Connect public, paid and private patent data with Google Patents Public Datasets

Apparatus and methods for material capture and removal

Download PDF

Info

Publication number
US20020022788A1
US20020022788A1 US09916642 US91664201A US2002022788A1 US 20020022788 A1 US20020022788 A1 US 20020022788A1 US 09916642 US09916642 US 09916642 US 91664201 A US91664201 A US 91664201A US 2002022788 A1 US2002022788 A1 US 2002022788A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
material
catheter
body
capture
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09916642
Inventor
Tim Corvi
Stephen Boyd
Brett Follmer
John Stine
David Snow
Darren Doud
Original Assignee
Tim Corvi
Stephen Boyd
Brett Follmer
Stine John G.
Snow David W.
Doud Darren G.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/0233Pointed or sharp biopsy instruments
    • A61B10/0266Pointed or sharp biopsy instruments means for severing sample
    • A61B10/0275Pointed or sharp biopsy instruments means for severing sample with sample notch, e.g. on the side of inner stylet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/04Endoscopic instruments

Abstract

Catheters, kits, and methods are provided for removing material from a body lumen. The catheters and methods may be used in a variety of body lumens, including but not limited to coronary and other arteries. In general, the catheter has a cutting element that cuts material while the material is engaged by a material capture device on the catheter body. Preferably, the material capture device tensions the material during cutting, which reduces the amount of cutting force required. The material capture device typically follows a path that draws material into the catheter body. Preferably, but not necessarily, the material capture device may be arranged on the catheter body to advance along a path outwardly from the catheter body into the material and then inwardly towards the catheter body to tension the material. The cutting element on the catheter body moves between a first position and a second position to cut the material while in tension.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    The present invention relates generally to apparatus and methods for removing occluding materials from body lumens. More particularly, the present invention relates to the construction and use of atherectomy catheters for excising atheroma and other materials from blood vessels.
  • [0002]
    Cardiovascular disease frequently arises from the accumulation of atheromatous material on the inner walls of vascular lumens, particularly arterial lumens of the coronary and other vasculature, resulting in a condition known as atherosclerosis. Atherosclerosis occurs naturally as a result of aging, but may also be aggravated by factors such as diet, hypertension, heredity, vascular injury, and the like. Atheromatous and other vascular deposits restrict blood flow and can cause ischemia which, in acute cases, can result in myocardial infarction. Atheromatous deposits can have widely varying properties, with some deposits being relatively soft and others being fibrous and/or calcified. In the latter case, the deposits are frequently referred to as plaque.
  • [0003]
    Atherosclerosis can be treated in a variety of ways, including drugs, bypass surgery, and a variety of catheter-based approaches which rely on intravascular widening or removal of the atheromatous or other material occluding a blood vessel. Of particular interest to the present invention, a variety of methods for cutting or dislodging material and removing such material from the blood vessel have been proposed, generally being referred to as atherectomy procedures. Atherectomy catheters intended to excise material from the blood vessel lumen generally employ a rotatable and/or axially translatable cutting blade which can be advanced into or past the occlusive material in order to cut and separate such material from the blood vessel lumen. In particular, side-cutting atherectomy catheters generally employ a housing having an aperture on one side, a blade which is rotated or translated by the aperture, and a balloon or other deflecting structure to urge the aperture against the material to be removed.
  • [0004]
    Although atherectomy catheters have proven to be very successful in treating many types of atherosclerosis, some catheter designs suffer from certain limitations. For example, many side-cutting atherectomy catheters have difficulty in capturing occluding material in the cutting aperture. To facilitate material capture, the cutting aperture is frequently elongated. Although improving material capture, such lengthening makes it more difficult to introduce the distal end of the catheter through torturous regions of the vasculature. Additionally, it is often difficult for conventional atherectomy cutters to apply the requisite pressure to cut off the targeted material. When higher pressures are applied, damage to the artery (barotrauma) can occur. High pressures can also compress plaque, subsequently reducing the cutter's ability to capture the occlusive material. This decreases the effectiveness of these cutters and limits the cutter and catheter designs.
  • [0005]
    For these reasons, it is desired to provide atherectomy catheters which can access small, tortuous regions of the vasculature and which can remove atheromatous and other occluding materials from within blood vessels in a controlled fashion with minimum risk of injuring the blood vessel wall. In particular, it is desired to provide atherectomy catheters which can facilitate capturing of occlusive material. It would also be particularly desirable to decrease the amount of force required to cut off occlusive material from the body. At least some of these objectives will be met by the catheter and method of the present invention described hereinafter and in the claims.
  • SUMMARY OF THE INVENTION
  • [0006]
    The present invention provides catheters, kits, and methods for removing material from a body lumen. The catheters and methods of the present invention are for use in a variety of body lumens, including but not limited to intravascular lumens such as the coronary artery and other blood vessels. In general, the catheter of the present invention has a cutting element that cuts material engaged by a material capture device on the catheter body. Preferably, the material capture device tensions the material during cutting, which reduces the amount of cutting force required. The material capture device typically follows a path that draws material into the catheter body. Preferably, but not necessarily, the material capture device is arranged on the catheter body to advance along a path outwardly from the catheter body into the material and then inwardly towards the catheter body to tension the material. In some embodiments, the material capture device may extend in an outwardly direction but not beyond the outer diameter of the catheter body. The cutting element on the catheter body moves between a first position and a second position to cut the material while in tension, where motion of the cutting element urges the material capture device to draw cut material into the catheter body.
  • [0007]
    Desirably, the blade or blades of the catheter will be actuable with the application of reasonable mechanical forces which are capable of being transmitted along even rather lengthy catheters. Further desirably, the catheters will be suitable for directional removal of occluding material and may include mechanisms for engaging cutting blades against selected portions of a vascular wall. Optionally, the engaging mechanisms should permit blood perfusion during performance of an atherectomy procedure.
  • [0008]
    In one embodiment, the catheter of the present invention uses a material capture device in the form of a material capture needle. The needle will be deployed in a radially outward direction from the catheter body. Preferably, but not necessarily, the needle will capture material while the catheter remains stationary. Some embodiments may use a plurality of material capture needles. The material capture needle may follow a path outwardly from the catheter body in various manners. In one embodiment, the needle has a portion that advances through an elongate slot on the catheter body to move the needle along a path outwardly from the catheter body. Another embodiment uses a curved needle rotatably mounted about a pivot pin. As the needle is rotated, it will protrude outwardly from the catheter body. A preferred embodiment uses a needle having a bias element which urges the needle outwardly when the catheter is in position. Typically, a material cutting element will engage the material that has been captured and sheer off the material into the catheter.
  • [0009]
    In a further embodiment, a material capture device of the present invention uses a penetrating member mounted to extend through an aperture on the catheter body to penetrate material in advance of the cutting blade and to draw material into the catheter body as the cutting blade is advanced past the aperture. The penetrating member is rotatably mounted to the slidable cutting blade on the catheter body. A cam surface on the catheter body engages a surface of the penetrating member to guide the member along a path to engage the material and draw the material into the catheter body. In a still further embodiment, an abutment or raised portion on the catheter body is mounted to engage one end of the penetrating member. This contact caused the penetrating member to rotate about its pivot point on the cutting blade and thus engage material and draw material into the catheter body.
  • [0010]
    In another aspect of the present invention, a method is provided for excising occlusive material from within a body lumen. The method involves engaging the occlusive material with a material capture device on a catheter body. The material is drawn in a radially inward direction by the device to tension the material to be cut. A blade is advanced through the tensioned material to sever the material from the body lumen. As mentioned previously, tensioning the material reduces the amount of cutting force required. The tensioning of the occlusive material may also comprise moving the material capture device towards a catheter body while the material capture device is in contact with the occlusive material. Typically, the engaging and tensioning steps may also be performed with a single motion by the user to facilitate cutting.
  • [0011]
    In a still further aspect, kits according to the present invention will comprise a catheter having a material capture device. The kits will further include instructions for use setting forth a method as described above. Optionally, the kits will further include packaging suitable for containing the catheter and the instructions for use. Exemplary containers include pouches, trays, boxes, tubes, and the like. The instructions for use may be provided on a separate sheet of paper or other medium. Optionally, the instructions may be printed in whole or in part on the packaging. Usually, at least the catheter will be provided in a sterilized condition. Other kit components, such as a guidewire, may also be included.
  • [0012]
    A further understanding of the nature and advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0013]
    [0013]FIG. 1 is a perspective view of an atherectomy catheter constructed in accordance with the principles of the present invention.
  • [0014]
    FIGS. 2-4 show various embodiments of a material capture device and a material cutting element according to the present invention.
  • [0015]
    FIGS. 5A-5C illustrate a material cutting sequence using one embodiment of a material capture device and material cutting element according to the present invention.
  • [0016]
    FIGS. 6A-6B show cross-sectional views of a further embodiment of a material capture device and material cutting element.
  • [0017]
    FIGS. 7-8 show still further embodiments of a material capture device and material cutting element.
  • [0018]
    FIGS. 9-11 show cross-sectional views of a preferred embodiment of the material capture device;
  • [0019]
    [0019]FIGS. 12, 13, 14, 14A-C, and 15 show alternative embodiments of the device show in FIGS. 9-11.
  • [0020]
    FIGS. 16-18 depict various embodiments of a cam surface according to the present invention.
  • [0021]
    FIGS. 19-22 are cross-sectional views of a telescoping cutter having a material capture device according to the present invention.
  • [0022]
    FIGS. 23-24 show a still further embodiment of the material capture device.
  • [0023]
    [0023]FIG. 25 shows a kit according to the present invention.
  • [0024]
    [0024]FIGS. 26 and 27 illustrate a catheter having material capture devices and material cutting elements oriented at various angles on the catheter body.
  • [0025]
    [0025]FIG. 28 shows a preferred embodiment of the present invention for use with a material imaging device according to the present invention.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • [0026]
    The present invention provides devices, methods, and kits for use in removing material from a body lumen. The present invention may be used in a variety of body lumens, including but not limited to coronary and other arteries. Advantageously, the present invention reduces the amount of force required to cut material and facilitates material capture into apertures of the catheter.
  • [0027]
    Apparatus according to the present invention will comprise catheters having catheter bodies adapted for intraluminal introduction to the target body lumen. The dimensions and other physical characteristics of the catheter bodies will vary significantly depending on the body lumen which is to be accessed. In the exemplary case of atherectomy catheters intended for intravascular introduction, the catheter bodies will typically be very flexible and suitable for introduction over a guidewire to a target site within the vasculature. In particular, catheters can be intended for “over-the-wire” introduction when a guidewire lumen extends fully through the catheter body or for “rapid exchange” introduction where the guidewire lumen extends only through a distal portion of the catheter body.
  • [0028]
    Catheter bodies intended for intravascular introduction will typically have a length in the range from 50 cm to 200 cm and an outer diameter in the range from 1 French (0.33 mm; Fr.) to 12 Fr., usually from 3 Fr. to 9 Fr. In the case of coronary catheters, the length is typically in the range from 125 to 200 cm, the diameter is preferably below 8 Fr., more preferably below 7 Fr., and most preferably in the range from 2 Fr. to 7 Fr. Catheter bodies will typically be composed of an organic polymer which is fabricated by conventional extrusion techniques. Suitable polymers include polyvinylchloride, polyurethanes, polyesters, polytetrafluoroethylenes (PTFE), silicone rubbers, natural rubbers, and the like. Optionally, the catheter body may be reinforced with braid, helical wires, axial filaments, or the like, in order to increase rotational strength, column strength, toughness, pushability, and the like. Suitable catheter bodies may be formed by extrusion, with one or more lumens being provided when desired. The catheter diameter can be modified by heat expansion and shrinkage using conventional techniques. The resulting catheters will thus be suitable for introduction to the vascular system, often the coronary arteries, by conventional techniques.
  • [0029]
    The cutting blades used in the present invention will usually be formed from a metal, but could also be formed from hard plastics, ceramics, or composites of two or more materials, which can be honed or otherwise formed into the desired cutting edge. In the exemplary embodiments, the cutting blades are formed as coaxial tubular blades with the cutting edges defined in aligned apertures therein. It will be appreciated that the present invention is not limited to such preferred cutting blade assemblies, in a variety of other designs, such as the use of wiper blades, scissor blades or the like. Optionally, the cutting edge of either or both the blades may be hardened, e.g., by application of a coating. A preferred coating material is titanium nitride, available from Brycoat, Inc., which may be applied according to manufacturer's instructions.
  • [0030]
    Referring now to FIG. 1, a catheter 10 constructed in accordance with the principles of the present invention comprises a catheter body 12 having a proximal end 14 and a distal end 16. A cutting mechanism 18 comprises an outer cutter 20, an inner cutter 22 is attached to the distal end of the catheter body 12, and a needle 23 as a material capture device. An atraumatic tip 24 is attached to the distal end of the outer cutter 20, and a guidewire lumen 25 extends through the entire catheter body, cutting mechanism 18, and terminates in port 25 at the distal tip of tip section 24. A proximal hub 30 is attached to the proximal end of catheter body 12 and comprises a perfusion/aspiration connector 32, a guidewire connector 34, and a slider 36. The slider 36 is attached to the proximal end of an actuator rod 37 which extends from the hub 30 through the lumen of catheter body 12 into the cutting mechanism 18 where it is attached at a proximal end of the inner cutter 22. In this way, manual actuation of slider 36 in the direction of arrow 38 moves inner cutter 22 in the direction of arrow 40.
  • [0031]
    Referring to FIGS. 2A and 2B, this embodiment of the catheter 10 uses the material capture needle 23 to capture the material and tension it towards the cutters 20 and 22. The material capture needle 23 follows a path where the material capture needle extends outwardly from the catheter body and moves inwardly towards the catheter body to tension the material. In this embodiment, when the material capture needle 23 is deployed, it angles out from the aperture 42 and a portion of the material capture needle typically runs parallel to the window with the sharpened tip located near the proximal end of the aperture. The inner cutter or cutting element 22 is reciprocated to open and close the aperture 42 formed in the wall of the catheter body 12. Movement of the inner cutter 22 also controls the deployment of the material capture needle. When the inner cutter 22 opens the aperture 42, the material capture needle 23 is biased outwardly from the catheter body 12. The material capture needle 23 is preferably spring-loaded, where in its resting condition, the material capture needle extends outwardly from the catheter body 12. The material capture needle 23 is otherwise constrained within the catheter body 12 when the inner cutter 22 closes aperture 42. The material capture needle 23 may be made of a variety of materials such as stainless steel or a superelastic material.
  • [0032]
    With the material capture needle 23 deployed as shown in FIG. 2B, the material capture needle may penetrate into the material when the catheter body 12 is pulled in the proximal direction. The inner cutter 22 is then closed, as indicated by arrow 40, to push the material capture needle 23 towards the catheter body 12 as indicated by arrow 44. Preferably, closing of cutter 22 will tension the material and draw it into the catheter body 12 when the cutters 20 and 22 will shear off the material. It is also preferred that the inner cutter 22, upon finishing the closing motion, will wipe the piece of cut-off material off the material capture needle 23 and into the catheter for storage. The material capture needle 23 and cutting mechanism 18 may then be readied to make a subsequent cut. The material capture needle 23 typically has a diameter between about 0.1 to 0.5 mm, preferably 0.2 to 0.3 mm, with a length between about 1 to 5 mm, preferably 3 to 4 mm.
  • [0033]
    Referring to FIGS. 3-4, a variety of catheter embodiments may incorporate a needle as a material capture device. Like the catheter of FIG. 2, these catheters rely on the motion of a cutter to control positioning of the material capture needle during cutting. The FIGS. 3A-3B show the distal portion of a catheter 50 having an outer cutter 52 which reciprocates to control the deployment of the material capture needle 54. Additionally, in this embodiment, the material capture needle 54 is deployed to have a forward pointing sharpened tip. With the material capture needle 54 deployed, the catheter 50 would be pushed forward as indicated by arrow 56 to penetrate target material T. The catheter 50 may also incorporate a ski mechanism 58 to urge the cutting side of the catheter radially against the target material T. Such a ski mechanism is described in detail in commonly assigned, copending U.S. patent application Ser. No. 08/982,231 (Attorney Docket No. 18489-000200) filed Dec. 17, 1997, the full disclosure of which is incorporated herein by reference. All of the catheter structures herein may optionally employ such mechanisms.
