US20020022175A1 - Cell stack design with bi-directionally wound slotted electrodes - Google Patents

Cell stack design with bi-directionally wound slotted electrodes Download PDF

Info

Publication number
US20020022175A1
US20020022175A1 US09/975,349 US97534901A US2002022175A1 US 20020022175 A1 US20020022175 A1 US 20020022175A1 US 97534901 A US97534901 A US 97534901A US 2002022175 A1 US2002022175 A1 US 2002022175A1
Authority
US
United States
Prior art keywords
electrode
strip
electrode strip
active material
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/975,349
Other versions
US6423442B1 (en
Inventor
Paul Hallifax
Dominick Frustaci
William Paulot
Kenneth Moceri
Christine Frysz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Greatbatch Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/975,349 priority Critical patent/US6423442B1/en
Assigned to WILSON GREATBATCH LTD. reassignment WILSON GREATBATCH LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRYSZ, CHRISTINE A., FRUSTACI, DOMINICK J., MOCERI, KENNETH P., PAULOT, WILLIAM M., HALLIFAX, PAUL T.
Publication of US20020022175A1 publication Critical patent/US20020022175A1/en
Application granted granted Critical
Publication of US6423442B1 publication Critical patent/US6423442B1/en
Assigned to GREATBATCH, LTD. (NEW YORK CORPORATION) reassignment GREATBATCH, LTD. (NEW YORK CORPORATION) CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: WILSON GREATBATCH,TD.
Assigned to MANUFACTURERS AND TRADERS TRUST COMPANY reassignment MANUFACTURERS AND TRADERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREATBATCH LTD.
Assigned to MANUFACTURERS AND TRADERS TRUST COMPANY reassignment MANUFACTURERS AND TRADERS TRUST COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELECTROCHEM SOLUTIONS, INC., GREATBATCH LTD., GREATBATCH, INC., GREATBATCH-GLOBE TOOL, INC., MICRO POWER ELECTRONICS, INC., NEURONEXUS TECHNOLOGIES, INC., PRECIMED INC.
Anticipated expiration legal-status Critical
Assigned to GREATBATCH LTD. reassignment GREATBATCH LTD. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT)
Assigned to NEURONEXUS TECHNOLOGIES, INC., PRECIMED INC., ELECTROCHEM SOLUTIONS, INC., GREATBATCH LTD., GREATBATCH, INC., MICRO POWER ELECTRONICS, INC., GREATBATCH-GLOBE TOOL, INC. reassignment NEURONEXUS TECHNOLOGIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT)
Assigned to GREATBATCH, INC., GREATBATCH LTD., GREATBATCH-GLOBE TOOL, INC., ELECTROCHEM SOLUTIONS, INC., NEURONEXUS TECHNOLOGIES, INC., MICRO POWER ELECTRONICS, INC., PRECIMED INC. reassignment GREATBATCH, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT)
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49112Electric battery cell making including laminating of indefinite length material

