US20020073682A1 - Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components - Google Patents

Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components Download PDF

Info

Publication number
US20020073682A1
US20020073682A1 US09/726,929 US72692900A US2002073682A1 US 20020073682 A1 US20020073682 A1 US 20020073682A1 US 72692900 A US72692900 A US 72692900A US 2002073682 A1 US2002073682 A1 US 2002073682A1
Authority
US
United States
Prior art keywords
stack
closing die
optical fiber
strander
production line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/726,929
Other versions
US6389787B1 (en
Inventor
Jody Greenwood
David Smith
David Brittain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Research and Development Corp
Original Assignee
Corning Optical Communications LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Optical Communications LLC filed Critical Corning Optical Communications LLC
Priority to US09/726,929 priority Critical patent/US6389787B1/en
Assigned to CORNING CABLE SYSTEMS LLC reassignment CORNING CABLE SYSTEMS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BRITTAIN, DAVID K., GREENWOOD, JODY L., SMITH, DAVID H.
Priority to DE60121712T priority patent/DE60121712T2/en
Priority to EP01126424A priority patent/EP1217408B1/en
Application granted granted Critical
Publication of US6389787B1 publication Critical patent/US6389787B1/en
Publication of US20020073682A1 publication Critical patent/US20020073682A1/en
Assigned to Corning Optical Communications LLC reassignment Corning Optical Communications LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CORNING CABLE SYSTEMS LLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/449Twisting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables

Definitions

  • the present invention relates to an optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cables and, more particularly, to a rotatable closing die and a system that uses the same.
  • Fiber optic cables include at least one optical fiber that can be disposed in a common matrix coating with other optical fibers defining an optical fiber ribbon.
  • Optical fiber ribbons can be formed into a twisted stack for allowing ease of cable bending and maintaining integrity of the ribbon stack.
  • Optical fiber ribbon pay-off devices for example stranders, are typically used to define a twisted stack, the twist including a lay length or period of twist.
  • a strander typically includes spools of optical fiber ribbons, which spools are commonly termed packages.
  • Packages can be mounted to a rotating carriage of the strander.
  • optical fiber ribbons are paid off the packages and directed to a pre-wet closing die, as disclosed in U.S. Pat. No. 5,348,586.
  • the optical fiber ribbons are collected in a closing die that is shaped to receive the stacked ribbons, which shape is typically that of a generally rectangular orifice. Because the journal is mechanically coupled to the strander, the stack is twisted by rotation as it exits the closing die. The next step can be extrusion of a plastic tube about the twisted stack.
  • the stack may be mis-aligned with respect to the tube, variation in ribbon lay length can occur, and monitoring of excess ribbon length may be difficult.
  • U.S. Pat. No. 4,765,130 discloses a method and apparatus for making a cable core with cable core units stranded together while drawing the cable core units along a passline through a closing die and while vibrating the closing die. Vibration of the closing die is intended to facilitate movement of insulated conductors of the cable core units over one another to provide a greater and more uniform packing density of conductors in the resulting cable core.
  • a typical 3600 pair cable is made by stranding together 36 cable core units, each of which comprises 100 individually twisted pairs of insulated conductors stranded together to form a 100 pair cable core unit.
  • the cable core units are passed through a closing die to ensure that the resulting cable core has a uniform diameter and shape.
  • Some insulated conductors do not readily slide over one another during the stranding operation and this can limit the minimum size of closing die that can be used. Consequently, the resulting cable core diameter may be larger than is desired. Moreover, because the insulated conductors do not readily slide over one another the packing density of the conductors may be non-uniform.
  • the solution involves stranding the cable units along a passline through the closing die, and simultaneously vibrating the closing die to compact the stranded elements together.
  • U.S. Pat. No. 4,805,392 incorporated by reference herein, describes manufacture of an optical fiber cable in which optical fibers are paid out from packages and inserted into the grooves of a cable core member by means of an inserting head.
  • the core grooves are in the form of an open helix.
  • a photoelectric system is disposed between the packages and the inserting head to provide signals indicating the position of the optical fibers advancing from the packages.
  • a control device is connected to the photoelectric system and is designed to be responsive to the signals generated therefrom to control the speed at which the optical fibers are paid off from the packages.
  • the optical fibers pass through a stationary closing device having holes in a flange fixed on a rigid tubular body through which the grooved core passes.
  • An insertion head downstream of the rigid tubular body, inserts the optical fibers into the grooves of the core.
  • a cable component production line comprising:
  • a rotatable strander for receiving optical fiber ribbon packages thereon
  • a rotatable closing die sized to receive an optical fiber ribbon stack
  • a controller operatively associated with said strander and said closing die for controlling rotation of said closing die, said controller being operative to effect a predetermined rotational ratio between said strander and said closing die whereby a twist can be formed in said optical fiber ribbon stack.
  • a cable component production line comprising:
  • a rotatable strander for receiving optical fiber ribbon packages thereon, said strander including a closing die coupled to said strander as a source of rotation that at least partially extends into or is proximate a portion of a cross-head containing a grease compound;
  • a controller operatively associated with said strander, said controller being operative to effect rotation of said strander whereby a twist is formed in said optical fiber ribbon stack within or proximate said portion of said cross-head.
  • a method of forming an optical fiber cable component employing a strander paying off optical fiber ribbons formed into a stack comprising:
  • a rotatable closing die for use with optical cable components comprising:
  • FIG. 1 is a schematic view of a fiber optic cable production line including a rotatable closing die system according to the present invention.
  • FIG. 2 is an isometric view of a rotatable closing die device according to the present invention.
  • FIG. 3 is a schematic view of a portion of the closing die device of FIG. 2.
  • FIG. 4 is a schematic view of another embodiment of the present invention.