  • [0034]
    [0034]FIGS. 4A and 4B show a catheter 70 having a telescoping cutter 72 for use with a material capture needle 74. The telescoping cutter 72 is used to decrease the rigid length of the catheter 70 and may be used to create a larger window or aperture 76 for removing greater amounts of material. As the telescoping cutter 72 is drawn proximally, the material capture needle 74 will be pushed into the aperture 76 as indicated by arrow 78, along with material attached to the material capture needle. As seen in FIG. 4B, the material capture device 74 may also include one or more barbs 79 which keep the material from sliding off once it is excised.
  • [0035]
    The catheter 70 is quite useful and an improvement over conventional atherectomy catheters even without incorporation of the material capture needle 74. The decrease in the rigid length of the distal portion of catheter 70 is a significant advantage, particularly when the catheter is introduced to the highly tortuous regions of the coronary vasculature. Once at a desired location, however, the rigid cutter portion of the catheter can be extended in length by 50% or more, with a theoretical limit of 100% for a two-portion telescoping region. In the illustrated embodiment, the cutting aperture 76 is defined only on one of the cutter blades. In other embodiments, it will possible to define the aperture on both of the cutting blades and/or in a variety of configurations. While the cutting blades will preferably employ the cutting edges at each end, the advantages of the telescoping cutter can be enjoyed even without the cutting edges.
  • [0036]
    Referring now to FIGS. 5A-5C, another embodiment of an atherectomy catheter 100 uses a material capture needle 102 which rotates about a pivot pin 104. As indicated by arrow 106 in FIG. 5A, the material capture needle 102 will rotate upward as the drawbar 108 is pulled proximally. As seen in the cross-section of FIG. 5B, the drawbar 108 is coupled to slider 110 which has cutting blade 112. A cam 106 about the pivot pin 104 will pull against the material capture needle 102 as drawbar 108 is moved. The drawbar 108 will be retracted until the blade 112, as shown in FIG. 5C, has sheared off any material captured by the material capture needle 102.
  • [0037]
    [0037]FIGS. 6A and 6B show a catheter embodiment similar to that of FIGS. 5A-5C. The material capture needle 120 of FIG. 6A rotates about a pivot 122 to engage material M to be excised from the luminal wall. The needle actuator for this embodiment differs from that of catheter 100. The material capture needle 120 of the present embodiment sits between tabs 124 and 126 which are attached to the drawbar 130. The drawbar 130 rotates the needle 120 while pulling on slider 132 having blade 134. Of course, it should be understood that the motion of the pivoting material capture needle 120 may be dependent or independent of the motion of the cutting element or blade 134. The material capture needle 120 may also be constructed of existing devices such as a suture needle used in procedures such as coronary anastomoses.
  • [0038]
    [0038]FIG. 7 shows a material capture needle 150 mounted on a base 152 which slides within elongate slots or grooves 154 and 156. The slots 154 and 156 guide the needle 150 along a path that carries the needle outward and then inwardly towards the catheter body 158 after the needle has engaged the catheter body. The inner cutter 160 has a cut-out 162 which holds the base 152 as the cutter is moved with the material capture needle 150. The base may move vertically within the cut-out 162 to follow the slots 154 and 156.
  • [0039]
    In a still further embodiment of the cutting mechanism, FIG. 8 shows a cutter 170 which is controlled by a drawbar 172 which is separate from the material capture needles 180 and drawbar 182. The material capture needles 180 continue to pivot as indicated by arrows 184. Pulling of the cutter drawbar 172 will reciprocate the cutter 170 without interacting with the positioning of the material capture needle 180. Such separate control may be desirable in particular situations where the timing of the engagement of the material capture needle 180 and the cutter 170 must be more accurately controlled.
  • [0040]
    Referring now to FIG. 9, a preferred embodiment of the present invention having a material capture device will now be described in further detail. FIG. 9 shows an inner cutter 200 mounted coaxially within an outer cutter 202 and in a fully distal position to open the window 204. The material capture device in this embodiment comprises a penetrating member 206 and a cam surface 208. The penetrating member 206 is pivotably mounted on the inner cutter about a pivot pin 210. The penetrating member 206 has a curved surface 212 that is designed to slide over the cam surface 208. The curved surface 212 is typically a lower or underside surface of the penetrating member 206. As the inner cutter 200 is advanced during the cutting motion, the cam surface 208 will guide the penetrating member 206 in a radially outward direction along a path that brings the member into engagement with targeted material. By varying the shape of the curved surface 212 and the height of the cam surface 208, the penetrating member 206 may have a variety of material-engaging positions, e.g., where the sharpened tip 214 extends radially beyond the outer diameter of the outer cutter 202, where the sharpened tip 214 is radially aligned with the outer diameter of the outer cutter or the inner cutter 200, or where the tip 214 is within the inner cutter. It should be understood that the curved surface 212 may be also contain longitudinal grooves and be contoured as desired to best follow and maintain contact with the cam surface 208 during the cutting motion. As shown in FIG. 9, the penetrating member 206 includes a lower protrusion 216 which helps move tissue proximally away from the cutters after the tissue has been excised.
  • [0041]
    Referring now to FIG. 10, a drive wire 220 mounted within a drive tube 222 is used to move the inner cutter 200 from a first, open position to a second, closed position. Of course, other push/pull elements or separate push elements and pull elements may be used to control the movement of the inner cutter 200. The drive wire 220 may be made of material such as stainless steel or nickel titanium. The drive tube 222 may also be made of a variety of materials such as a polymer like polyimide, polyurethane, or polyethylene or a flexible metal such as nickel titanium. The drive tube 222 may also be made from a composite of metal and polymer, or a metal that has material selectively removed to increase its flexibility. Further details of the drive tube can be found in commonly assigned, copending U.S. patent application Ser. No. 08/982,231 (Attorney Docket No. 18489-000200US), filed on Dec. 17, 1997, the full disclosure of which is incorporated herein by reference.
  • [0042]
    As seen in FIGS. 10 and 11, the cam surface 208 is fixedly secured to the outer cutter 202 and remains stationary relative to the penetrating member 206 during the cutting motion. The inner cutter 200 typically includes a slot or cut-out portion to accommodate the cam surface 208. Movement of the inner cutter 200 brings the sharpened end 214 into contact with target material which is pushed towards the first blade 224 (FIG. 10). Referring now to FIG. 11 as the window 204 is closed, a second blade 226 on the inner cutter 200 will complete the cutting motion by shearing off the material against the first blade 224. The cam surface 208 will push against the lower surface 212 of the penetrating member 206 and force the sharpened tip 214 of the penetrating member to retract into the inner cutter as shown in FIG. 11.
  • [0043]
    Referring now to FIGS. 12-14, other embodiments of the penetrating member, cam surface, and inner cutter will now be described. FIG. 12 shows an embodiment of the penetrating member 230 where the member has a more aggressively designed sharpened tip 232. The additional length of the tip 232 allows the penetrating member 230 to engage materials further away from the outer cutter 202. The lower surface 234 of the penetrating member 230 includes a recessed portion 236 that allows the penetrating member to be retracted into the outer cutter 202 when the inner cutter 200 is in its distal most position.
  • [0044]
    [0044]FIG. 13 shows a material capture device where the sharpened tip 240 of the penetrating member 242 is even with the outer diameter of the outer cutter 202 when the penetrating member is in its tissue-engaging position. The cam surface 244 has a decreased height and the location of the pivot pin 246 has also been lowered to change the position of the sharpened tip 240. The extension distance may vary depending on the desired function of the cutter. For example, the extension distance of the penetrating member (where the outer edge of the inner cutter is 0.000) may range between about-0.05 to 0.10 inches (as shown in phantom), preferably between about 0.00 to 0.04 inches, and most preferably between about 0.01 to 0.02 inches for a 0.100 maximum diameter cutter. The length of the sharpened tip 240 may also be used to change the maximum extension distance of the material capture device.
  • [0045]
    [0045]FIG. 14 shows an embodiment of the penetrating member 250 used with a reduced length inner cutter 252. Using a shorter inner cutter 252 can reduce the rigid length of the catheter and improve tracking of the catheter through tortuous vasculature. Unlike the inner cutters shown in FIGS. 9-11, the inner cutter 252 in FIG. 14 has the side-opening aperture 254 located at the proximal end of the cutter. In other embodiments, this side-opening aperture is located away from the ends of the cutter. Moving the aperture 254 to the end of the cutter 252 allows the reduction in rigid length. In this embodiment, the drive wire 220 is repositioned to be on the lower surface of the inner cutter 252.
  • [0046]
    The embodiments of FIGS. 12-14 may further be provided with positioner wires as shown in FIGS. 14A-14C. The cutter mechanism 500 comprises a penetrating member 502, an inner cutter 504, an outer tubular cutter 506, and a pair of positioner wires 510 (only one of which is visible in the figures). The inner cutter 504 is shown in if its closed (fully proximally advanced) configuration in FIG. 14A. The penetrating member 502 is fully radially retracted within the cutter assembly, and the positioning wires are also fully retracted.
  • [0047]
    The positioning wires 510 form from a resilient material, typically stainless steel ribbon or a shape memory alloy ribbon, such as nitinol. The proximal ends of each wire are attached in slots formed near the proximal end of the outer tubular cutter 506 and extend inwardly through openings (not shown) so that their distal ends extend radially inwardly into the interior of the outer tubular cutter, as shown in the left-hand side of FIG. 14A. With the inner cutter 504 closed, as shown in FIG. 14A, the cutter mechanism 500 can be advanced through the vasculature with a minimum profile, i.e., neither the tissue-penetrating member 502 nor the positioner wires 510 extend out from the cutter mechanism.
  • [0048]
    Once positioned at the treatment location, the inner cutting blade 504 may be distally retracted, both opening a cutter window 514 and causing the cam surface 518 on the penetrating member 502 to engage a cam element 520, causing the penetrating tip of the penetrating element 502 to emerge through the cutter window 514 as generally described with the embodiments of FIGS. 12-14. Cutter mechanism 500 differs from the earlier embodiments in that a lower portion of the inner cutter 504 engages the curved distal ends 522 of the positioner wires 510, as best seen in FIG. 14B. In particular, as the inner cutter 504 moves in a distal direction, (i.e., toward the left in FIGS. 14A-14C), it depresses the curved ends 522, causing the main body of the positioner wires 510 to emerge from the outer cutter 506, as indicated at 530 in FIG. 14B. As the inner cutter 504 moves further in the distal direction, the positioner wires 510 are deployed fully outwardly, as best shown in FIG. 14C. The cutter window 514 is fully opened and the penetrating member 502 again retracted within the cutter mechanism 500. With the positioner wires 510 fully deployed, the penetrating member 502 of the cutter mechanism is disposed to penetrate into target tissue as the inner cutter member 504 is closed in the proximal direction. Preferably, the positioner wires 510 will apply a very low amount of force against the artery wall since the penetrating member 502 will be able to quickly engage and capture the tissue to be cut by the mechanism 500. Additionally, if the lesion being treated has a small diameter, the positioner wires will simply fold over as the inner cutter is moved distally to open the cutter window 514. During the cutting operation, the positioner wires 510 will quickly spring back into the outer tubular cutter 506 since the tissue-penetrating member will act to maintain contact with the material to be cut during the remainder of the cutting operation.
  • [0049]
    FIGS. 15-18 show a still further embodiment of the material capture device using a penetrating member and a cam surface. In FIG. 15, the penetrating member comprise a curved needle 260 which is fixedly secured to the inner cutter 200 and biased against a cam surface 262. The curved needle 260 may be integrally formed with the inner cutter 200 or otherwise attached such as by welding or other methods known in the art. As the inner cutter 200 is advanced, the cam surface 262 will guide the needle 260 along a path outwardly to engage target material and then it back towards the catheter body. As discussed previously, the needle 260 need not move beyond the outer cutter 202, instead remaining even with the outer diameter of the outer cutter as the needle engages material. The inner cutter 200 may also include a material imaging device 264 such as an ultrasound transducer or optical fibers which will image tissue when the window 204 is closed by the cutter. The optical fibers may be used for optical coherence tomography or optical coherence reflectometry. A suitable ultrasound transducer or transducer array may be found in commonly assigned, copending U.S. patent application Ser. No. 09/____ (Attorney Docket No. 18489-001000US), filed ______, the full disclosure of which is incorporated herein by reference.
  • [0050]
    FIGS. 16-18 shows various embodiments of the cam surface 262. FIG. 16 shows a perspective view of the cam surface 262 used in the device of FIG. 15. FIGS. 17 and 18 show a cam surface 270 which has separate tracks 272 and 274 which can guide the needle 260 along different needle paths when the needle is advanced and when the needle is retracted. The cam surface 270 has funneled portions 276 and 278 for guiding the needle into the respective tracks 272 and 274, depending on whether the needle is being advanced or retracted.
  • [0051]
    Referring now to FIGS. 19-22, a telescoping cutting device using a material capture device will be described in further detail. As shown in FIG. 19, the telescoping portion 300 in this embodiment of the cutting device extends outwardly from an aperture 302 on the catheter body 304. The catheter body 304 may include a cutting blade 305 for shearing material drawn into the cutting device. It should be understood, of course, that the blade may be located in a variety of positions such as on the telescoping portion 300 of the device or located on both the telescoping portion and the catheter body. As shown in FIG. 19, the distal end 306 of the telescoping portion 300 is preferably adapted to mount a soft, atraumatic distal tip (shown in phantom) to facilitate passage of the device through body lumens. The tip may, in some embodiments, be integrally formed with the telescoping portion 300.
  • [0052]
    As seen in FIG. 19, the telescoping portion 300 is in a distal position where one edge 307 of the telescoping portion is spaced apart from the catheter body and defines a cutting window 308. In some embodiments, the edge 307 may comprise a cutting blade while in other embodiments the edge may be unsharpened, but pushing material into the cutting window. The cutting window 308 is preferably a directional cutting window which may open towards one side of the catheter where material may intrude to be cut off. A penetrating member 310 is preferably rotatably mounted about a pivot pin 312 on the telescoping portion 300 to engage the material. It should be understood that some embodiments of the telescoping portion 300 may not include the penetrating member 310. The penetrating member 310 is shown in FIG. 19 to be in a first, tissue-engaging position. A tether or leash element 314 is rotatably coupled to the penetrating member 310 and can be pulled proximally as indicated by arrow 316 to rotate the member into the tissue-engaging position. The tether 314 may be made of a variety of materials such as stainless steel or a polymer like polyimide or a fibrous material like Kevlar®.
  • [0053]
    [0053]FIG. 20 shows the telescoping portion 300 being retracted by a drive wire 318 as indicated by arrow 320. As one end of the penetrating member 310 contacts abutment or deflection block 322, the penetrating member 310 will begin to rotate as indicated by arrow 324. Further retraction of the telescoping portion 300 will cause the sharpened tip 326 of the penetrating member 310 to be pushed within the boundaries of the catheter body. As seen in FIG. 21, the penetrating member 310 and telescoping portion 300 may be substantially retracted into the catheter body 304. The tether 314 has a bent portion 330 that allows the penetrating member to rotated to the position shown in FIG. 22. Retraction of the penetrating member 310 into the catheter body as shown in FIG. 22 also functions to push tissue proximally into the catheter body where it can be stored.
  • [0054]
    Referring now to FIGS. 23 and 24, a still further embodiment of the tissue capture device will be described. FIG. 23 shows a penetrating member 340 that is rotatably mounted to the outer cutter 342, instead of the inner, slidable cutter 344 as shown in previous embodiments. The inner cutter 344 can be reciprocated to cut off materials captured in the window 346. The inner cutter 344 includes a pushing element 348 that contacts the penetrating member 340 to rotate the penetrating member into the target material and then return to the inside of the outer cutter 342. The pushing element 348 traverses over the top of the surface of the penetrating member and wipes off any tissue, directing it into the catheter. The penetrating member 340 may be reset to its starting position by a variety of methods such as through the use of a leash element as described above or by using a bias element to create a return force.
  • [0055]
    Referring now to FIG. 25, the present invention will further comprise kits including catheters 400, instructions for use 402, and packages 404. Catheters 400 will generally be described above, and the instruction for use (IFU) 402 will set forth any of the methods described above. Package 404 may be any conventional medical device packaging, including pouches, trays, boxes, tubes, or the like. The instructions for use 402 will usually be printed on a separate piece of paper, but may also be printed in whole or in part on a portion of the packaging 404.
  • [0056]
    While all the above is a complete description of the preferred embodiments of the inventions, various alternatives, modifications, and equivalents may be used. For example, the cutters and material capture devices may be oriented in a variety of angles on the catheter body. As seen in FIGS. 26 and 27, the catheters 430 and 440 have cutters 432 and 442 which are oriented perpendicularly or at other inclined angles to a longitudinal axis 450 of the catheter. A plurality of material capture devices may be used with a single or a plurality of cutting blades. Additionally, as discussed above for FIG. 15, another embodiment of the device includes an ultrasound transducer 460 as shown in FIG. 28. In place of an ultrasonic transducer, the device may use one or more optical fibers for optical coherence tomography or optical coherence reflectometry. Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be obvious that certain modifications may be practiced within the scope of the appended claims.

