Connect public, paid and private patent data with Google Patents Public Datasets

Expandable implant devices for filtering blood flow from atrial appendages

Download PDF

Info

Publication number
US20020022860A1
US20020022860A1 US09932512 US93251201A US2002022860A1 US 20020022860 A1 US20020022860 A1 US 20020022860A1 US 09932512 US09932512 US 09932512 US 93251201 A US93251201 A US 93251201A US 2002022860 A1 US2002022860 A1 US 2002022860A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
structure
device
atrial
appendage
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09932512
Inventor
Thomas Borillo
Dean Peterson
Gregg Sutton
Jeffrey Welch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atritech Inc
Original Assignee
Borillo Thomas E.
Dean Peterson
Sutton Gregg S.
Jeffrey Welch
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stending
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12122Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12136Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12159Solid plugs; being solid before insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12168Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure
    • A61B17/12172Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device having a mesh structure having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2/013Distal protection devices, i.e. devices placed distally in combination with another endovascular procedure, e.g. angioplasty or stending
    • A61F2002/015Stop means therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/016Filters implantable into blood vessels made from wire-like elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/01Filters implantable into blood vessels
    • A61F2002/018Filters implantable into blood vessels made from tubes or sheets of material, e.g. by etching or laser-cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0006Rounded shapes, e.g. with rounded corners circular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/008Quadric-shaped paraboloidal

Abstract

Implant devices for filtering blood flowing through the ostium of an atrial appendage have component structures one or more of which are expandable. Devices with component structures in their unexpanded state have a compact size suitable for intra-cutaneous delivery to an atrial appendage situs. The expandable component structures are expanded in situ to deploy the devices. A device may have sufficiently short axial length so that most or almost all of the device length may fit within the ostium region. An expandable component structure in the device may include a blood-permeable filter element. The device may be deployed so that this component structure covers the ostium so as to direct the blood flow to pass through the filter element. The filter elements used in the devices may have hole size distributions selected to filter out harmful-size emboli. The filter elements may be embedded in elastic material so that hole-size distributions remain substantially unaffected by expansion of the device structures. Anchors attached to a component structure engage tissue surrounding the device and maintain the devices in position. The anchors may include inflatable anchors which engage interior walls of the atrial appendage.