Definitions

  • the present invention generally relates to the art of electrochemical energy, and more particularly, to an electrode assembly, electrochemical cells in which the electrode assembly is used, and a method for making the electrode assembly.
  • Batteries or electrochemical cells are typically volumetrically constrained systems that cannot exceed the available volume of the battery case.
  • the size and resulting volume of the battery case are dictated by the space requirements available for the particular application.
  • the components that make up a battery namely, the cathode electrode, the anode electrode, the separator, the current collectors, and the electrolyte all have to fit into the limited space defined by the battery case. Therefore, the arrangement of the components impacts on the amount of active electrode material that can be fit into the case and the ease of manufacturing the unit.
  • Some typical electrode assemblies include the “Z” folded electrode assembly that is disclosed in U.S. Pat. No. 3,663,721 to Blondel et al.
  • the “Z” folded electrode a unitary and continuous lithium anode is folded back and forth in a zigzag fashion. The length of the individual folds determines the width of the electrode assembly.
  • Individual cathode plates are positioned between pairs of the pleated anode electrode and electrically connected to one another.
  • the design has some drawbacks, including the requirement that separate cathode plates be inserted between each pair of adjacent layers of anode electrode and the requirement that electrical connections be made between all of the inserted cathode plates. This arrangement increases the time and costs associated with manufacturing.
  • Another typical electrode assembly configuration is the “jelly roll” design in which the anode electrode, the cathode electrode, and the separator are overlaid with respect to each other and coiled up.
  • Such an electrode configuration is desirable because the continuous anode and cathode electrodes require a minimal number of mechanical connections to their respective terminal leads, and the jelly roll assembly is generally recognized as preferred for high discharge and current pulse applications.
  • a cylindrically shaped electrode assembly is not desired because of other factors, such as the shape of the battery case.
  • U.S. Pat. No. 4,761,352 to Bakos et al. discloses yet another electrode assembly design comprising an accordion folded electrode assembly with unitary members for both the anode and cathode strips.
  • the cathode strip is approximately half the length of the anode strip, and the anode strip is folded over the cathode strip to “sandwich” the cathode between two layers of the anode.
  • the resulting form is then manually folded in an alternating series of “V” folds (best shown in FIG. 4 of the patent).
  • that design provides some undesirable gaps which reduce the volumetric density of the electrochemically active materials.
  • the present invention fills the above-described need by providing an electrochemical cell comprising an electrode assembly in which the electrodes are wound together in a bi-directional fashion, yielding a high energy density cell with low internal impedance.
  • the anode and cathode electrodes are arranged in the cell in such a fashion that provides efficient utilization of the active components.
  • the resultant wound assembly is configured such that it can be conveniently packaged in either a cylindrical or prismatic housing.
  • the electrodes are provided as two anode assemblies and one cathode assembly configured such that each anode is positioned on either side of the cathode assembly, and extending in opposing directions. At the center most portion of the assembly there is an overlap of anodes. This assembly is then wound about the overlapping region in a bi-directional fashion. The resultant assembly produces a wound cell stack configuration with a uniform contact of anode and cathode, such that the cell is balanced electrochemically and provides for optimum volume utilization within the battery enclosure.
  • Each anode has one or more tabs that can be welded to the case.
  • two cathode assemblies can be paired with one anode assembly, with a resultant cathode tab welded to the case.
  • the opposite electrode may contain one or more tabs which are then electrically connected to the battery feedthrough pin.
  • An alternate embodiment of this invention provides for an anode electrode and a cathode electrode, wherein the electrodes are slotted. The electrodes are inserted, one into the other, essentially forming an “X”. Upon collapsing the electrodes, a variation of the above-described invention is obtained wherein the anode is approximately equally disposed on opposite sides of the cathode, radiating outwardly from the midportion thereof. This assembly is then wound from the center, resulting in a preferred cell stack assembly. This configuration provides the additional advantage of having the anode registered to the cathode, and mitigates the need for aligning two distinct anodes to the cathode.
  • FIG. 1 is a side elevational view of the cathode strip and separator of the present invention
  • FIG. 2 is a side elevational view of the anode strip and separator of the present invention.
  • FIG. 3 is a bottom plan view of the cell stack assembly of the present invention.
  • FIG. 4 is a side elevational view of the cell stack assembly of the present invention.
  • FIG. 5 is a partial plan view of the wound electrode assembly of the present invention.
  • FIG. 6 is a perspective view of an alternate embodiment of the electrode strips of the present invention.
  • FIG. 7 is a partial plan view of the wound electrode assembly of the alternative embodiment.
  • FIG. 8 is an exploded view of an electrochemical cell of the present invention.
  • the present invention is designed for high energy devices such as batteries and capacitors and is adaptable in a wide variety of electrode configurations and shapes for applications as capacitors and batteries, including aqueous and nonaqueous primary and secondary batteries.
  • a first electrode 10 is preferably a continuous structure comprising an active material 11 contacted to a current collector 12 (shown in dashed lines).
  • the active material for a cathode electrode is preferably comprised of a metal, a metal oxide, a metal sulfide, a mixed metal oxide, a carbonaceous material, or the like and is combined with the current collector of a conductive material such as a conductive screen.
  • the preferred active material is an alkali metal selected from Group 1 A of the Periodic Table of Elements and contacted to an anode current collector.
  • a preferred anode electrode comprises lithium contacted to a nickel current collector.
  • the electrode strip 10 is a cathode electrode having a set of cathode tabs 15 provided for making an electrical connection to a positive terminal.
  • a second electrode 16 includes a pair of second electrode strips of a second electrode active material 17 contacted to a current collector 18 (shown in dashed lines) disposed on opposite sides of the first electrode 10 .
  • the second electrode strips 16 overlap along a midportion 19 of the first electrode 10 (FIG. 3).
  • the second electrode strips 16 are part of the anode electrode.
