/086—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
- H01L29/0852—Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
- H01L29/0873—Drain regions
- H01L29/0878—Impurity concentration or distribution
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1041—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
- H01L29/1045—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L29/00—Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/518—Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
Abstract
An embodiment of the instant invention is a transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region (well 204 of FIG. 1 a) formed in the semiconductor substrate (layer 202 of FIG. 1 a), the well region of a second conductivity type opposite that of the first conductivity type; a source region (source region 208 of FIG. 1 a) formed in the well region in the semiconductor substrate, the source region of the second conductivity type; a drain region (drain 210 of FIG. 1 a) formed in the semiconductor substrate and spaced away from the source region by a channel region (given by length L1+L2), the drain region of the second conductivity type; a conductive gate electrode (layer 218 of FIG. 1 a) disposed over the semiconductor substrate and over the channel region; a gate insulating layer (layer 214 of FIG. 1 a) disposed between the conductive gate electrode and the semiconductor substrate and having a length, the gate insulating layer comprising: a first portion of the gate insulating layer which has a first length (L1) and a first thickness; a second portion of the gate insulating layer which has a second length (L2) and a second thickness which is substantially thicker than the first thickness, the sum of the first length and the second length equalling the length of the gate insulating layer; and wherein the first portion of the gate insulating layer being situated proximate to the source region and spaced away from the drain region by the second portion of the gate insulating layer; and wherein the well region having a dopant concentration less than that of the source region and the drain region, the well region extends at least from source region towards the drain region so as to completely underlie the first portion of the gate insulating layer and to underlie at least the second portion of the gate insulating layer.
Description
- The instant invention pertains to a semiconductor device and more specifically to a lateral double diffused metal oxide semiconductor device.
- An ever present trend in semiconductor device manufacturing involves the reduction in size of devices while trying to reduce the power consumed by devices during both their “on” state and, more importantly, during their “off” state. However, while most devices on a circuit need to quite fast and they can have lower “on” state and “off” state power consumption, some devices which can handle higher powers need to be provided on the chip. For instance, a processor which needs an output which can run a small motor on a hard-disk drive or a processor which has an output that can run the windshield wiper motors on an automobile. The quicker devices, which typically consume less power, provide the computational power while the more rugged devices, which typically consume more power, supply the necessary voltage and power to run the exterior motors. In the past, the output of the processor was connected to a series of power devices, which were on a different chip, and the power devices would drive the motors. However, it is considerably less expensive and higher performance can be derived from having both the lower power, faster processing devices on the same substrate as the higher power, more rugged power devices (commonly referred to as intelligent power devices).
- A problem with this technique is that it can be quite difficult to simultaneously fabricate the lower power, faster devices with the higher power, rugged devices. For instance, the gate dielectric on the lower power devices needs to be quite thin so that threshold voltage of the device remains low and the switching speed of the device remains quite fast, but in order to be able to handle the larger voltages of the higher power, the higher power devices need a thicker gate dielectric. In addition, power devices typically need a more complex series of doped regions so as to provide low resistance current paths without risking the chance of “latching up”.
- Another problem with the integration of logic devices with the power devices involves the voltage supplied to each of the devices. Typically, the power devices require higher supply voltages so as to properly turn the devices on and to run them efficiently. It is desirable to fabricate a power device which can efficiently supply the appropriate power needed and having a higher breakdown voltage (BV) while having lower on resistance (Rsp), lower threshold voltage (VT), and faster switching times.
- An embodiment of the instant invention is a transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region formed in the semiconductor substrate, the well region of a second conductivity type opposite that of the first conductivity type; a source region formed in the well region in the semiconductor substrate, the source region of the second conductivity type; a drain region formed in the semiconductor substrate and spaced away from the source region by a channel region, the drain region of the second conductivity type; a conductive gate electrode disposed over the semiconductor substrate and over the channel region; a gate insulating layer disposed between the conductive gate electrode and the semiconductor substrate and having a length, the gate insulating layer comprising: a first portion of the gate insulating layer which has a first length and a first thickness; a second portion of the gate insulating layer which has a second length and a second thickness which is substantially thicker than the first thickness, the sum of the first length and the second length equalling the length of the gate insulating layer; and wherein the first portion of the gate insulating layer being situated proximate to the source region and spaced away from the drain region by the second portion of the gate insulating layer; and wherein the well region having a dopant concentration less than that of the source region and the drain region, the well region extends at least from source region towards the drain region so as to completely underlie the first portion of the gate insulating layer and to underlie at least the second portion of the gate insulating layer. Preferably, the second thickness is around 30 to 500 nm thick (more preferably around 30 to 50 nm thick—and even more preferably around 34 to 45 nm thick). The first thickness is, preferably, around 10 to 20 nm thick (more preferably around 15 nm thick).