Description

  • [0001]
    This application claims the benefit of U.S. provisional application No. 60/226,461, filed Aug. 18, 2000, U.S. provisional application No. 60/234,112, filed Sep. 21, 2000, and U.S. provisional application No. 60/234,113, filed Sep. 21, 2000, all of which are hereby incorporated by reference in their entireties herein.
  • BACKGROUND OF THE INVENTION
  • [0002]
    1. Field of the Invention
  • [0003]
    The invention relates to implant devices that may be implanted in an atrial appendage for filtering blood flowing between the atrial appendage and an associated atrium of the heart to prevent thrombi from escaping from the atrial appendage into the body's blood circulation system.
  • [0004]
    2. Description of the Related Art
  • [0005]
    There are a number of heart diseases (e.g., coronary artery disease, mitral valve disease) that have various adverse effects on a patient's heart. An adverse effect of certain cardiac diseases, such as mitral valve disease, is atrial (or auricular) fibrillation. Atrial fibrillation leads to depressed cardiac output. A high incidence of thromboembolic (i.e., blood clot particulate) phenomena are associated with atrial fibrillation, and the left atrial appendage (LAA) is frequently the source of the emboli (particulates).
  • [0006]
    Thrombi (i.e., blood clots) formation in the LAA may be due to stasis within the fibrillating and inadequately emptying LAA. Blood pooling in the atrial appendage is conducive to the formation blood clots. Blood clots may accumulate, build upon themselves. Small or large fragments of the blood clots may break off and propagate out from the atrial appendage into the atrium. The blood clot fragments can then enter the body's blood circulation and embolize distally into the blood stream.
  • [0007]
    Serious medical problems result from the migration of blood clot fragments from the atrial appendage into the body's blood stream. Blood from the left atrium and ventricle circulates to the heart muscle, the brain, and other body organs, supplying them with necessary oxygen and other nutrients. Emboli generated by blood clots formed in the left atrial appendage may block the arteries through which blood flows to a body organ. The blockage deprives the organ tissues of their normal blood flow and oxygen supply (ischemia), and depending on the body organ involved leads to ischemic events such as heart attacks (heart muscle ischemia) and strokes (brain tissue ischemia).
  • [0008]
    It is therefore important to find a means of preventing blood clots from forming in the left atrial appendage. It is also important to find a means to prevent fragments or emboli generated by any blood clots that may have formed in the atrial appendages, from propagating through the blood stream to the heart muscle, brain or other body organs.
  • [0009]
    U.S. Pat. No. 5,865,791 (hereinafter, “the '791patent”) relates to the reduction of regions of blood stasis in the heart and ultimately reduction of thrombi formation in such regions, particularly in the atrial appendages of patients with atrial fibrillation. More specifically, the '791 patent relates to procedures and devices for affixing the atrial appendages in an orientation that prevents subsequent formation of thrombi. In the '791 patent, the appendage is removed from the atrium by pulling the appendage, placing a loop around the appendage to form a sack, and then cutting it off from the rest of the heart.
  • [0010]
    U.S. Pat. No. 5,306,234 describes a method for surgically closing the passage way between the atrium and the atrial appendage, or alternatively severing the atrial appendage.
  • [0011]
    Some recently proposed methods of treatment are directed toward implanting a plug-type device in an atrial appendage to occlude the flow of blood therefrom.
  • [0012]
    A preventive treatment method for avoiding thromboembolic events (e.g., heart attacks, strokes, and other ischemic events) involves filtering out harmful emboli from the blood flowing out of atrial appendages. Co-pending and co-owned U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all of which are hereby incorporated by reference in their entireties herein, describe filtering devices which may be implanted in an atrial appendage to filter the blood flow therefrom. The devices may be delivered to the atrial appendage using common cardiac catheterization methods. These methods may include trans septal catheterization which involves puncturing an atrial septum.
  • [0013]
    Catheters and implant devices that are large may require large punctures in the septum. Large catheters and devices may damage body tissue during delivery or implantation. Damage to body tissue may cause trauma, increase recovery time, increase the risk of complications, and increase the cost of patient care. Further the atrial appendages may vary in shape and size from patient to patient.
  • [0014]
    It would therefore be desirable to provide implant devices which are small and which can be delivered by small-sized catheters to the atrial appendages. It would therefore also be desirable to provide implant devices whose size can be adjusted in situ to conform to the size of the atrial appendages.
  • SUMMARY OF THE INVENTION
  • [0015]
    The invention provides implant devices and methods, which may be used to filter blood flowing between atrial appendages and atrial chambers. The devices are designed to prevent the release of blood clots formed in the atrial appendages into the body's blood circulation system.
  • [0016]
    All implant devices disclosed herein have adjustable sizes. A compact or narrow size may be used for intra-cutaneous device delivery to an atrial appendage, for example, by cardiac catheterization. The devices include size-adjusting mechanisms that allow the device size to be enlarged in situ to an expanded size conforming to the dimensions of the atrial appendage.
  • [0017]
    In an embodiment of the implant device, an expanding inner structure is disposed inside a membrane tube. The inner structure has rigid components, which when the inner structure is expanded press or push sides of the membrane tube outward. The inner structure may be self-expanding or may, for example, be expanded by an inflatable balloon. When the inner structure is in a collapsed configuration, the device has a compact size suitable for delivery to and insertion in an atrial appendage, for example, by cardiac catheterization. When fully deployed for use, a closed end of the membrane tube covers the ostium of the atrial appendage. Filter elements or components built into the closed end of the membrane tube filter out harmful-size emboli from the blood flowing out of the atrial appendage. The device may be held in position by expanding the inner structure to press sides of the membrane tube against the interior walls of the atrial appendage.
  • [0018]
    Other embodiments of the implant devices may have other kinds of inflatable or expandable structures which allow the devices to have compact sizes for device delivery and which can later be enlarged in situ to make the device size conform to the dimensions of the atrial appendages.
  • [0019]
    The devices may have short axial lengths that are comparable to or are a fraction of the length of an ostium. A short-axial length device may have a thin expandable or inflatable structure. The cross-sectional shape of a thin expandable structure may, for example, resemble that of a mushroom cap, a pill box, or a doughnut-shaped tube, etc. The structure may include suitable blood-permeable filter elements for filtering harmful-size emboli from the blood flow. The filter elements may be located centrally or may be located off-center in the thin structure. When deployed the thin structure covers the ostium of an atrial appendage and directs all blood flow through the ostium to pass through the filter elements. The structure may be suitably designed to prevent unwanted flow channels (e.g., around the edges of the device) through which unfiltered blood may flow between the appendage and the atrium. The structure may have anchors attached to its outside periphery. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The anchors engage the interior walls of the ostium and thereby secure the position of the deployed device. Some devices may have axial lengths that may be slightly larger than the length of an ostium. Such devices may have anchors disposed on posterior portions of the expandable structure for engaging interior wall tissue of the neck region of the atrial appendage leading to the ostium
  • [0020]
    Other devices with expandable or inflatable structures may have longer axial lengths that are comparable to or are a substantial fraction of the length of an atrial appendage. A longer-axial length device may have a first structure designed to cover the ostium of an atrial appendage and filter blood flow therethrough. This first structure may optionally be expandable or non-expandable. In either case, an expandable second structure in the device may be used to help secure the device in its deployed position. The expandable second structure is generally disposed in the lumen or interior cavity of the atrial appendages. The expandable second structure may be self-expanding or may, for example, be expandable by balloon inflation. The expandable second structures may have components such as attached anchors for engaging the interior walls of the atrial appendages. These anchors may be pins, hooks, barbs, atraumatic bulb tips or other suitable structures for engaging wall tissue. The expandable second structure may additionally or alternatively include inflatable anchors. These inflatable anchors directly engage the interior walls of the atrial appendage when inflated and provide resistance to changes in the position of the deployed device.
  • [0021]
    Filter elements with predetermined hole size distributions for filtering harmful-sized emboli from the blood flow may be incorporated in the expandable implant devices. The filter elements may be configured so that their hole size distributions do not change significantly during the expansion of the device. In one configuration the filter elements are embedded in elastic membranes. These membranes are designed such that when the devices are expanded concomitant stretching of the filter element configurations due to the increase in device size is largely accommodated by the elastic membranes. The sizes of filter elements themselves and their predetermined hole size distributions remain substantially unchanged.
  • [0022]
    Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawing and the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0023]
    [0023]FIG. 1a is a cross sectional view showing an adjustable-size implant device at its narrow compact size suitable for delivery by cardiac catheterization in accordance with the principles of the invention.
  • [0024]
    [0024]FIG. 1b is a cross sectional view showing the implant device of FIG. 1a deployed in an atrial appendage. The implant device shown has membrane tube having filter elements for filtering blood. The device is retained in position by an expanded inner structure in accordance with the principles of the invention.
  • [0025]
    [0025]FIG. 1c is a schematic perspective view showing an exemplary expanded inner structure in its expanded configuration in accordance with the principles of the invention.
  • [0026]
    [0026]FIG. 2 is a partial sectional view showing another implant device deployed in an atrial appendage. The implant device shown has filter elements for filtering blood and is retained in position by a self-expanding inner structure in accordance with the principles of the invention.
  • [0027]
    [0027]FIG. 3a is a schematic illustration of an as-delivered implant device positioned within an ostium. The device has a thin expandable structure which may be used to cover the ostium of an atrial appendage so that blood flow between the appendage and the atrium is constrained to pass through filter elements in the device in accordance with the principles of the invention.
  • [0028]
    [0028]FIGS. 3b and 3 c are cross-sectional views illustrating exemplary shapes of the expandable structure of the implant device of FIG. 3a.
  • [0029]
    [0029]FIG. 4 schematically illustrates the increase in size of the implant device of FIG. 3a as its expandable structure is being inflated in accordance with the principles of the invention.
  • [0030]
    [0030]FIG. 5a is a partial cross sectional view showing an implant device with an expandable distal structure disposed in an atrial appendage. The implant device shown has a proximal structure, which may be used to cover the ostium of the atrial appendage to direct blood flow to pass through filter elements. The device is retained in position by the distal structure which has inflatable anchors in accordance with the principles of the invention.
  • [0031]
    [0031]FIG. 5b is a side elevational view showing another implant device with expandable structures in which a single expanding structure provides the functions of both the proximal and distal structures shown in FIG. 5b, in covering the ostium and in securing the position of the device, in accordance with the principles of the invention.
  • [0032]
    [0032]FIG. 5c is a plan view of the implant device shown in FIG. 5b.
  • [0033]
    [0033]FIG. 6 is a schematic illustration of a predetermined-size filter element having holes impervious to harmful-size emboli, and an elastic membrane attached the filter element in accordance with the principles of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0034]
    Although atrial fibrillation may result in the pooling of blood in the left atrial appendage and the majority of use of the invention is anticipated to be for the left atrial appendage, the invention may also be used for the right atrial appendage and in general for placement across any aperture in the body in which blood is permitted to flow therethrough or therefrom but in which blood clots are substantially prevented from escaping from the atrial appendage and entering into the bloodstream.
  • [0035]
    The implant devices disclosed herein have adjustable sizes. A compact or narrow size is used for intra-cutaneous device delivery to the atrial appendages, for example, by cardiac catheterization. The devices include size-adjusting expansion mechanisms that allow the device size to be enlarged in situ to an expanded size. Controlled expansion may be desirable for the proper functioning of an implant device. For example, the filter elements of a device must be correctly centered or positioned across an atrial appendage ostium for the device to properly intercept and filter blood flowing out of the atrial appendage. The expansion mechanisms allow for controlled expansion of the implanted device size in situ to conform to the dimensions of the atrial appendage. Further, the expansion mechanisms may allow for the expansion to be at least partially reversed and thereby enable a physician to optimize or adjust the deployment of the device in situ. The types of implant devices disclosed herein add to variety of device types disclosed in U.S. patent application Ser. No. 09/428,008, U.S. patent application SER. No. 09/614,091, U.S. patent application SER. No. 09/642,291, and U.S. patent application SER. No. 09/697,628, all incorporated in by reference herein.
  • [0036]
    [0036]FIG. 1a shows device 101 at its compact size suitable for delivery to atrial appendage 100 (FIG. 1b) by cardiac catheterization. Device 101 has a membrane tube 120 in which an expanding structure 130 is disposed. Membrane tube 120 may be made of thin flexible materials. Expanding structure 130, in contrast, may have components which are made of more rigid material such as hard plastics or corrosion-resistant metal alloys including shape memory alloys. Expanding structure 130 has a collapsed configuration (FIG. 1a) and a larger expanded configuration (FIGS. 1b and 1 c).
  • [0037]
    In both the collapsed and expanded configurations, structure 130 may have a generally cylindrical shape. Structure 130 may have a design that allows it to expand radially without any significant concomitant change in its axial length. The design of also may allow for permanent deformation, or partially or completely reversible deformation of structure 130 during its expansion. FIG. 1c schematically illustrates portions of an exemplary inner structure 130 in its expanded configuration. Structure 130 shown in FIG. 1c is similar to structures shown and described in greater detail, for example, in U.S. application Ser. No. 09/642,291.Structure 130 includes interconnected serpentine segments 131. Adjacent serpentine segments 131 are interconnected by a plurality of longitudinal struts 132. End serpentine segment 131 is connected by radial members 133 to a central hollow cylindrical ring 134. Some or all of components 130-134 may, for example, be fabricated from shape memory alloys.
  • [0038]
    Externally-initiated means may be used to change the configuration of structure 130 when it is placed in atrial appendage 100. For example, balloon 140 (e.g., placed within structure 130 through central hollow cylindrical ring 134) may be inflated to change the configuration of structure 130 from its collapsed configuration to its expanded configuration. Balloon 140 may be inflated or deflated conventionally, for example, by injecting or withdrawing suitable fluids from the body of balloon 140, respectively, through suitable elastic sealed openings, for example, valve structures 142. The elastic sealed openings such as valve structures 142 prevent uncontrolled release of fluids injected in to balloon 140.
  • [0039]
    [0039]FIG. 1b shows, for example, device 101 expanded to a suitable expanded size for permanent deployment in atrial appendage 100. Device 101 may be used to filter blood flowing out from atrial appendage 100. Device 101 has a membrane tube 120 in which an expanding structure 130 is placed. Membrane tube 120 has a generally cylindrical shape and may have one or both of its distal and proximal ends closed. FIG. 1b shows membrane 120 having both distal and proximal closed ends 124. The membrane tube 120 can be made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
  • [0040]
    In one embodiment of device 101 at least portions of closed ends 124 serve as filter elements 125 for filtering harmful-size emboli from blood flow. Filter elements 125 are made of blood-permeable material. The remaining portions of membrane tube 125 (e.g., sides 126) may be made of blood-impervious material. The materials used to fabricate membrane tube 125 components can be any suitable bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. The structure of the blood-permeable material used to fabricate filter elements 125 is preferably a two-dimensional screen, a cellular matrix, a woven or non-woven mesh, or the like. The structure of the blood-permeable material may also be that of a permeable metal or a mesh of fine metal fibers. Further, the blood-permeable material in filter elements 125 may be coated or covered with an anticoagulant, such as heparin, or another compound, or treated to provide antithrombogenic properties to the filter elements 125 to inhibit clogging of filter elements 125 by an accumulation of blood clots.
  • [0041]
    Filter elements 125 have holes through them for blood flow. As used herein, it will be understood that the term hole refers to an opening in the structure of a filter element which provides a continuous open channel or passageway from one side of the filter element to the other. The term pore refers to a small cavity in the material of a filter element. Cavities or pores do not provide a continuous open channel or passageway through the filter element. Partially opened surface pores, however, are an important component of surface texture which is advantageous for cellular tissue ingrowth.
  • [0042]