  • FIG. 5 is a schematic view of a further embodiment of the present invention.
  • production line 10 produces a twisted stack of optical fiber ribbons.
  • Production line 10 comprises a production line axis X-X and includes an optical ribbon strander 12 , a control system 20 , and a rotatable closing die that in the preferred method of use is a rotating closing die 30 .
  • production line 10 includes a pre-wet closing die 28 and produces a twisted stack of optical fiber ribbons that is fed into a cross-head 40 attached to an extrusion machine (not shown). Within cross-head 40 , melt supplied from the extruder is shaped into a plastic tube 46 that is formed about the optical fiber ribbon stack.
  • optical ribbon strander 12 includes optical fiber ribbon packages 14 mounted to a rotatable frame 15 .
  • Packages 14 pay-off single optical fiber ribbons 16 toward pre-wet closing die 28 .
  • Pre-wet closing die 28 is preferably of the type described in U.S. Pat. No. 5 , 348 , 586 , incorporated by reference herein, for applying a viscous substance to the optical fiber ribbons.
  • control system 20 includes, for example, a programmable logic controller (PLC) 22 or a motion controller that interfaces with variable speed motors 24 and 26 .
  • PLC programmable logic controller
  • a preferred function of the PLC or motion controller is based on electronic gearing, that is, the PLC or motion controller to accepts position input from the two motors and generates an appropriate control signal for the closing die motor.
  • Motor 24 is mechanically associated with strander 12 for rotationally driving the strander
  • motor 26 is mechanically associated with closing die 30 for rotationally driving the closing die.
  • Rotating closing die 30 includes a rotating stack guide 31 , preferably not mechanically coupled to the strander, that includes a stack aperture 32 that is profiled to receive a stack of optical fiber ribbons 18 .
  • the stack aperture is preferably funnel shaped with a smooth finish.
  • the stack aperture is preferably of a generally rectangular shape.
  • Stack guide 31 includes a drive interface surface 35 that preferably has a surface that can interface with a belt or other suitable device for causing rotation of stack guide 31 .
  • the stack guide comprises an extension 36 for disposition adjacent to or actually within the cross-head 40 or filling grease area 42 thereof.
  • interface surface 35 is operatively associated with a drive member, for example, a drive pulley 33 through a motion connecting member, for example, a drive belt 34 .
  • belt 34 is a toothed belt, for example, a rectangular profile timing belt.
  • Rotating closing die 30 is mounted to a frame 38 that is mounted to an X-Y table 39 .
  • the frame 38 and X-Y table 39 provide suitable three dimensional adjustability for the rotating closing die.
  • rotating closing die 30 is adjustably mounted so that aperture 32 can be properly aligned with line axis X-X. Proper alignment of closing die 30 with cross-head 40 improves the production process in that variations in extruded tube diameter and ribbon lay length are minimized, and stack integrity is preserved.
  • control system 20 controls the operation of strander 12 and rotating closing die 30 via motors 24 and 26 , respectively.
  • Controller 22 is programmed to drive rotating closing die 30 at as close to about a 1:1 rotational ratio with the strander as possible, for example, a 1:0.95 rotational ratio.
  • the strander and the closing die rotate at essentially the same speeds, preferably with no change in the ribbon lay length.
  • the essentially 1:1 rotational ratio is preferably accomplished by electronic gearing, as a function of the motion controller, with integer gear ratios.
  • Encoders respectively associated with rotating devices 12 , 30 are operative to send electronic pulses to PLC 22 , and this input is used to control the speeds of the motors so that an essentially 1:1 rotational ratio exists. Any error is constantly corrected by the motion controller, thereby avoiding accumulated error. In this way, the lay length of the twisted ribbon will be preserved after the stack leaves the closing die and as it enters the cross-head.
  • ribbon stack 18 exits closing die 30 it is twisted into a suitably twisted ribbon stack 18 ′.
  • twisted ribbon stack 18 ′ is moved into cross head 40 .
  • cross head 40 includes a filling compound/grease containing area 42 for injecting a filling compound about the stack.
  • a plastic tube 46 is extruded about twisted ribbon stack 18 thereby forming a complete optical cable component including optical fiber ribbons, filling compound/grease, and a plastic tube.
  • FIGS. 4 and 5 illustrate the concept of having an extension of the closing die adjacent or most preferably extending into the cross-head. This allows direct insertion of the ribbon stack 18 ′ into the grease flow within or proximate the cross-head.
  • extension 36 extends into cross-head 40 or grease containing area 42 .
  • an extension 36 is formed on a closing die 30 that is mechanically coupled to the strander as a source of rotation.
  • Strander 12 is preferably mounted to an adjustable frame for alignment of ribbon stack 18 with the cross-head 40 .
  • the adjustability of the closing die avoids mis-alignment of the stack with respect to the extruded tube, variation in ribbon lay length is avoided by the closing die and ribbon strander having an essentially 1:1 rotational ratio.