- In an alternative embodiment, the drain region is spaced away from the well region by a second region, and dopants are introduced at a first concentration into the substrate under the first portion of the gate insulating layer and are introduced into the second region at a second concentration level which is much less than the first concentration level. Preferably, the dopants have a substantially higher concentration under the first portion of the gate insulating layer than the second portion of the gate insulating layer. In another alternative embodiment, both of the source and drain regions are formed in the well region.
- Another embodiment of the instant invention is a transistor formed in a semiconductor substrate of a first conductivity type and having an upper surface, the transistor comprising: a well region formed at the upper surface of the semiconductor substrate and having a second conductivity type opposite that of the first conductivity type; a source region formed at the upper surface of the semiconductor substrate and within the well region, the source region formed of the second conductivity type and spaced from an edge of the well region by a first portion of the well region, which has a length; a drain region formed of the second conductivity type at the upper surface of the semiconductor substrates, the drain region spaced from the source region by a channel region, which has a length, and spaced from the well region by a second region, which has a length; a conductive gate structure situated over the upper surface of the semiconductor substrate and extending substantially the entire length of the channel region, the conductive gate structure having a substantially constant thickness across the conductive gate structure; a gate insulating layer situated between and abutting the upper surface of the semiconductor substrate and the conductive gate structure, the gate insulating layer comprised of: a first portion of the gate insulating layer which has a first length and a first thickness, the first portion of the gate insulating layer situated over a portion of the channel region and over a portion of the first portion of the well region; and a second portion of the gate insulating layer which as a second length and a second thickness which is substantially thicker than the first thickness, a portion of the second portion of the gate insulating layer situated over the remainder of the first portion of the well region and the remainder of the second portion of the gate insulating layer situated over the second portion; and wherein the ratio of the length of the first portion of the gate insulating layer and the length of the second portion of the gate insulating layer is around 0.4 to 0.6. The length of the channel region is, preferably, equal to the summation of the length of the first portion of the well region and the length of the second region. Preferably, the well region has a dopant concentration less than the dopant concentration of the source region or the drain region. The second thickness is, preferably, around 30 to 500 nm thick (more preferably around 30 to 50 nm thick—and more preferably around 34 to 45 nm thick). Preferably, the first thickness is around 10 to 20 nm thick (more preferably around 15 nm thick).
- FIG. 1a is a cross-sectional view illustrating the device structure of one embodiment of the present invention. FIG. 1b is an equivalent circuit diagram of the transistor of FIG. 1a.
- FIGS. 2a and 2 b are graphs illustrating data for the device of FIG. 1. FIG. 2a is a plot of the ratio of L1/L2 versus Rsp, VT, and BV. FIG. 2b is a graph illustrating Vgs versus Rsp for various proportions of thin gate oxide regions (L1) versus thick gate oxide regions (L2).
- FIG. 3 is a cross-sectional view illustrating the device structure of another embodiment of the instant invention.
- FIG. 4 is a graph illustrating dopant concentration versus distance in the substrate for thin gate dielectric, thick gate dielectric, and split-gate dielectric devices.
- FIGS. 5a, 5 b, and 5 c are graphs illustrating data measured from the device of FIG. 3. FIG. 5a is a graph of breakdown voltage versus L1/L2 for various gate lengths (L1+L2). FIG. 5b is a graph of Rsp versus L1/L2 for various gate lengths. FIG. 5c is a graph of VT versus L1/L2 for various gate lengths.
- Common reference numerals are used throughout the following Detailed Description to designate like or equivalent features. The figures are not drawn to scale, they are merely provided for illustrative purposes to describe various aspects of the embodiments of the instant invention.
- Basically, the instant invention is a lateral double diffused metal oxide semiconductor device (LDMOS) which has a gate structure, comprised of a thin gate dielectric portion (with a length, L1) and a thick gate dielectric portion (with a length, L2) situated between the substrate (or epitaxial layer situated on a substrate) and the conductive gate electrode. The device of the instant invention will have beneficial Vgs drive performance (provided by the thin gate dielectric portion), yet have good breakdown voltage which is provided by the thicker gate dielectric portions. Device performance (specifically Rsp) is improved over traditional thick gate dielectric transistors where the ratio of L1 to L2 is around 0.4 with standard logic-type supply voltages (specifically Vgs around 5.0 volts). Furthermore, the device of the instant invention has greater breakdown voltage as compared to standard thin gate dielectric devices.
- The following descriptions of the instant invention will revolve around the devices of FIGS. 1a and 3. While these descriptions specify a certain dopant type for certain regions, one of ordinary skill in the art knows that the dopant types can be changed so as to go from an NMOS device to a PMOS device and vice versa. In addition, while a fabrication methodology is described below, any fabrication methodology may be used.