    The hole sizes in the blood-permeable material included in filter elements 125 may be chosen to be sufficiently small so that harmful-size emboli are filtered out from the blood flow between appendage 100 and atrium 105 (shown partially in FIGS. 1b and 1 c). Yet the hole sizes may be chosen to be sufficiently large to provide an adequate flow conductivity for emboli-free blood to pass through device 101. Filter elements 125 may have hole sizes ranging, for example, from about 50to about 400 microns in diameter. The distribution the hole sizes may be suitably chosen, for example, with regard to individual circumstances, to be larger or smaller than indicated, provided such holes substantially inhibit harmful-size emboli from passing therethrough. The open area of filter elements 125 is preferably at least 20% of the overall surface area of the closed ends 124, although a range of about 25-60% may be preferred.
  • [0043]
    The hole size distribution of the material used to make filter elements 125, described above, allows blood to flow therethrough while blocking or inhibiting the passage of thrombus, clots, or emboli formed within the atrial appendage from entering the atrium of the heart and, eventually, the patient's bloodstream.
  • [0044]
    In an alternative embodiment, substantially all of membrane tube 120 may be made of blood-permeable material suitable for filtering harmful-size emboli. Use of a single material (or a fewer number of different types of materials) in membrane tube 120 may simplify its fabrication. In this case it may be sufficient to coat or cover closed end 124 portions with an anticoagulant to prevent clogging of blood flow between atrial appendage 100 and atrium 105. Sides 126, for example, need not be coated with an anticoagulant as they are likely to be sealed in any event by atrial appendage wall tissue when device 101 is deployed in an atrial appendage, as described below.
  • [0045]
    For all embodiments of device 101, for example, as described above, when fully deployed, membrane tube 120 is held or retained in position in atrial appendage 100 so that proximal closed end 124 extends across or covers ostium 110. After initial insertion of device 101 in atrial appendage 100, expanding structure 130 is expanded, for example, by inflating balloon 140, from its initial compact size to an expanded size. Expanding structure 130 is expanded to a suitable size to press membrane tube sides 126 directly against interior walls 100 a of atrial appendage 100. The direct engagement of sides 126 with interior wall tissue 100 a caused by the outward pressing by structure 130 holds device 101 provides a degree of resistance to movement of device 101 within atrial appendage 100 and holds device 101 in a substantially fixed position. However, this resistance to movement at least initially during the implant procedure may be reversed to allow repositioning of device 101 if necessary or desirable. The reversal may be complete or partial corresponding to the elastic deformation characteristics of structure 130. The reversal may be accomplished, for example, by deflation of balloon 140. Later, regenerative tissue growth, for example, of endothelial or endocardial tissue, conforming to the outer surface textures of sides 126 may bind sides 126 and provide additional securement of fully deployed device 101. This tissue growth binding may, for example, involve tissue ingrowth into partially-open surface pores of the material of sides 126, or, for example, tissue ingrowth into holes in blood-permeable material in the case where sides 126 are made of blood-permeable material having holes. This tissue growth, in conjunction with the outward pressure provided by inner structure 130, may provide additional means of reducing flow leakage about the periphery of device 101.
  • [0046]
    In some implant procedures it may be desirable to leave balloon 140 in situs, for example, in a deflated state. In other implant procedures it may be desirable to physically remove balloon 140 after device 101 has been secured in appendage 100. As necessary or desired, balloon 140 may be removed from the patient's body using conventional catheterization techniques. Balloon 140 may be withdrawn from tube 120 through suitable self-sealing openings in closed ends 124. A suitable self-sealing opening may be of the type formed by overlapping membrane flaps (e.g., flaps 124 FIG. 1b ). Other types of conventional self-sealing openings such as those formed by elastic 0-ring structures (not shown) also may be used.
  • [0047]
    In further embodiments of device 101, expanding inner structure 130 may be a self-expanding structure. Structure 130 may have suitable biasing means, for example, springs or other elastic components, which change the configuration of structure 130 from its as-implanted collapsed configuration to its expanded configuration after device 101 has been implanted. Self-expanding structure 130 also may, for example, have components made from shape memory alloys (e.g., Nitinol®). The shape memory alloy components may be preformed to have a shape corresponding to the expanded configuration of structure 130. The performed components may be bent or compressed to form structure 130 in its collapsed configuration. After device implantation, heating or changing temperature induces the bent or compressed the shape memory alloy components to automatically revert to their performed shapes corresponding to the expanded configuration of structure 130. FIG. 2 shows, for example, device 101 expanded by self-expanding structure 200 to a suitable expanded size for permanent deployment in an atrial appendage 100.
  • [0048]
    Other embodiments of the implant devices may have other kinds of inflatable or expandable structures, which allow the devices to have compact sizes for device delivery, and which can later be enlarged in situ to make the device sizes conform to the dimensions of the atrial appendages. An implant device of these embodiments may have one or more component structures or substructures. One or more of the component structures or substructures in a device may be expandable or inflatable. A first type of these component structures or substructures may include blood-permeable filter elements, and, for example, serve to filter harmful size emboli from the blood flow. A second type of the component structures or substructures may include anchoring elements, and, for example, serve to retain the deployed device in position. It will be understood that neither component types are contemplated within the invention as necessarily having mutually exclusive functions. Neither type is restricted to having only filter elements or only anchoring elements. A single component structure may serve both to filter blood flow and to hold the deployed device in position.
  • [0049]
    Different embodiments of devices having one or more of these types of component structures or substructures may have correspondingly different axial lengths spanning a wide range of values. At the upper end of the range, devices may have axial lengths that are comparable to or are a significant fraction of the length of an atrial appendage. Toward the lower end of the range, devices may have axial lengths that are comparable to or are a fraction of the length of the ostium and the neck region of the atrial appendage leading to the ostium.
  • [0050]
    A device embodiment having a short axial length suitable for deployment fully within an ostium is illustrated in FIGS. 3a, 3 b, 3 c, and 4. Device 300 has a thin expandable or inflatable structure 310. FIG. 3aschematically shows device 300 as delivered for deployment positioned within ostium 305. Structure 310 when expanded may have a shape, for example, resembling a mushroom cap (FIG. 3b), a pill box (FIG. 3c), a doughnut-shaped tube, or any other shape suitable for engaging ostium 305.
  • [0051]
    Expandable structure 310 may be fabricated from membranes or fabrics made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Expandable structure 310 includes filter elements for filtering harmful-size emboli (not shown). Structure 310 may include non-expanding portions made of blood-permeable membrane or fabric suitable for filtering harmful-size emboli (not shown). The non-expanding portions may, for example, in the case where structure 310 has an expandable doughnut shape extend across the central region of the doughnut shape. Structure 310 may also include access openings or fixtures for attaching catheters or other delivery devices (not shown). Anchors 330 are attached to the outer periphery of expandable structure 330. Anchors 330 may, for example, be attached to an outer rim toward the posterior of expandable structure 330. Anchors 330 may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. Device 300 is secured in position relative to ostium 305 when anchors 330 engage surrounding ostium wall tissue.
  • [0052]
    Device 300 may be suitably deployed to filter blood flowing through ostium 305 by extending expandable structure 310 across ostium 305. Expandable structure 320 may be self-expanding (e.g., like structure 130 FIG. 2). Alternatively, expandable structure 310 may include externally-initiated mechanical means for expansion (e.g., like balloon 140 FIG. 1b). FIG. 4 schematically illustrates the increase in size of device 300 as expandable structure 310 is being inflated. FIG. 4 shows device 300 increasing from an initial size a to an intermediate size b, and then to a size c. As device 300 size increases attached anchors 330 move radially outward toward the interior walls of ostium 305. When structure 310 is sufficiently expanded, anchors 330 engage surrounding interior wall tissue and secure device 300 in position.
  • [0053]
    [0053]FIG. 5a shows an implant device 500 having an axial length which is comparable or a significant fraction of the length of atrial appendage 100. Device 500 has two component substructures, i.e., proximal structure 510, and distal structure 520. Proximal structure 510 may be used to cover ostium 110 of atrial appendage 100. Proximal structure 510 includes blood-permeable filter elements which filter the blood flow through ostium 110. Proximal structure 510 may be made of a suitable fabric made from bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Proximal structure 510 may be an expandable structure, which may, for example, be similar to expandable structure 310 described above with reference to FIG. 3a, 3 b and 3 c. Alternatively, proximal structure 510 may be a structure which is not expandable or inflatable. Non-inflatable structure 510 may, for example, be any one of the structures for covering ostium 110 described in U.S. patent application Ser. No. 09/428,008, U.S. patent application Ser. No. 09/614,091, U.S. patent application Ser. No. 09/642,291, and U.S. patent application Ser. No. 09/697,628, all incorporated by reference herein.
  • [0054]
    In either case, structure 510 is retained in position extending across ostium 110 by use of attached distal structure 520. Distal structure 520 is inflatable and has one or more anchor sets 530 attached to an axial portion or shank 521. Each of the anchor sets 530 has a suitable number of inflatable anchors 531 designed to engage the interior walls of atrial appendage 100. Inflatable anchors 531 in a set 530 may be attached to axial portion 521 along a radial circumference at a suitable distance away from proximal cover 510 (not shown). Alternatively, inflatable anchors 531 in a set 530 may be attached to axial portion 521 along an axial length thereof, for example, as illustrated in FIG. 5a.Other distributions of anchors 531 also may be used. For example, anchors 531 may be attached to axial portion 521 in a spiral pattern. Distal structure 520 including anchor sets 530 may be made of a suitable fabric made of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers.
  • [0055]
    Device 500 is at its compact size suitable for intra-cutaneous delivery when distal structure 520 is deflated, and when proximal structure 510 deflated or suitably folded according to whether proximal structure 510 is an expanding or a non-expanding structure. In an implant procedure, device 500 in its compact size may be delivered to atrial appendage 100, for example, by cardiac catheterization. When fully deployed, device 500 is positioned so that proximal structure 510 appropriately extends across ostium 110. Distal structure 520 is disposed to the interior of atrial appendage 100. Distal structure 520 is inflated by suitable means so that inflated anchors 531 engage and press against the interior walls of atrial appendage 100. The friction between outwardly pressing anchors 531 and the atrial appendage walls retains device 500 in its desired fully deployed position. The suitable means for inflating structure 520 may, for example, involve injection of fluids into structure 520 through suitable openings (not shown). The openings may have suitable valved seals preventing uncontrolled release or leakage of the inflating fluids.
  • [0056]
    In another device embodiment, a single inflatable structure may provide the functions of both the distal and proximal structures described above. Such a device may have a sufficiently short axial length so that all or almost all of the device may fit within the ostium or ostium region of an atrial appendage Anterior portions of the device may be used cover the ostium in order to direct blood flow between the atrial appendage and the atrial chamber through filter elements. Attached anchors may be distributed on at least part of the exterior surface area of posterior portions of the device. The anchors may be pins, hooks, barbs, wires with atraumatic bulb tips or other suitable structures for engaging tissue. The single inflatable structure may be self-expanding or may expand in response to externally-initiated means. When the device is expanded the anchors attached to its posterior portions engage the rear walls of the ostium and/or possibly the interior walls of the neck region of the atrial appendage close to the ostium. The device may be fabricated using suitable membranes or fabrics made of biocompatible materials, for example, such as those mentioned earlier. Further, the biocompatible materials may have, for example, any of the structures mentioned earlier (e.g., cellular matrix, wire mesh, etc.).
  • [0057]
    An exemplary implant device 550 most or almost all of which may fit within the ostium of an atrial appendage is illustrated in FIG. 5b and FIG. 5c. These two FIGS. show side elevational and top plan views of device 550, respectively. Device 550 like device 300 (FIG. 3a) has a single component structure, i.e., expandable structure 551. Expandable structure 551 includes anterior portion 560 and posterior portion 570. The axial length of device 550 may be comparable to or slightly larger than the length of the ostium. Device 550 with an axial length slightly larger than the length of the ostium, when deployed, may extend into the neck region of the atrial appendage close to the ostium.
  • [0058]
    [0058]FIG. 5b shows device 550 at an expanded size at which it may be deployed in the ostium. Anterior portion 560 may be fabricated from an elastic membrane and include suitable filter element 565 for filtering harmful-size emboli from the blood flow. Anterior portion 560 may include suitable openings or fixtures for attaching catheters or other delivery devices (not shown). Anterior portion 560 is used to cover the ostium to ensure that all blood flow through the ostium passes through filter element 565. Posterior portion 570 may, for example, be formed of a wire mesh (as shown), a braided or woven fabric, or a short segment of sheet material tube. Posterior portion 570 may have suitable radial dimensions conforming to the ostium dimensions. FIG. 5c shows, for example, a cylindrical posterior portion 570 having a substantially constant diameter cross-section along its axial length. Alternatively, cylindrical posterior portion 570 may be flared with its diameter increasing along its axial length to match changes in the ostium diameter, for example, as the ostium merges into the neck region of the atrial appendage (not shown).
  • [0059]
    As shown in FIG. 5b, posterior portion 570 has barbs 575 distributed over a part of its exterior surface area close to anterior portion 560. Alternatively, barbs 575 may be distributed over all of the exterior surface area. When device 550 is positioned and expanded in an ostium, barbs 575 engage the surrounding ostium walls (and possibly neck region walls) to secure device 550 in position.
  • [0060]
    Posterior portion 570 may optionally have suitable elastic deformation properties that cause portion 570 to recoil slightly in size from its largest expanded size. Such suitable deformation properties may be obtained by design, for example, by choice of fabrication materials with suitable elastic properties. The size recoil of device 550 causes barbs 575 which have engaged the ostium and/or neck region walls during the expansion of device 550 to pull back and draw the walls closer to device 550. The expandable structures in other device embodiments including those described earlier (e.g., FIGS. 1-4, FIG. 5a) also may have similar size recoil characteristics which cause attached anchors to engage and draw surrounding wall tissue closer to the devices.
  • [0061]
    The various expandable implant devices (e.g., those described above with reference to FIGS. 1-5) may have filter elements for filtering harmful-size emboli out of the blood flowing out from the atrial appendages into the atria. For effective filtering, the filter elements should have appropriate hole size distributions which filter out harmful-size emboli. Since the implant devices are likely to be expanded to different sizes in use, for example, to conform to the varying dimensions of individual atrial appendages, the filter elements are configured so that their hole size distributions do not change significantly during the expansion of the device.
  • [0062]
    For example, FIG. 6 shows one configuration of filter element 600 in which the size distribution of holes 610 does not change significantly during device deployment. In the configuration shown, filter element 600 is attached to elastic membrane 620. Filter element 600 and elastic membrane 620 may, for example, be made of a suitable membrane or fabric composed of bicompatible materials, such as, for example, ePFTE (e.g., Gortex®), polyester (e.g., Dacron®), PTFE (e.g., Teflon®), silicone, urethane, metal fibers, or other biocompatible polymers. Filter 600 may have hole sizes ranging, for example, from about 50 to about 400 microns in diameter, suitable for filtering harmful-sized emboli. This range of hole size distribution may be adequate to make filter element 600 impervious to harmful-sized emboli, and yet provide enough permeability for blood to flow through element 600. The hole size distribution may be selected, for example, by selecting the open weave density of the fabric used to make filter 600. Alternatively, for example, for filter elements made of solid sheet material, other techniques such as laser drilling may be used for making small diameter holes.
  • [0063]
    Filter element 600 and elastic membrane 620 are constructed so that the former component is substantially less elastic than the latter component. This difference in elasticity may be obtained, for example, by using the same kind of material to make both components, but by making filter element 600 substantially thicker than elastic membrane 620. Alternatively, elastic membrane 620 and filter 600 may be made of two different kinds of materials that have different elastic properties. The two different material components may be bonded or glued together.
  • [0064]
    Filter element 600 and elastic membrane 620 may be incorporated in various types of implant device structures, for example, membrane tube 120 FIG. 1a,expandable structure 310 FIG. 3a, proximal structure 510 FIG. 5a, and anterior portion 560 FIG. 5b. When the device incorporating these two components is expanded, most of the concomitant stretching of the filter configuration due to the increase in device size is accommodated by the stretching of elastic membrane 620 leaving the size of filter element 600 substantially unchanged from its predetermined value.
  • [0065]
    It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. It will be understood that terms like “distal” and “proximal”, anterior” and “posterior”, and other directional or orientational terms are used herein only for convenience, and that no fixed or absolute orientations are intended by the use of these terms.