  • the anode electrode strips 16 have anode tabs 22 that provide for electrical connection to a negative terminal.
  • a separator material 13 is disposed behind each electrode to prevent contact between overlayed layers of electrodes.
  • the separator 13 is disposed in front of each electrode strip.
  • a separator 13 in the form of an envelope encapsulates each of the first and second electrodes 10 , 16 . In that respect, whether the separator 13 is disposed between immediately adjacent electrode strips or, the separator serves as an envelope encapsulating at least one of the electrodes, the separator must prevent direct physical contact between the electrodes 10 , 16 .
  • an electrode assembly according to the present invention comprises a cathode electrode 10 and two anode electrodes 16 A, 16 B, which are each preferably elongate, flat, and rectangular.
  • the anode electrodes 16 A, 16 B are disposed on opposite sides of the cathode 10 and aligned such that they overlap across the midportion 19 thereof.
  • the anode electrodes 16 A, 16 B are a little more than half the length of the cathode electrode 10 , and extend a short distance across the midportion 19 in order to overlap.
  • two cathode electrode assemblies are paired with one anode electrode in a similar overlapping configuration.
  • the electrode strips 10 and 16 are then folded about the overlapping region in a bi-directional fashion to provide the electrode assembly 25 .
  • those portions of anode strips 16 A and 16 B on the outside of the assembly 25 have the outside of the current collector devoid of anode active material. This is because there is no opposing cathode active material, and such anode active material would provide very little, if any, additional volumetric efficiency.
  • the ends of the anode strips 16 A and 16 B extend somewhat beyond the end of the cathode electrode 10 to fully utilize the discharge efficiency of the cathode electrode.
  • the term bi-directional refers to the fact that one side is folded downwardly and the opposite side is folded upwardly, either in succession or simultaneously, to generate the electrode assembly 25 shown in FIG. 5.
  • the electrode assembly 25 produces a wound cell stack configuration with uniform contact of anode and cathode electrodes such that the cell is balanced electrochemically and provides for optimum volume utilization within the battery enclose.
  • a cathode electrode strip 50 comprising a cathode active material 52 contacted to a cathode current collector 54 has a downwardly facing slot 53 disposed in a midportion 56 thereof.
  • the slot 53 extends from a lower edge 58 A toward an upper edge 58 B, but spaced therefrom.
  • the lower and upper edges 58 A and 58 B define the length of the strip 50 .
  • An anode electrode strip 60 comprises an anode active material 62 contacted to an anode current collector 64 and includes an upwardly facing slot 63 disposed in a midportion 66 .
  • the slot 63 extends from an upper edge 68 A toward a lower edge 68 B, but spaced therefrom.
  • the upper and lower edges 68 A and 68 B define the length of the strip 60 .
  • the anode strip 60 is provided with a separation 13 to prevent direct physical contact with the cathode strip 50 .
  • the separator 13 envelopes the anode strip 60 , and more preferably, each of the cathode strip 50 and the anode step 60 are housed in their own separate envelopes.
  • the strips 50 and 60 are moved together with the slots 53 , 63 registering with each other to form a collapsible X-shaped assembly.
  • the opposed ends 68 C and 68 D of the anode strip 60 extends outwardly a small distance past the opposed ends 58 C and 58 D of the cathode strip 50 and in a configuration such that each electrode 50 , 60 radiates outwardly from the midportion 56 , 66 of the other electrode.
  • the electrode strips 50 , 60 are then folded in a bi-directional fashion from the center or midportions 56 , 66 to produce the wound electrode assembly 75 shown in FIG. 7.
  • the bi-directional folding is similar to that described with respect to the electrode assembly 25 shown in FIGS. 1 to 5 .
  • the completed electrode assembly 75 shown in FIG. 7 is similar to the electrode assembly 25 in the respect that those portions of anode strip 60 on the outside of the assembly have the outside of the current collector devoid of anode active material. As previously explained, this is because there is no opposing cathode active material there, and such anode active material would provide very little, if any, additional volumetric efficiency. Also, the ends of the anode strip 60 extend somewhat beyond the respective ends of the cathode strip 50 to fully utilize the discharge efficiency of the cathode electrode. This alternate embodiment provides the additional advantage of having the anode registered to the cathode and mitigates the need for aligning two distinct anodes to the cathode.
  • the present electrode assemblies 25 , 75 provide several advantages to cell design, including high energy density with low internal impedance. Additionally, the anode and cathode electrodes 10 , 16 for assembly 25 and the electrodes 50 , 60 for assembly 75 are arranged in the cell in a way that provides efficient utilization of the active components. The resultant wound cell stacks are configured such that they can be conveniently packaged in either a cylindrical or prismatic shaped casing. These casing shapes are well known to those of ordinary skill in the art. The electrode assemblies 25 , 75 also provide a cell stack construction in which the anode and cathode are uniformly utilized during cell discharge. Finally, the assemblies 25 , 75 provide a cell having a relatively high inter electrode surface area which results in a high current rate capability. This is advantageous for use in applications such as powering an implantable defibrillator.
  • a preferred primary electrode chemistry for the electrode assemblies 25 , 75 has the first electrode 10 , 50 of a mixed metal oxide such as silver vanadium oxide (SVO), copper silver vanadium oxide (CSVO) or a fluorinated carbonaceous material (CF x ), and the second electrode 16 , 60 comprising lithium.
  • a Li/SVO or Li/CSVO electrochemical couple is activated with an electrolyte of 0.25M to 1.5M LiAsF 6 or LiPF 6 in a 50:50, by volume, mixture of propylene carbonate and 1,2-dimethoxyethane.
  • the preferred electrolyte is 1.0M to 1.4M LiBF 4 in ⁇ -butyrolactone.
  • a preferred secondary chemistry has a carbonaceous negative electrode and a lithiated counter electrode.
  • a preferred lithiated material is lithium cobalt oxide. This couple is activated with an electrolyte of 1M LiPF 6 or 1M LiAsF 6 in ethylene carbonate/1,2-dimethoxyethane (3:7).
  • the anode tabs 22 can be welded to the case 80 (negative). Alternately, two cathode assemblies can be paired with one anode assembly with the resultant cathode tabs (not shown) welded to the case 80 (positive).
  • the opposite electrode may contain one or more tabs (cathode tabs 15 ) that are electrically connected to the battery feedthrough or terminal pin 82 .
  • the terminal pin 82 is electrically insulated from the lid 84 of the casing 80 by a glass-to-metal seal 86 . Similar electrical connections for the cathode strip 50 and the anode strip 60 are made for the electrode assembly 75 shown in FIGS. 6 and 7.