- Referring to the embodiment of the instant invention as illustrated in FIGS. 1a and 2 a-2 b, layer 201 may be one layer, which is the substrate, comprised of single-crystal silicon and region 202 would be a deep well region implanted into substrate 201, or layer 201 may be comprised of single crystal silicon while layer 202 is comprised of an epitaxial silicon layer formed on the single-crystal substrate 201. If layer 202 is merely a doped region formed in substrate 201, then it, preferably, is doped with n-type dopants using a conventional blanket implantation step. However, configuring the device (as is illustrated in FIG. 1a) with layer 201 as the substrate and layer 202 as an epitaxial silicon layer may be easier because the epitaxial layer can be in-situ doped with n-type dopants as the epitaxial layer is formed. Next, Pwell 204 is formed by masking off a portion of the substrate and implanting p-type dopants into the substrate. Preferably, Pwell 204 is doped to around 1×1017 to 1×1018 cm−3 with boron. An insulating layer is blanketly formed. Preferably, the insulating layer will be comprised of silicon dioxide, silicon nitride, an oxynitride stack, a high dielectric constant material (such as PZT, BST, a silicate, or tantalum pentoxide), or a combination of the above, and it will be around 15 to 30 nm thick (more preferably around 15 to 27.5 nm thick). A patterning layer is formed so that the thicker portion of gate insulator 214 is masked off along with the rest of the wafer except for the portion where the thinner portion of gate insulator 214 will be formed. Once these portions are masked off, a low-voltage VT implant is performed to form implant region 220. Preferably, the implant is accomplished using boron with a dosage around 5×1011 to 5×1012 cm−3 and an energy around 20 keV. The resulting dosage of implant region 220 is preferably on the order of 1×1017 to 5×1017 cm−3. As is shown in FIG. 1a, dopants 220, preferably, have a higher concentration under the thin gate dielectric portion and have a much lower concentration (maybe near substantially no implanted VT adjust dopants as you move from the thin dielectric portion to the thicker dielectric portion). This is illustrated in FIG. 4 which basically shows the VT adjust implant for a device with only a thin dielectric, only a thick dielectric, and the device of the instant invention.
- The portion of the dielectric layer which is situated in the region where the thinner portion of gate dielectric214 is to be formed is removed, the portion above where the thicker portion of gate dielectric 214 is to be formed is to remain in place, and the remainder of the dielectric layer may or may not be removed. This may be accomplished using a standard deglaze step or any other conventional dielectric removal step. After the removal step, all of the masking layer is removed and another dielectric formation step is performed. This dielectric layer is preferably comprised of the same material and is formed in the same fashion as the prior dielectric layer (preferably a thermally grown silicon dioxide layer). This dielectric layer is preferably on the order of 10 to 20 nm thick (more preferably around 15 nm thick). The result of this formation step will be a thin dielectric portion with a length, L1, and a thick dielectric portion with a length, L2. The thin dielectric portion will preferably have a thickness of around 10 to 20 nm (more preferably around 15 nm) and the thicker portions will have a thickness around 30 to 45 nm (more preferably around 30 to 42.5 nm).
- The gate electrode218 is formed by blanketly forming a layer of polycrystalline silicon (either doped in-situ or doped in a later implantation step) or other conductor (such as tungsten, tungsten nitride, tantalum, tantalum nitride, aluminum, titanium, or titanium nitride), and then patterning and etching away the excess material so as to form conductive gate structure 218. Using conventional implantation techniques, lightly doped drain (LDD) regions 211 and 212 are formed using an implant of ions at a dosage of around 1×1013 to 1×1014 cm−3 with an implantation energy of around 20 to 80 keV. In this embodiment of the instant invention (i.e. an n-type LDMOS device), the dopant is phosphorous, however, for a p-type device the dopant would be comprised of boron.
- Sidewall insulators216 are formed using conventional techniques. Next, source region 208 and drain region 210 are formed using the sidewall spacers for alignment. Since the device depicted in FIG. 1 is an n-type device, for example, source region 208 and drain region 210 are doped with n+ dopants (p+ type dopants would be used for a p-type device). Preferably, source region 208 and drain region 210 are doped with arsenic or phosphorous at a dosage around 1×1015 to 5×1015 cm−3 with an implant energy around 50 to 150 keV. Like other implanted regions, the dopants diffuse to some extent to form graded junctions and to diffuse the source region 208 and drain region 210 at least partially under conductive gate structure 218 during subsequent higher temperature steps (for example, thermal steps which are in excess of around 700 to 1150 C.). Doped region 206 is preferably doped with a dopant type opposite that of source region 208 if it is formed at all. Preferably, doped region 206 is doped with boron at a dosage around 1×1015 to 5×1015 with an implant energy around 10 to 30. Doped region 206 is beneficial because it provides a connection from the backgate to the source so as to reduce the parasitic bipolar affect formed by a parasitic NPN transistor from between regions 208, 204, 210, respectively. It is important to situate region 206 as close to source region 208 so as to reduce the amount of resistance between region 204 and 206.