Claims (49)

What is claimed is:
1. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
a membrane tube having at least a first closed end wherein said first closed end comprises a blood-permeable filter; and
an expandable structure disposed in said tube, said structure having a collapsed configuration and an expanded configuration,
wherein said device is insertable in said appendage while said expandable structure is in said collapsed configuration, and wherein when said expandable structure is in said expanded configuration said closed end covers the ostium of said atrial appendage and portions of said membrane tube are pressed outwards against the interior walls of said atrial appendage anchoring said device therein.
2. The device of claim 1 wherein said membrane tube has a substantially cylindrical shape.
3. The device of claim 1 wherein said membrane tube has a second closed end.
4. The device of claim 3 wherein said second closed end comprises a blood-permeable filter.
5. The device of claim 1 wherein said expandable structure is self-expanding.
6. The device of claim 1 wherein said expandable structure expands from said collapsed configuration to said expanded configuration by means of an inflatable balloon.
7. The device of claim 6 wherein said first closed end further comprises a self-sealing opening for withdrawing said inflatable balloon.
8. The device of claim 7 wherein said self-sealing opening comprises an elastic ring.
9. The device of claim 7 wherein said self-sealing opening comprises overlapping membrane flaps.
10. The device of claim 1 wherein said membrane tube comprises elastomeric material.
11. The device of claim 1 wherein said membrane tube comprises braided material.
12. The device of claim 1 wherein said membrane tube comprises woven material.
13. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing a device comprising a membrane tube having at least a first closed end wherein said first closed end comprises a blood-permeable filter;
inserting said device in said appendage;
positioning said closed end to cover said ostium; and
anchoring said device in said atrial appendage.
14. The method of claim 13 wherein said anchoring comprises pressing sides of said tube outward against the interior walls of said atrial appendage.
15. The method of claim 13 wherein said providing a device further comprises disposing an expandable structure in said membrane tube, wherein said inserting further comprises placing said device in said atrial appendage while said expandable structure is in a collapsed configuration, and wherein said positioning and said anchoring comprise expanding said expandable structure to an expanded configuration.
16. The method of claim 15 wherein said expanding comprises using an inflatable balloon.
17. The method of claim 16 further comprising deflating and withdrawing said balloon from said atrial appendage after said device is anchored in said atrial appendage.
18. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
a cover comprising:
a filter element having a predetermined size; and
an expandable membrane attached to said filter element; and
an expandable structure for deploying said cover,
wherein said expandable membrane stretches as said cover is deployed and allows said predetermined size to remain substantially unchanged.
19. The device of claim 18 wherein said filter element comprises holes substantially impervious to harmful-size emboli.
20. The filter of claim 18 wherein said filter element is made of material which is less elastic than said expandable membrane
21. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing a cover comprising an expandable membrane attached to a filter element having a predetermined size;
providing an expandable structure to deploy said cover across said ostium; and
positioning said cover across said ostium using said expandable structure,
wherein said positioning comprises stretching said expandable membrane such that said predetermined size is substantially unchanged.
22. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
an expandable structure for covering said ostium; and
anchors disposed on the outer periphery of said expandable, wherein expandable structure has an axial length less than about the combined lengths of said ostium and a neck region of said atrial appendage leading to said ostium, wherein said expandable structure comprises a blood-permeable filter, and wherein said anchors engage surrounding ostium wall tissue.
23. The device of claim 22 wherein said expandable structure is self-expanding.
24. The device of claim 22 wherein said expandable structure expands in response to externally-initiated means.
25. The device of claim 24 wherein said externally-initiated means comprises an inflatable balloon.
26. The device of claim 22 wherein said blood-permeable filter comprises holes that are substantially impervious to harmful-size emboli.
27. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing an expandable structure comprising a blood-permeable filter, said expandable structure having an axial length less than about the length of an ostium;
providing anchors attached to said expandable structure;
disposing said expandable structure within said ostium;
positioning said expandable structure to cover said ostium; and
expanding said expandable structure so that said anchors engage surrounding ostium wall tissue.
28. The method of claim 27 wherein said providing an expandable structure comprises providing a self-expanding structure.
29. The method of claim 27 wherein said providing an expandable structure further comprises providing externally-initiated means to expand said expandable structure, and wherein said expanding comprises initiating said means.
30. The method of claim 29 wherein said providing externally-initiated means comprises providing an inflatable balloon, and wherein said initiating comprises inflating said inflatable balloon.
31. The method of claim 30 further comprising deflating and withdrawing said inflatable balloon after said anchors engage surrounding ostium wall tissue.
32. The method of claim 27 wherein said positioning said expandable structure to cover said ostium comprises positioning said expandable structure to direct substantially all blood flow through said ostium to pass through said filter.
33. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
a first structure comprising a blood-permeable filter element; and
a second structure attached to said first structure, said rear structure comprising at least one inflatable anchor set,
wherein said first structure is deployed across said ostium, and wherein said inflatable anchor set when inflated engages interior wall tissue of said atrial appendage to secure said device in its deployed position.
34. The device of claim 33 wherein said second structure comprises an axial portion, wherein said at least one inflatable anchor set comprises anchors attached to said axial portion along a radial circumference thereof.
35. The device of claim 33 wherein said second structure comprises an axial portion, wherein said at least one inflatable anchor set comprises anchors attached to said axial portion along an axial length thereof.
36. The device of claim 33 wherein said first structure comprises an inflatable structure.
37. The device of claim 33 wherein said filter element comprises holes substantially impervious to harmful-size emboli.
38. A method for filtering blood flowing through the ostium of an atrial appendage, comprising:
providing a device comprising:
a first structure comprising a blood-permeable filter element; and
a second structure attached to said first structure, said second structure
comprising at least one inflatable anchor set;
positioning said first structure to cover said ostium;
disposing said second structure interior to said atrial appendage; and
inflating said anchor set expanding so that said anchors engage surrounding atrial appendage wall tissue.
39. The method of claim 38 wherein providing an implant device further comprises providing said first structure comprising an inflatable structure.
40. A device for filtering blood flowing through the ostium of an atrial appendage, comprising:
an expandable structure comprising:
a first portion having a blood-permeable filter element; and
a second portion having a cylindrical shape; and
anchors disposed on at least part of the exterior surface of said second portion,
wherein when said device is deployed in about the vicinity of said ostium by expanding said expandable structure said first portion covers said ostium to direct said blood flow through said filter element and said anchors engage surrounding wall tissue.
41. The device of claim 40 wherein said filter element comprises holes substantially impervious to filter harmful-size emboli.
42. The device of claim 40 wherein said second portion further comprises a substantially constant diameter cylindrical structure.
43. The device of claim 40 wherein said second portion further comprises a flared-diameter cylindrical structure.
44. The device of claim 40 wherein said expandable structure is self-expanding.
45. The device of claim 40 wherein said expandable structure is balloon-expandable.
46. The device of claim 40 wherein said expandable structure has elastic deformation properties causing said expandable structure to recoil in size from its expanded size.
47. The device of claim 46 wherein said recoil in size causes said anchors that have engaged surrounding wall tissue to pull back and draw said walls closer to said device.
48. A method for filtering blood flow through the ostium of an atrial appendage, comprising:
providing a device comprising:
an expandable structure, said expandable structure comprising:
a first portion having a blood-permeable filter element; and
a second portion having a cylindrical shape; and
anchors disposed on at least part of the exterior surface of said second portion; and
deploying said device in about the vicinity of said ostium wherein said deploying comprises:
positioning said first portion to cover said ostium; and
expanding said expandable structure so that said anchors engage surrounding wall tissue.
49. The method of claim 48 wherein said providing a device further comprises providing said expandable structure which recoils in size from its expanded size, and wherein said expanding further comprises expanding and recoiling said expandable structure so that said anchors engage surrounding wall tissue and pull back drawing said walls toward said device.
US09932512 2000-08-18 2001-08-17 Expandable implant devices for filtering blood flow from atrial appendages Abandoned US20020022860A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US22646100 true 2000-08-18 2000-08-18
US23411200 true 2000-09-21 2000-09-21
US23411300 true 2000-09-21 2000-09-21
US09932512 US20020022860A1 (en) 2000-08-18 2001-08-17 Expandable implant devices for filtering blood flow from atrial appendages