Claims (58)

What is claimed is:
1. A catheter for removing material from a body lumen, said catheter comprising:
a catheter body having a proximal end and a distal end;
a material capture device arranged on said catheter body to engage said material; and
a cutting element mounted near the distal end of the catheter body to move between a first position and a second position to cut said material while said material is engaged by said material capture device, wherein motion of the cutting element urges the material capture device to draw cut material into the catheter body.
2. A catheter as in claim 1 wherein said catheter body comprises a proximal, flexible portion and a distal, rigid portion containing said cutting element.
3. A catheter as in claim 2 wherein said catheter body comprises a inner cutter mounted coaxially within said distal, rigid portion, said material capture device mounted on said inner cutter.
4. A catheter as in claim 2 wherein said catheter body comprises an atraumatic distal tip mounted on said distal, rigid portion.
5. A catheter as in claim 1 wherein:
said material capture device is arranged on said catheter body to advance along a path outwardly from the catheter body into said material and then inwardly towards the catheter body to tension said material; and
said cutting element on said catheter body moving between said first position and said second position to cut said material while in tension.
6. A catheter as in claim 5 wherein said path comprises a radially curved path extending in an outward direction away from the catheter body towards said material to be cut off.
7. A catheter as in claim 6 where in said material capture device moving along said path does not exceed the outer diameter of the catheter body.
8. A catheter as in claim 5 wherein said material capture device travels in a slot on the catheter body to advance along said path.
9. A catheter as in claim 5 wherein said material capture device travels in a groove on the catheter body to advance along said path.
10. A catheter as in claim 5 wherein said material capture device comprises a bias element to urge said material capture device along said path.
11. A catheter as in claim 5 wherein said material capture device is configured to rotate about a pivot pin to deploy said material capture device along said path.
12. A catheter as in claim 1 wherein said material capture device comprises:
a penetrating member pivotably mounted about a pin on said cutting blade, said penetrating member movable between a first, tissue-engaging position and a second tissue-retracting position; and
a cam surface disposed on said catheter body to contact and rotate said penetrating member about said pivot point when said cutting blade is advanced over the cam surface.
13. A catheter as in claim 12 wherein said cam surface is configured to slidably contact a lower surface on said penetrating member to guide said penetrating member over an accurate path as the cutting blade is advanced.
14. A catheter as in claim 13 wherein said cam surface includes a groove for mating with said penetrating member.
15. A catheter as in claim 13 wherein said cam surface includes a first groove having a funneled opening and a second groove having a second funneled opening.
16. A catheter as in claim 13 wherein said penetrating member comprises a recess on said lower surface to facilitate positioning of said member over said cam surface.
17. A catheter as in claim 1 wherein said material capture device comprises:
a penetrating member rotatably mounted on said cutting element; and
an abutment disposed on said catheter body to engage one end of the penetrable member and cause rotation of the penetrating member from a first, open position to a second, closed position.
18. A catheter as in claim 17 further comprising a tether coupled to said penetrating member to control positioning of the penetrating member.
19. A catheter as in claim 1 wherein said material capture device comprises a penetrating member rotatably mounted on said catheter body and fixedly secured relative to said slidable cutting element;
a pushing element mounted on said cutting element to engage said penetrating member to move said member between a first position to a second tissue-engaging position.
20. A catheter as in claim 1 wherein said material capture device is configured to be deployed from an aperture in the side wall of the catheter body.
21. A catheter as in claim 20 wherein said cutting element includes an material imaging device mounted to be in an imaging position when said aperture is closed by said cutting element.
22. A catheter as in claim 1 wherein said cutting element includes a first cutting blade having at least one penetrating point.
23. A catheter as in claim 1 wherein said cutting element has a first cutting blade opposed to a second cutting blade for removing said material.
24. A catheter as in claim 1 wherein said cutting element comprises a tubular inner cutter slidably mounted within an outer cutter of the catheter body, said inner cutter coupled to a drive wire actuated by a user.
25. A catheter as in claim 1 wherein said material capture device extends an extension distance outward from the catheter body to engage material, said extension distance equal to the diameter of the catheter body.
26. A catheter as in claim 1 wherein said material capture device includes a barbed distal tip to retain material on the capture device.
27. A catheter as in claim 1 wherein said cutting element further comprises a material imaging device.
28. A catheter as in claim 27 wherein said material imaging device comprises an ultrasound transducer array.
29. A catheter as in claim 1 wherein said material capture device comprises means for penetrating said material.
30. A catheter as in claim 29 wherein said means for penetrating material comprises a curved needle biased outwardly from the catheter body.
31. A catheter as in claim 29 wherein said means for penetrating material comprises a penetrating member rotatably mounted about a pivot pin on said cutting element.
32. A catheter as in claim 29 wherein said means for penetrating material is configured to engage a raised portion on said catheter body to move said means to engage material and then retract material into the catheter body.
33. A catheter as in claim 32 wherein said raised portion comprises a cam surface having a plurality of tracks, wherein each track has a funneled entrance to guide said penetrating member therein.
34. A catheter for removing material from the wall of a body lumen, said catheter comprising:
a catheter body having a proximal end and a distal end;
a side aperture on the catheter body;
a cutting blade adapted to advance past the aperture to sever material which intrudes through the aperture; and
a penetration member mounted to extend through the aperture to penetrate material in advance of the cutting blade and to draw material into the catheter body as the cutting blade is advanced past the aperture.
35. A catheter as in claim 34 further comprising a cam surface mounted on said catheter body, said cam surface having a surface configured to guide said penetration member into said material when said blade is advanced.
36. A catheter for removing material from a body lumen, said catheter comprising:
a catheter body having a proximal end and a distal end;
a material capture device arranged on said catheter body to advance along a path radially outwardly from the catheter body into said material and then inwardly towards the catheter body to tension said material; and
a cutting element on said catheter body moving between a first position and a second position to cut said material while said material is in tension.
37. A catheter for removing material from a body lumen, said catheter comprising:
a catheter body having a proximal end, a distal end, and an aperture;
a slidable, telescoping portion on said catheter body configured to extend outwardly from said aperture on the catheter body, said telescoping portion having a first open position leaving a gap between one edge of said portion and said catheter body to define a cutter window in which material may intrude to be engaged and having a second closed position wherein said cutting blade is positioned to cut off said material.
38. A catheter as in claim 37 wherein said gap defines a side-opening cutter window.
39. A catheter as in claim 37 wherein said aperture comprises a forward facing, distal aperture on the catheter body.
40. A catheter as in claim 37 further comprising a material capture device mounted on said telescoping portion, said portion moving between a first position and a second position to cut said material while said material is engaged by said material capture device, wherein motion of the telescoping portion urges the material capture device to draw cut material into the catheter body.
41. A catheter as in claim 40 wherein said material capture device is rotatably mounted to said telescoping portion and configured to engage a raised portion on said catheter body to rotate said material capture device to engage material and then draw material into the catheter body.
42. A method for excising occlusive material from within a body lumen, said method comprising:
capturing said occlusive material with a material capture device on a catheter body;
drawing said device radially inwardly towards the catheter body to tension the material; and
advancing a blade through the tensioned material to sever said material from the body lumen.
43. A method as in claim 42 wherein said engaging of said occlusive material comprises extending said material capture device from said catheter body in a radially outward direction.
44. A method as in claim 43 wherein said material capture device does not extend beyond the outer diameter of the catheter body when engaging said material.
45. A method as in claim 42 wherein said engaging of said occlusive material comprises penetrating said material with said material capture device.
46. A method as in claim 42 wherein said engaging of occlusive material comprises radially extending said material capture device outward from an aperture on the catheter body.
47. A method as in claim 46 wherein said engaging of said occlusive material comprises guiding said material capture device against a raised portion on the catheter body to direct said capture device into said material.
48. A method as in claim 46 wherein said engaging of said occlusive material comprises advancing said cutting blade to engage a pushing element against said material capture device mounted on the catheter body.
49. A method as in claim 46 wherein said engaging of said occlusive material comprises penetrating said material in advance of the blade and said drawing of said device into the catheter body occurs as the cutting blade is advanced past the aperture.
50. A method as in claim 46 further comprising imaging said material prior to cutting said material, wherein said imaging occurs when said aperture is closed by said cutting blade.
51. A method as in claim 42 wherein said drawing of the device comprises moving said material capture device radially towards said catheter body while said material capture device remains in contact with said material.
52. A method as in claim 51 wherein said drawing of said material capture device occurs when said cutting element is advanced, said cutting element pushing against said material capture device and biasing it into the catheter body.
53. A method as in claim 51 wherein drawing of said material capture device comprises positioning said material capture device against a raised portion on the catheter body to guide said device with the material into the catheter body.
54. A method as in claim 42 wherein said engaging and tensioning of material are performed through a single motion by the user.
55. A method for removing material from a body lumen, said method comprising:
positioning a catheter within the lumen;
extending a distal portion of the catheter forwardly to open an aperture, wherein material is invaginated into the aperture; and
closing the distal portion of the catheter to close the aperture and sever the invaginated material.
56. A method as in claim 55, wherein the body lumen is a blood vessel and the material is atheromatous material.
57. A method as in claim 55, further comprising penetrating the tissue with a material capture device and drawing the captured material into the aperture with the device as the distal portion of the catheter body is closed.
58. A kit comprising:
a catheter having a material capture device and a cutting element;
instructions for use in removing material from a body lumen comprising engaging said material with a material capture device and tensioning said material towards the catheter while cutting said occlusive material with a cutting element; and
a package adapted to contain the device and the instructions for use.
US09916642 1999-08-19 2001-07-27 Apparatus and methods for material capture and removal Abandoned US20020022788A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09377884 US6638233B2 (en) 1999-08-19 1999-08-19 Apparatus and methods for material capture and removal
US09916642 US20020022788A1 (en) 1999-08-19 2001-07-27 Apparatus and methods for material capture and removal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09916642 US20020022788A1 (en) 1999-08-19 2001-07-27 Apparatus and methods for material capture and removal
US11455995 US20060235334A1 (en) 1999-08-19 2006-06-19 Apparatus and methods for material capture and removal
US12357037 US8784333B2 (en) 1999-08-19 2009-01-21 Apparatus and methods for material capture and removal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09377884 Continuation US6638233B2 (en) 1999-08-19 1999-08-19 Apparatus and methods for material capture and removal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11455995 Continuation US20060235334A1 (en) 1999-08-19 2006-06-19 Apparatus and methods for material capture and removal