- An important feature of this embodiment of the instant invention is that Pwell204 extends completely under the portion of the gate structure overlying the thin portion of the gate dielectric and extends partially under the gate structure overlying the thicker gate dielectric. However, Pwell 204 does not extend to drain region 210 or even to LDD region 211. This is important because an acceptably high breakdown voltage. In addition, the VT implant situated under the portion of the gate electrode which overlies the thin gate dielectric has a higher concentration than does the other portions of the implant. This is important to have an acceptably low threshold voltage.
- An equivalent circuit diagram of the device of FIG. 1a is illustrated in FIG. 1b. Device 10 illustrates the thick gate dielectric portion of the device and device 12 illustrates the thin gate dielectric portion of the device. Variable resistance 14 is shown between device 10 and drain 210. The resistance of variable resistance 14 depends on the doping of LDD 211, drain region 210, well region 204, dopant region 220 and region 202. The portion of the channel of the device looks like it has a length of (L1+L2). However, due to the doping levels of the device (more specifically, dopants 220), the effective channel is given, pretty much, by L3.
- FIGS. 2a and 2 b illustrate advantages of the split gate dielectric of the instant invention. FIG. 2a is a graph of Rsp, VT, and breakdown voltage versus the ratio of L1/L2. As can be seen by this graph, for ratios of L1/L2 between around 0.3 to 0.6 (more preferably around 0.4 to 0.6) the threshold voltage, VT, and the value of Rsp decrease while the breakdown voltage remains fairly high. This is desired. Optimally, the device of the instant invention would have minimum values for Rsp and VT while having a fairly high breakdown voltage. The lower values of Rsp and VT (as compared to a device which only has a thick gate dielectric) are obtained from the thin gate dielectric portion and the tailoring of the VT implant such that the concentration of the implant is greater (preferably around 1×1017 cm−3) under the thin gate dielectric portion and lower (preferably around 1×1016 cm−3) under the thick gate dielectric portion. The greater breakdown voltages (as compared to a device which only has a thin gate dielectric portion) is achieved from having a specific proportion of the gate structure having a thicker gate dielectric.
- FIG. 2b is a graph of Rsp versus Vgs for various values of L1/L2. This graph illustrates that for values of L1/L2 that are greater than around 0.4, the value of Rsp remains relatively constant for differing values of Vgs.
- FIG. 4 is a graph illustrated simulated doping profiles along the channel for a thin-gate dielectric LDMOS device, a thick-gate LDMOS device and the LDMOS device of the instant invention. The difference in the concentration for the thin-gate and thick gate devices is the low voltage VT adjust implant.
- Basically, the transistor of this embodiment of the instant invention (as illustrated in FIGS. 1a and 1 c) has the thin gate oxide completely situated over the MOS inversion channel. Whereas only part of the thick gate oxide is situated over the MOS inversion channel. In essence the transistor of the instant invention is a true step gate oxide with the change in gate oxide thick occuring directly over the channel (whose length is given as L3) over the transistor.
- Referring to the embodiment of FIG. 3, MOS device300 utilizes the same gate structure of the instant invention as that LDMOS device of FIG. 1. Like the device of FIG. 1, the following description of device 300 is provided assuming that the device is an n-type device. However, device 300 may be an n-type device or a p-type device. One of ordinary skill in the art would know on the teachings of this application how to convert the n-type device into a p-type device. As was stated above, device 300 utilizes the gate structure of the instant invention wherein a portion of the gate dielectric is thin (preferably around 10 to 20 nm thick—more preferably around 15 nm thick) and has a length, L1, and another portion is thick (preferably around 30 to 45 nm thick—more preferably around 34 to 40 nm thick) and has a length, L2.
- Preferably, if device300 is an NMOS device, substrate 202 is doped to be of either n-type or p-type and epitaxial layer 304 is formed to be a p type well. Source region 208 and drain region 210 are, preferably, implanted with n-type (such as phosphorous or arsenic) at an implant energy of around 50 to 150 keV with a dopant dosage around 1×1015 to 5×1015 cm−3. LDD regions 212 and 211 are preferably formed from n-type dopants and are preferably more lightly doped than source region 208 and drain region 210. The threshold voltage implant 220 has, preferably, a greater concentration (preferably around 1×1017 to 5×1017 cm−3) of dopants under the thin gate dielectric portion and a lower (preferably around 1×1016 to 5×1016 cm−3), may be even graded, concentration of dopants under the thick gate dielectric portion.