Abstract

A method of forming an optical fiber cable component including passing an optical fiber ribbon stack (18) through a stack guide (31), the stack guide being rotated and forming a twist in the ribbon stack, and passing the twisted ribbon stack (18′) through a cross-head (40) and extruding a material thereover. In addition, an exemplary cable component production line having a rotatable strander (12) for receiving optical fiber ribbon packages (14) thereon, a rotatable closing die (30) sized to receive the optical fiber ribbon stack, and controller (20) operatively associated with the strander and the closing die for driving the closing die, the controller being operative to effect a predetermined rotational ratio with respect to the strander and the closing die whereby a twist can be formed in the optical fiber ribbon stack.

Description

  • The present invention relates to an optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cables and, more particularly, to a rotatable closing die and a system that uses the same. [0001]
  • Fiber optic cables include at least one optical fiber that can be disposed in a common matrix coating with other optical fibers defining an optical fiber ribbon. Optical fiber ribbons can be formed into a twisted stack for allowing ease of cable bending and maintaining integrity of the ribbon stack. Optical fiber ribbon pay-off devices, for example stranders, are typically used to define a twisted stack, the twist including a lay length or period of twist. [0002]
  • A strander typically includes spools of optical fiber ribbons, which spools are commonly termed packages. Packages can be mounted to a rotating carriage of the strander. In a typical optical ribbon stack manufacturing process, optical fiber ribbons are paid off the packages and directed to a pre-wet closing die, as disclosed in U.S. Pat. No. 5,348,586. The optical fiber ribbons are collected in a closing die that is shaped to receive the stacked ribbons, which shape is typically that of a generally rectangular orifice. Because the journal is mechanically coupled to the strander, the stack is twisted by rotation as it exits the closing die. The next step can be extrusion of a plastic tube about the twisted stack. However, several problems exist with the conventional method. For example, the stack may be mis-aligned with respect to the tube, variation in ribbon lay length can occur, and monitoring of excess ribbon length may be difficult. [0003]
  • The general concept of collecting cable components with a closing die is conventionally known. For example, U.S. Pat. No. 4,765,130, incorporated by reference herein, discloses a method and apparatus for making a cable core with cable core units stranded together while drawing the cable core units along a passline through a closing die and while vibrating the closing die. Vibration of the closing die is intended to facilitate movement of insulated conductors of the cable core units over one another to provide a greater and more uniform packing density of conductors in the resulting cable core. For example, a typical 3600 pair cable is made by stranding together 36 cable core units, each of which comprises 100 individually twisted pairs of insulated conductors stranded together to form a 100 pair cable core unit. During manufacture, the cable core units are passed through a closing die to ensure that the resulting cable core has a uniform diameter and shape. Some insulated conductors do not readily slide over one another during the stranding operation and this can limit the minimum size of closing die that can be used. Consequently, the resulting cable core diameter may be larger than is desired. Moreover, because the insulated conductors do not readily slide over one another the packing density of the conductors may be non-uniform. The solution involves stranding the cable units along a passline through the closing die, and simultaneously vibrating the closing die to compact the stranded elements together. [0004]
  • Other closing die applications are known. U.S. Pat. No. 4,805,392, incorporated by reference herein, describes manufacture of an optical fiber cable in which optical fibers are paid out from packages and inserted into the grooves of a cable core member by means of an inserting head. The core grooves are in the form of an open helix. A photoelectric system is disposed between the packages and the inserting head to provide signals indicating the position of the optical fibers advancing from the packages. A control device is connected to the photoelectric system and is designed to be responsive to the signals generated therefrom to control the speed at which the optical fibers are paid off from the packages. The optical fibers pass through a stationary closing device having holes in a flange fixed on a rigid tubular body through which the grooved core passes. An insertion head, downstream of the rigid tubular body, inserts the optical fibers into the grooves of the core. [0005]
  • The foregoing devices and systems address the need for closing devices in cable manufacture, but do not directly address the problems associated with cable components having at least one optical fiber ribbon therein, in particular, optical fiber ribbons formed into a twisted stack prior to extrusion of a tube thereover. Stationary dies can contribute to undesirable variations in ribbon lay length. [0006]
  • Aspects of the Invention [0007]
  • 1. A cable component production line, comprising: [0008]
  • a rotatable strander for receiving optical fiber ribbon packages thereon; [0009]
  • a rotatable closing die sized to receive an optical fiber ribbon stack; and [0010]
  • a controller operatively associated with said strander and said closing die for controlling rotation of said closing die, said controller being operative to effect a predetermined rotational ratio between said strander and said closing die whereby a twist can be formed in said optical fiber ribbon stack. [0011]
  • 12. A cable component production line, comprising: [0012]
  • a rotatable strander for receiving optical fiber ribbon packages thereon, said strander including a closing die coupled to said strander as a source of rotation that at least partially extends into or is proximate a portion of a cross-head containing a grease compound; and [0013]
  • a controller operatively associated with said strander, said controller being operative to effect rotation of said strander whereby a twist is formed in said optical fiber ribbon stack within or proximate said portion of said cross-head. [0014]
  • 15. A method of forming an optical fiber cable component employing a strander paying off optical fiber ribbons formed into a stack, comprising: [0015]
  • passing an optical fiber ribbon stack through a stack guide independently rotated relative to said strander, and forming a twist in said ribbon stack; and [0016]
  • passing said twisted ribbon stack through a cross-head and extruding a material thereover. [0017]
  • 18. A rotatable closing die for use with optical cable components, comprising: [0018]
  • a stack guide not mechanically coupled to a strander having a ribbon stack aperture therein; and [0019]
  • a drive member for rotatably driving said stack guide, [0020]