Publications (1)

Publication Number Publication Date
US20020022788A1 true true US20020022788A1 (en) 2002-02-21

Family

ID=23490904

Family Applications (4)

Application Number Title Priority Date Filing Date
US09377884 Active US6638233B2 (en) 1999-08-19 1999-08-19 Apparatus and methods for material capture and removal
US09916642 Abandoned US20020022788A1 (en) 1999-08-19 2001-07-27 Apparatus and methods for material capture and removal
US11455995 Abandoned US20060235334A1 (en) 1999-08-19 2006-06-19 Apparatus and methods for material capture and removal
US12357037 Active 2021-11-22 US8784333B2 (en) 1999-08-19 2009-01-21 Apparatus and methods for material capture and removal

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09377884 Active US6638233B2 (en) 1999-08-19 1999-08-19 Apparatus and methods for material capture and removal

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11455995 Abandoned US20060235334A1 (en) 1999-08-19 2006-06-19 Apparatus and methods for material capture and removal
US12357037 Active 2021-11-22 US8784333B2 (en) 1999-08-19 2009-01-21 Apparatus and methods for material capture and removal

Country Status (1)

Country Link
US (4) US6638233B2 (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020077642A1 (en) * 2000-12-20 2002-06-20 Fox Hollow Technologies, Inc. Debulking catheter
US20040167553A1 (en) * 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20040167554A1 (en) * 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for reentering a true lumen from a subintimal space
US20050154407A1 (en) * 2000-12-20 2005-07-14 Fox Hollow Technologies, Inc. Method of evaluating drug efficacy for treating atherosclerosis
US20050177068A1 (en) * 2000-12-20 2005-08-11 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20060089633A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue access
US20060089609A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue modification
US20060122458A1 (en) * 2004-10-15 2006-06-08 Baxano, Inc. Devices and methods for tissue access
US20060184187A1 (en) * 2005-01-27 2006-08-17 Wilson-Cook Medical Inc. Endoscopic cutting device
US20060235366A1 (en) * 2000-12-20 2006-10-19 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20060236019A1 (en) * 2005-04-19 2006-10-19 Fox Hollow Technologies, Inc. Libraries and data structures of materials removed by debulking catheters
US20060239982A1 (en) * 2000-12-20 2006-10-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20060258951A1 (en) * 2005-05-16 2006-11-16 Baxano, Inc. Spinal Access and Neural Localization
US20070078469A1 (en) * 2000-12-20 2007-04-05 Fox Hollow Technologies, Inc Testing a patient population having a cardiovascular condition for drug efficacy
US20070123888A1 (en) * 2004-10-15 2007-05-31 Baxano, Inc. Flexible tissue rasp
US20070196926A1 (en) * 2006-02-17 2007-08-23 Fox Hollow Technologies, Inc. Testing lumenectomy samples for Markers of non-vascular diseases
US20070213734A1 (en) * 2006-03-13 2007-09-13 Bleich Jeffery L Tissue modification barrier devices and methods
US20070213735A1 (en) * 2004-10-15 2007-09-13 Vahid Saadat Powered tissue modification devices and methods
US20070213733A1 (en) * 2004-10-15 2007-09-13 Bleich Jeffery L Mechanical tissue modification devices and methods
US20070225703A1 (en) * 2005-10-15 2007-09-27 Baxano, Inc. Flexible Tissue Removal Devices and Methods
US20070260252A1 (en) * 2006-05-04 2007-11-08 Baxano, Inc. Tissue Removal with at Least Partially Flexible Devices
WO2008016886A2 (en) * 2006-08-01 2008-02-07 Baxano, Inc. Tissue cutting devices and methods
US20080051812A1 (en) * 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
US20080086114A1 (en) * 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20080103504A1 (en) * 2006-10-30 2008-05-01 Schmitz Gregory P Percutaneous spinal stenosis treatment
US20080147084A1 (en) * 2006-12-07 2008-06-19 Baxano, Inc. Tissue removal devices and methods
US20080161809A1 (en) * 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
US20080275458A1 (en) * 2004-10-15 2008-11-06 Bleich Jeffery L Guidewire exchange systems to treat spinal stenosis
US20080312660A1 (en) * 2007-06-15 2008-12-18 Baxano, Inc. Devices and methods for measuring the space around a nerve root
US20090018507A1 (en) * 2007-07-09 2009-01-15 Baxano, Inc. Spinal access system and method
US20090069709A1 (en) * 2007-09-06 2009-03-12 Baxano, Inc. Method, system, and apparatus for neural localization
US20090125036A1 (en) * 2004-10-15 2009-05-14 Bleich Jeffery L Devices and methods for selective surgical removal of tissue
US20090149865A1 (en) * 2007-12-07 2009-06-11 Schmitz Gregory P Tissue modification devices
US20090177241A1 (en) * 2005-10-15 2009-07-09 Bleich Jeffery L Multiple pathways for spinal nerve root decompression from a single access point
US7625346B2 (en) 2003-05-30 2009-12-01 Boston Scientific Scimed, Inc. Transbronchial needle aspiration device
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
WO2010105261A2 (en) * 2009-03-13 2010-09-16 Baxano, Inc. Flexible neural localization devices and methods
US20100321426A1 (en) * 2007-11-22 2010-12-23 Kazuki Suzuki Image forming apparatus
US20100331883A1 (en) * 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US20100331900A1 (en) * 2009-06-25 2010-12-30 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20110004107A1 (en) * 2009-07-01 2011-01-06 Rosenthal Michael H Atherectomy catheter with laterally-displaceable tip
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US20110112539A1 (en) * 2008-07-14 2011-05-12 Wallace Michael P Tissue modification devices
US20110160731A1 (en) * 2004-10-15 2011-06-30 Bleich Jeffery L Devices and methods for tissue access
US20110224710A1 (en) * 2004-10-15 2011-09-15 Bleich Jeffery L Methods, systems and devices for carpal tunnel release
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
WO2013003088A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies, LLC Biopsy needle with flexible length
WO2013003087A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies Llc Flexible biopsy needle
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
EP2617361A1 (en) * 2011-06-23 2013-07-24 Olympus Medical Systems Corp. Biopsy treatment tool
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
EP2735273A1 (en) * 2011-07-21 2014-05-28 Panasonic Healthcare Co., Ltd. Instrument for collecting body tissue and method for collecting body tissue using same
US8784333B2 (en) 1999-08-19 2014-07-22 Covidien Lp Apparatus and methods for material capture and removal
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US20140222049A1 (en) * 2012-12-12 2014-08-07 Covidien Lp Tissue-Removing Catheter with Ball and Socket Deployment Mechanism
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US8932232B2 (en) 2009-03-31 2015-01-13 Arch Medical Devices Ltd. Tissue sampling device and method
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
EP2883503A4 (en) * 2012-08-13 2016-04-13 Olympus Corp Treatment device for endoscope
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9655596B2 (en) 2012-05-10 2017-05-23 Arch Medical Devices Ltd. Biopsy needle with a laterally expandable distal portion
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
US9757099B2 (en) 2012-02-27 2017-09-12 Cook Medical Technologies Llc Biopsy needle with enhanced flexibility