- Just like the LDMOS structure of the instant invention, the MOS structure of the instant is advantageous because it provides the power performance (i.e. higher breakdown voltages) of a power device while still having the performance of the faster and lower power logic devices (i.e. lower Rsp and lower threshold voltage).
- FIGS. 5a, 5 b, and 5 c are graphs of measured data comparing the length of the thin gate dielectric portion (L1) versus breakdown voltage, Rsp and VT, respectively. The graphs are provided for three different total gate lengths. More specifically, with a gate length of 0.72 microns, 0.9 microns, and 1.08 microns.
- Although specific embodiments of the present invention are herein described, they are not to be construed as limiting the scope of the invention. Many embodiments of the present invention will become apparent to those skilled in the art in light of methodology of the specification. The scope of the invention is limited only by the claims appended.
Claims (18)
1. A transistor formed on a semiconductor substrate of a first conductivity type and having an upper surface, said transistor comprising:
a well region formed in said semiconductor substrate, said well region of a second conductivity type opposite that of the first conductivity type;
a source region formed in said well region in said semiconductor substrate, said source region of said second conductivity type;
a drain region formed in said semiconductor substrate and spaced away from said source region by a channel region, said drain region of said second conductivity type;
a conductive gate electrode disposed over said semiconductor substrate and over said channel region;
a gate insulating layer disposed between said conductive gate electrode and said semiconductor substrate and having a length, said gate insulating layer comprising:
a first portion of said gate insulating layer which has a first length and a first thickness;
a second portion of said gate insulating layer which has a second length and a second thickness which is substantially thicker than said first thickness, the sum of said first length and said second length equalling the length of said gate insulating layer;
and wherein said first portion of said gate insulating layer being situated proximate to said source region and spaced away from said drain region by said second portion of said gate insulating layer;
and wherein said well region having a dopant concentration less than that of the source region and the drain region, said well region extends at least from source region towards said drain region so as to completely underlie said first portion of said gate insulating layer and to underlie at least said second portion of said gate insulating layer.
2. The transistor of claim 1 , wherein said second thickness is around 30 to 500 nm thick.
3. The transistor of claim 1 , wherein said second thickness is around 30 to 50 nm thick.
4. The transistor of claim 1 , wherein said second thickness is around 34 to 45 nm thick.
5. The transistor of claim 1 , wherein said first thickness is around 10 to 20 nm thick.
6. The transistor of claim 1 , wherein said first thickness is around 15 nm thick.
7. The transistor of claim 1 , wherein said drain region is spaced away from said well region by a second region.
8. The method of claim 7 , wherein dopants are introduced at a first concentration into said substrate under said first portion of said gate insulating layer and are introduced into said second region at a second concentration level which is much less than said first concentration level.
9. The method of claim 8 , wherein said dopants have a substantially higher concentration under said first portion of said gate insulating layer than said second portion of said gate insulating layer.
10. The transistor of claim 1 , wherein both of said source and drain regions are formed in said well region.
11. A transistor formed in a semiconductor substrate of a first conductivity type and having an upper surface, said transistor comprising:
a well region formed at said upper surface of said semiconductor substrate and having a second conductivity type opposite that of said first conductivity type;
a source region formed at said upper surface of said semiconductor substrate and within said well region, said source region formed of said second conductivity type and spaced from an edge of said well region by a first portion of said well region, which has a length;
a drain region formed of said second conductivity type at said upper surface of said semiconductor substrates, said drain region spaced from said source region by a channel region, which has a length, and spaced from said well region by a second region, which has a length;
a conductive gate structure situated over said upper surface of said semiconductor substrate and extending substantially the entire length of said channel region, said conductive gate structure having a substantially constant thickness across the conductive gate structure;
a gate insulating layer situated between and abutting said upper surface of said semiconductor substrate and said conductive gate structure, said gate insulating layer comprised of:
a first portion of said gate insulating layer which has a first length and a first thickness, said first portion of said gate insulating layer situated over a portion of said channel region and over a portion of said first portion of said well region; and
a second portion of said gate insulating layer which as a second length and a second thickness which is substantially thicker than said first thickness, a portion of said second portion of said gate insulating layer situated over the remainder of said first portion of said well region and the remainder of said second portion of said gate insulating layer situated over said second portion;
and wherein the ratio of said length of said first portion of said gate insulating layer and said length of said second portion of said gate insulating layer is around 0.4 to 0.6.
12. The method of claim 11 , wherein the length of said channel region is equal to the summation of the length of said first portion of said well region and the length of said second region.