  • whereby rotation of said drive member causes said stack guide to rotate and form a twist in said ribbon stack.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic view of a fiber optic cable production line including a rotatable closing die system according to the present invention. [0022]
  • FIG. 2 is an isometric view of a rotatable closing die device according to the present invention. [0023]
  • FIG. 3 is a schematic view of a portion of the closing die device of FIG. 2. [0024]
  • FIG. 4 is a schematic view of another embodiment of the present invention. [0025]
  • FIG. 5 is a schematic view of a further embodiment of the present invention. [0026]
  • DETAILED DESCRIPTION OF THE INVENTION(S)
  • Referring to FIG. 1, an exemplary cable [0027] component production line 10 according to the present inventions will be described. In the preferred embodiment, production line 10 produces a twisted stack of optical fiber ribbons. Production line 10 comprises a production line axis X-X and includes an optical ribbon strander 12, a control system 20, and a rotatable closing die that in the preferred method of use is a rotating closing die 30. In the preferred method of use, production line 10 includes a pre-wet closing die 28 and produces a twisted stack of optical fiber ribbons that is fed into a cross-head 40 attached to an extrusion machine (not shown). Within cross-head 40, melt supplied from the extruder is shaped into a plastic tube 46 that is formed about the optical fiber ribbon stack.
  • In a preferred embodiment, [0028] optical ribbon strander 12 includes optical fiber ribbon packages 14 mounted to a rotatable frame 15. Packages 14 pay-off single optical fiber ribbons 16 toward pre-wet closing die 28. Pre-wet closing die 28 is preferably of the type described in U.S. Pat. No. 5,348,586, incorporated by reference herein, for applying a viscous substance to the optical fiber ribbons. In the preferred embodiment, control system 20 includes, for example, a programmable logic controller (PLC) 22 or a motion controller that interfaces with variable speed motors 24 and 26. A preferred function of the PLC or motion controller is based on electronic gearing, that is, the PLC or motion controller to accepts position input from the two motors and generates an appropriate control signal for the closing die motor. Motor 24 is mechanically associated with strander 12 for rotationally driving the strander, and motor 26 is mechanically associated with closing die 30 for rotationally driving the closing die.
  • Rotating closing die [0029] 30 (FIGS. 2-3) includes a rotating stack guide 31, preferably not mechanically coupled to the strander, that includes a stack aperture 32 that is profiled to receive a stack of optical fiber ribbons 18. The stack aperture is preferably funnel shaped with a smooth finish. The stack aperture is preferably of a generally rectangular shape. Stack guide 31 includes a drive interface surface 35 that preferably has a surface that can interface with a belt or other suitable device for causing rotation of stack guide 31. As preferred for the embodiments shown in FIGS. 4-5, described in more detail hereinbelow, the stack guide comprises an extension 36 for disposition adjacent to or actually within the cross-head 40 or filling grease area 42 thereof. In the preferred embodiment, interface surface 35 is operatively associated with a drive member, for example, a drive pulley 33 through a motion connecting member, for example, a drive belt 34. Preferably, belt 34 is a toothed belt, for example, a rectangular profile timing belt. Rotating closing die 30 is mounted to a frame 38 that is mounted to an X-Y table 39. The frame 38 and X-Y table 39 provide suitable three dimensional adjustability for the rotating closing die. In other words, rotating closing die 30 is adjustably mounted so that aperture 32 can be properly aligned with line axis X-X. Proper alignment of closing die 30 with cross-head 40 improves the production process in that variations in extruded tube diameter and ribbon lay length are minimized, and stack integrity is preserved.
  • In an exemplary production process, [0030] control system 20 controls the operation of strander 12 and rotating closing die 30 via motors 24 and 26, respectively. Controller 22 is programmed to drive rotating closing die 30 at as close to about a 1:1 rotational ratio with the strander as possible, for example, a 1:0.95 rotational ratio. In other words, the strander and the closing die rotate at essentially the same speeds, preferably with no change in the ribbon lay length. The essentially 1:1 rotational ratio is preferably accomplished by electronic gearing, as a function of the motion controller, with integer gear ratios. Encoders respectively associated with rotating devices 12,30 are operative to send electronic pulses to PLC 22, and this input is used to control the speeds of the motors so that an essentially 1:1 rotational ratio exists. Any error is constantly corrected by the motion controller, thereby avoiding accumulated error. In this way, the lay length of the twisted ribbon will be preserved after the stack leaves the closing die and as it enters the cross-head. As ribbon stack 18 exits closing die 30, it is twisted into a suitably twisted ribbon stack 18′. Preferably, essentially no twist exists prior to the closing die; however, some twist may exist. Next, twisted ribbon stack 18′ is moved into cross head 40.
  • In the preferred embodiment, [0031] cross head 40 includes a filling compound/grease containing area 42 for injecting a filling compound about the stack. Next, a plastic tube 46 is extruded about twisted ribbon stack 18 thereby forming a complete optical cable component including optical fiber ribbons, filling compound/grease, and a plastic tube. The embodiments of FIGS. 4 and 5 illustrate the concept of having an extension of the closing die adjacent or most preferably extending into the cross-head. This allows direct insertion of the ribbon stack 18′ into the grease flow within or proximate the cross-head. In the preferred embodiment (FIG. 4) extension 36 extends into cross-head 40 or grease containing area 42. In the embodiment of FIG. 5, an extension 36 is formed on a closing die 30 that is mechanically coupled to the strander as a source of rotation. Strander 12 is preferably mounted to an adjustable frame for alignment of ribbon stack 18 with the cross-head 40. The adjustability of the closing die avoids mis-alignment of the stack with respect to the extruded tube, variation in ribbon lay length is avoided by the closing die and ribbon strander having an essentially 1:1 rotational ratio.
  • The present invention has thus been described with reference to the foregoing embodiments, which embodiments are intended to be illustrative of the inventive concepts rather than limiting. Skilled artisans will appreciate that variations and modifications of the foregoing embodiments may be made without departing from the scope of the appended claims. For example, although the invention has been described with reference to electronic gearing, other control systems can be used, for example, electronic registration or mechanical gearing alternatives can achieve a suitable rotational ratio as well. Stack guide [0032] 31 can be driven by friction belts, direct gearing, pneumatic means, cams, other components.