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051008A (en) * 1996-12-02 2000-04-18 Angiotrax, Inc. Apparatus having stabilization members for percutaneously performing surgery and methods of use
US6102926A (en) 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US6120520A (en) 1997-05-27 2000-09-19 Angiotrax, Inc. Apparatus and methods for stimulating revascularization and/or tissue growth
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US7314477B1 (en) 1998-09-25 2008-01-01 C.R. Bard Inc. Removable embolus blood clot filter and filter delivery unit
US6814318B2 (en) 1999-08-18 2004-11-09 The Procter & Gamble Company Disposable cartridge for electrostatic spray device
US8308708B2 (en) 2003-07-15 2012-11-13 Abbott Cardiovascular Systems Inc. Deployment system for myocardial cellular material
EP1301228B1 (en) 2000-07-13 2008-07-23 Abbott Cardiovascular Systems Inc. Deployment system for myocardial cellular material
US8071740B2 (en) * 2000-11-17 2011-12-06 Vascular Biogenics Ltd. Promoters exhibiting endothelial cell specificity and methods of using same for regulation of angiogenesis
US7887556B2 (en) * 2000-12-20 2011-02-15 Fox Hollow Technologies, Inc. Debulking catheters and methods
DE10105592A1 (en) 2001-02-06 2002-08-08 Achim Goepferich Placeholder for drug release in the frontal sinus
JP4173446B2 (en) 2001-10-19 2008-10-29 ヴァスキュラー バイオジェニックス リミテッド Polynucleotide construct for targeted down regulation and anti-cancer treatment of angiogenesis and pharmaceutical compositions and methods
US9204956B2 (en) 2002-02-20 2015-12-08 C. R. Bard, Inc. IVC filter with translating hooks
US8317816B2 (en) 2002-09-30 2012-11-27 Acclarent, Inc. Balloon catheters and methods for treating paranasal sinuses
US20050070818A1 (en) * 2003-09-30 2005-03-31 Mueller Richard L. Biopsy device with viewing assembly
US8747389B2 (en) 2004-04-21 2014-06-10 Acclarent, Inc. Systems for treating disorders of the ear, nose and throat
US9101384B2 (en) 2004-04-21 2015-08-11 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitis and other disorders of the ears, Nose and/or throat
US8932276B1 (en) 2004-04-21 2015-01-13 Acclarent, Inc. Shapeable guide catheters and related methods
RU2506056C2 (en) 2008-09-18 2014-02-10 Аккларент, Инк. Methods and apparatus for treating ear, nose and throat diseases
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
US20060063973A1 (en) 2004-04-21 2006-03-23 Acclarent, Inc. Methods and apparatus for treating disorders of the ear, nose and throat
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US8864787B2 (en) 2004-04-21 2014-10-21 Acclarent, Inc. Ethmoidotomy system and implantable spacer devices having therapeutic substance delivery capability for treatment of paranasal sinusitis
US20070167682A1 (en) 2004-04-21 2007-07-19 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7419497B2 (en) 2004-04-21 2008-09-02 Acclarent, Inc. Methods for treating ethmoid disease
US8764729B2 (en) 2004-04-21 2014-07-01 Acclarent, Inc. Frontal sinus spacer
US9089258B2 (en) 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US7410480B2 (en) * 2004-04-21 2008-08-12 Acclarent, Inc. Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders
US9351750B2 (en) 2004-04-21 2016-05-31 Acclarent, Inc. Devices and methods for treating maxillary sinus disease
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US8894614B2 (en) 2004-04-21 2014-11-25 Acclarent, Inc. Devices, systems and methods useable for treating frontal sinusitis
US9554691B2 (en) 2004-04-21 2017-01-31 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US8146400B2 (en) 2004-04-21 2012-04-03 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US9399121B2 (en) 2004-04-21 2016-07-26 Acclarent, Inc. Systems and methods for transnasal dilation of passageways in the ear, nose or throat
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US8951225B2 (en) 2005-06-10 2015-02-10 Acclarent, Inc. Catheters with non-removable guide members useable for treatment of sinusitis
US8702626B1 (en) 2004-04-21 2014-04-22 Acclarent, Inc. Guidewires for performing image guided procedures
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US7959608B2 (en) * 2004-04-27 2011-06-14 The Spectranetics Corporation Thrombectomy and soft debris removal device
US8920402B2 (en) * 2004-04-27 2014-12-30 The Spectranetics Corporation Thrombectomy and soft debris removal device
US7608073B2 (en) * 2004-07-09 2009-10-27 Tyco Healthcare Group Lp Energy based partial circumferential hemorrhoid repair device
CA2574013A1 (en) * 2004-07-14 2006-01-19 By-Pass, Inc. Material delivery system
US20070198019A1 (en) * 2004-07-29 2007-08-23 X-Sten Corp. Spinal ligament modification devices
US7704267B2 (en) 2004-08-04 2010-04-27 C. R. Bard, Inc. Non-entangling vena cava filter
US7794473B2 (en) 2004-11-12 2010-09-14 C.R. Bard, Inc. Filter delivery system
EP1880313A4 (en) 2005-05-12 2015-08-05 Bard Inc C R Removable embolus blood clot filter
CA2612933C (en) * 2005-06-20 2014-08-19 Otomedics Advanced Medical Technologies Ltd. Ear tubes
JP2009502365A (en) 2005-07-29 2009-01-29 ヴァートス メディカル インコーポレーテッド Percutaneous tissue ablation apparatus and the method
CA2616818C (en) 2005-08-09 2014-08-05 C.R. Bard, Inc. Embolus blood clot filter and delivery system
US8114113B2 (en) 2005-09-23 2012-02-14 Acclarent, Inc. Multi-conduit balloon catheter
US20070162061A1 (en) * 2005-11-04 2007-07-12 X-Sten, Corp. Tissue excision devices and methods
US9192755B2 (en) 2005-11-10 2015-11-24 Phase One Medical, Llc Catheter device
US8007488B2 (en) * 2005-11-10 2011-08-30 Phase One Medical Llc Catheter device
JP2009515598A (en) * 2005-11-10 2009-04-16 フェイズ ワン メディカル リミテッド ライアビリティ カンパニー Catheter device
US9131999B2 (en) 2005-11-18 2015-09-15 C.R. Bard Inc. Vena cava filter with filament
US8038595B2 (en) * 2006-01-25 2011-10-18 Beth Israel Deaconess Medical Center Devices and methods for tissue transplant and regeneration
US20070185514A1 (en) * 2006-02-06 2007-08-09 Kirchhevel G L Microsurgical instrument
US7942830B2 (en) 2006-05-09 2011-05-17 Vertos Medical, Inc. Ipsilateral approach to minimally invasive ligament decompression procedure
US7951161B2 (en) * 2006-05-09 2011-05-31 Medrad, Inc. Atherectomy system having a variably exposed cutter
US8190389B2 (en) 2006-05-17 2012-05-29 Acclarent, Inc. Adapter for attaching electromagnetic image guidance components to a medical device
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
WO2007143602A3 (en) 2006-06-05 2008-11-06 Bard Inc C R Embolus blood clot filter utilizable with a single delivery system or a single retrieval system in one of a femoral or jugular access
US7981128B2 (en) 2006-06-30 2011-07-19 Atheromed, Inc. Atherectomy devices and methods
US8628549B2 (en) 2006-06-30 2014-01-14 Atheromed, Inc. Atherectomy devices, systems, and methods
US8361094B2 (en) 2006-06-30 2013-01-29 Atheromed, Inc. Atherectomy devices and methods
US20090018566A1 (en) 2006-06-30 2009-01-15 Artheromed, Inc. Atherectomy devices, systems, and methods
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
US20080045986A1 (en) 2006-06-30 2008-02-21 Atheromed, Inc. Atherectomy devices and methods
US9314263B2 (en) 2006-06-30 2016-04-19 Atheromed, Inc. Atherectomy devices, systems, and methods
US8007506B2 (en) 2006-06-30 2011-08-30 Atheromed, Inc. Atherectomy devices and methods
US9820688B2 (en) 2006-09-15 2017-11-21 Acclarent, Inc. Sinus illumination lightwire device
US7559925B2 (en) 2006-09-15 2009-07-14 Acclarent Inc. Methods and devices for facilitating visualization in a surgical environment
US7456107B2 (en) * 2006-11-09 2008-11-25 Cabot Microelectronics Corporation Compositions and methods for CMP of low-k-dielectric materials
US20080140001A1 (en) * 2006-12-12 2008-06-12 By-Pass Inc. Fluid Delivery Apparatus And Methods
US8439687B1 (en) 2006-12-29 2013-05-14 Acclarent, Inc. Apparatus and method for simulated insertion and positioning of guidewares and other interventional devices
US8118757B2 (en) 2007-04-30 2012-02-21 Acclarent, Inc. Methods and devices for ostium measurement
US8485199B2 (en) 2007-05-08 2013-07-16 Acclarent, Inc. Methods and devices for protecting nasal turbinate during surgery
US20080300506A1 (en) * 2007-05-29 2008-12-04 Boston Scientific Scimed, Inc. Biopsy device with multiple cutters
CA2699375C (en) * 2007-09-12 2016-04-19 Promex Technologies, Llc Surgical cutting instrument
US8070762B2 (en) 2007-10-22 2011-12-06 Atheromed Inc. Atherectomy devices and methods
US8236016B2 (en) 2007-10-22 2012-08-07 Atheromed, Inc. Atherectomy devices and methods
US9414855B1 (en) * 2007-11-05 2016-08-16 Cardica, Inc. Anvil knife for anastomosis tool
US9504491B2 (en) * 2007-11-07 2016-11-29 Abbott Cardiovascular Systems Inc. Catheter having window and partial balloon covering for dissecting tissue planes and injecting treatment agent to coronary blood vessel
US8613721B2 (en) * 2007-11-14 2013-12-24 Medrad, Inc. Delivery and administration of compositions using interventional catheters
US8551129B2 (en) * 2007-11-14 2013-10-08 Todd P. Lary Treatment of coronary stenosis
US8182432B2 (en) 2008-03-10 2012-05-22 Acclarent, Inc. Corewire design and construction for medical devices
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
CA2732769A1 (en) 2008-07-30 2010-02-04 Acclarent, Inc. Paranasal ostium finder devices and methods
USD621939S1 (en) 2008-10-23 2010-08-17 Vertos Medical, Inc. Tissue modification device
USD619253S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD611146S1 (en) 2008-10-23 2010-03-02 Vertos Medical, Inc. Tissue modification device
USD635671S1 (en) 2008-10-23 2011-04-05 Vertos Medical, Inc. Tissue modification device
USD610259S1 (en) 2008-10-23 2010-02-16 Vertos Medical, Inc. Tissue modification device
USD619252S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
US20100125253A1 (en) * 2008-11-17 2010-05-20 Avinger Dual-tip Catheter System for Boring through Blocked Vascular Passages
US8435290B2 (en) 2009-03-31 2013-05-07 Acclarent, Inc. System and method for treatment of non-ventilating middle ear by providing a gas pathway through the nasopharynx
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
JP6101078B2 (en) 2009-05-28 2017-03-29 アビンガー・インコーポレイテッドAvinger, Inc. Optical coherence tomography for bioimaging
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
EP2459119A1 (en) 2009-07-29 2012-06-06 C.R. Bard Inc. Tubular filter
WO2011053422A1 (en) * 2009-10-29 2011-05-05 Cook Incorporated Compartment syndrome treatment method and surgical instrument for same
WO2011072068A3 (en) 2009-12-08 2011-11-03 Avinger, Inc. Devices and methods for predicting and preventing restenosis
US8062260B2 (en) * 2009-12-22 2011-11-22 Alcon Research, Ltd. Trocar cannula device with retention feature
CN102905634B (en) 2010-03-11 2015-12-16 先进导管治疗公司 Atherectomy apparatus
US7978742B1 (en) 2010-03-24 2011-07-12 Corning Incorporated Methods for operating diode lasers
US9345510B2 (en) 2010-07-01 2016-05-24 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US9155492B2 (en) 2010-09-24 2015-10-13 Acclarent, Inc. Sinus illumination lightwire device
EP2645937A4 (en) * 2010-12-03 2014-06-25 Barrostat Medical Inc Methods and devices for metabolic surgery
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
WO2012145133A3 (en) 2011-03-28 2013-01-24 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
CN103957825A (en) 2011-10-13 2014-07-30 阿瑟罗迈德公司 Atherectomy apparatus, systems and methods
US9351757B2 (en) 2012-01-17 2016-05-31 Covidien Lp Material removal device and method of use
CN103857323B (en) * 2012-05-10 2016-09-28 奥林巴斯株式会社 The endoscopic instrument
WO2013172974A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Atherectomy catheter drive assemblies
US9557156B2 (en) 2012-05-14 2017-01-31 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US9433437B2 (en) 2013-03-15 2016-09-06 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9629684B2 (en) 2013-03-15 2017-04-25 Acclarent, Inc. Apparatus and method for treatment of ethmoid sinusitis
US9854979B2 (en) 2013-03-15 2018-01-02 Avinger, Inc. Chronic total occlusion crossing devices with imaging
US9456843B2 (en) 2014-02-03 2016-10-04 Covidien Lp Tissue-removing catheter including angular displacement sensor
US9526519B2 (en) 2014-02-03 2016-12-27 Covidien Lp Tissue-removing catheter with improved angular tissue-removing positioning within body lumen
JP2017506100A (en) 2014-02-06 2017-03-02 アビンガー・インコーポレイテッドAvinger, Inc. Atherectomy catheters and occlusion crossing device
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US20160095584A1 (en) * 2014-10-01 2016-04-07 Boston Scientific Scimed, Inc. Endoscopic needle with rotary jaw for lateral acquisition