13. The transistor of claim 11 , wherein said well region has a dopant concentration less than the dopant concentration of said source region or said drain region.
14. The transistor of claim 11 , wherein said second thickness is around 30 to 500 nm thick.
15. The transistor of claim 11 , wherein said second thickness is around 30 to 50 nm thick.
16. The transistor of claim 11 , wherein said second thickness is around 34 to 45 nm thick.
17. The transistor of claim 11 , wherein said first thickness is around 10 to 20 nm thick.
18. The transistor of claim 11 , wherein said first thickness is around 15 nm thick.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11089698P true | 1998-12-04 | 1998-12-04 | |
US09/454,934 US6441431B1 (en) | 1998-12-04 | 1999-12-03 | Lateral double diffused metal oxide semiconductor device |
US10/001,119 US20020079509A1 (en) | 1998-12-04 | 2001-11-15 | Novel lateral double diffused metal oxide semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/001,119 US20020079509A1 (en) | 1998-12-04 | 2001-11-15 | Novel lateral double diffused metal oxide semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US09/454,934 Division US6441431B1 (en) | 1998-12-04 | 1999-12-03 | Lateral double diffused metal oxide semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020079509A1 true US20020079509A1 (en) | 2002-06-27 |
Family
ID=26808484
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/454,934 Expired - Lifetime US6441431B1 (en) | 1998-12-04 | 1999-12-03 | Lateral double diffused metal oxide semiconductor device |
US10/001,119 Abandoned US20020079509A1 (en) | 1998-12-04 | 2001-11-15 | Novel lateral double diffused metal oxide semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/454,934 Expired - Lifetime US6441431B1 (en) | 1998-12-04 | 1999-12-03 | Lateral double diffused metal oxide semiconductor device |
Country Status (1)
Country | Link |
---|---|
US (2) | US6441431B1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006033692A1 (en) * | 2006-07-20 | 2008-01-31 | Austriamicrosystems Ag | Laterally diffused metal oxide semiconductor transistor for use as high voltage transistor, has structured dielectric zone coated on semiconductor body over drift zone and under gate, where dielectric zone has adapted edge profile |
US7329928B1 (en) * | 2003-05-16 | 2008-02-12 | Transmeta Corporation | Voltage compensated integrated circuits |
DE102009051745A1 (en) * | 2009-11-03 | 2011-05-05 | Austriamicrosystems Ag | High-voltage transistor with multiple dielectric and manufacturing process |
US20120273883A1 (en) * | 2011-04-28 | 2012-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | High voltage devices and methods for forming the same |
US20140346598A1 (en) * | 2013-05-22 | 2014-11-27 | Silergy Semiconductor Technology (Hangzhou) Ltd | High voltage pmos (hvpmos) transistor with a composite drift region and manufacture method thereof |
US20150061011A1 (en) * | 2013-08-30 | 2015-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mos transistor |
CN105118855A (en) * | 2010-03-10 | 2015-12-02 | 台湾积体电路制造股份有限公司 | Semiconductor device having multi-thickness gate dielectric |
US20170018557A1 (en) * | 2014-06-20 | 2017-01-19 | Infineon Technologies Ag | Method for processing a carrier, a carrier, and a split gate field effect transistor structure |
US9634014B2 (en) * | 2015-03-19 | 2017-04-25 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Method of making a programmable cell and structure thereof |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6551883B1 (en) * | 2001-12-27 | 2003-04-22 | Silicon Integrated Systems Corp. | MOS device with dual gate insulators and method of forming the same |
US6734491B1 (en) * | 2002-12-30 | 2004-05-11 | Texas Instruments Deutschland Gmbh | EEPROM with reduced manufacturing complexity |
US7235451B2 (en) * | 2003-03-03 | 2007-06-26 | Texas Instruments Incorporated | Drain extended MOS devices with self-aligned floating region and fabrication methods therefor |
US6900101B2 (en) * | 2003-06-13 | 2005-05-31 | Texas Instruments Incorporated | LDMOS transistors and methods for making the same |
US7005354B2 (en) * | 2003-09-23 | 2006-02-28 | Texas Instruments Incorporated | Depletion drain-extended MOS transistors and methods for making the same |
KR100488196B1 (en) * | 2003-09-29 | 2005-05-09 | 삼성전자주식회사 | Transistor having Raised Drain and Method of forming the same |
US7220633B2 (en) * | 2003-11-13 | 2007-05-22 | Volterra Semiconductor Corporation | Method of fabricating a lateral double-diffused MOSFET |