Claims (22)

Accordingly, what is claimed is:
1. A cable component production line, comprising:
a rotatable strander for receiving optical fiber ribbon packages thereon;
a rotatable closing die sized to receive an optical fiber ribbon stack; and
a controller operatively associated with said strander and said closing die for controlling rotation of said closing die, said controller being operative to effect a predetermined rotational ratio between said strander and said closing die whereby a twist can be formed in said optical fiber ribbon stack.
2. The cable component production line of claim 1, a pre-wet device being interposed between said strander and said closing die.
3. The cable component production line of claim 1, said predetermined rotational ratio being about 1:1.
4. The cable component production line of claim 1, said closing die being mounted to an adjustable frame.
5. The cable component production line of claim 1, said closing die comprising a stack guide.
6. The cable component production line of claim 5, said stack guide having a stack aperture therein for receiving said optical fiber ribbon stack.
7. The cable component production line of claim 5, said stack guide being operatively associated with a drive pulley.
8. The cable component production line of claim 5, said stack guide comprising a drive interface surface.
9. The cable component production line of claim 1, said closing die being spaced from a cross-head device.
10. The cable component production line of claim 1, a portion of said closing die extending into a cross-head device, wherein said optical fiber ribbon stack is twisted within said cross-head device.
11. The cable component production line of claim 1,
12. A cable component production line, comprising:
a rotatable strander for receiving optical fiber ribbon packages thereon, said strander including a closing die coupled to said strander as a source of rotation that at least partially extends into or is proximate a portion of a cross-head containing a grease compound; and
a controller operatively associated with said strander, said controller being operative to effect rotation of said strander whereby a twist is formed in said optical fiber ribbon stack within or proximate said portion of said cross-head.
13. The cable component production line of claim 12, said strander being mounted to an adjustable frame.
14. The cable component production line of claim 12, said closing die having a stack aperture therein for receiving said optical fiber ribbon stack.
15. A method of forming an optical fiber cable component employing a strander paying off optical fiber ribbons formed into a stack, comprising:
passing an optical fiber ribbon stack through a stack guide independently rotated relative to said strander, and forming a twist in said ribbon stack; and
passing said twisted ribbon stack through a cross-head and extruding a material thereover.
16. The method of claim 15, comprising the step of passing the ribbon stack through a pre-wet device prior to forming said twist in said optical fiber ribbon stack.
17. The method of claim 15, at least a portion of said closing die extending into said cross-head so that said ribbon stack is twisted within said cross-head.
18. A rotatable closing die for use with optical cable components, comprising:
a stack guide not mechanically coupled to a strander having a ribbon stack aperture therein; and
a drive member for rotatably driving said stack guide, whereby rotation of said drive member causes said stack guide to rotate and form a twist in said ribbon stack.
19. The rotatable closing die of claim 18, said stack guide including a drive interface surface.
20. The rotatable closing die of claim 19, said drive interface surface having a profile for interfacing with a motion connecting member.
21. The rotatable closing die of claim 20, said motion connecting member comprising a toothed belt.
22. The rotatable closing die of claim 18, said rotating closing die being mounted to a frame that is mountable to an X-Y table.
US09/726,929 2000-11-30 2000-11-30 Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components Expired - Lifetime US6389787B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/726,929 US6389787B1 (en) 2000-11-30 2000-11-30 Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components
DE60121712T DE60121712T2 (en) 2000-11-30 2001-11-08 Device for twisting glass fiber ribbon cables and manufacturing system for optical cable components
EP01126424A EP1217408B1 (en) 2000-11-30 2001-11-08 Optical fiber ribbon twisting device and manufacturing system for optical fiber cable components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/726,929 US6389787B1 (en) 2000-11-30 2000-11-30 Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components