Abstract

An electrochemical cell comprising an electrode assembly in which opposite polarity electrodes are wound together in a bi-directional fashion yielding a high energy density cell stack with low internal impedance is described. Each electrodes is constructed having a slot provided into its width at about a midportion thereof. The slots are brought into registry with each other to form a collapsible X-shaped electrode assembly, which is then bi-directionally folded to provide a wound electrode assembly.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a continuation-in-part application of Ser. No. 09/262,245, filed Mar. 4, 1999.[0001]
  • FIELD OF INVENTION
  • The present invention generally relates to the art of electrochemical energy, and more particularly, to an electrode assembly, electrochemical cells in which the electrode assembly is used, and a method for making the electrode assembly. [0002]
  • BACKGROUND OF THE INVENTION
  • Batteries or electrochemical cells are typically volumetrically constrained systems that cannot exceed the available volume of the battery case. The size and resulting volume of the battery case are dictated by the space requirements available for the particular application. The components that make up a battery, namely, the cathode electrode, the anode electrode, the separator, the current collectors, and the electrolyte all have to fit into the limited space defined by the battery case. Therefore, the arrangement of the components impacts on the amount of active electrode material that can be fit into the case and the ease of manufacturing the unit. [0003]
  • Some typical electrode assemblies include the “Z” folded electrode assembly that is disclosed in U.S. Pat. No. 3,663,721 to Blondel et al. In the “Z” folded electrode, a unitary and continuous lithium anode is folded back and forth in a zigzag fashion. The length of the individual folds determines the width of the electrode assembly. Individual cathode plates are positioned between pairs of the pleated anode electrode and electrically connected to one another. The design has some drawbacks, including the requirement that separate cathode plates be inserted between each pair of adjacent layers of anode electrode and the requirement that electrical connections be made between all of the inserted cathode plates. This arrangement increases the time and costs associated with manufacturing. [0004]
  • Another typical electrode assembly configuration is the “jelly roll” design in which the anode electrode, the cathode electrode, and the separator are overlaid with respect to each other and coiled up. Such an electrode configuration is desirable because the continuous anode and cathode electrodes require a minimal number of mechanical connections to their respective terminal leads, and the jelly roll assembly is generally recognized as preferred for high discharge and current pulse applications. However, in some applications, a cylindrically shaped electrode assembly is not desired because of other factors, such as the shape of the battery case. [0005]
  • U.S. Pat. No. 4,761,352 to Bakos et al. discloses yet another electrode assembly design comprising an accordion folded electrode assembly with unitary members for both the anode and cathode strips. The cathode strip is approximately half the length of the anode strip, and the anode strip is folded over the cathode strip to “sandwich” the cathode between two layers of the anode. The resulting form is then manually folded in an alternating series of “V” folds (best shown in FIG. 4 of the patent). However, that design provides some undesirable gaps which reduce the volumetric density of the electrochemically active materials. [0006]
  • What is needed is an improved multi-layer, folded electrode assembly design for high energy devices that includes many of the desirable features of the jelly roll design, such as unitary anode and cathode electrodes. [0007]
  • SUMMARY OF THE INVENTION
  • The present invention fills the above-described need by providing an electrochemical cell comprising an electrode assembly in which the electrodes are wound together in a bi-directional fashion, yielding a high energy density cell with low internal impedance. The anode and cathode electrodes are arranged in the cell in such a fashion that provides efficient utilization of the active components. The resultant wound assembly is configured such that it can be conveniently packaged in either a cylindrical or prismatic housing. [0008]
  • In one embodiment of the electrochemical cell, the electrodes are provided as two anode assemblies and one cathode assembly configured such that each anode is positioned on either side of the cathode assembly, and extending in opposing directions. At the center most portion of the assembly there is an overlap of anodes. This assembly is then wound about the overlapping region in a bi-directional fashion. The resultant assembly produces a wound cell stack configuration with a uniform contact of anode and cathode, such that the cell is balanced electrochemically and provides for optimum volume utilization within the battery enclosure. Each anode has one or more tabs that can be welded to the case. Alternately, two cathode assemblies can be paired with one anode assembly, with a resultant cathode tab welded to the case. In both of the above configurations, the opposite electrode may contain one or more tabs which are then electrically connected to the battery feedthrough pin. [0009]
  • An alternate embodiment of this invention provides for an anode electrode and a cathode electrode, wherein the electrodes are slotted. The electrodes are inserted, one into the other, essentially forming an “X”. Upon collapsing the electrodes, a variation of the above-described invention is obtained wherein the anode is approximately equally disposed on opposite sides of the cathode, radiating outwardly from the midportion thereof. This assembly is then wound from the center, resulting in a preferred cell stack assembly. This configuration provides the additional advantage of having the anode registered to the cathode, and mitigates the need for aligning two distinct anodes to the cathode. [0010]
  • Other features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the accompanying drawings and the appended claims.[0011]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side elevational view of the cathode strip and separator of the present invention; [0012]
  • FIG. 2 is a side elevational view of the anode strip and separator of the present invention; [0013]
  • FIG. 3 is a bottom plan view of the cell stack assembly of the present invention; [0014]
  • FIG. 4 is a side elevational view of the cell stack assembly of the present invention; [0015]
  • FIG. 5 is a partial plan view of the wound electrode assembly of the present invention; [0016]
  • FIG. 6 is a perspective view of an alternate embodiment of the electrode strips of the present invention; [0017]
  • FIG. 7 is a partial plan view of the wound electrode assembly of the alternative embodiment; and [0018]
  • FIG. 8 is an exploded view of an electrochemical cell of the present invention.[0019]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is designed for high energy devices such as batteries and capacitors and is adaptable in a wide variety of electrode configurations and shapes for applications as capacitors and batteries, including aqueous and nonaqueous primary and secondary batteries. [0020]
  • Referring to FIG. 1, a [0021] first electrode 10 is preferably a continuous structure comprising an active material 11 contacted to a current collector 12 (shown in dashed lines). The active material for a cathode electrode is preferably comprised of a metal, a metal oxide, a metal sulfide, a mixed metal oxide, a carbonaceous material, or the like and is combined with the current collector of a conductive material such as a conductive screen. For an anode electrode, the preferred active material is an alkali metal selected from Group 1A of the Periodic Table of Elements and contacted to an anode current collector. A preferred anode electrode comprises lithium contacted to a nickel current collector. In a preferred form of the present invention, the electrode strip 10 is a cathode electrode having a set of cathode tabs 15 provided for making an electrical connection to a positive terminal.