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398798B1 (en) *
US3831585A (en) * 1972-07-19 1974-08-27 T Brondy Retrograde renal biopsy device
US4669469A (en) * 1986-02-28 1987-06-02 Devices For Vascular Intervention Single lumen atherectomy catheter device
US4771774A (en) * 1986-02-28 1988-09-20 Devices For Vascular Intervention, Inc. Motor drive unit
US4817613A (en) * 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US4926858A (en) * 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4966604A (en) * 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US4986807A (en) * 1989-01-23 1991-01-22 Interventional Technologies, Inc. Atherectomy cutter with radially projecting blade
US5047040A (en) * 1987-11-05 1991-09-10 Devices For Vascular Intervention, Inc. Atherectomy device and method
US5053044A (en) * 1988-01-11 1991-10-01 Devices For Vascular Intervention, Inc. Catheter and method for making intravascular incisions
US5071425A (en) * 1988-09-12 1991-12-10 Devices For Vascular Intervention, Inc. Atherectomy catheter and method of forming the same
US5084010A (en) * 1990-02-20 1992-01-28 Devices For Vascular Intervention, Inc. System and method for catheter construction
US5092873A (en) * 1990-02-28 1992-03-03 Devices For Vascular Intervention, Inc. Balloon configuration for atherectomy catheter
US5154724A (en) * 1990-05-14 1992-10-13 Andrews Winston A Atherectomy catheter
US5181920A (en) * 1990-06-08 1993-01-26 Devices For Vascular Intervention, Inc. Atherectomy device with angioplasty balloon and method
US5183432A (en) * 1988-03-19 1993-02-02 Nihonmatai Co., Ltd. Floating body of sophisticated shape produced from a single sheet of film with a single sealing
US5217474A (en) * 1991-07-15 1993-06-08 Zacca Nadim M Expandable tip atherectomy method and apparatus
US5222966A (en) * 1990-02-28 1993-06-29 Devices For Vascular Intervention, Inc. Balloon connection and inflation lumen for atherectomy catheter
US5224949A (en) * 1992-01-13 1993-07-06 Interventional Technologies, Inc. Camming device
US5226909A (en) * 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5269793A (en) * 1989-07-20 1993-12-14 Devices For Vascular Intervention, Inc. Guide wire systems for intravascular catheters
US5282484A (en) * 1989-08-18 1994-02-01 Endovascular Instruments, Inc. Method for performing a partial atherectomy
US5318032A (en) * 1992-02-05 1994-06-07 Devices For Vascular Intervention Guiding catheter having soft tip
US5372602A (en) * 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
US5419774A (en) * 1993-07-13 1995-05-30 Scimed Life Systems, Inc. Thrombus extraction device
US5429136A (en) * 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5491524A (en) * 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5507795A (en) * 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US5507760A (en) * 1993-11-09 1996-04-16 Devices For Vascular Intervention, Inc. Cutter device
US5514115A (en) * 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5527325A (en) * 1993-07-09 1996-06-18 Device For Vascular Intervention, Inc. Atherectomy catheter and method
US5549601A (en) * 1994-10-11 1996-08-27 Devices For Vascular Intervention, Inc. Delivery of intracorporeal probes
US5624457A (en) * 1994-04-07 1997-04-29 Devices For Vascular Intervention Directional atherectomy device with flexible housing
US5632754A (en) * 1994-12-23 1997-05-27 Devices For Vascular Intervention Universal catheter with interchangeable work element
US5643298A (en) * 1992-11-09 1997-07-01 Nordgren; Gregory N. Intra-artery obstruction clearing apparatus and methods
US5643296A (en) * 1994-12-16 1997-07-01 Devices For Vasclar Intervention Intravascular catheter with guiding structure
US5700687A (en) * 1995-01-30 1997-12-23 Bedminster Bioconversion Corporation Odor control system
US5741270A (en) * 1997-02-28 1998-04-21 Lumend, Inc. Manual actuator for a catheter system for treating a vascular occlusion
US5816923A (en) * 1993-12-09 1998-10-06 Devices For Vascular Intervention, Inc. Flexible composite drive shaft for transmitting torque
US5823971A (en) * 1993-10-29 1998-10-20 Boston Scientific Corporation Multiple biopsy sampling coring device
US5836957A (en) * 1994-12-22 1998-11-17 Devices For Vascular Intervention, Inc. Large volume atherectomy device
US5868685A (en) * 1995-11-14 1999-02-09 Devices For Vascular Intervention Articulated guidewire
US5911734A (en) * 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5916210A (en) * 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US5951482A (en) * 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US5954745A (en) * 1997-05-16 1999-09-21 Gertler; Jonathan Catheter-filter set having a compliant seal
US5959281A (en) * 1997-02-07 1999-09-28 Lulirama International, Inc. Interactive card reading system
US5968064A (en) * 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US6010449A (en) * 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US6013072A (en) * 1997-07-09 2000-01-11 Intraluminal Therapeutics, Inc. Systems and methods for steering a catheter through body tissue
US6022362A (en) * 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6027450A (en) * 1994-12-30 2000-02-22 Devices For Vascular Intervention Treating a totally or near totally occluded lumen
US6048349A (en) * 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6068638A (en) * 1995-10-13 2000-05-30 Transvascular, Inc. Device, system and method for interstitial transvascular intervention
US6081738A (en) * 1998-01-15 2000-06-27 Lumend, Inc. Method and apparatus for the guided bypass of coronary occlusions
US6106515A (en) * 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
US6120515A (en) * 1996-02-06 2000-09-19 Devices For Vascular Intervention, Inc. Composite atherectomy cutter
US6120516A (en) * 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US6126649A (en) * 1999-06-10 2000-10-03 Transvascular, Inc. Steerable catheter with external guidewire as catheter tip deflector
US6190353B1 (en) * 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6193676B1 (en) * 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US6217549B1 (en) * 1997-02-28 2001-04-17 Lumend, Inc. Methods and apparatus for treating vascular occlusions
US6217527B1 (en) * 1998-09-30 2001-04-17 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US6228076B1 (en) * 1999-01-09 2001-05-08 Intraluminal Therapeutics, Inc. System and method for controlling tissue ablation
US6235000B1 (en) * 1998-01-13 2001-05-22 Lumend, Inc. Apparatus for crossing total occlusion in blood vessels
US6258052B1 (en) * 1997-11-13 2001-07-10 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
US6266550B1 (en) * 1998-01-16 2001-07-24 Lumend, Inc. Catheter apparatus for treating arterial occlusions
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6283983B1 (en) * 1995-10-13 2001-09-04 Transvascular, Inc. Percutaneous in-situ coronary bypass method and apparatus
US6302875B1 (en) * 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US6330884B1 (en) * 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
US6375615B1 (en) * 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US6394976B1 (en) * 2000-01-31 2002-05-28 Intraluminal Therapeutics, Inc. Catheter for controlling the advancement of a guide wire
US6398798B2 (en) * 1998-02-28 2002-06-04 Lumend, Inc. Catheter system for treating a vascular occlusion
US6428552B1 (en) * 2001-01-22 2002-08-06 Lumend, Inc. Method and apparatus for crossing intravascular occlusions
US6443966B1 (en) * 1988-12-14 2002-09-03 Intravascular Medical, Inc. Surgical instrument
US6447525B2 (en) * 1999-08-19 2002-09-10 Fox Hollow Technologies, Inc. Apparatus and methods for removing material from a body lumen
US20030120295A1 (en) * 2000-12-20 2003-06-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125757A1 (en) * 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125758A1 (en) * 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6623496B2 (en) * 1999-08-19 2003-09-23 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US6638233B2 (en) * 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2178790A (en) 1938-05-07 1939-11-07 Abner E Henry Cutting implement
ES152231Y (en) 1969-10-02 1970-07-01 Ballestero Sierra A trocar perfected.
US3815604A (en) 1972-06-19 1974-06-11 Malley C O Apparatus for intraocular surgery
US3837345A (en) 1973-08-31 1974-09-24 A Matar Venous valve snipper
US3995619A (en) 1975-10-14 1976-12-07 Glatzer Stephen G Combination subcutaneous suture remover, biopsy sampler and syringe
US4034744A (en) * 1975-11-13 1977-07-12 Smith Kline Instruments, Inc. Ultrasonic scanning system with video recorder
US4210146A (en) 1978-06-01 1980-07-01 Anton Banko Surgical instrument with flexible blade
JPS618685B2 (en) * 1978-12-15 1986-03-17 Olympus Optical Co
DE3347671C2 (en) * 1983-12-31 1989-07-27 Richard Wolf Gmbh, 7134 Knittlingen, De
US5024651A (en) 1984-05-14 1991-06-18 Surgical Systems & Instruments, Inc. Atherectomy system with a sleeve
US4781186A (en) 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
US4979951A (en) 1984-05-30 1990-12-25 Simpson John B Atherectomy device and method
USRE33258E (en) 1984-07-23 1990-07-10 Surgical Dynamics Inc. Irrigating, cutting and aspirating system for percutaneous surgery
US4696298A (en) 1985-11-19 1987-09-29 Storz Instrument Company Vitrectomy cutting mechanism
US5000185A (en) * 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4819635A (en) 1987-09-18 1989-04-11 Henry Shapiro Tubular microsurgery cutting apparatus
US4850957A (en) 1988-01-11 1989-07-25 American Biomed, Inc. Atherectomy catheter
US5087265A (en) 1989-02-17 1992-02-11 American Biomed, Inc. Distal atherectomy catheter
US5431673A (en) 1989-02-17 1995-07-11 American Biomed, Inc. Distal atherectomy catheter
US4994067A (en) 1989-02-17 1991-02-19 American Biomed, Inc. Distal atherectomy catheter
US5226910A (en) 1989-07-05 1993-07-13 Kabushiki Kaisha Topcon Surgical cutter
US5505210A (en) 1989-11-06 1996-04-09 Mectra Labs, Inc. Lavage with tissue cutting cannula
US5100424A (en) 1990-05-21 1992-03-31 Cardiovascular Imaging Systems, Inc. Intravascular catheter having combined imaging abrasion head
US5674232A (en) 1990-06-05 1997-10-07 Halliburton; Alexander George Catheter and method of use thereof
US5250065A (en) 1990-09-11 1993-10-05 Mectra Labs, Inc. Disposable lavage tip assembly
US5242460A (en) 1990-10-25 1993-09-07 Devices For Vascular Intervention, Inc. Atherectomy catheter having axially-disposed cutting edge
US5133360A (en) * 1991-03-07 1992-07-28 Spears Colin P Spears retriever
US5263928A (en) * 1991-06-14 1993-11-23 Baxter International Inc. Catheter and endoscope assembly and method of use
US5285795A (en) 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5250059A (en) 1992-01-22 1993-10-05 Devices For Vascular Intervention, Inc. Atherectomy catheter having flexible nose cone
US5224488A (en) 1992-08-31 1993-07-06 Neuffer Francis H Biopsy needle with extendable cutting means
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5571122A (en) 1992-11-09 1996-11-05 Endovascular Instruments, Inc. Unitary removal of plaque
US5584842A (en) 1992-12-02 1996-12-17 Intramed Laboratories, Inc. Valvulotome and method of using
US5620447A (en) 1993-01-29 1997-04-15 Smith & Nephew Dyonics Inc. Surgical instrument
US5318528A (en) 1993-04-13 1994-06-07 Advanced Surgical Inc. Steerable surgical devices
US5395313A (en) 1993-08-13 1995-03-07 Naves; Neil H. Reciprocating arthroscopic shaver
US5441510A (en) * 1993-09-01 1995-08-15 Technology Development Center Bi-axial cutter apparatus for catheter
WO1995008945A3 (en) * 1993-09-20 1995-04-20 Boston Scient Corp Multiple biopsy sampling device
US5571130A (en) 1994-10-04 1996-11-05 Advanced Cardiovascular Systems, Inc. Atherectomy and prostectomy system
US5658302A (en) * 1995-06-07 1997-08-19 Baxter International Inc. Method and device for endoluminal disruption of venous valves
US5989281A (en) 1995-11-07 1999-11-23 Embol-X, Inc. Cannula with associated filter and methods of use during cardiac surgery
US5695506A (en) 1996-02-06 1997-12-09 Devices For Vascular Intervention Catheter device with a flexible housing
US5800389A (en) * 1996-02-09 1998-09-01 Emx, Inc. Biopsy device
US5709698A (en) 1996-02-26 1998-01-20 Linvatec Corporation Irrigating/aspirating shaver blade assembly
US6036707A (en) 1996-03-07 2000-03-14 Devices For Vascular Intervention Catheter device having a selectively flexible housing
US5819738A (en) 1996-07-03 1998-10-13 Symbiosis Corporation Jaw assembly having progressively larger teeth and endoscopic biopsy forceps instrument incorporating same
US5843103A (en) 1997-03-06 1998-12-01 Scimed Life Systems, Inc. Shaped wire rotational atherectomy device
US5938671A (en) 1997-11-14 1999-08-17 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US6027514A (en) * 1997-12-17 2000-02-22 Fox Hollow Technologies, Inc. Apparatus and method for removing occluding material from body lumens
JP4157183B2 (en) * 1998-02-17 2008-09-24 オリンパス株式会社 Endoscopic treatment tool
US6352503B1 (en) * 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
US6241744B1 (en) 1998-08-14 2001-06-05 Fox Hollow Technologies, Inc. Apparatus for deploying a guidewire across a complex lesion
US6440147B1 (en) 1998-09-03 2002-08-27 Rubicor Medical, Inc. Excisional biopsy devices and methods
US7004173B2 (en) 2000-12-05 2006-02-28 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space