Publications (2)

Publication Number Publication Date
US6389787B1 US6389787B1 (en) 2002-05-21
US20020073682A1 true US20020073682A1 (en) 2002-06-20

Family

ID=24920621

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/726,929 Expired - Lifetime US6389787B1 (en) 2000-11-30 2000-11-30 Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components

Country Status (3)

Country Link
US (1) US6389787B1 (en)
EP (1) EP1217408B1 (en)
DE (1) DE60121712T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370028A1 (en) * 2016-06-28 2017-12-28 Loftex Usa Llc Method for producing single-hole ultra soft yarns
WO2019059251A1 (en) * 2017-09-21 2019-03-28 住友電気工業株式会社 Optical fiber cable

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2840999B1 (en) * 2002-06-17 2004-11-05 Cit Alcatel METHOD FOR PRODUCING AN OPTICAL TRANSMISSION CABLE AND MACHINE THEREOF
US6775444B1 (en) 2003-02-28 2004-08-10 Corning Cable Systems Llc Fiber optic assemblies and methods of making the same
CN103645550B (en) * 2013-11-30 2015-08-19 广东亨通光电科技有限公司 A kind of skeleton type optical fiber ribbon cable-former and use the stranding method of this cable-former
CN106908899B (en) * 2017-04-20 2020-01-10 山东太平洋光纤光缆有限公司 Optical fiber ribbon loose sleeve reworking production line and optical fiber ribbon recycling method
US11796754B2 (en) * 2021-03-12 2023-10-24 Corning Research & Development Corporation System and method of controlling a strander by wireless visual monitoring of a subunit reel
CN114690356B (en) * 2022-05-31 2022-08-30 江苏亨通光电股份有限公司 Multi-cluster optical fiber ribbon optical cable and optical fiber ribbon cabling processing device thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK107567C (en) * 1963-02-15 1967-06-12 Ericsson Telefon Ab L M Cable, preferably for transmitting telecommunication signals, and apparatus for use in its manufacture.
US4129468A (en) * 1977-04-13 1978-12-12 Bell Telephone Laboratories, Incorporated Method and apparatus for manufacturing optical communication cables
US4237687A (en) * 1979-03-01 1980-12-09 Societe Lignes Telegraphiques Et Telephoniques Optical fibre laying head for cable production
JPS57125907A (en) * 1981-01-30 1982-08-05 Yoshida Kogyo Kk <Ykk> Twister
IT1202606B (en) 1987-03-02 1989-02-09 Pirelli Cavi Spa APPARATUS FOR THE MANUFACTURE OF FIBER OPTIC CABLES
US4765130A (en) 1987-11-02 1988-08-23 Northern Telecom Limited Method and apparatus for making cable core
FR2681149B1 (en) * 1991-09-09 1993-11-12 Alcatel Cable DEVICE FOR INSERTING OPTICAL FIBER TAPES INTO THE HELICOUIDAL GROOVES OF A GROOVED JUNCTION.
US5348586A (en) 1993-10-29 1994-09-20 Siecor Corporation Ribbon prewet system
KR100635237B1 (en) * 1998-03-11 2006-10-19 스미토모덴키고교가부시키가이샤 Apparatus for assembling tape type optical fiber cores
US6256439B1 (en) * 1998-10-21 2001-07-03 Lucent Technologies Inc. Lubricant for central core fiber optic cable having stranded ribbons