  • Turning to FIGS. 2 and 3, a [0022] second electrode 16 includes a pair of second electrode strips of a second electrode active material 17 contacted to a current collector 18 (shown in dashed lines) disposed on opposite sides of the first electrode 10. The second electrode strips 16 overlap along a midportion 19 of the first electrode 10 (FIG. 3). Preferably, the second electrode strips 16 are part of the anode electrode. The anode electrode strips 16 have anode tabs 22 that provide for electrical connection to a negative terminal.
  • As shown in FIGS. 1, 2 and [0023] 4, a separator material 13 is disposed behind each electrode to prevent contact between overlayed layers of electrodes. Alternatively, the separator 13 is disposed in front of each electrode strip. In a preferred embodiment, which is not shown in the drawings, a separator 13 in the form of an envelope encapsulates each of the first and second electrodes 10, 16. In that respect, whether the separator 13 is disposed between immediately adjacent electrode strips or, the separator serves as an envelope encapsulating at least one of the electrodes, the separator must prevent direct physical contact between the electrodes 10, 16.
  • Turning to FIG. 4, an electrode assembly according to the present invention comprises a [0024] cathode electrode 10 and two anode electrodes 16A, 16B, which are each preferably elongate, flat, and rectangular. The anode electrodes 16A, 16B are disposed on opposite sides of the cathode 10 and aligned such that they overlap across the midportion 19 thereof. The anode electrodes 16A, 16B are a little more than half the length of the cathode electrode 10, and extend a short distance across the midportion 19 in order to overlap. Alternately, two cathode electrode assemblies are paired with one anode electrode in a similar overlapping configuration.
  • From the alignment shown in FIGS. 3 and 4, the electrode strips [0025] 10 and 16 are then folded about the overlapping region in a bi-directional fashion to provide the electrode assembly 25. As shown in FIG. 5, those portions of anode strips 16A and 16B on the outside of the assembly 25 have the outside of the current collector devoid of anode active material. This is because there is no opposing cathode active material, and such anode active material would provide very little, if any, additional volumetric efficiency. Also, the ends of the anode strips 16A and 16B extend somewhat beyond the end of the cathode electrode 10 to fully utilize the discharge efficiency of the cathode electrode.
  • The term bi-directional refers to the fact that one side is folded downwardly and the opposite side is folded upwardly, either in succession or simultaneously, to generate the [0026] electrode assembly 25 shown in FIG. 5. The electrode assembly 25 produces a wound cell stack configuration with uniform contact of anode and cathode electrodes such that the cell is balanced electrochemically and provides for optimum volume utilization within the battery enclose.
  • An alternate embodiment of the present invention is shown in FIGS. 6 and 7. In this embodiment, a [0027] cathode electrode strip 50 comprising a cathode active material 52 contacted to a cathode current collector 54 has a downwardly facing slot 53 disposed in a midportion 56 thereof. The slot 53 extends from a lower edge 58A toward an upper edge 58B, but spaced therefrom. The lower and upper edges 58A and 58B define the length of the strip 50. An anode electrode strip 60 comprises an anode active material 62 contacted to an anode current collector 64 and includes an upwardly facing slot 63 disposed in a midportion 66. The slot 63 extends from an upper edge 68A toward a lower edge 68B, but spaced therefrom. The upper and lower edges 68A and 68B define the length of the strip 60.
  • As shown in FIG. 6, the [0028] anode strip 60 is provided with a separation 13 to prevent direct physical contact with the cathode strip 50. Preferably, the separator 13 envelopes the anode strip 60, and more preferably, each of the cathode strip 50 and the anode step 60 are housed in their own separate envelopes.
  • To construct the electrode assembly, the [0029] strips 50 and 60 are moved together with the slots 53, 63 registering with each other to form a collapsible X-shaped assembly. In this embodiment, the opposed ends 68C and 68D of the anode strip 60 extends outwardly a small distance past the opposed ends 58C and 58D of the cathode strip 50 and in a configuration such that each electrode 50, 60 radiates outwardly from the midportion 56, 66 of the other electrode. The electrode strips 50, 60 are then folded in a bi-directional fashion from the center or midportions 56, 66 to produce the wound electrode assembly 75 shown in FIG. 7. The bi-directional folding is similar to that described with respect to the electrode assembly 25 shown in FIGS. 1 to 5.
  • The completed [0030] electrode assembly 75 shown in FIG. 7 is similar to the electrode assembly 25 in the respect that those portions of anode strip 60 on the outside of the assembly have the outside of the current collector devoid of anode active material. As previously explained, this is because there is no opposing cathode active material there, and such anode active material would provide very little, if any, additional volumetric efficiency. Also, the ends of the anode strip 60 extend somewhat beyond the respective ends of the cathode strip 50 to fully utilize the discharge efficiency of the cathode electrode. This alternate embodiment provides the additional advantage of having the anode registered to the cathode and mitigates the need for aligning two distinct anodes to the cathode.
  • The [0031] present electrode assemblies 25, 75 provide several advantages to cell design, including high energy density with low internal impedance. Additionally, the anode and cathode electrodes 10, 16 for assembly 25 and the electrodes 50, 60 for assembly 75 are arranged in the cell in a way that provides efficient utilization of the active components. The resultant wound cell stacks are configured such that they can be conveniently packaged in either a cylindrical or prismatic shaped casing. These casing shapes are well known to those of ordinary skill in the art. The electrode assemblies 25, 75 also provide a cell stack construction in which the anode and cathode are uniformly utilized during cell discharge. Finally, the assemblies 25, 75 provide a cell having a relatively high inter electrode surface area which results in a high current rate capability. This is advantageous for use in applications such as powering an implantable defibrillator.
  • A preferred primary electrode chemistry for the [0032] electrode assemblies 25, 75 according to the present invention has the first electrode 10, 50 of a mixed metal oxide such as silver vanadium oxide (SVO), copper silver vanadium oxide (CSVO) or a fluorinated carbonaceous material (CFx), and the second electrode 16, 60 comprising lithium. A Li/SVO or Li/CSVO electrochemical couple is activated with an electrolyte of 0.25M to 1.5M LiAsF6 or LiPF6 in a 50:50, by volume, mixture of propylene carbonate and 1,2-dimethoxyethane. For a Li/CFx cell, the preferred electrolyte is 1.0M to 1.4M LiBF4 in γ-butyrolactone. A preferred secondary chemistry has a carbonaceous negative electrode and a lithiated counter electrode. A preferred lithiated material is lithium cobalt oxide. This couple is activated with an electrolyte of 1M LiPF6 or 1M LiAsF6 in ethylene carbonate/1,2-dimethoxyethane (3:7).
  • Referring to FIGS. 1, 2 and [0033] 8, the anode tabs 22 can be welded to the case 80 (negative). Alternately, two cathode assemblies can be paired with one anode assembly with the resultant cathode tabs (not shown) welded to the case 80 (positive). In both of the above configurations, the opposite electrode may contain one or more tabs (cathode tabs 15) that are electrically connected to the battery feedthrough or terminal pin 82. The terminal pin 82 is electrically insulated from the lid 84 of the casing 80 by a glass-to-metal seal 86. Similar electrical connections for the cathode strip 50 and the anode strip 60 are made for the electrode assembly 75 shown in FIGS. 6 and 7.
  • While the invention has been described in connection with certain preferred embodiments, it is not intended to limit the scope of the invention to the particular forms set forth, but, on the contrary, it is intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention, as defined by the appended claims. [0034]