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US09932512 US20020022860A1 (en) 2000-08-18 2001-08-17 Expandable implant devices for filtering blood flow from atrial appendages
US11185425 US8197527B2 (en) 2000-08-18 2005-07-19 Expandable implant devices for filtering blood flow from atrial appendages
US13493730 US8647361B2 (en) 2000-08-18 2012-06-11 Expandable implant devices for filtering blood flow from atrial appendages
US14147149 US9161830B2 (en) 2000-08-18 2014-01-03 Expandable implant devices for filtering blood flow from atrial appendages
US14866017 US20160008122A1 (en) 2000-08-18 2015-09-25 Expandable implant devices for filtering blood flow from atrial appendages

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11185425 Continuation US8197527B2 (en) 2000-08-18 2005-07-19 Expandable implant devices for filtering blood flow from atrial appendages

Publications (1)

Publication Number Publication Date
US20020022860A1 true true US20020022860A1 (en) 2002-02-21

Family

ID=27397622

Family Applications (5)

Application Number Title Priority Date Filing Date
US09932512 Abandoned US20020022860A1 (en) 2000-08-18 2001-08-17 Expandable implant devices for filtering blood flow from atrial appendages
US11185425 Active 2026-01-04 US8197527B2 (en) 2000-08-18 2005-07-19 Expandable implant devices for filtering blood flow from atrial appendages
US13493730 Active US8647361B2 (en) 2000-08-18 2012-06-11 Expandable implant devices for filtering blood flow from atrial appendages
US14147149 Active US9161830B2 (en) 2000-08-18 2014-01-03 Expandable implant devices for filtering blood flow from atrial appendages
US14866017 Pending US20160008122A1 (en) 2000-08-18 2015-09-25 Expandable implant devices for filtering blood flow from atrial appendages

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11185425 Active 2026-01-04 US8197527B2 (en) 2000-08-18 2005-07-19 Expandable implant devices for filtering blood flow from atrial appendages
US13493730 Active US8647361B2 (en) 2000-08-18 2012-06-11 Expandable implant devices for filtering blood flow from atrial appendages
US14147149 Active US9161830B2 (en) 2000-08-18 2014-01-03 Expandable implant devices for filtering blood flow from atrial appendages
US14866017 Pending US20160008122A1 (en) 2000-08-18 2015-09-25 Expandable implant devices for filtering blood flow from atrial appendages

Country Status (6)

Country Link
US (5) US20020022860A1 (en)
JP (1) JP2004506469A (en)
CN (1) CN1447669A (en)
CA (1) CA2419811A1 (en)
EP (1) EP1309289A2 (en)
WO (1) WO2002015793A3 (en)

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020049467A1 (en) * 1997-11-07 2002-04-25 Paul Gilson Embolic protection system
US20020107541A1 (en) * 1999-05-07 2002-08-08 Salviac Limited. Filter element for embolic protection device
US6432122B1 (en) 1997-11-07 2002-08-13 Salviac Limited Embolic protection device
US6506194B1 (en) * 2000-06-08 2003-01-14 Mohammed Ali Hajianpour Medullary plug including an external shield and an internal valve
WO2003007825A1 (en) 2001-07-19 2003-01-30 Atritech, Inc. Individually customized device for covering the ostium of left atrial appendage
US6565591B2 (en) 2000-06-23 2003-05-20 Salviac Limited Medical device
US20030130684A1 (en) * 2001-12-21 2003-07-10 Eamon Brady Support frame for an embolic protection device
US20030144688A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US20030144687A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US20030199923A1 (en) * 1998-11-06 2003-10-23 Ev3 Sunnyvale, Inc., A California Corporation Adjustable left atrial appendage implant deployment system
US20030208232A1 (en) * 2002-05-06 2003-11-06 Velocimed, L.L.C. PFO closure devices and related methods of use
US20030212429A1 (en) * 2002-03-05 2003-11-13 Martin Keegan Embolic protection system
US20030225421A1 (en) * 2002-03-25 2003-12-04 Nmt Medical, Inc. Patent foramen ovale (PFO) closure clips
US20040030335A1 (en) * 2002-05-14 2004-02-12 University Of Pittsburgh Device and method of use for functional isolation of animal or human tissues
US20040034366A1 (en) * 1999-11-08 2004-02-19 Ev3 Sunnyvale, Inc., A California Corporation Device for containing embolic material in the LAA having a plurality of tissue retention structures
US20040044361A1 (en) * 1998-11-06 2004-03-04 Frazier Andrew G.C. Detachable atrial appendage occlusion balloon
US6726701B2 (en) 1999-05-07 2004-04-27 Salviac Limited Embolic protection device
US20040093017A1 (en) * 2002-11-06 2004-05-13 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
US20040098031A1 (en) * 1998-11-06 2004-05-20 Van Der Burg Erik J. Method and device for left atrial appendage occlusion
US6752819B1 (en) 1998-04-02 2004-06-22 Salviac Limited Delivery catheter
US20040176799A1 (en) * 2002-12-09 2004-09-09 Nmt Medical, Inc. Septal closure devices
US20040215230A1 (en) * 2003-04-28 2004-10-28 Frazier Andrew G. C. Left atrial appendage occlusion device with active expansion
US20040220610A1 (en) * 1999-11-08 2004-11-04 Kreidler Marc S. Thin film composite lamination
US20040220560A1 (en) * 2003-04-29 2004-11-04 Briscoe Roderick E. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20040267306A1 (en) * 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US20050004641A1 (en) * 2001-06-04 2005-01-06 Ramesh Pappu Cardiac stimulating apparatus having a blood clot filter and atrial pacer
US20050027247A1 (en) * 2003-07-29 2005-02-03 Scimed Life Systems, Inc. Apparatus and method for treating intravascular disease
US20050027314A1 (en) * 2003-07-30 2005-02-03 Scimed Life Systems, Inc. Self-centering blood clot filter
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20050049681A1 (en) * 2003-05-19 2005-03-03 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US20050070952A1 (en) * 2003-09-12 2005-03-31 Nmt Medical, Inc. Device and methods for preventing formation of thrombi in the left atrial appendage
US20050080430A1 (en) * 2003-08-19 2005-04-14 Nmt Medical, Inc. Expandable sheath tubing
US20050222533A1 (en) * 2004-03-30 2005-10-06 Nmt Medical, Inc. Restoration of flow in LAA via tubular conduit
US20050234540A1 (en) * 2004-03-12 2005-10-20 Nmt Medical, Inc. Dilatation systems and methods for left atrial appendage
US20050234543A1 (en) * 2004-03-30 2005-10-20 Nmt Medical, Inc. Plug for use in left atrial appendage
US20050251154A1 (en) * 2004-05-06 2005-11-10 Nmt Medical, Inc. Double coil occluder
US20050267524A1 (en) * 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US20050267523A1 (en) * 2004-03-03 2005-12-01 Nmt Medical Inc. Delivery/recovery system for septal occluder
US20050267525A1 (en) * 2004-04-26 2005-12-01 Nmt Medical, Inc. Heart-shaped PFO closure device
US20050267526A1 (en) * 2001-06-01 2005-12-01 Velocimed Pfo, Inc. Closure devices, related delivery methods and tools, and related methods of use
US20050273119A1 (en) * 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US20050273124A1 (en) * 2004-05-06 2005-12-08 Nmt Medical, Inc. Delivery systems and methods for PFO closure device with two anchors
US20050277959A1 (en) * 2004-05-26 2005-12-15 Idx Medical, Ltd. Apparatus and methods for occluding a hollow anatomical structure
US20060009800A1 (en) * 2003-04-11 2006-01-12 Velocimed Pfo, Inc. Closure devices, related delivery methods, and related methods of use
US20060122647A1 (en) * 2004-09-24 2006-06-08 Callaghan David J Occluder device double securement system for delivery/recovery of such occluder device
US20060199995A1 (en) * 2005-03-02 2006-09-07 Venkataramana Vijay Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure
US20060293739A1 (en) * 2005-03-02 2006-12-28 Venkataramana Vijay Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure
US20070010851A1 (en) * 2003-07-14 2007-01-11 Chanduszko Andrzej J Tubular patent foramen ovale (PFO) closure device with catch system
US20070027456A1 (en) * 2005-08-01 2007-02-01 Ension, Inc. Integrated medical apparatus for non-traumatic grasping, manipulating and closure of tissue
US20070066993A1 (en) * 2005-09-16 2007-03-22 Kreidler Marc S Intracardiac cage and method of delivering same
US20070135826A1 (en) * 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US20070231203A1 (en) * 2006-03-28 2007-10-04 Terumo Kabushiki Kaisha Filter member and oxygenator using same
US20070265642A1 (en) * 2002-01-14 2007-11-15 Nmt Medical, Inc. Patent foramen ovale (PFO) closure method and device
US20070276468A1 (en) * 2005-05-24 2007-11-29 Inspiremd Ltd. Bifurcated stent assemblies
US20080125795A1 (en) * 1999-05-20 2008-05-29 Aaron V. Kaplan Methods and apparatus for transpericardial left atrial appendage closure
US20080147097A1 (en) * 2003-10-09 2008-06-19 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US20080161825A1 (en) * 2006-11-20 2008-07-03 Stout Medical Group, L.P. Anatomical measurement tool
US20080243183A1 (en) * 2007-03-30 2008-10-02 Miller Gary H Devices, systems, and methods for closing the left atrial appendage
US20080249562A1 (en) * 2007-04-05 2008-10-09 Nmt Medical, Inc. Septal closure device with centering mechanism
US20080286278A1 (en) * 2001-03-07 2008-11-20 Biomed Solutions, Llc Process for in vivo treatment of specific biological targets in bodily fluids
US20090005777A1 (en) * 2001-04-24 2009-01-01 Vascular Closure Systems, Inc. Arteriotomy closure devices and techniques
US20090054924A1 (en) * 2000-06-23 2009-02-26 Salviac Limited Medical device
US20090143789A1 (en) * 2007-12-03 2009-06-04 Houser Russell A Vascular closure devices, systems, and methods of use
US20090143808A1 (en) * 2001-04-24 2009-06-04 Houser Russell A Guided Tissue Cutting Device, Method of Use and Kits Therefor
US7735493B2 (en) 2003-08-15 2010-06-15 Atritech, Inc. System and method for delivering a left atrial appendage containment device
US20100179570A1 (en) * 2009-01-13 2010-07-15 Salvatore Privitera Apparatus and methods for deploying a clip to occlude an anatomical structure
US20100204772A1 (en) * 2006-10-18 2010-08-12 Asher Holzer Filter Assemblies
US20100241214A1 (en) * 2006-11-22 2010-09-23 Inspiremd Ltd. Optimized stent jacket
US20100324585A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324664A1 (en) * 2006-10-18 2010-12-23 Asher Holzer Bifurcated Stent Assemblies
US20100324651A1 (en) * 2006-10-18 2010-12-23 Asher Holzer Knitted Stent Jackets
US7901427B2 (en) 1997-11-07 2011-03-08 Salviac Limited Filter element with retractable guidewire tip
US20110087247A1 (en) * 2009-04-01 2011-04-14 Fung Gregory W Tissue ligation devices and controls therefor
US20110144660A1 (en) * 2005-04-07 2011-06-16 Liddicoat John R Apparatus and method for the ligation of tissue
US8257389B2 (en) 2004-05-07 2012-09-04 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US20120271337A1 (en) * 2007-04-16 2012-10-25 Hans-Reiner Figulla Occluder For Occluding an Atrial Appendage and Production Process Therefor
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US8636754B2 (en) 2010-11-11 2014-01-28 Atricure, Inc. Clip applicator
US20140100596A1 (en) * 2012-10-09 2014-04-10 Boston Scientific Scimed, Inc. Centered balloon for the left atrial appendage
US8721663B2 (en) 1999-05-20 2014-05-13 Sentreheart, Inc. Methods and apparatus for transpericardial left atrial appendage closure
US8784448B2 (en) 2002-06-05 2014-07-22 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US8801746B1 (en) 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US9017349B2 (en) 2010-10-27 2015-04-28 Atricure, Inc. Appendage clamp deployment assist device
US9066741B2 (en) 2010-11-01 2015-06-30 Atricure, Inc. Robotic toolkit
US9132261B2 (en) 2006-10-18 2015-09-15 Inspiremd, Ltd. In vivo filter assembly
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US9161830B2 (en) 2000-08-18 2015-10-20 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US9265486B2 (en) 2011-08-15 2016-02-23 Atricure, Inc. Surgical device
US9282973B2 (en) 2012-01-20 2016-03-15 Atricure, Inc. Clip deployment tool and associated methods
US9345460B2 (en) 2001-04-24 2016-05-24 Cardiovascular Technologies, Inc. Tissue closure devices, device and systems for delivery, kits and methods therefor
US9408659B2 (en) 2007-04-02 2016-08-09 Atricure, Inc. Surgical instrument with separate tool head and method of use
US9408608B2 (en) 2013-03-12 2016-08-09 Sentreheart, Inc. Tissue ligation devices and methods therefor
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US9486281B2 (en) 2010-04-13 2016-11-08 Sentreheart, Inc. Methods and devices for accessing and delivering devices to a heart
US9498206B2 (en) 2011-06-08 2016-11-22 Sentreheart, Inc. Tissue ligation devices and tensioning devices therefor
US9649115B2 (en) 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9656063B2 (en) 2004-06-18 2017-05-23 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US9693781B2 (en) 2009-06-17 2017-07-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9750505B2 (en) 2009-01-08 2017-09-05 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US9795387B2 (en) 1997-05-19 2017-10-24 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402771B1 (en) 1999-12-23 2002-06-11 Guidant Endovascular Solutions Snare
US6575997B1 (en) 1999-12-23 2003-06-10 Endovascular Technologies, Inc. Embolic basket
US6660021B1 (en) 1999-12-23 2003-12-09 Advanced Cardiovascular Systems, Inc. Intravascular device and system
US6695813B1 (en) 1999-12-30 2004-02-24 Advanced Cardiovascular Systems, Inc. Embolic protection devices
US7918820B2 (en) 1999-12-30 2011-04-05 Advanced Cardiovascular Systems, Inc. Device for, and method of, blocking emboli in vessels such as blood arteries
US6964670B1 (en) 2000-07-13 2005-11-15 Advanced Cardiovascular Systems, Inc. Embolic protection guide wire
US6599307B1 (en) 2001-06-29 2003-07-29 Advanced Cardiovascular Systems, Inc. Filter device for embolic protection systems
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6506203B1 (en) 2000-12-19 2003-01-14 Advanced Cardiovascular Systems, Inc. Low profile sheathless embolic protection system
US7338510B2 (en) 2001-06-29 2008-03-04 Advanced Cardiovascular Systems, Inc. Variable thickness embolic filtering devices and method of manufacturing the same
US6638294B1 (en) 2001-08-30 2003-10-28 Advanced Cardiovascular Systems, Inc. Self furling umbrella frame for carotid filter
US6592606B2 (en) 2001-08-31 2003-07-15 Advanced Cardiovascular Systems, Inc. Hinged short cage for an embolic protection device
US8262689B2 (en) 2001-09-28 2012-09-11 Advanced Cardiovascular Systems, Inc. Embolic filtering devices
US7241304B2 (en) 2001-12-21 2007-07-10 Advanced Cardiovascular Systems, Inc. Flexible and conformable embolic filtering devices
US7331973B2 (en) 2002-09-30 2008-02-19 Avdanced Cardiovascular Systems, Inc. Guide wire with embolic filtering attachment
US7252675B2 (en) 2002-09-30 2007-08-07 Advanced Cardiovascular, Inc. Embolic filtering devices
US20040088000A1 (en) 2002-10-31 2004-05-06 Muller Paul F. Single-wire expandable cages for embolic filtering devices
US8591540B2 (en) 2003-02-27 2013-11-26 Abbott Cardiovascular Systems Inc. Embolic filtering devices
US7892251B1 (en) 2003-11-12 2011-02-22 Advanced Cardiovascular Systems, Inc. Component for delivering and locking a medical device to a guide wire
US7678129B1 (en) 2004-03-19 2010-03-16 Advanced Cardiovascular Systems, Inc. Locking component for an embolic filter assembly
US9259305B2 (en) 2005-03-31 2016-02-16 Abbott Cardiovascular Systems Inc. Guide wire locking mechanism for rapid exchange and other catheter systems
US8597341B2 (en) * 2006-03-06 2013-12-03 David Elmaleh Intravascular device with netting system
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US7867273B2 (en) 2007-06-27 2011-01-11 Abbott Laboratories Endoprostheses for peripheral arteries and other body vessels
EP2241284B1 (en) 2009-04-15 2012-09-19 National University of Ireland, Galway Intravasculature devices and balloons for use therewith
US9351716B2 (en) 2009-06-17 2016-05-31 Coherex Medical, Inc. Medical device and delivery system for modification of left atrial appendage and methods thereof
CN102805654B (en) * 2011-06-01 2014-04-02 先健科技(深圳)有限公司 Occluder for left auricle
WO2013009872A1 (en) 2011-07-11 2013-01-17 The Regents Of The University Of Michigan Multimodality left atrial appendage occlusion device
US9861370B2 (en) * 2011-11-09 2018-01-09 Boston Scientific Scimed Inc. Occlusion device
US20170042550A1 (en) * 2014-04-25 2017-02-16 Flow MedTech, Inc Left atrial appendage occlusion device
CN104107072A (en) * 2014-07-29 2014-10-22 孙伟 Double umbrella type left auricle sealing device