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170370028A1 (en) * 2016-06-28 2017-12-28 Loftex Usa Llc Method for producing single-hole ultra soft yarns
US20170370029A1 (en) * 2016-06-28 2017-12-28 Loftex Usa Llc Method for producing multi-hole ultra soft yarns
US20170370022A1 (en) * 2016-06-28 2017-12-28 Loftex Usa Llc Method for producing multi-hole ultra soft yarns
US10538865B2 (en) * 2016-06-28 2020-01-21 Loftex Usa Llc Method for producing multi-hole ultra soft yarns
US10655247B2 (en) * 2016-06-28 2020-05-19 Loftex Usa Llc Method for producing multi-hole ultra soft yarns
US10655246B2 (en) * 2016-06-28 2020-05-19 Loftex Usa Llc Method for producing single-hole ultra soft yarns
WO2019059251A1 (en) * 2017-09-21 2019-03-28 住友電気工業株式会社 Optical fiber cable

Also Published As

Publication number Publication date
EP1217408A2 (en) 2002-06-26
US6389787B1 (en) 2002-05-21
DE60121712D1 (en) 2006-09-07
DE60121712T2 (en) 2007-08-02
EP1217408A3 (en) 2004-06-09
EP1217408B1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
CN108074682B (en) Twisted pair cable manufacturing equipment
EP0601998B1 (en) Twisted wire manufacturing apparatus and concentric twisted wire manufacturing machine
US6389787B1 (en) Optical fiber ribbon twisting device and system for use in the manufacture of fiber optic cable components
EP0424151B1 (en) A method of and an apparatus for producing an optical multi-fibre cable element
WO1999054542A3 (en) Apparatus for helically assembling at least two filaments
US5060467A (en) Cable core with a twisting channel, and laying optical fiber therein
CA1082435A (en) Process and device for producing multi-wire power cables or lines provided with reversing lay
US5102584A (en) Method of and apparatus for producing an optical multi-fibre cable element
US6190583B1 (en) Apparatus and method for making slotted rod for optical cable
EP0634047B1 (en) Reverse stranding method and apparatus
US20030126851A1 (en) Apparatus and method for producing twisted pair cables with reduced propagation delay and crosstalk
US4291527A (en) Cable strand tension controlling apparatus
US4224788A (en) Apparatus for SZ twisting twist elements of electric cables and lines as well as method of operating this apparatus
CA2045320C (en) Apparatus for reverse stranding and a method in connection with stranding and reverse stranding
CN114843038A (en) Embedded wire twisting machine with compact structure
US5957359A (en) Method and arrangement for levelling out the tension of optical fibres
DE19816189A1 (en) Cable twisting machine giving left and right twists
CN1070763A (en) The method and apparatus of connection with reverse stranding
JP2748293B2 (en) Delivery method and delivery device for high-rigid filaments
CA1227705A (en) Apparatus and method of making metallic cord
JPS61107208A (en) Production of optical fiber cable
JPH08313772A (en) Production of self-supporting type optical cable
EP0500628B1 (en) A method of and an apparatus for producing an optical multi-fibre cable element
CN117038218A (en) Cladding device for production of high-temperature-resistant cable
CN115808758A (en) Vertical optical fiber wrapping machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING CABLE SYSTEMS LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREENWOOD, JODY L.;SMITH, DAVID H.;BRITTAIN, DAVID K.;REEL/FRAME:011361/0297

Effective date: 20001129

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: CORNING OPTICAL COMMUNICATIONS LLC, NORTH CAROLINA

Free format text: CHANGE OF NAME;ASSIGNOR:CORNING CABLE SYSTEMS LLC;REEL/FRAME:040126/0818

Effective date: 20140114