Claims (18)

What is claimed is:
1. An electrode assembly, comprising:
(a) a first electrode strip having a midportion with a first slot defined therein;
(b) a second electrode strip having a midportion with a second slot defined therein, wherein the first electrode strip and the second electrode strip are registerable with each other through the first and the second slots to form a collapsible X-shaped electrode assembly; and
(c) a layer of a separator material disposed between the first electrode strip and the second electrode strip, wherein the registered first and second electrode strips are bi-directionally foldable to form a wound cell stack.
2. The electrode assembly of claim 1 wherein the first electrode strip has at least one tab for connection to an electrode terminal.
3. The electrode assembly of claim 1 wherein the second electrode strip has at least one tab for connection to a battery case.
4. The electrode assembly of claim 1 of either a primary or a secondary chemistry.
5. The electrode assembly of claim 1 wherein a first electrode active material of the first electrode strip is selected from the group consisting of SVO, CSVO and CFX, and a second electrode active material of the second electrode strip comprises lithium.
6. The electrode assembly of claim 1 wherein a first electrode active material of the first electrode strip comprises lithium cobalt oxide and a second electrode active material of the second electrode strip comprises a carbonaceous material.
7. An electrochemical cell, which comprises:
a) a cathode electrode strip comprising a cathode active material contacted to a cathode current collector and having a first midportion with a first slot defined therein;
b) an anode electrode strip comprising an anode active material contacted to an anode current collector and having a second midportion with a second slot defined therein, wherein the cathode electrode and the anode electrode are registerable with each other through the first and second slots to form a collapsible X-shaped electrode assembly; and
(c) a layer of a separator material disposed between the first electrode strip and the second electrode strip, wherein the registered first and second electrode strips are bi-directionally foldable to form a wound cell stack.
8. The electrochemical cell of claim 7 wherein the first electrode strip has at least one tab connectable to an electrode terminal.
9. The electrochemical cell of claim 7 wherein the second electrode strip has at least one tab connectable to a battery case.
10. The electrochemical cell of claim 7 of either a primary or a secondary chemistry.
11. The electrochemical cell of claim 7 wherein the first electrode active material is selected from the group consisting of SVO, CSVO and CFx, and the second electrode active material comprise lithium.
12. The electrochemical cell of claim 7 wherein the first electrode active material comprises lithium cobalt oxide, and the second electrode active material comprises a carbonaceous material.
13. An electrode assembly, comprising:
(a) a first electrode strip having spaced apart first and second edges extending to and meeting with opposed first and second ends to provide the first electrode strip having a first length defined by the first and second edges which is substantially greater than a first width defined by the first and second ends, wherein the first electrode strip has a first slot extending from one of the first and second edges toward the other edge and partially through the first width;
(b) a second electrode strip having spaced apart third and fourth edges extending to and meeting with opposed third and fourth ends to provide the second electrode strip having a second length defined by the third and fourth edges which is substantially greater than a second width defined by the third and fourth ends, wherein the second electrode strip has a second slot extending from one of the third and fourth edges toward the other edge and partially through the second width, wherein the first electrode strip and the second electrode strip are registerable with each other through the first and the second slots to form a collapsible electrode assembly; and
(c) a layer of a separator material disposed between the first electrode strip and the second electrode strip, wherein the registered first and second electrode strips are bi-directionally foldable to form a wound cell stack.
14. The electrode assembly of claim 13 of either a primary or a secondary chemistry.
15. A method for providing an electrode assembly, comprising the steps of:
a) providing a first electrode strip having a midportion with a first slot defined therein;
b) providing a second electrode strip having a midportion with a second slot defined therein;
c) registering the first slot with the second slot, thereby forming the first electrode and the second electrode into a collapsible X-shaped electrode assembly with a layer of a separator material disposed between the first and the second electrode strips; and
d) bi-directionally folding the X-shaped electrode assembly to form a wound electrode assembly.
16. The method of claim 15 including providing the wound electrode assembly of either a primary or a secondary chemistry.
17. The method of claim 15 including providing the first electrode strip of a first electrode active material and selecting the first electrode active material from the group consisting of SVO, CSVO and CFx, and providing the second electrode strip of a second electrode active material comprising lithium.
18. The method of claim 15 including providing the first electrode strip of a first electrode active material comprising lithium cobalt oxide, and providing the second electrode strip of a second electrode active material comprising a carbonaceous material.
US09/975,349 1999-03-04 2001-10-11 Cell stack design with bi-directionally wound slotted electrodes and method for making Expired - Lifetime US6423442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/975,349 US6423442B1 (en) 1999-03-04 2001-10-11 Cell stack design with bi-directionally wound slotted electrodes and method for making

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26224599A 1999-03-04 1999-03-04
US09/975,349 US6423442B1 (en) 1999-03-04 2001-10-11 Cell stack design with bi-directionally wound slotted electrodes and method for making

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US26224599A Continuation-In-Part 1999-03-04 1999-03-04

Publications (2)

Publication Number Publication Date
US20020022175A1 true US20020022175A1 (en) 2002-02-21
US6423442B1 US6423442B1 (en) 2002-07-23

Family

ID=22996774

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/975,268 Expired - Lifetime US6383680B1 (en) 1999-03-04 2001-10-11 Wound cell stack design for enhanced battery performance
US09/975,349 Expired - Lifetime US6423442B1 (en) 1999-03-04 2001-10-11 Cell stack design with bi-directionally wound slotted electrodes and method for making
US09/974,950 Expired - Lifetime US6425928B2 (en) 1999-03-04 2001-10-11 Method for providing a bi-directionally wound cell stack for enhanced battery performance

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/975,268 Expired - Lifetime US6383680B1 (en) 1999-03-04 2001-10-11 Wound cell stack design for enhanced battery performance

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/974,950 Expired - Lifetime US6425928B2 (en) 1999-03-04 2001-10-11 Method for providing a bi-directionally wound cell stack for enhanced battery performance

Country Status (5)