Patent Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398798B1 (en) *
US3831585A (en) * 1972-07-19 1974-08-27 T Brondy Retrograde renal biopsy device
US4926858A (en) * 1984-05-30 1990-05-22 Devices For Vascular Intervention, Inc. Atherectomy device for severe occlusions
US4669469A (en) * 1986-02-28 1987-06-02 Devices For Vascular Intervention Single lumen atherectomy catheter device
US4771774A (en) * 1986-02-28 1988-09-20 Devices For Vascular Intervention, Inc. Motor drive unit
US4817613A (en) * 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US5047040A (en) * 1987-11-05 1991-09-10 Devices For Vascular Intervention, Inc. Atherectomy device and method
US5053044A (en) * 1988-01-11 1991-10-01 Devices For Vascular Intervention, Inc. Catheter and method for making intravascular incisions
US5183432A (en) * 1988-03-19 1993-02-02 Nihonmatai Co., Ltd. Floating body of sophisticated shape produced from a single sheet of film with a single sealing
US5071425A (en) * 1988-09-12 1991-12-10 Devices For Vascular Intervention, Inc. Atherectomy catheter and method of forming the same
US6443966B1 (en) * 1988-12-14 2002-09-03 Intravascular Medical, Inc. Surgical instrument
US4986807A (en) * 1989-01-23 1991-01-22 Interventional Technologies, Inc. Atherectomy cutter with radially projecting blade
US4966604A (en) * 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
US5269793A (en) * 1989-07-20 1993-12-14 Devices For Vascular Intervention, Inc. Guide wire systems for intravascular catheters
US5282484A (en) * 1989-08-18 1994-02-01 Endovascular Instruments, Inc. Method for performing a partial atherectomy
US5403334A (en) * 1989-09-12 1995-04-04 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5226909A (en) * 1989-09-12 1993-07-13 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5569277A (en) * 1989-09-12 1996-10-29 Devices For Vascular Intervention, Inc. Atherectomy device having helical blade and blade guide
US5916210A (en) * 1990-01-26 1999-06-29 Intraluminal Therapeutics, Inc. Catheter for laser treatment of atherosclerotic plaque and other tissue abnormalities
US5084010A (en) * 1990-02-20 1992-01-28 Devices For Vascular Intervention, Inc. System and method for catheter construction
US5470415A (en) * 1990-02-28 1995-11-28 Devices For Vascular Intervention, Inc. Balloon connection and inflation lumen for atherectomy catheter
US5222966A (en) * 1990-02-28 1993-06-29 Devices For Vascular Intervention, Inc. Balloon connection and inflation lumen for atherectomy catheter
US5092873A (en) * 1990-02-28 1992-03-03 Devices For Vascular Intervention, Inc. Balloon configuration for atherectomy catheter
US5154724A (en) * 1990-05-14 1992-10-13 Andrews Winston A Atherectomy catheter
US5181920A (en) * 1990-06-08 1993-01-26 Devices For Vascular Intervention, Inc. Atherectomy device with angioplasty balloon and method
US5217474A (en) * 1991-07-15 1993-06-08 Zacca Nadim M Expandable tip atherectomy method and apparatus
US5224949A (en) * 1992-01-13 1993-07-06 Interventional Technologies, Inc. Camming device
US5318032A (en) * 1992-02-05 1994-06-07 Devices For Vascular Intervention Guiding catheter having soft tip
US5643298A (en) * 1992-11-09 1997-07-01 Nordgren; Gregory N. Intra-artery obstruction clearing apparatus and methods
US5372602A (en) * 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
US5485042A (en) * 1992-11-30 1996-01-16 Devices For Vascular Intervention, Inc. Motor drive unit with torque control circuit
US5429136A (en) * 1993-04-21 1995-07-04 Devices For Vascular Intervention, Inc. Imaging atherectomy apparatus
US5948184A (en) * 1993-07-07 1999-09-07 Devices For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5514115A (en) * 1993-07-07 1996-05-07 Device For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5776114A (en) * 1993-07-07 1998-07-07 Devices For Vascular Intervention, Inc. Flexible housing for intracorporeal use
US5669920A (en) * 1993-07-09 1997-09-23 Devices For Vascular Intervention, Inc. Atherectomy catheter
US5527325A (en) * 1993-07-09 1996-06-18 Device For Vascular Intervention, Inc. Atherectomy catheter and method
US5419774A (en) * 1993-07-13 1995-05-30 Scimed Life Systems, Inc. Thrombus extraction device
US5823971A (en) * 1993-10-29 1998-10-20 Boston Scientific Corporation Multiple biopsy sampling coring device
US5507760A (en) * 1993-11-09 1996-04-16 Devices For Vascular Intervention, Inc. Cutter device
US5816923A (en) * 1993-12-09 1998-10-06 Devices For Vascular Intervention, Inc. Flexible composite drive shaft for transmitting torque
US5624457A (en) * 1994-04-07 1997-04-29 Devices For Vascular Intervention Directional atherectomy device with flexible housing
US5507795A (en) * 1994-04-29 1996-04-16 Devices For Vascular Intervention, Inc. Catheter with perfusion system
US5491524A (en) * 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5549601A (en) * 1994-10-11 1996-08-27 Devices For Vascular Intervention, Inc. Delivery of intracorporeal probes
US5643296A (en) * 1994-12-16 1997-07-01 Devices For Vasclar Intervention Intravascular catheter with guiding structure
US5836957A (en) * 1994-12-22 1998-11-17 Devices For Vascular Intervention, Inc. Large volume atherectomy device
US5632754A (en) * 1994-12-23 1997-05-27 Devices For Vascular Intervention Universal catheter with interchangeable work element
US5868767A (en) * 1994-12-23 1999-02-09 Devices For Vascular Intervention Universal catheter with interchangeable work element
US6027450A (en) * 1994-12-30 2000-02-22 Devices For Vascular Intervention Treating a totally or near totally occluded lumen
US5700687A (en) * 1995-01-30 1997-12-23 Bedminster Bioconversion Corporation Odor control system
US6283983B1 (en) * 1995-10-13 2001-09-04 Transvascular, Inc. Percutaneous in-situ coronary bypass method and apparatus
US6375615B1 (en) * 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US6159225A (en) * 1995-10-13 2000-12-12 Transvascular, Inc. Device for interstitial transvascular intervention and revascularization
US6190353B1 (en) * 1995-10-13 2001-02-20 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6068638A (en) * 1995-10-13 2000-05-30 Transvascular, Inc. Device, system and method for interstitial transvascular intervention
US5868685A (en) * 1995-11-14 1999-02-09 Devices For Vascular Intervention Articulated guidewire
US6355005B1 (en) * 1995-11-14 2002-03-12 Devices For Vascular Intervention, Inc. Articulated guidewire
US6120515A (en) * 1996-02-06 2000-09-19 Devices For Vascular Intervention, Inc. Composite atherectomy cutter
US6283951B1 (en) * 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6302875B1 (en) * 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US5959281A (en) * 1997-02-07 1999-09-28 Lulirama International, Inc. Interactive card reading system
US6010449A (en) * 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US5968064A (en) * 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
US6217549B1 (en) * 1997-02-28 2001-04-17 Lumend, Inc. Methods and apparatus for treating vascular occlusions
US5741270A (en) * 1997-02-28 1998-04-21 Lumend, Inc. Manual actuator for a catheter system for treating a vascular occlusion
US6120516A (en) * 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US5911734A (en) * 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US5954745A (en) * 1997-05-16 1999-09-21 Gertler; Jonathan Catheter-filter set having a compliant seal
US6048349A (en) * 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6063093A (en) * 1997-07-09 2000-05-16 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6013072A (en) * 1997-07-09 2000-01-11 Intraluminal Therapeutics, Inc. Systems and methods for steering a catheter through body tissue
US6193676B1 (en) * 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US5951482A (en) * 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6258052B1 (en) * 1997-11-13 2001-07-10 Lumend, Inc. Guidewire and catheter with rotating and reciprocating symmetrical or asymmetrical distal tip
US6330884B1 (en) * 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
US6221049B1 (en) * 1998-01-13 2001-04-24 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US6235000B1 (en) * 1998-01-13 2001-05-22 Lumend, Inc. Apparatus for crossing total occlusion in blood vessels
US6081738A (en) * 1998-01-15 2000-06-27 Lumend, Inc. Method and apparatus for the guided bypass of coronary occlusions
US6157852A (en) * 1998-01-15 2000-12-05 Lumend, Inc. Catheter apparatus for treating arterial occlusions
US6241667B1 (en) * 1998-01-15 2001-06-05 Lumend, Inc. Catheter apparatus for guided transvascular treatment of arterial occlusions
US6266550B1 (en) * 1998-01-16 2001-07-24 Lumend, Inc. Catheter apparatus for treating arterial occlusions
US6398798B2 (en) * 1998-02-28 2002-06-04 Lumend, Inc. Catheter system for treating a vascular occlusion
US6106515A (en) * 1998-08-13 2000-08-22 Intraluminal Therapeutics, Inc. Expandable laser catheter
US6022362A (en) * 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
US6217527B1 (en) * 1998-09-30 2001-04-17 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US6228076B1 (en) * 1999-01-09 2001-05-08 Intraluminal Therapeutics, Inc. System and method for controlling tissue ablation
US6126649A (en) * 1999-06-10 2000-10-03 Transvascular, Inc. Steerable catheter with external guidewire as catheter tip deflector
US6447525B2 (en) * 1999-08-19 2002-09-10 Fox Hollow Technologies, Inc. Apparatus and methods for removing material from a body lumen
US20030018346A1 (en) * 1999-08-19 2003-01-23 Fox Hollows Technologies, Inc. Apparatus and methods for removing material from a body lumen
US6623496B2 (en) * 1999-08-19 2003-09-23 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US6638233B2 (en) * 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US6394976B1 (en) * 2000-01-31 2002-05-28 Intraluminal Therapeutics, Inc. Catheter for controlling the advancement of a guide wire
US20030125758A1 (en) * 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030120295A1 (en) * 2000-12-20 2003-06-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125757A1 (en) * 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6428552B1 (en) * 2001-01-22 2002-08-06 Lumend, Inc. Method and apparatus for crossing intravascular occlusions