US7074659B2 (en) * | 2003-11-13 | 2006-07-11 | Volterra Semiconductor Corporation | Method of fabricating a lateral double-diffused MOSFET (LDMOS) transistor |
US7163856B2 (en) | 2003-11-13 | 2007-01-16 | Volterra Semiconductor Corporation | Method of fabricating a lateral double-diffused mosfet (LDMOS) transistor and a conventional CMOS transistor |
US7238986B2 (en) * | 2004-05-03 | 2007-07-03 | Texas Instruments Incorporated | Robust DEMOS transistors and method for making the same |
US7282410B2 (en) * | 2004-07-21 | 2007-10-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Flash memory process with high voltage LDMOS embedded |
US7473625B2 (en) * | 2004-07-22 | 2009-01-06 | Macronix International Co., Ltd. | LDMOS device and method of fabrication |
US7405443B1 (en) | 2005-01-07 | 2008-07-29 | Volterra Semiconductor Corporation | Dual gate lateral double-diffused MOSFET (LDMOS) transistor |
US7345341B2 (en) * | 2006-02-09 | 2008-03-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | High voltage semiconductor devices and methods for fabricating the same |
US7855414B2 (en) * | 2006-07-28 | 2010-12-21 | Broadcom Corporation | Semiconductor device with increased breakdown voltage |
US20080246080A1 (en) * | 2006-07-28 | 2008-10-09 | Broadcom Corporation | Shallow trench isolation (STI) based laterally diffused metal oxide semiconductor (LDMOS) |
US20080164537A1 (en) * | 2007-01-04 | 2008-07-10 | Jun Cai | Integrated complementary low voltage rf-ldmos |
JP4938542B2 (en) * | 2007-04-27 | 2012-05-23 | トヨタ自動車株式会社 | Vehicle speed control device for vehicle |
US8354710B2 (en) * | 2008-08-08 | 2013-01-15 | Infineon Technologies Ag | Field-effect device and manufacturing method thereof |
US8203188B2 (en) * | 2009-05-22 | 2012-06-19 | Broadcom Corporation | Split gate oxides for a laterally diffused metal oxide semiconductor (LDMOS) |
US8274114B2 (en) | 2010-01-14 | 2012-09-25 | Broadcom Corporation | Semiconductor device having a modified shallow trench isolation (STI) region and a modified well region |
US8598000B2 (en) | 2010-03-30 | 2013-12-03 | Volterra Semiconductor Corporation | Two step poly etch LDMOS gate formation |
US9293577B2 (en) | 2010-03-30 | 2016-03-22 | Volterra Semiconductor LLC | LDMOS with no reverse recovery |
US20110241113A1 (en) * | 2010-03-31 | 2011-10-06 | Zuniga Marco A | Dual Gate LDMOS Device with Reduced Capacitance |
US8283722B2 (en) | 2010-06-14 | 2012-10-09 | Broadcom Corporation | Semiconductor device having an enhanced well region |
JP5582030B2 (en) * | 2010-12-28 | 2014-09-03 | 富士通セミコンダクター株式会社 | MOS transistor and manufacturing method thereof |
US9123807B2 (en) | 2010-12-28 | 2015-09-01 | Broadcom Corporation | Reduction of parasitic capacitance in a semiconductor device |
DE102011087845B4 (en) * | 2011-12-06 | 2015-07-02 | Infineon Technologies Ag | Lateral transistor component and method for the production thereof |
US20140264588A1 (en) * | 2013-03-14 | 2014-09-18 | Taiwan Semiconductor Manufacturing Co. Ltd. | Metal Oxide Semiconductor Field-Effect Transistor (MOSFET) with Step Oxide |
KR101923763B1 (en) * | 2015-03-13 | 2018-11-30 | 매그나칩 반도체 유한회사 | Electrostatic Discharge Protection Circuit and Device for Level Shift Circuit |
US9978848B2 (en) * | 2015-07-17 | 2018-05-22 | Avago Technologies General Ip (Singapore) Pte. Ltd. | UTBB FDSOI split gate devices |
US20180138307A1 (en) * | 2016-11-17 | 2018-05-17 | Globalfoundries Inc. | Tunnel finfet with self-aligned gate |
US10276679B2 (en) * | 2017-05-30 | 2019-04-30 | Vanguard International Semiconductor Corporation | Semiconductor device and method for manufacturing the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382536A (en) * | 1993-03-15 | 1995-01-17 | Texas Instruments Incorporated | Method of fabricating lateral DMOS structure |
DE69505348T2 (en) * | 1995-02-21 | 1999-03-11 | St Microelectronics Srl | High voltage MOSFET with field plate electrode and method of manufacture |
KR0161398B1 (en) * | 1995-03-13 | 1998-12-01 | 김광호 | High voltage transistor and its fabrication |
-
1999
- 1999-12-03 US US09/454,934 patent/US6441431B1/en not_active Expired - Lifetime
-
2001
- 2001-11-15 US US10/001,119 patent/US20020079509A1/en not_active Abandoned
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329928B1 (en) * | 2003-05-16 | 2008-02-12 | Transmeta Corporation | Voltage compensated integrated circuits |
US8461891B1 (en) | 2003-05-16 | 2013-06-11 | Robert Fu | Voltage compensated integrated circuits |