Country Link
US (3) US6383680B1 (en)
EP (1) EP1033768B1 (en)
JP (1) JP2000268844A (en)
AT (1) ATE224586T1 (en)
DE (1) DE60000460T2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091893A1 (en) * 2001-10-18 2003-05-15 Quallion Llc Electrical battery assembly and method of manufacture
US6869724B2 (en) * 2000-08-08 2005-03-22 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and positive electrode for the same
US20050064292A1 (en) * 2003-08-18 2005-03-24 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
US20060166088A1 (en) * 2005-01-26 2006-07-27 Hokanson Karl E Electrode connector tabs
US20060240317A1 (en) * 2005-04-26 2006-10-26 Powergenix Systems, Inc. Nickel zinc battery design
US20090233159A1 (en) * 2005-04-26 2009-09-17 Powergenix Systems, Inc. Cylindrical nickel-zinc cell with negative can
CN102593407A (en) * 2006-07-24 2012-07-18 株式会社Lg化学 Electrode assembly having tab-lead joint portion of minimized resistance difference between electrodes and electrochemical cell containing the same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805719B2 (en) * 2002-04-15 2004-10-19 Medtronic, Inc. Balanced anode electrode
US7273674B1 (en) 2003-02-27 2007-09-25 Greatbatch Ltd. Primary electrochemical cell having scalloped electrodes
US7108942B1 (en) * 2003-03-27 2006-09-19 Wilson Greatbatch Technologies, Inc. Efficient electrode assembly design for cells with alkali metal anodes
KR100611940B1 (en) * 2003-11-21 2006-08-11 주식회사 엘지화학 Electrochemical cell having an improved safety
US7875379B2 (en) 2005-07-08 2011-01-25 Greatbatch Ltd. Electrochemical cell having a pocket separator design
US7855009B2 (en) * 2005-09-15 2010-12-21 Greatbatch Ltd. Sandwich cathode electrochemical cell with wound electrode assembly
JP4984553B2 (en) * 2006-01-30 2012-07-25 ソニー株式会社 Secondary battery negative electrode and secondary battery using the same
KR100848788B1 (en) * 2006-07-24 2008-07-30 주식회사 엘지화학 Electrode Assembly Having Electrode Tabs of the Same Size in Joint Portion thereof and Electrochemical Cell Containing the Same
US7718310B1 (en) 2006-10-24 2010-05-18 Greatbatch Ltd. Electrochemical cell having a galaxy wind design
US20080289171A1 (en) * 2007-05-22 2008-11-27 Jason Cheng Method for assembling a stacked plate electrochemical device
US20090068548A1 (en) * 2007-09-06 2009-03-12 Gillettte Company, The Lithium Ion Prismatic Cells
US11670816B2 (en) 2020-08-21 2023-06-06 Greatbatch Ltd. Glass-to-metal seal terminal pin for an electrochemical cell

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US317487A (en) 1885-05-12 Jules joas barrier
US1076485A (en) 1913-10-21 Alfred R Porter Storage battery.
US1088271A (en) 1912-11-13 1914-02-24 Treibacher Chemische Werke Gmbh Lighter.
US1088272A (en) 1913-10-18 1914-02-24 Stone J & Co Ltd Release mechanism for bulkhead-doors and the like.
US1269778A (en) 1916-05-22 1918-06-18 John P Mentzer Storage battery.
GB1088271A (en) 1963-04-04 1967-10-25 Burndept Ltd Electric cells
GB1088272A (en) 1963-04-04 1967-10-25 Burndept Ltd Electric cells
US4064725A (en) 1976-10-18 1977-12-27 The Gates Rubber Company Apparatus for making spirally wound electrochemical cells
US4099401A (en) 1977-06-27 1978-07-11 The Gates Rubber Company Method of producing spirally wound electrochemical cells
US4158300A (en) 1977-12-16 1979-06-19 The Gates Rubber Company Apparatus for producing a spirally wound electrochemical cell
US4212179A (en) 1978-10-12 1980-07-15 The Gates Rubber Company Driven mandrel and method
EP0136886A3 (en) * 1983-09-30 1986-08-20 Union Carbide Corporation Electrode assembly
US4637966A (en) 1983-10-21 1987-01-20 Gates Energy Products, Inc. Sealed lead-acid cell
US4761352A (en) * 1985-05-17 1988-08-02 Eastman Kodak Company Accordian folded electrode assembly
US4802275A (en) 1987-03-12 1989-02-07 Saft, S.A. Method of manufacturing an electrochemical cell having an alkaline electrolyte and spiral-wound electrodes
DE3902648A1 (en) 1989-01-30 1990-08-09 Varta Batterie GALVANIC ELEMENT
US5045086A (en) 1989-06-14 1991-09-03 Bolder Battery, Inc. Method for manufacture of electrochemical cell
US5091273A (en) 1990-06-11 1992-02-25 Optima Batteries, Inc. Method of applying a tail wrap to a wound electrochemical cell and cell produced by the method
US5116698A (en) * 1990-07-11 1992-05-26 Eveready Battery Company, Inc. Bifold separator
WO1992009114A1 (en) 1990-11-09 1992-05-29 Weiler Engineering, Inc. Method and apparatus for winding a core for an electrochemical cell and processing thereof
US5147737A (en) * 1991-05-07 1992-09-15 Wilson Greatbatch Ltd. Electrochemical cell with improved efficiency serpentine electrode
US5370711A (en) 1993-07-21 1994-12-06 Ev Energy Systems, Inc. Method for making an electrical energy storage device
KR100189808B1 (en) * 1996-06-10 1999-06-01 손욱 Wound electrode plate
JPH10125348A (en) * 1996-10-21 1998-05-15 Japan Storage Battery Co Ltd Battery
FR2761200B1 (en) * 1997-03-24 1999-04-16 Alsthom Cge Alcatel ELECTROCHEMICAL GENERATOR WITH SPIRAL COIL