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US178283A (en) * 1876-06-06 Improvement in vaginal syringes
US876367A (en) * 1906-06-29 1908-01-14 Edward Lindow Folding seat.
US1967318A (en) * 1931-10-02 1934-07-24 Monahan William Apparatus for the treatment of the urethra
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4341218A (en) * 1978-05-30 1982-07-27 University Of California Detachable balloon catheter
US4585000A (en) * 1983-09-28 1986-04-29 Cordis Corporation Expandable device for treating intravascular stenosis
US4603693A (en) * 1977-05-26 1986-08-05 United States Surgical Corporation Instrument for circular surgical stapling of hollow body organs and disposable cartridge therefor
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US5041093A (en) * 1990-01-31 1991-08-20 Boston Scientific Corp. Catheter with foraminous anchor
US5042707A (en) * 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5176692A (en) * 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5306234A (en) * 1993-03-23 1994-04-26 Johnson W Dudley Method for closing an atrial appendage
US5334217A (en) * 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5350399A (en) * 1991-09-23 1994-09-27 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5417699A (en) * 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5421832A (en) * 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5425744A (en) * 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5443454A (en) * 1992-12-09 1995-08-22 Terumo Kabushiki Kaisha Catheter for embolectomy
US5451235A (en) * 1991-11-05 1995-09-19 C.R. Bard, Inc. Occluder and method for repair of cardiac and vascular defects
US5490856A (en) * 1993-12-14 1996-02-13 Untied States Surgical Corporation Purse string stapler
US5522822A (en) * 1992-10-26 1996-06-04 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5522836A (en) * 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
US5527322A (en) * 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5527338A (en) * 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5591196A (en) * 1994-02-10 1997-01-07 Endovascular Systems, Inc. Method for deployment of radially expandable stents
US5614204A (en) * 1995-01-23 1997-03-25 The Regents Of The University Of California Angiographic vascular occlusion agents and a method for hemostatic occlusion
US5634942A (en) * 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5637097A (en) * 1992-04-15 1997-06-10 Yoon; Inbae Penetrating instrument having an expandable anchoring portion
US5643292A (en) * 1995-01-10 1997-07-01 Applied Medical Resources Corporation Percutaneous suturing device
US5649953A (en) * 1992-09-28 1997-07-22 Bentex Trading S.A. Kit for medical use composed of a filter and a device for placing it in the vessel
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5669933A (en) * 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5749894A (en) * 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5749883A (en) * 1995-08-30 1998-05-12 Halpern; David Marcos Medical instrument
US5766219A (en) * 1995-04-20 1998-06-16 Musc Foundation For Research Development Anatomically shaped vasoocclusive device and method for deploying same
US5769816A (en) * 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US5776097A (en) * 1996-12-19 1998-07-07 University Of California At Los Angeles Method and device for treating intracranial vascular aneurysms
US5782860A (en) * 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US5810874A (en) * 1996-02-22 1998-09-22 Cordis Corporation Temporary filter catheter
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5865802A (en) * 1988-07-22 1999-02-02 Yoon; Inbae Expandable multifunctional instruments for creating spaces at obstructed sites endoscopically
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US5868708A (en) * 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US5885258A (en) * 1996-02-23 1999-03-23 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US5904703A (en) * 1996-05-08 1999-05-18 Bard Connaught Occluder device formed from an open cell foam material
US5906207A (en) * 1996-04-04 1999-05-25 Merck & Co., Inc. Method for simulating heart failure
US5910154A (en) * 1997-05-08 1999-06-08 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment
US5916236A (en) * 1989-05-29 1999-06-29 Kensey Nash Corporation Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5928192A (en) * 1997-07-24 1999-07-27 Embol-X, Inc. Arterial aspiration
US5928260A (en) * 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US5935147A (en) * 1991-11-08 1999-08-10 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5941249A (en) * 1996-09-05 1999-08-24 Maynard; Ronald S. Distributed activator for a two-dimensional shape memory alloy
US5944738A (en) * 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US5947997A (en) * 1992-11-25 1999-09-07 William Cook Europe A/S Closure prothesis for transcatheter placement
US5951589A (en) * 1997-02-11 1999-09-14 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5954694A (en) * 1998-08-07 1999-09-21 Embol-X, Inc. Nested tubing sections and methods for making same
US6010517A (en) * 1996-04-10 2000-01-04 Baccaro; Jorge Alberto Device for occluding abnormal vessel communications
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US6024755A (en) * 1998-12-11 2000-02-15 Embol-X, Inc. Suture-free clamp and sealing port and methods of use
US6033420A (en) * 1998-09-02 2000-03-07 Embol-X, Inc. Trocar introducer system and methods of use
US6037810A (en) * 1997-08-26 2000-03-14 Advanced Mirco Devices, Inc. Electronic system having a multistage low noise output buffer system
US6048331A (en) * 1996-05-14 2000-04-11 Embol-X, Inc. Cardioplegia occluder
US6051015A (en) * 1997-05-08 2000-04-18 Embol-X, Inc. Modular filter with delivery system
US6051014A (en) * 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6056720A (en) * 1998-11-24 2000-05-02 Embol-X, Inc. Occlusion cannula and methods of use
US6068621A (en) * 1998-11-20 2000-05-30 Embol X, Inc. Articulating cannula
US6074357A (en) * 1996-12-05 2000-06-13 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US6080183A (en) * 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
US6079414A (en) * 1993-02-22 2000-06-27 Heartport, Inc. Method for thoracoscopic intracardiac procedures including septal defect
US6080182A (en) * 1996-12-20 2000-06-27 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US6083239A (en) * 1998-11-24 2000-07-04 Embol-X, Inc. Compliant framework and methods of use
US6231589B1 (en) * 1999-03-22 2001-05-15 Microvena Corporation Body vessel filter
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6270490B1 (en) * 1998-09-08 2001-08-07 Embol-X, Inc. Venous drainage catheter and method of use
US6547760B1 (en) * 1998-08-06 2003-04-15 Cardeon Corporation Aortic catheter with porous aortic arch balloon and methods for selective aortic perfusion
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6689150B1 (en) * 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US614091A (en) 1898-11-15 Tilting crate and stand for demijohns or carboys
US428008A (en) 1890-05-13 Philip lange
US642291A (en) 1899-05-09 1900-01-30 Benjamin F Bowman Hatch-fastener for vessels.
US697628A (en) 1901-09-11 1902-04-15 Chauncey C Johnston Insulator and attachment for electric wires.
US4222126A (en) * 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US5480410A (en) * 1994-03-14 1996-01-02 Advanced Surgical, Inc. Extracorporeal pneumoperitoneum access bubble
US6152144A (en) * 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6652555B1 (en) * 1999-10-27 2003-11-25 Atritech, Inc. Barrier device for covering the ostium of left atrial appendage
EP1309289A2 (en) 2000-08-18 2003-05-14 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US178283A (en) * 1876-06-06 Improvement in vaginal syringes
US876367A (en) * 1906-06-29 1908-01-14 Edward Lindow Folding seat.
US1967318A (en) * 1931-10-02 1934-07-24 Monahan William Apparatus for the treatment of the urethra
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4007743A (en) * 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
US4603693A (en) * 1977-05-26 1986-08-05 United States Surgical Corporation Instrument for circular surgical stapling of hollow body organs and disposable cartridge therefor
US4341218A (en) * 1978-05-30 1982-07-27 University Of California Detachable balloon catheter
US4585000A (en) * 1983-09-28 1986-04-29 Cordis Corporation Expandable device for treating intravascular stenosis
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US5865802A (en) * 1988-07-22 1999-02-02 Yoon; Inbae Expandable multifunctional instruments for creating spaces at obstructed sites endoscopically
US4921484A (en) * 1988-07-25 1990-05-01 Cordis Corporation Mesh balloon catheter device
US4917089A (en) * 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5916236A (en) * 1989-05-29 1999-06-29 Kensey Nash Corporation Occlusion assembly for sealing openings in blood vessels and a method for sealing openings in blood vessels
US5421832A (en) * 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5041093A (en) * 1990-01-31 1991-08-20 Boston Scientific Corp. Catheter with foraminous anchor
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5042707A (en) * 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5350399A (en) * 1991-09-23 1994-09-27 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5425744A (en) * 1991-11-05 1995-06-20 C. R. Bard, Inc. Occluder for repair of cardiac and vascular defects
US5451235A (en) * 1991-11-05 1995-09-19 C.R. Bard, Inc. Occluder and method for repair of cardiac and vascular defects
US5935147A (en) * 1991-11-08 1999-08-10 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5176692A (en) * 1991-12-09 1993-01-05 Wilk Peter J Method and surgical instrument for repairing hernia
US5334217A (en) * 1992-01-21 1994-08-02 Regents Of The University Of Minnesota Septal defect closure device
US5637097A (en) * 1992-04-15 1997-06-10 Yoon; Inbae Penetrating instrument having an expandable anchoring portion
US5527338A (en) * 1992-09-02 1996-06-18 Board Of Regents, The University Of Texas System Intravascular device
US5649953A (en) * 1992-09-28 1997-07-22 Bentex Trading S.A. Kit for medical use composed of a filter and a device for placing it in the vessel
US5522822A (en) * 1992-10-26 1996-06-04 Target Therapeutics, Inc. Vasoocclusion coil with attached tubular woven or braided fibrous covering
US5947997A (en) * 1992-11-25 1999-09-07 William Cook Europe A/S Closure prothesis for transcatheter placement
US5443454A (en) * 1992-12-09 1995-08-22 Terumo Kabushiki Kaisha Catheter for embolectomy
US5417699A (en) * 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5284488A (en) * 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US5735290A (en) * 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US6079414A (en) * 1993-02-22 2000-06-27 Heartport, Inc. Method for thoracoscopic intracardiac procedures including septal defect
US5306234A (en) * 1993-03-23 1994-04-26 Johnson W Dudley Method for closing an atrial appendage
US5527322A (en) * 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5490856A (en) * 1993-12-14 1996-02-13 Untied States Surgical Corporation Purse string stapler
US5591196A (en) * 1994-02-10 1997-01-07 Endovascular Systems, Inc. Method for deployment of radially expandable stents
US5634942A (en) * 1994-04-21 1997-06-03 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and a device for implanting it
US5522836A (en) * 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
US5725552A (en) * 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5433727A (en) * 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
US5643292A (en) * 1995-01-10 1997-07-01 Applied Medical Resources Corporation Percutaneous suturing device
US5614204A (en) * 1995-01-23 1997-03-25 The Regents Of The University Of California Angiographic vascular occlusion agents and a method for hemostatic occlusion
US5634936A (en) * 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5766219A (en) * 1995-04-20 1998-06-16 Musc Foundation For Research Development Anatomically shaped vasoocclusive device and method for deploying same
US5865791A (en) * 1995-06-07 1999-02-02 E.P. Technologies Inc. Atrial appendage stasis reduction procedure and devices
US5709224A (en) * 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5725568A (en) * 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5749883A (en) * 1995-08-30 1998-05-12 Halpern; David Marcos Medical instrument
US5709707A (en) * 1995-10-30 1998-01-20 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5769816A (en) * 1995-11-07 1998-06-23 Embol-X, Inc. Cannula with associated filter
US6024754A (en) * 1996-01-18 2000-02-15 Target Therapeutics Inc. Aneurysm closure method
US5749894A (en) * 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5810874A (en) * 1996-02-22 1998-09-22 Cordis Corporation Temporary filter catheter
US5885258A (en) * 1996-02-23 1999-03-23 Memory Medical Systems, Inc. Medical instrument with slotted memory metal tube
US5733294A (en) * 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US6024756A (en) * 1996-03-22 2000-02-15 Scimed Life Systems, Inc. Method of reversibly closing a septal defect
US5906207A (en) * 1996-04-04 1999-05-25 Merck & Co., Inc. Method for simulating heart failure
US6010517A (en) * 1996-04-10 2000-01-04 Baccaro; Jorge Alberto Device for occluding abnormal vessel communications
US5904703A (en) * 1996-05-08 1999-05-18 Bard Connaught Occluder device formed from an open cell foam material
US6048331A (en) * 1996-05-14 2000-04-11 Embol-X, Inc. Cardioplegia occluder
US5662671A (en) * 1996-07-17 1997-09-02 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5669933A (en) * 1996-07-17 1997-09-23 Nitinol Medical Technologies, Inc. Removable embolus blood clot filter
US5895399A (en) * 1996-07-17 1999-04-20 Embol-X Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US6010522A (en) * 1996-07-17 2000-01-04 Embol-X, Inc. Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
US5941249A (en) * 1996-09-05 1999-08-24 Maynard; Ronald S. Distributed activator for a two-dimensional shape memory alloy
US6074357A (en) * 1996-12-05 2000-06-13 Embol-X, Inc. Cerebral protection during carotid endarterectomy and downstream vascular protection during other surgeries
US5776097A (en) * 1996-12-19 1998-07-07 University Of California At Los Angeles Method and device for treating intracranial vascular aneurysms
US6080182A (en) * 1996-12-20 2000-06-27 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5782860A (en) * 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
US5951589A (en) * 1997-02-11 1999-09-14 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5855597A (en) * 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5868708A (en) * 1997-05-07 1999-02-09 Applied Medical Resources Corporation Balloon catheter apparatus and method
US6051015A (en) * 1997-05-08 2000-04-18 Embol-X, Inc. Modular filter with delivery system
US6027520A (en) * 1997-05-08 2000-02-22 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6042598A (en) * 1997-05-08 2000-03-28 Embol-X Inc. Method of protecting a patient from embolization during cardiac surgery
US5911734A (en) * 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5910154A (en) * 1997-05-08 1999-06-08 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment
US5928260A (en) * 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
US5928192A (en) * 1997-07-24 1999-07-27 Embol-X, Inc. Arterial aspiration
US6037810A (en) * 1997-08-26 2000-03-14 Advanced Mirco Devices, Inc. Electronic system having a multistage low noise output buffer system
US5944738A (en) * 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US5935148A (en) * 1998-06-24 1999-08-10 Target Therapeutics, Inc. Detachable, varying flexibility, aneurysm neck bridge
US6547760B1 (en) * 1998-08-06 2003-04-15 Cardeon Corporation Aortic catheter with porous aortic arch balloon and methods for selective aortic perfusion
US5954694A (en) * 1998-08-07 1999-09-21 Embol-X, Inc. Nested tubing sections and methods for making same
US6033420A (en) * 1998-09-02 2000-03-07 Embol-X, Inc. Trocar introducer system and methods of use
US6270490B1 (en) * 1998-09-08 2001-08-07 Embol-X, Inc. Venous drainage catheter and method of use
US6051014A (en) * 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6068621A (en) * 1998-11-20 2000-05-30 Embol X, Inc. Articulating cannula
US6080183A (en) * 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
US6056720A (en) * 1998-11-24 2000-05-02 Embol-X, Inc. Occlusion cannula and methods of use
US6083239A (en) * 1998-11-24 2000-07-04 Embol-X, Inc. Compliant framework and methods of use
US6024755A (en) * 1998-12-11 2000-02-15 Embol-X, Inc. Suture-free clamp and sealing port and methods of use
US6231589B1 (en) * 1999-03-22 2001-05-15 Microvena Corporation Body vessel filter
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6551303B1 (en) * 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6689150B1 (en) * 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage

Cited By (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795387B2 (en) 1997-05-19 2017-10-24 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US8221448B2 (en) 1997-11-07 2012-07-17 Salviac Limited Embolic protection device
US6432122B1 (en) 1997-11-07 2002-08-13 Salviac Limited Embolic protection device
US20070233181A1 (en) * 1997-11-07 2007-10-04 Abbott Laboratories Embolic protection device
US20070239200A1 (en) * 1997-11-07 2007-10-11 Abbott Laboratories Embolic protection device
US7833242B2 (en) 1997-11-07 2010-11-16 Salviac Limited Embolic protection device
US20070173884A1 (en) * 1997-11-07 2007-07-26 Salviac Limited Embolic protection device
US20070162069A1 (en) * 1997-11-07 2007-07-12 Salviac Limited Embolic protection device
US7837701B2 (en) 1997-11-07 2010-11-23 Salviac Limited Embolic protection device
US20070123931A1 (en) * 1997-11-07 2007-05-31 Salviac Limited Embolic protection system
US20080188884A1 (en) * 1997-11-07 2008-08-07 Salviac Limited Embolic protection device
US6645224B2 (en) 1997-11-07 2003-11-11 Salviac Limited Embolic protection device
US20070106322A1 (en) * 1997-11-07 2007-05-10 Salviac Limited Embolic protection device
US20070250107A1 (en) * 1997-11-07 2007-10-25 Salviac Limited Embolic protection system
US7842063B2 (en) 1997-11-07 2010-11-30 Salviac Limited Embolic protection device
US7842066B2 (en) 1997-11-07 2010-11-30 Salviac Limited Embolic protection system
US7846176B2 (en) 1997-11-07 2010-12-07 Salviac Limited Embolic protection system
US20040039411A1 (en) * 1997-11-07 2004-02-26 Paul Gilson Embolic protection device
US7901427B2 (en) 1997-11-07 2011-03-08 Salviac Limited Filter element with retractable guidewire tip
US20040073198A1 (en) * 1997-11-07 2004-04-15 Salviac Limited Embolic protection device
US7901426B2 (en) 1997-11-07 2011-03-08 Salviac Limited Embolic protection device
US20070005096A1 (en) * 1997-11-07 2007-01-04 Salviac Limited Embolic protection system
US20110125182A1 (en) * 1997-11-07 2011-05-26 Salviac Limited Filter element with retractable guidewire tip
US20060293704A1 (en) * 1997-11-07 2006-12-28 Salviac Limited Embolic protection device
US7972352B2 (en) 1997-11-07 2011-07-05 Salviac Limited Embolic protection system
US20040127934A1 (en) * 1997-11-07 2004-07-01 Salviac Limited Embolic protection system
US7780697B2 (en) 1997-11-07 2010-08-24 Salviac Limited Embolic protection system
US8052716B2 (en) 1997-11-07 2011-11-08 Salviac Limited Embolic protection system
US20060095070A1 (en) * 1997-11-07 2006-05-04 Paul Gilson Embolic portection device
US8852226B2 (en) 1997-11-07 2014-10-07 Salviac Limited Vascular device for use during an interventional procedure
US20060089663A1 (en) * 1997-11-07 2006-04-27 Salviac Limited Embolic protection device
US20060074446A1 (en) * 1997-11-07 2006-04-06 Paul Gilson Embolic protection system
US8057504B2 (en) 1997-11-07 2011-11-15 Salviac Limited Embolic protection device
US20020049467A1 (en) * 1997-11-07 2002-04-25 Paul Gilson Embolic protection system
US8328842B2 (en) 1997-11-07 2012-12-11 Salviac Limited Filter element with retractable guidewire tip
US20050283184A1 (en) * 1997-11-07 2005-12-22 Salviac Limited Embolic protection device
US8603131B2 (en) 1997-11-07 2013-12-10 Salviac Limited Embolic protection device
US20070282369A1 (en) * 1997-11-07 2007-12-06 Salviac Limited Embolic protection device
US7662165B2 (en) 1997-11-07 2010-02-16 Salviac Limited Embolic protection device
US8216270B2 (en) 1997-11-07 2012-07-10 Salviac Limited Embolic protection device
US6887256B2 (en) 1997-11-07 2005-05-03 Salviac Limited Embolic protection system
US20050209635A1 (en) * 1997-11-07 2005-09-22 Salviac Limited Embolic protection device
US8430901B2 (en) 1997-11-07 2013-04-30 Salviac Limited Embolic protection device
US20050228437A1 (en) * 1997-11-07 2005-10-13 Salviac Limited Embolic protection system
US20050234502A1 (en) * 1997-11-07 2005-10-20 Paul Gilson Embolic protection system
US20060004403A1 (en) * 1997-11-07 2006-01-05 Salviac Limited Embolic protection system
US8123776B2 (en) 1997-11-07 2012-02-28 Salviac Limited Embolic protection system
US20060129182A1 (en) * 1997-11-07 2006-06-15 Salviac Limited Embolic protection device
US8241319B2 (en) 1997-11-07 2012-08-14 Salviac Limited Embolic protection system
US8226678B2 (en) 1997-11-07 2012-07-24 Salviac Limited Embolic protection device
US20070244505A1 (en) * 1997-11-07 2007-10-18 Abbott Laboratories Embolic protection device
US7785342B2 (en) 1997-11-07 2010-08-31 Salviac Limited Embolic protection device
US6752819B1 (en) 1998-04-02 2004-06-22 Salviac Limited Delivery catheter
US20040260308A1 (en) * 1998-04-02 2004-12-23 Salviac Limited Delivery catheter
US20030199923A1 (en) * 1998-11-06 2003-10-23 Ev3 Sunnyvale, Inc., A California Corporation Adjustable left atrial appendage implant deployment system
US8523897B2 (en) 1998-11-06 2013-09-03 Atritech, Inc. Device for left atrial appendage occlusion
US20040044361A1 (en) * 1998-11-06 2004-03-04 Frazier Andrew G.C. Detachable atrial appendage occlusion balloon
US8080032B2 (en) * 1998-11-06 2011-12-20 Atritech, Inc. Method and device for left atrial appendage occlusion
US8834519B2 (en) 1998-11-06 2014-09-16 Artritech, Inc. Method and device for left atrial appendage occlusion
US9168043B2 (en) 1998-11-06 2015-10-27 Atritech, Inc. Method for left atrial appendage occlusion
US20040098031A1 (en) * 1998-11-06 2004-05-20 Van Der Burg Erik J. Method and device for left atrial appendage occlusion
US7713282B2 (en) * 1998-11-06 2010-05-11 Atritech, Inc. Detachable atrial appendage occlusion balloon
US20080167677A1 (en) * 1999-05-07 2008-07-10 Salviac Limited Filter element for embolic protection device
US20060122644A1 (en) * 1999-05-07 2006-06-08 Salviac Limited Support frame for an embolic protection device
US20030144687A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US20090149881A1 (en) * 1999-05-07 2009-06-11 Salviac Limited Filter element for embolic protection device
US7799051B2 (en) 1999-05-07 2010-09-21 Salviac Limited Support frame for an embolic protection device
US8002790B2 (en) 1999-05-07 2011-08-23 Salviac Limited Support frame for an embolic protection device
US20060122645A1 (en) * 1999-05-07 2006-06-08 Salviac Limited Support frame for an embolic protection device
US6726701B2 (en) 1999-05-07 2004-04-27 Salviac Limited Embolic protection device
US20020107541A1 (en) * 1999-05-07 2002-08-08 Salviac Limited. Filter element for embolic protection device
US20030144688A1 (en) * 1999-05-07 2003-07-31 Salviac Limited Support frame for an embolic protection device
US20080125795A1 (en) * 1999-05-20 2008-05-29 Aaron V. Kaplan Methods and apparatus for transpericardial left atrial appendage closure
US8721663B2 (en) 1999-05-20 2014-05-13 Sentreheart, Inc. Methods and apparatus for transpericardial left atrial appendage closure
US8974473B2 (en) 1999-05-20 2015-03-10 Sentreheart, Inc. Methods and apparatus for transpericardial left atrial appendage closure
US9724105B2 (en) 1999-05-20 2017-08-08 Sentreheart, Inc. Methods and apparatus for transpericardial left atrial appendage closure
US8663273B2 (en) 1999-11-08 2014-03-04 Atritech, Inc. Method of implanting an adjustable occlusion device
US8323309B2 (en) 1999-11-08 2012-12-04 Atritech, Inc. Adjustable left atrial appendage implant
US20030212432A1 (en) * 1999-11-08 2003-11-13 Ev3 Sunnyvale, Inc., A California Corporation Method of removing an implanted device
US20040230222A1 (en) * 1999-11-08 2004-11-18 Van Der Burg Erik J. System for left atrial appendage occlusion
US8287563B2 (en) 1999-11-08 2012-10-16 Atritech, Inc. Implant retrieval system
US20060206148A1 (en) * 1999-11-08 2006-09-14 Khairkhahan Alexander K Method of implanting an adjustable occlusion device
US8043329B2 (en) 1999-11-08 2011-10-25 Atritech, Inc. Method of implanting an adjustable occlusion device
US20040034366A1 (en) * 1999-11-08 2004-02-19 Ev3 Sunnyvale, Inc., A California Corporation Device for containing embolic material in the LAA having a plurality of tissue retention structures
US20040220610A1 (en) * 1999-11-08 2004-11-04 Kreidler Marc S. Thin film composite lamination
US6506194B1 (en) * 2000-06-08 2003-01-14 Mohammed Ali Hajianpour Medullary plug including an external shield and an internal valve
US7819893B2 (en) 2000-06-23 2010-10-26 Salviac Limited Medical device
US20090054924A1 (en) * 2000-06-23 2009-02-26 Salviac Limited Medical device
US20040093013A1 (en) * 2000-06-23 2004-05-13 Salviac Limited Medical device
US6565591B2 (en) 2000-06-23 2003-05-20 Salviac Limited Medical device
US7452496B2 (en) 2000-06-23 2008-11-18 Salviac Limited Medical device
US7837704B2 (en) 2000-06-23 2010-11-23 Salviac Limited Medical device
US9161830B2 (en) 2000-08-18 2015-10-20 Atritech, Inc. Expandable implant devices for filtering blood flow from atrial appendages
US8507212B2 (en) 2001-03-07 2013-08-13 Biomed Solutions Llc Process for in vivo treatment of specific biological targets in bodily fluids
US8105793B2 (en) 2001-03-07 2012-01-31 Biomed Solutions, Llc Process for in vivo treatment of specific biological targets in bodily fluids
US20080286278A1 (en) * 2001-03-07 2008-11-20 Biomed Solutions, Llc Process for in vivo treatment of specific biological targets in bodily fluids
US8518063B2 (en) 2001-04-24 2013-08-27 Russell A. Houser Arteriotomy closure devices and techniques
US20090005777A1 (en) * 2001-04-24 2009-01-01 Vascular Closure Systems, Inc. Arteriotomy closure devices and techniques
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US20090143808A1 (en) * 2001-04-24 2009-06-04 Houser Russell A Guided Tissue Cutting Device, Method of Use and Kits Therefor
US9345460B2 (en) 2001-04-24 2016-05-24 Cardiovascular Technologies, Inc. Tissue closure devices, device and systems for delivery, kits and methods therefor
US9078630B2 (en) 2001-06-01 2015-07-14 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US7717937B2 (en) 2001-06-01 2010-05-18 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US8777985B2 (en) 2001-06-01 2014-07-15 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US20050267526A1 (en) * 2001-06-01 2005-12-01 Velocimed Pfo, Inc. Closure devices, related delivery methods and tools, and related methods of use
US20050004641A1 (en) * 2001-06-04 2005-01-06 Ramesh Pappu Cardiac stimulating apparatus having a blood clot filter and atrial pacer
WO2003007825A1 (en) 2001-07-19 2003-01-30 Atritech, Inc. Individually customized device for covering the ostium of left atrial appendage
US20070233180A1 (en) * 2001-12-21 2007-10-04 Abbott Laboratories Support frame for an embolic protection device
US7927349B2 (en) 2001-12-21 2011-04-19 Salviac Limited Support frame for an embolic protection device
US8114115B2 (en) 2001-12-21 2012-02-14 Salviac Limited Support frame for an embolic protection device
US20070233179A1 (en) * 2001-12-21 2007-10-04 Abbott Laboratories Support frame for an embolic protection device
US20030130684A1 (en) * 2001-12-21 2003-07-10 Eamon Brady Support frame for an embolic protection device
US20070265642A1 (en) * 2002-01-14 2007-11-15 Nmt Medical, Inc. Patent foramen ovale (PFO) closure method and device
US20070244504A1 (en) * 2002-03-05 2007-10-18 Salviac Limited Embolic protection system
US20070060946A1 (en) * 2002-03-05 2007-03-15 Salviac Limited Embolic protection system
US20030212429A1 (en) * 2002-03-05 2003-11-13 Martin Keegan Embolic protection system
US20030225421A1 (en) * 2002-03-25 2003-12-04 Nmt Medical, Inc. Patent foramen ovale (PFO) closure clips
US9241695B2 (en) 2002-03-25 2016-01-26 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure clips
US7976564B2 (en) 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US7691128B2 (en) 2002-05-06 2010-04-06 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
US20030208232A1 (en) * 2002-05-06 2003-11-06 Velocimed, L.L.C. PFO closure devices and related methods of use
US20040030335A1 (en) * 2002-05-14 2004-02-12 University Of Pittsburgh Device and method of use for functional isolation of animal or human tissues
US7527634B2 (en) 2002-05-14 2009-05-05 University Of Pittsburgh Device and method of use for functional isolation of animal or human tissues
US8007504B2 (en) 2002-05-14 2011-08-30 University Of Pittsburgh Of The Commonwealth System Of Higher Education Device and method of use for functional isolation of animal or human tissues
US8784448B2 (en) 2002-06-05 2014-07-22 W.L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with radial and circumferential support
US20080058859A1 (en) * 2002-11-06 2008-03-06 Chanduszko Andrzej J Medical Devices Utilizing Modified Shape Memory Alloy
US20040093017A1 (en) * 2002-11-06 2004-05-13 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
US20040176799A1 (en) * 2002-12-09 2004-09-09 Nmt Medical, Inc. Septal closure devices
US9017373B2 (en) 2002-12-09 2015-04-28 W.L. Gore & Associates, Inc. Septal closure devices
US20040267306A1 (en) * 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8382796B2 (en) 2003-04-11 2013-02-26 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and related methods of use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US20070010852A1 (en) * 2003-04-11 2007-01-11 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US8574264B2 (en) 2003-04-11 2013-11-05 St. Jude Medical, Cardiology Division, Inc. Method for retrieving a closure device
US20070066994A1 (en) * 2003-04-11 2007-03-22 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US20060009800A1 (en) * 2003-04-11 2006-01-12 Velocimed Pfo, Inc. Closure devices, related delivery methods, and related methods of use
US20040215230A1 (en) * 2003-04-28 2004-10-28 Frazier Andrew G. C. Left atrial appendage occlusion device with active expansion
US20040220560A1 (en) * 2003-04-29 2004-11-04 Briscoe Roderick E. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20090138008A1 (en) * 2003-04-29 2009-05-28 Medtronic, Inc. Endocardial Dispersive Electrode for Use with a Monopolar RF Ablation Pen
US7871409B2 (en) 2003-04-29 2011-01-18 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20050049681A1 (en) * 2003-05-19 2005-03-03 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US20060178694A1 (en) * 2003-05-19 2006-08-10 Secant Medical, Llc Tissue distention device and related methods for therapeutic intervention
US7648532B2 (en) 2003-05-19 2010-01-19 Septrx, Inc. Tissue distention device and related methods for therapeutic intervention
US20090275976A1 (en) * 2003-05-19 2009-11-05 Stout Medical Group, L.P. Embolic filtering method and apparatus
US7122043B2 (en) 2003-05-19 2006-10-17 Stout Medical Group, L.P. Tissue distention device and related methods for therapeutic intervention
US8758395B2 (en) 2003-05-19 2014-06-24 Septrx, Inc. Embolic filtering method and apparatus
US20060009799A1 (en) * 2003-05-19 2006-01-12 Kleshinski Stephen J Embolic filtering method and apparatus
US9326759B2 (en) 2003-07-14 2016-05-03 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US9149263B2 (en) 2003-07-14 2015-10-06 W. L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US7678123B2 (en) 2003-07-14 2010-03-16 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20070010851A1 (en) * 2003-07-14 2007-01-11 Chanduszko Andrzej J Tubular patent foramen ovale (PFO) closure device with catch system
US20050043759A1 (en) * 2003-07-14 2005-02-24 Nmt Medical, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US20050027247A1 (en) * 2003-07-29 2005-02-03 Scimed Life Systems, Inc. Apparatus and method for treating intravascular disease
US7662143B2 (en) 2003-07-29 2010-02-16 Boston Scientific Scimed, Inc. Apparatus and method for treating intravascular disease
US20050027314A1 (en) * 2003-07-30 2005-02-03 Scimed Life Systems, Inc. Self-centering blood clot filter
US7896898B2 (en) 2003-07-30 2011-03-01 Boston Scientific Scimed, Inc. Self-centering blood clot filter
US7735493B2 (en) 2003-08-15 2010-06-15 Atritech, Inc. System and method for delivering a left atrial appendage containment device
US20050080430A1 (en) * 2003-08-19 2005-04-14 Nmt Medical, Inc. Expandable sheath tubing
US7963952B2 (en) 2003-08-19 2011-06-21 Wright Jr John A Expandable sheath tubing
US8097015B2 (en) * 2003-09-12 2012-01-17 W.L. Gore & Associates, Inc. Device and methods for preventing formation of thrombi in the left atrial appendage
US20050070952A1 (en) * 2003-09-12 2005-03-31 Nmt Medical, Inc. Device and methods for preventing formation of thrombi in the left atrial appendage
US20080221593A1 (en) * 2003-10-09 2008-09-11 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US9271819B2 (en) * 2003-10-09 2016-03-01 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US8795297B2 (en) 2003-10-09 2014-08-05 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US20080147097A1 (en) * 2003-10-09 2008-06-19 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US8753362B2 (en) 2003-12-09 2014-06-17 W.L. Gore & Associates, Inc. Double spiral patent foramen ovale closure clamp
US20050273119A1 (en) * 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US8945158B2 (en) 2004-03-03 2015-02-03 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
US20110112633A1 (en) * 2004-03-03 2011-05-12 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US7871419B2 (en) 2004-03-03 2011-01-18 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US20050267523A1 (en) * 2004-03-03 2005-12-01 Nmt Medical Inc. Delivery/recovery system for septal occluder
US8568431B2 (en) 2004-03-03 2013-10-29 W.L. Gore & Associates, Inc. Delivery/recovery system for septal occluder
US20050234540A1 (en) * 2004-03-12 2005-10-20 Nmt Medical, Inc. Dilatation systems and methods for left atrial appendage
US20050222533A1 (en) * 2004-03-30 2005-10-06 Nmt Medical, Inc. Restoration of flow in LAA via tubular conduit
US7806846B2 (en) 2004-03-30 2010-10-05 Nmt Medical, Inc. Restoration of flow in LAA via tubular conduit
US20050234543A1 (en) * 2004-03-30 2005-10-20 Nmt Medical, Inc. Plug for use in left atrial appendage
US8828049B2 (en) 2004-04-09 2014-09-09 W.L. Gore & Associates, Inc. Split ends closure device and methods of use
US20050267524A1 (en) * 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US20100131006A1 (en) * 2004-04-09 2010-05-27 Nmt Medical, Inc. Split ends closure device
US8361110B2 (en) 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US20050267525A1 (en) * 2004-04-26 2005-12-01 Nmt Medical, Inc. Heart-shaped PFO closure device
US9314249B2 (en) 2004-05-04 2016-04-19 Covidien Lp System and method for delivering a left atrial appendage containment device
US8801746B1 (en) 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US8308760B2 (en) 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US20050251154A1 (en) * 2004-05-06 2005-11-10 Nmt Medical, Inc. Double coil occluder
US7842053B2 (en) 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US8568447B2 (en) 2004-05-06 2013-10-29 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US20050273124A1 (en) * 2004-05-06 2005-12-08 Nmt Medical, Inc. Delivery systems and methods for PFO closure device with two anchors
US9545247B2 (en) 2004-05-07 2017-01-17 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US8480709B2 (en) 2004-05-07 2013-07-09 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US8257389B2 (en) 2004-05-07 2012-09-04 W.L. Gore & Associates, Inc. Catching mechanisms for tubular septal occluder
US7645285B2 (en) 2004-05-26 2010-01-12 Idx Medical, Ltd Apparatus and methods for occluding a hollow anatomical structure
US20050277959A1 (en) * 2004-05-26 2005-12-15 Idx Medical, Ltd. Apparatus and methods for occluding a hollow anatomical structure
US9656063B2 (en) 2004-06-18 2017-05-23 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US20060122647A1 (en) * 2004-09-24 2006-06-08 Callaghan David J Occluder device double securement system for delivery/recovery of such occluder device
US8764848B2 (en) 2004-09-24 2014-07-01 W.L. Gore & Associates, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US20060199995A1 (en) * 2005-03-02 2006-09-07 Venkataramana Vijay Percutaneous cardiac ventricular geometry restoration device and treatment for heart failure
US7320665B2 (en) * 2005-03-02 2008-01-22 Venkataramana Vijay Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure
US20080177130A1 (en) * 2005-03-02 2008-07-24 Venkataramana Vijay Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure
US20060293739A1 (en) * 2005-03-02 2006-12-28 Venkataramana Vijay Cardiac Ventricular Geometry Restoration Device and Treatment for Heart Failure
US8007428B2 (en) 2005-03-02 2011-08-30 Venkataramana Vijay Cardiac ventricular geometry restoration device and treatment for heart failure
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8430907B2 (en) 2005-03-18 2013-04-30 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8636765B2 (en) 2005-03-18 2014-01-28 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US20110144660A1 (en) * 2005-04-07 2011-06-16 Liddicoat John R Apparatus and method for the ligation of tissue
US9522006B2 (en) 2005-04-07 2016-12-20 Sentreheart, Inc. Apparatus and method for the ligation of tissue
US20070276468A1 (en) * 2005-05-24 2007-11-29 Inspiremd Ltd. Bifurcated stent assemblies
US8961586B2 (en) 2005-05-24 2015-02-24 Inspiremd Ltd. Bifurcated stent assemblies
US8157818B2 (en) 2005-08-01 2012-04-17 Ension, Inc. Integrated medical apparatus for non-traumatic grasping, manipulating and closure of tissue
US20070027456A1 (en) * 2005-08-01 2007-02-01 Ension, Inc. Integrated medical apparatus for non-traumatic grasping, manipulating and closure of tissue
US9445895B2 (en) 2005-09-16 2016-09-20 Atritech, Inc. Intracardiac cage and method of delivering same
US7972359B2 (en) 2005-09-16 2011-07-05 Atritech, Inc. Intracardiac cage and method of delivering same
US20070066993A1 (en) * 2005-09-16 2007-03-22 Kreidler Marc S Intracardiac cage and method of delivering same
US20070135826A1 (en) * 2005-12-01 2007-06-14 Steve Zaver Method and apparatus for delivering an implant without bias to a left atrial appendage
US9522362B2 (en) 2006-03-28 2016-12-20 Terumo Kabushiki Kaisha Filter member and oxygenator using same
US9199025B2 (en) 2006-03-28 2015-12-01 Terumo Kabushiki Kaisha Filter member and oxygenator using same
US8911666B2 (en) 2006-03-28 2014-12-16 Terumo Kabushiki Kaisha Filter member and oxygenator using same
US8425838B2 (en) * 2006-03-28 2013-04-23 Terumo Kabushiki Kaisha Filter member and oxygenator using same
US20070231203A1 (en) * 2006-03-28 2007-10-04 Terumo Kabushiki Kaisha Filter member and oxygenator using same
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
US9132261B2 (en) 2006-10-18 2015-09-15 Inspiremd, Ltd. In vivo filter assembly
US20100324664A1 (en) * 2006-10-18 2010-12-23 Asher Holzer Bifurcated Stent Assemblies
US20100324651A1 (en) * 2006-10-18 2010-12-23 Asher Holzer Knitted Stent Jackets
US20100204772A1 (en) * 2006-10-18 2010-08-12 Asher Holzer Filter Assemblies
US20080161825A1 (en) * 2006-11-20 2008-07-03 Stout Medical Group, L.P. Anatomical measurement tool
US9782281B2 (en) 2006-11-22 2017-10-10 Inspiremd, Ltd. Stent-mesh assembly and methods
US20100241214A1 (en) * 2006-11-22 2010-09-23 Inspiremd Ltd. Optimized stent jacket
US9526644B2 (en) 2006-11-22 2016-12-27 Inspiremd, Ltd. Optimized drug-eluting stent assembly methods
US9132003B2 (en) 2006-11-22 2015-09-15 Inspiremd, Ltd. Optimized drug-eluting stent assembly
US9498223B2 (en) 2007-03-30 2016-11-22 Sentreheart, Inc. Devices for closing the left atrial appendage
US8986325B2 (en) 2007-03-30 2015-03-24 Sentreheart, Inc. Devices, systems, and methods for closing the left atrial appendage
US20090143791A1 (en) * 2007-03-30 2009-06-04 Sentreheart, Inc. Devices, systems, and methods for closing the left atrial appendage
US8771297B2 (en) 2007-03-30 2014-07-08 Sentreheart, Inc. Devices, systems, and methods for closing the left atrial appendage
US20080243183A1 (en) * 2007-03-30 2008-10-02 Miller Gary H Devices, systems, and methods for closing the left atrial appendage
US20090157118A1 (en) * 2007-03-30 2009-06-18 Sentreheart, Inc. Devices, systems, and methods for closing the left atrial appendage
US9408659B2 (en) 2007-04-02 2016-08-09 Atricure, Inc. Surgical instrument with separate tool head and method of use
US20080249562A1 (en) * 2007-04-05 2008-10-09 Nmt Medical, Inc. Septal closure device with centering mechanism
US9005242B2 (en) 2007-04-05 2015-04-14 W.L. Gore & Associates, Inc. Septal closure device with centering mechanism
US9826980B2 (en) 2007-04-16 2017-11-28 Occlutech Holding Ag Occluder for occluding an atrial appendage and production process therefor
US20120271337A1 (en) * 2007-04-16 2012-10-25 Hans-Reiner Figulla Occluder For Occluding an Atrial Appendage and Production Process Therefor
US9161758B2 (en) * 2007-04-16 2015-10-20 Occlutech Holding Ag Occluder for occluding an atrial appendage and production process therefor
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US8961541B2 (en) 2007-12-03 2015-02-24 Cardio Vascular Technologies Inc. Vascular closure devices, systems, and methods of use
US20090143789A1 (en) * 2007-12-03 2009-06-04 Houser Russell A Vascular closure devices, systems, and methods of use
US9474517B2 (en) 2008-03-07 2016-10-25 W. L. Gore & Associates, Inc. Heart occlusion devices
US9750505B2 (en) 2009-01-08 2017-09-05 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100179570A1 (en) * 2009-01-13 2010-07-15 Salvatore Privitera Apparatus and methods for deploying a clip to occlude an anatomical structure
US9393023B2 (en) 2009-01-13 2016-07-19 Atricure, Inc. Apparatus and methods for deploying a clip to occlude an anatomical structure
US20110087247A1 (en) * 2009-04-01 2011-04-14 Fung Gregory W Tissue ligation devices and controls therefor
US9198664B2 (en) 2009-04-01 2015-12-01 Sentreheart, Inc. Tissue ligation devices and controls therefor
US9883864B2 (en) * 2009-06-17 2018-02-06 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20100324585A1 (en) * 2009-06-17 2010-12-23 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US20140207169A1 (en) * 2009-06-17 2014-07-24 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9693780B2 (en) 2009-06-17 2017-07-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9693781B2 (en) 2009-06-17 2017-07-04 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9649115B2 (en) 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9486281B2 (en) 2010-04-13 2016-11-08 Sentreheart, Inc. Methods and devices for accessing and delivering devices to a heart
US9017349B2 (en) 2010-10-27 2015-04-28 Atricure, Inc. Appendage clamp deployment assist device
US9066741B2 (en) 2010-11-01 2015-06-30 Atricure, Inc. Robotic toolkit
US8636754B2 (en) 2010-11-11 2014-01-28 Atricure, Inc. Clip applicator
US9498206B2 (en) 2011-06-08 2016-11-22 Sentreheart, Inc. Tissue ligation devices and tensioning devices therefor
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
US9265486B2 (en) 2011-08-15 2016-02-23 Atricure, Inc. Surgical device
US9282973B2 (en) 2012-01-20 2016-03-15 Atricure, Inc. Clip deployment tool and associated methods
US20140100596A1 (en) * 2012-10-09 2014-04-10 Boston Scientific Scimed, Inc. Centered balloon for the left atrial appendage
US9408608B2 (en) 2013-03-12 2016-08-09 Sentreheart, Inc. Tissue ligation devices and methods therefor
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system