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9615850B2 (en) 1999-08-19 2017-04-11 Covidien Lp Atherectomy catheter with aligned imager
US8911459B2 (en) 1999-08-19 2014-12-16 Covidien Lp Debulking catheters and methods
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
US8784333B2 (en) 1999-08-19 2014-07-22 Covidien Lp Apparatus and methods for material capture and removal
US8998937B2 (en) 1999-08-19 2015-04-07 Covidien Lp Methods and devices for cutting tissue
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US9532799B2 (en) 1999-08-19 2017-01-03 Covidien Lp Method and devices for cutting tissue
US20060239982A1 (en) * 2000-12-20 2006-10-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US9241733B2 (en) * 2000-12-20 2016-01-26 Covidien Lp Debulking catheter
US8226674B2 (en) 2000-12-20 2012-07-24 Tyco Healthcare Group Lp Debulking catheters and methods
US8052704B2 (en) 2000-12-20 2011-11-08 Foxhollow Technologies, Inc. High capacity debulking catheter with distal driven cutting wheel
US7927784B2 (en) 2000-12-20 2011-04-19 Ev3 Vascular lumen debulking catheters and methods
US20050177068A1 (en) * 2000-12-20 2005-08-11 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20060235366A1 (en) * 2000-12-20 2006-10-19 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US20050154407A1 (en) * 2000-12-20 2005-07-14 Fox Hollow Technologies, Inc. Method of evaluating drug efficacy for treating atherosclerosis
US20040167554A1 (en) * 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for reentering a true lumen from a subintimal space
US7771444B2 (en) 2000-12-20 2010-08-10 Fox Hollow Technologies, Inc. Methods and devices for removing material from a body lumen
US20070078469A1 (en) * 2000-12-20 2007-04-05 Fox Hollow Technologies, Inc Testing a patient population having a cardiovascular condition for drug efficacy
US20130289590A1 (en) * 2000-12-20 2013-10-31 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US20040167553A1 (en) * 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for cutting tissue
US20020077642A1 (en) * 2000-12-20 2002-06-20 Fox Hollow Technologies, Inc. Debulking catheter
US20100121360A9 (en) * 2000-12-20 2010-05-13 Fox Hollow Technologies, Inc Testing a patient population having a cardiovascular condition for drug efficacy
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
US7699790B2 (en) 2000-12-20 2010-04-20 Ev3, Inc. Debulking catheters and methods
US8469979B2 (en) 2000-12-20 2013-06-25 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US8961546B2 (en) 2003-04-22 2015-02-24 Covidien Lp Methods and devices for cutting tissue at a vascular location
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US7625346B2 (en) 2003-05-30 2009-12-01 Boston Scientific Scimed, Inc. Transbronchial needle aspiration device
US7758514B2 (en) 2003-05-30 2010-07-20 Boston Scientific Scimed, Inc. Transbronchial needle aspiration device
US20060095059A1 (en) * 2004-10-15 2006-05-04 Baxano, Inc. Devices and methods for tissue modification
US8613745B2 (en) 2004-10-15 2013-12-24 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US8617163B2 (en) 2004-10-15 2013-12-31 Baxano Surgical, Inc. Methods, systems and devices for carpal tunnel release
US20080275458A1 (en) * 2004-10-15 2008-11-06 Bleich Jeffery L Guidewire exchange systems to treat spinal stenosis
US8579902B2 (en) 2004-10-15 2013-11-12 Baxano Signal, Inc. Devices and methods for tissue modification
US8647346B2 (en) 2004-10-15 2014-02-11 Baxano Surgical, Inc. Devices and methods for tissue modification
US8568416B2 (en) 2004-10-15 2013-10-29 Baxano Surgical, Inc. Access and tissue modification systems and methods
US9456829B2 (en) 2004-10-15 2016-10-04 Amendia, Inc. Powered tissue modification devices and methods
US9101386B2 (en) 2004-10-15 2015-08-11 Amendia, Inc. Devices and methods for treating tissue
US20090125036A1 (en) * 2004-10-15 2009-05-14 Bleich Jeffery L Devices and methods for selective surgical removal of tissue
US8430881B2 (en) 2004-10-15 2013-04-30 Baxano, Inc. Mechanical tissue modification devices and methods
US9463041B2 (en) 2004-10-15 2016-10-11 Amendia, Inc. Devices and methods for tissue access
US8652138B2 (en) 2004-10-15 2014-02-18 Baxano Surgical, Inc. Flexible tissue rasp
US8801626B2 (en) 2004-10-15 2014-08-12 Baxano Surgical, Inc. Flexible neural localization devices and methods
US9320618B2 (en) 2004-10-15 2016-04-26 Amendia, Inc. Access and tissue modification systems and methods
US9247952B2 (en) 2004-10-15 2016-02-02 Amendia, Inc. Devices and methods for tissue access
US20070213733A1 (en) * 2004-10-15 2007-09-13 Bleich Jeffery L Mechanical tissue modification devices and methods
US20070213735A1 (en) * 2004-10-15 2007-09-13 Vahid Saadat Powered tissue modification devices and methods
US7738968B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7738969B2 (en) 2004-10-15 2010-06-15 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US7740631B2 (en) 2004-10-15 2010-06-22 Baxano, Inc. Devices and methods for tissue modification
US20070123888A1 (en) * 2004-10-15 2007-05-31 Baxano, Inc. Flexible tissue rasp
US20110160731A1 (en) * 2004-10-15 2011-06-30 Bleich Jeffery L Devices and methods for tissue access
US20060135882A1 (en) * 2004-10-15 2006-06-22 Baxano, Inc. Devices and methods for selective surgical removal of tissue
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US20060122458A1 (en) * 2004-10-15 2006-06-08 Baxano, Inc. Devices and methods for tissue access
US20060100651A1 (en) * 2004-10-15 2006-05-11 Baxano, Inc. Devices and methods for tissue access
US20100331883A1 (en) * 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8221397B2 (en) 2004-10-15 2012-07-17 Baxano, Inc. Devices and methods for tissue modification
US20060089640A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue modification
US8192435B2 (en) * 2004-10-15 2012-06-05 Baxano, Inc. Devices and methods for tissue modification
US20060089609A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue modification
US8048080B2 (en) 2004-10-15 2011-11-01 Baxano, Inc. Flexible tissue rasp
US7918849B2 (en) 2004-10-15 2011-04-05 Baxano, Inc. Devices and methods for tissue access
US20060089633A1 (en) * 2004-10-15 2006-04-27 Baxano, Inc. Devices and methods for tissue access
US20110098708A9 (en) * 2004-10-15 2011-04-28 Vahid Saadat Powered tissue modification devices and methods
US7938830B2 (en) 2004-10-15 2011-05-10 Baxano, Inc. Powered tissue modification devices and methods
US20110224709A1 (en) * 2004-10-15 2011-09-15 Bleich Jeffery L Methods, systems and devices for carpal tunnel release
US20110130758A9 (en) * 2004-10-15 2011-06-02 Baxano, Inc. Flexible tissue rasp
US20110224710A1 (en) * 2004-10-15 2011-09-15 Bleich Jeffery L Methods, systems and devices for carpal tunnel release
US7963915B2 (en) 2004-10-15 2011-06-21 Baxano, Inc. Devices and methods for tissue access
US9345491B2 (en) 2004-10-15 2016-05-24 Amendia, Inc. Flexible tissue rasp
US7520886B2 (en) * 2005-01-27 2009-04-21 Wilson-Cook Medical Inc. Endoscopic cutting device
JP4751401B2 (en) * 2005-01-27 2011-08-17 ウィルソン−クック・メディカル・インコーポレーテッドWilson−Cook Medical Incorporated Endoscopic cutting instrument
US20060184187A1 (en) * 2005-01-27 2006-08-17 Wilson-Cook Medical Inc. Endoscopic cutting device
US20060236019A1 (en) * 2005-04-19 2006-10-19 Fox Hollow Technologies, Inc. Libraries and data structures of materials removed by debulking catheters
US7794413B2 (en) 2005-04-19 2010-09-14 Ev3, Inc. Libraries and data structures of materials removed by debulking catheters
US20060258951A1 (en) * 2005-05-16 2006-11-16 Baxano, Inc. Spinal Access and Neural Localization
US20100010334A1 (en) * 2005-05-16 2010-01-14 Bleich Jeffery L Spinal access and neural localization
US8419653B2 (en) 2005-05-16 2013-04-16 Baxano, Inc. Spinal access and neural localization
US8092456B2 (en) 2005-10-15 2012-01-10 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US8062298B2 (en) 2005-10-15 2011-11-22 Baxano, Inc. Flexible tissue removal devices and methods
US9125682B2 (en) 2005-10-15 2015-09-08 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US20070225703A1 (en) * 2005-10-15 2007-09-27 Baxano, Inc. Flexible Tissue Removal Devices and Methods
US7887538B2 (en) 2005-10-15 2011-02-15 Baxano, Inc. Methods and apparatus for tissue modification
US9492151B2 (en) 2005-10-15 2016-11-15 Amendia, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US20090177241A1 (en) * 2005-10-15 2009-07-09 Bleich Jeffery L Multiple pathways for spinal nerve root decompression from a single access point
US8366712B2 (en) 2005-10-15 2013-02-05 Baxano, Inc. Multiple pathways for spinal nerve root decompression from a single access point
US7989207B2 (en) * 2006-02-17 2011-08-02 Tyco Healthcare Group Lp Testing lumenectomy samples for markers of non-vascular diseases
US20070196926A1 (en) * 2006-02-17 2007-08-23 Fox Hollow Technologies, Inc. Testing lumenectomy samples for Markers of non-vascular diseases
US20070213734A1 (en) * 2006-03-13 2007-09-13 Bleich Jeffery L Tissue modification barrier devices and methods
US9351741B2 (en) 2006-05-04 2016-05-31 Amendia, Inc. Flexible tissue removal devices and methods
US20070260252A1 (en) * 2006-05-04 2007-11-08 Baxano, Inc. Tissue Removal with at Least Partially Flexible Devices
US8585704B2 (en) 2006-05-04 2013-11-19 Baxano Surgical, Inc. Flexible tissue removal devices and methods
US8062300B2 (en) 2006-05-04 2011-11-22 Baxano, Inc. Tissue removal with at least partially flexible devices
US20080033465A1 (en) * 2006-08-01 2008-02-07 Baxano, Inc. Multi-Wire Tissue Cutter
WO2008016886A3 (en) * 2006-08-01 2008-12-04 Baxano Inc Tissue cutting devices and methods
WO2008016886A2 (en) * 2006-08-01 2008-02-07 Baxano, Inc. Tissue cutting devices and methods
US20080051812A1 (en) * 2006-08-01 2008-02-28 Baxano, Inc. Multi-Wire Tissue Cutter
US20080086114A1 (en) * 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20110046613A1 (en) * 2006-08-29 2011-02-24 Gregory Schmitz Tissue access guidewire system and method
US20080086034A1 (en) * 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US7857813B2 (en) 2006-08-29 2010-12-28 Baxano, Inc. Tissue access guidewire system and method
US8551097B2 (en) 2006-08-29 2013-10-08 Baxano Surgical, Inc. Tissue access guidewire system and method
US8845637B2 (en) 2006-08-29 2014-09-30 Baxano Surgical, Inc. Tissue access guidewire system and method
US20080161809A1 (en) * 2006-10-03 2008-07-03 Baxano, Inc. Articulating Tissue Cutting Device
US20080103504A1 (en) * 2006-10-30 2008-05-01 Schmitz Gregory P Percutaneous spinal stenosis treatment
US20080147084A1 (en) * 2006-12-07 2008-06-19 Baxano, Inc. Tissue removal devices and methods
US20080312660A1 (en) * 2007-06-15 2008-12-18 Baxano, Inc. Devices and methods for measuring the space around a nerve root
US20090018507A1 (en) * 2007-07-09 2009-01-15 Baxano, Inc. Spinal access system and method
US7959577B2 (en) 2007-09-06 2011-06-14 Baxano, Inc. Method, system, and apparatus for neural localization
US8303516B2 (en) 2007-09-06 2012-11-06 Baxano, Inc. Method, system and apparatus for neural localization
US20090069709A1 (en) * 2007-09-06 2009-03-12 Baxano, Inc. Method, system, and apparatus for neural localization
US20100321426A1 (en) * 2007-11-22 2010-12-23 Kazuki Suzuki Image forming apparatus
US8192436B2 (en) 2007-12-07 2012-06-05 Baxano, Inc. Tissue modification devices
US8663228B2 (en) 2007-12-07 2014-03-04 Baxano Surgical, Inc. Tissue modification devices
US20090149865A1 (en) * 2007-12-07 2009-06-11 Schmitz Gregory P Tissue modification devices
US9463029B2 (en) 2007-12-07 2016-10-11 Amendia, Inc. Tissue modification devices
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US9445834B2 (en) 2008-02-25 2016-09-20 Covidien Lp Methods and devices for cutting tissue
US8409206B2 (en) 2008-07-01 2013-04-02 Baxano, Inc. Tissue modification devices and methods
US9314253B2 (en) 2008-07-01 2016-04-19 Amendia, Inc. Tissue modification devices and methods
US8398641B2 (en) 2008-07-01 2013-03-19 Baxano, Inc. Tissue modification devices and methods
US8845639B2 (en) 2008-07-14 2014-09-30 Baxano Surgical, Inc. Tissue modification devices
US20110112539A1 (en) * 2008-07-14 2011-05-12 Wallace Michael P Tissue modification devices
US9192406B2 (en) 2008-10-13 2015-11-24 Covidien Lp Method for manipulating catheter shaft
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
WO2010105261A3 (en) * 2009-03-13 2011-02-10 Baxano, Inc. Flexible neural localization devices and methods
WO2010105261A2 (en) * 2009-03-13 2010-09-16 Baxano, Inc. Flexible neural localization devices and methods
US8932232B2 (en) 2009-03-31 2015-01-13 Arch Medical Devices Ltd. Tissue sampling device and method
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
US9220530B2 (en) 2009-05-14 2015-12-29 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US8574249B2 (en) 2009-05-14 2013-11-05 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US8394102B2 (en) 2009-06-25 2013-03-12 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20100331900A1 (en) * 2009-06-25 2010-12-30 Baxano, Inc. Surgical tools for treatment of spinal stenosis
US20110004107A1 (en) * 2009-07-01 2011-01-06 Rosenthal Michael H Atherectomy catheter with laterally-displaceable tip
US9498600B2 (en) * 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US9687267B2 (en) 2009-12-02 2017-06-27 Covidien Lp Device for cutting tissue
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US9855072B2 (en) 2010-06-14 2018-01-02 Covidien Lp Material removal device and method of use
US9717520B2 (en) 2010-10-28 2017-08-01 Covidien Lp Material removal device and method of use
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US9326789B2 (en) 2010-11-11 2016-05-03 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
EP2617361A4 (en) * 2011-06-23 2013-07-24 Olympus Medical Systems Corp Biopsy treatment tool
EP2617361A1 (en) * 2011-06-23 2013-07-24 Olympus Medical Systems Corp. Biopsy treatment tool
US20130006144A1 (en) * 2011-06-28 2013-01-03 Michael Clancy Biopsy needle with flexible length
WO2013003087A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies Llc Flexible biopsy needle
WO2013003088A1 (en) * 2011-06-28 2013-01-03 Cook Medical Technologies, LLC Biopsy needle with flexible length
EP2735273A4 (en) * 2011-07-21 2014-10-22 Panasonic Healthcare Co Ltd Instrument for collecting body tissue and method for collecting body tissue using same
EP2735273A1 (en) * 2011-07-21 2014-05-28 Panasonic Healthcare Co., Ltd. Instrument for collecting body tissue and method for collecting body tissue using same
US9770259B2 (en) 2011-09-01 2017-09-26 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US9757099B2 (en) 2012-02-27 2017-09-12 Cook Medical Technologies Llc Biopsy needle with enhanced flexibility
US9655596B2 (en) 2012-05-10 2017-05-23 Arch Medical Devices Ltd. Biopsy needle with a laterally expandable distal portion
EP2883503A4 (en) * 2012-08-13 2016-04-13 Olympus Corp Treatment device for endoscope
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US20140222049A1 (en) * 2012-12-12 2014-08-07 Covidien Lp Tissue-Removing Catheter with Ball and Socket Deployment Mechanism
US9636139B2 (en) * 2012-12-12 2017-05-02 Covidien Lp Tissue-removing catheter with ball and socket deployment mechanism

Also Published As

Publication number Publication date Type
US20060235334A1 (en) 2006-10-19 application
US6638233B2 (en) 2003-10-28 grant
US20020038097A1 (en) 2002-03-28 application
US20090187203A1 (en) 2009-07-23 application
US8784333B2 (en) 2014-07-22 grant

Similar Documents

Publication Publication Date Title
US5474565A (en) Endoscopic suturing needle
US6221006B1 (en) Entrapping apparatus and method for use
US6146395A (en) Ablation burr
US6383145B1 (en) Incisional breast biopsy device
US5370651A (en) Distal atherectomy catheter
US6083237A (en) Biopsy instrument with tissue penetrating spiral
US6942673B2 (en) Releasable basket
US6371963B1 (en) Device for controlled endoscopic penetration of injection needle
US5968064A (en) Catheter system for treating a vascular occlusion
US6010449A (en) Intravascular catheter system for treating a vascular occlusion
US5192291A (en) Rotationally expandable atherectomy cutter assembly
US5624457A (en) Directional atherectomy device with flexible housing
US20080228171A1 (en) Endovascular devices and methods for exploiting intramural space
US6488693B2 (en) Vascular incisor and method
US6053877A (en) Movable sample tube multiple biopsy sampling device
US5019088A (en) Ovoid atherectomy cutter
US5643296A (en) Intravascular catheter with guiding structure
US6162214A (en) Corning device for myocardial revascularization
US6582400B1 (en) Variable tip catheter
US5556405A (en) Universal dilator with reciprocal incisor
US20040133124A1 (en) Flexible biopsy needle
US4994067A (en) Distal atherectomy catheter
US5156610A (en) Catheter atherotome
US20060287673A1 (en) Interventional medical closure device
US8337516B2 (en) Atherectomy devices and methods