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869724B2 (en) * 2000-08-08 2005-03-22 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery and positive electrode for the same
US20060246346A1 (en) * 2001-10-18 2006-11-02 Clay Kishiyama Electrical battery assembly and method of manufacture
US7070881B2 (en) 2001-10-18 2006-07-04 Quallion Llc Electrical battery assembly and method of manufacture
US20030091893A1 (en) * 2001-10-18 2003-05-15 Quallion Llc Electrical battery assembly and method of manufacture
US7410726B2 (en) 2001-10-18 2008-08-12 Quallion Llc Electrical battery assembly and method of manufacture
US20050064292A1 (en) * 2003-08-18 2005-03-24 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
US7833663B2 (en) * 2003-08-18 2010-11-16 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
US20110039139A1 (en) * 2003-08-18 2011-02-17 Powergenix Systems, Inc. Method of manufacturing nickel zinc batteries
US20060166088A1 (en) * 2005-01-26 2006-07-27 Hokanson Karl E Electrode connector tabs
US20060240317A1 (en) * 2005-04-26 2006-10-26 Powergenix Systems, Inc. Nickel zinc battery design
US20090233159A1 (en) * 2005-04-26 2009-09-17 Powergenix Systems, Inc. Cylindrical nickel-zinc cell with negative can
US8048558B2 (en) 2005-04-26 2011-11-01 Powergenix Systems, Inc. Cylindrical nickel-zinc cell with negative can
US8703330B2 (en) 2005-04-26 2014-04-22 Powergenix Systems, Inc. Nickel zinc battery design
CN102593407A (en) * 2006-07-24 2012-07-18 株式会社Lg化学 Electrode assembly having tab-lead joint portion of minimized resistance difference between electrodes and electrochemical cell containing the same

Also Published As

Publication number Publication date
US6425928B2 (en) 2002-07-30
ATE224586T1 (en) 2002-10-15
DE60000460D1 (en) 2002-10-24
US6423442B1 (en) 2002-07-23
US6383680B1 (en) 2002-05-07
US20020022174A1 (en) 2002-02-21
EP1033768B1 (en) 2002-09-18
DE60000460T2 (en) 2003-06-05
US20020018928A1 (en) 2002-02-14
EP1033768A1 (en) 2000-09-06
JP2000268844A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
US6423442B1 (en) Cell stack design with bi-directionally wound slotted electrodes and method for making
US5525441A (en) Folded electrode configuration for galvanic cells
US5667909A (en) Electrodes configured for high energy density galvanic cells
US5154989A (en) Energy storage device
US5439760A (en) High reliability electrochemical cell and electrode assembly therefor
US8067112B2 (en) Stacked lithium secondary battery and its fabrication utilizing a folded configuration
US7384705B2 (en) Electrode and battery, and methods of producing the same
JP4293501B2 (en) Electrochemical devices
US6037077A (en) Electrode assembly for high energy devices
KR100624953B1 (en) Lithium secondary battery
JP2002298825A (en) Method of producing electrochemical device and the electrochemical device
JP3531552B2 (en) Electrode structure for stacked batteries / capacitors
EP1278253B1 (en) Insulative component for an electrochemical cell
US7592097B2 (en) Electrochemical cell designs with anode plates and connections which facilitate heat dissipation
US6045943A (en) Electrode assembly for high energy density batteries
JP3331649B2 (en) Non-aqueous electrolyte secondary battery
US20100003587A1 (en) Folding secondary battery
WO2005093879A2 (en) ANODE DESIGN FOR A PRISMATICALLY WOUND LiMnO2 CELL
KR100555848B1 (en) Fabrication of stacked type lithium secondary battery which enables to attach electrode plates in one direction
JP2002313348A (en) Secondary battery
KR100514215B1 (en) Fabrication of stacked type lithium secondary battery with multiple row attachment
JPH10172607A (en) Sheet-like lithium secondary battery
KR20040092105A (en) Stacked type lithium secondary battery with separated two films of separator and its fabrication
JPH0945370A (en) Layer-built polymer electrolyte secondary battery
JPH08329971A (en) Secondary battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: WILSON GREATBATCH LTD., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HALLIFAX, PAUL T.;FRUSTACI, DOMINICK J.;PAULOT, WILLIAM M.;AND OTHERS;REEL/FRAME:012260/0756;SIGNING DATES FROM 20010829 TO 20011002

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: GREATBATCH, LTD. (NEW YORK CORPORATION), NEW YORK

Free format text: CHANGE OF NAME;ASSIGNOR:WILSON GREATBATCH,TD.;REEL/FRAME:019520/0743

Effective date: 20050524

AS Assignment

Owner name: MANUFACTURERS AND TRADERS TRUST COMPANY, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:GREATBATCH LTD.;REEL/FRAME:020571/0205

Effective date: 20070522

Owner name: MANUFACTURERS AND TRADERS TRUST COMPANY,NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:GREATBATCH LTD.;REEL/FRAME:020571/0205

Effective date: 20070522

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: MANUFACTURERS AND TRADERS TRUST COMPANY, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNORS:GREATBATCH, INC.;GREATBATCH LTD.;ELECTROCHEM SOLUTIONS, INC.;AND OTHERS;REEL/FRAME:036980/0482

Effective date: 20151027

AS Assignment

Owner name: MICRO POWER ELECTRONICS, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: PRECIMED INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: GREATBATCH-GLOBE TOOL, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: NEURONEXUS TECHNOLOGIES, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: ELECTROCHEM SOLUTIONS, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: GREATBATCH LTD., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: GREATBATCH, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:060938/0069

Effective date: 20210903

Owner name: GREATBATCH LTD., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:058574/0437

Effective date: 20210903

AS Assignment

Owner name: MICRO POWER ELECTRONICS, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903

Owner name: PRECIMED INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903

Owner name: GREATBATCH-GLOBE TOOL, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903

Owner name: NEURONEXUS TECHNOLOGIES, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903

Owner name: ELECTROCHEM SOLUTIONS, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903

Owner name: GREATBATCH LTD., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903

Owner name: GREATBATCH, INC., NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:MANUFACTURERS AND TRADERS TRUST COMPANY (AS ADMINISTRATIVE AGENT);REEL/FRAME:061659/0858

Effective date: 20210903