Also Published As

Publication number Publication date Type
CA2419811A1 (en) 2002-02-28 application
US20140107696A1 (en) 2014-04-17 application
US20060149314A1 (en) 2006-07-06 application
WO2002015793A3 (en) 2002-08-29 application
US8197527B2 (en) 2012-06-12 grant
US8647361B2 (en) 2014-02-11 grant
WO2002015793A2 (en) 2002-02-28 application
CN1447669A (en) 2003-10-08 application
EP1309289A2 (en) 2003-05-14 application
US20120271343A1 (en) 2012-10-25 application
US20160008122A1 (en) 2016-01-14 application
US9161830B2 (en) 2015-10-20 grant
JP2004506469A (en) 2004-03-04 application

Similar Documents

Publication Publication Date Title
US7338520B2 (en) Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US5976174A (en) Medical hole closure device and methods of use
US6083239A (en) Compliant framework and methods of use
US7846203B2 (en) Implanting a stent valve prosthesis at the native aortic valve
US6235045B1 (en) Cannula with associated filter and methods of use
US6464664B1 (en) Method for using intravascular balloon occlusion device
US6214029B1 (en) Septal defect occluder
US8747459B2 (en) System and method for transapical delivery of an annulus anchored self-expanding valve
US20070027525A1 (en) Vascular implant
US20020143362A1 (en) Cerebral embolic protection assembly and method of use
US7582103B2 (en) Tissue opening occluder
US20030009211A1 (en) Implant having improved fixation to a body lumen and method for implanting the same
US5683411A (en) Medical article for implantation into the vascular system of a patient
US7044134B2 (en) Method of implanting a device in the left atrial appendage
US20040215230A1 (en) Left atrial appendage occlusion device with active expansion
US20060015136A1 (en) Vascular filter with improved strength and flexibility
US7128073B1 (en) Method and device for left atrial appendage occlusion
US20080097595A1 (en) Intraventricular cardiac prosthesis
US5499995A (en) Body passageway closure apparatus and method of use
US20050165344A1 (en) Method and apparatus for treating heart failure
US20050119688A1 (en) Method and assembly for distal embolic protection
US20120310328A1 (en) System and method for treating valve insufficiency or vessel dilatation
US20070055365A1 (en) Stent with integrated filter
US7892281B2 (en) Prosthetic valve for transluminal delivery
US20050234540A1 (en) Dilatation systems and methods for left atrial appendage

Legal Events

Date Code Title Description
AS Assignment

Owner name: ATRITECH, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BORILLO, THOMAS E.;PETERSON, DEAN;SUTTON, GREGG S.;AND OTHERS;REEL/FRAME:013788/0865

Effective date: 20030211