DE102006033692B4 (en) * | 2006-07-20 | 2011-01-05 | Austriamicrosystems Ag | A method of fabricating a patterned dielectric for an LDMOS transistor |
DE102006033692A1 (en) * | 2006-07-20 | 2008-01-31 | Austriamicrosystems Ag | Laterally diffused metal oxide semiconductor transistor for use as high voltage transistor, has structured dielectric zone coated on semiconductor body over drift zone and under gate, where dielectric zone has adapted edge profile |
US8836026B2 (en) | 2009-11-03 | 2014-09-16 | Ams Ag | High-voltage transistor having multiple dielectrics and production method |
DE102009051745A1 (en) * | 2009-11-03 | 2011-05-05 | Austriamicrosystems Ag | High-voltage transistor with multiple dielectric and manufacturing process |
DE102009051745B4 (en) * | 2009-11-03 | 2017-09-21 | Austriamicrosystems Ag | High-voltage transistor with multiple dielectric and manufacturing process |
CN105118855A (en) * | 2010-03-10 | 2015-12-02 | 台湾积体电路制造股份有限公司 | Semiconductor device having multi-thickness gate dielectric |
US20120273883A1 (en) * | 2011-04-28 | 2012-11-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | High voltage devices and methods for forming the same |
US20140346598A1 (en) * | 2013-05-22 | 2014-11-27 | Silergy Semiconductor Technology (Hangzhou) Ltd | High voltage pmos (hvpmos) transistor with a composite drift region and manufacture method thereof |
US20150061011A1 (en) * | 2013-08-30 | 2015-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Mos transistor |
US9466715B2 (en) * | 2013-08-30 | 2016-10-11 | Taiwan Semiconductor Manufacturing Co., Ltd. | MOS transistor having a gate dielectric with multiple thicknesses |
US20170018557A1 (en) * | 2014-06-20 | 2017-01-19 | Infineon Technologies Ag | Method for processing a carrier, a carrier, and a split gate field effect transistor structure |
US9634014B2 (en) * | 2015-03-19 | 2017-04-25 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Method of making a programmable cell and structure thereof |
Also Published As
Publication number | Publication date |
---|---|
US6441431B1 (en) | 2002-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0537684B1 (en) | Improved performance lateral double-diffused MOS transistor and method of fabrication thereof | |
KR100499308B1 (en) | Short-Channel Fermi-Threshold Field Effect Transistor with a Drain Field Termination Region and Its Manufacturing Method | |
EP0661751B1 (en) | Method of making a CMOS device with high and low voltage transistors | |
US5641980A (en) | Device having a high concentration region under the channel | |
US6238960B1 (en) | Fast MOSFET with low-doped source/drain | |
US5783469A (en) | Method for making nitrogenated gate structure for improved transistor performance | |
US4788160A (en) | Process for formation of shallow silicided junctions | |
US6153455A (en) | Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer | |
US3958266A (en) | Deep depletion insulated gate field effect transistors | |
US5438007A (en) | Method of fabricating field effect transistor having polycrystalline silicon gate junction | |
JP3544833B2 (en) | Semiconductor device and manufacturing method thereof | |
US6946353B2 (en) | Low voltage high performance semiconductor devices and methods | |
US5622880A (en) | Method of making a low power, high performance junction transistor | |
US4435896A (en) | Method for fabricating complementary field effect transistor devices | |
US5489790A (en) | Static-random-access memory cell | |
US6492212B1 (en) | Variable threshold voltage double gated transistors and method of fabrication | |
US6855581B2 (en) | Method for fabricating a high-voltage high-power integrated circuit device | |
DE4340405C2 (en) | Method for producing a semiconductor device with an insulating separating layer and a well region | |
US5936278A (en) | Semiconductor on silicon (SOI) transistor with a halo implant | |
JP5030966B2 (en) | Back gate controlled SRAM with coexisting logic devices | |
US4918026A (en) | Process for forming vertical bipolar transistors and high voltage CMOS in a single integrated circuit chip | |
JP4791706B2 (en) | Split-gate metal oxide semiconductor device | |
US5998807A (en) | Integrated CMOS circuit arrangement and method for the manufacture thereof | |
US4329186A (en) | Simultaneously forming fully implanted DMOS together with enhancement and depletion mode MOSFET devices | |
US5434440A (en) | Semiconductor device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |