US20020008270A1 - Diffusion barrier layers and methods of forming same - Google Patents

Diffusion barrier layers and methods of forming same Download PDF

Info

Publication number
US20020008270A1
US20020008270A1 US09942200 US94220001A US2002008270A1 US 20020008270 A1 US20020008270 A1 US 20020008270A1 US 09942200 US09942200 US 09942200 US 94220001 A US94220001 A US 94220001A US 2002008270 A1 US2002008270 A1 US 2002008270A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
ruthenium
platinum
layer
alloy
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09942200
Inventor
Eugene Marsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising transition metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/108Dynamic random access memory structures
    • H01L27/10844Multistep manufacturing methods
    • H01L27/10847Multistep manufacturing methods for structures comprising one transistor one-capacitor memory cells
    • H01L27/1085Multistep manufacturing methods for structures comprising one transistor one-capacitor memory cells with at least one step of making the capacitor or connections thereto

Abstract

A method for use in the fabrication of integrated circuits includes providing a substrate assembly having a surface and forming a barrier layer over at least a portion of the surface. The barrier layer is formed of a platinum(x):ruthenium(1-x) alloy, where x is in the range of about 0.60 to about 0.995; preferably, x is in the range of about 0.90 to about 0.98. The barrier layer may be formed by chemical vapor deposition and the portion of the surface upon which the barrier layer is formed may be a silicon containing surface. The method is used in formation of capacitors, storage cells, contact liners, etc.

Description

    FIELD OF THE INVENTION
  • [0001]
    The present invention relates to semiconductor devices and the fabrication thereof. More particularly, the present invention pertains to diffusion barrier layers.
  • BACKGROUND OF THE INVENTION
  • [0002]
    In the fabrication of integrated circuits, various conductive layers are used. For example, during the formation of semiconductor devices, such as dynamic random access memories (DRAMs), static random access memories (SRAMs), ferroelectric (FE) memories, etc., conductive materials are used in the formation of storage cell capacitors and also may be used in interconnection structures, e.g., conductive layers in contact holes, vias, etc. In many applications, it is preferable that the material used provide effective diffusion barrier characteristics.
  • [0003]
    For example, effective diffusion barrier characteristics are required for conductive materials used in the formation of storage cell capacitors of memory devices, e.g., DRAMs. As memory devices become more dense, it is necessary to decrease the size of circuit components forming such devices. One way to retain storage capacity of storage cell capacitors of the memory devices and at the same time decrease the memory device size is to increase the dielectric constant of the dielectric layer of the storage cell capacitor. Therefore, high dielectric constant materials are used in such applications interposed between two electrodes. One or more layers of various conductive materials may be used as the electrode material. However, generally, one or more of the layers of the conductive materials used for the electrodes (particularly the lower electrode of a cell capacitor) must have certain barrier properties and oxidation resistance properties. Such properties are particularly required when high dielectric constant materials are used for the dielectric layer of the storage cell capacitor because of the processes used for forming such high dielectric materials, e.g., deposition of high dielectric materials usually occurs at high temperatures (generally greater than about 500° C.) in an oxygen-containing atmosphere.
  • [0004]
    Generally, various metals and metallic compounds, and typically notable metals such as platinum and conductive oxides such as ruthenium oxide, have been proposed as the electrodes or at least one of the layers of the electrodes for use with high dielectric constant materials. However, reliable electrical connections should generally be constructed which do not diminish the beneficial properties of the high dielectric constant materials. For platinum to function well as a bottom electrode, it must be an effective barrier to the difflusion of oxygen. This is required since any oxidation of underlying silicon upon which the capacitor is formed will result in a decreased series capacitance, thus degrading the storage capacity of the cell capacitor. Platinum, used alone as an electrode layer, is too permeable to oxygen to be used as a bottom electrode of a storage cell capacitor.
  • [0005]
    Because of the permeability of platinum to oxygen, typically platinum is used as a layer in an electrode stack which acts as the electrode as well as a diffusion barrier for integration of capacitors directly formed on silicon. For example, as described in the article “Novel High Temperature Multilayer Electrode-Barrier Structure for High Density Ferroelectric Memories” by H. D. Bhatt, et al., Appl. Phys. Letter, 71(5), Aug. 4, 1997, the electrode barrier structure includes layers of platinum:rhodium alloy, in addition to platinum:rhodium oxide layers, to form electrodes with difflusion barrier properties. Such alloy layers are formed using physical vapor deposition (PVD) processing, e.g., reactive RF sputtering processes.
  • [0006]
    Many storage cell capacitors are formed using high aspect ratio openings. For example, in U.S. Pat. No. 5,392,189 to Fazan, et al., entitled “Capacitor Compatible with High Dielectric Constant Materials Having Two Independent Insulative Layers and the Method for Forming Same,” issued Feb. 21, 1995, the storage cell capacitors include a lower electrode that is formed by deposition of a conductive material within a small high aspect ratio opening. Typically, sputtering does not provide a sufficiently conformal layer adequate for formation of an electrode within such a small high aspect ratio opening.
  • [0007]
    In addition to the formation of capacitor electrodes, the formation of barrier layers for use in other applications, e.g., interconnect applications, is also desirable. For example, diffusion barriers are commonly used to prevent undesirable reactions in contact openings.
  • SUMMARY OF THE INVENTION
  • [0008]
    To overcome the problems described above with respect to the use of platinum alone as an electrode material, and others which will be apparent from the detailed description below, a platinum:ruthenium diffusion barrier layer, structures incorporating such layers, and methods associated therewith are described herein.
  • [0009]
    A method for use in the fabrication of integrated circuits according to the present invention includes providing a substrate assembly having a surface and forming a barrier layer over at least a portion of the surface. The barrier layer is formed of a platinum(x):ruthenium(1-x) alloy, where x is in the range of about 0.60 to about 0.995.
  • [0010]
    In other embodiments of the method, preferably, x is in the range of about 0.90 to about 0.98, and more preferably, x is about 0.95. In another embodiment of the method, the barrier layer is formed by chemical vapor deposition. In yet another embodiment of the method, the portion of the surface upon which the barrier layer is formed is a silicon containing surface.
  • [0011]
    Another method for use in the formation of a capacitor according to the present invention includes forming a first electrode on a portion of a substrate assembly. A high dielectric material is formed over at least a portion of the first electrode and a second electrode is formed over the high dielectric material. At least one of the first and second electrodes comprises a layer of a platinum:ruthenium alloy.
  • [0012]
    In one embodiment of the method, at least one of the first electrode and second electrode includes the layer of platinum(x):ruthenium(1-x) alloy and one or more additional conductive layers.
  • [0013]
    Another method for use in forming a storage cell including a capacitor according to the present invention is described. The method includes providing a substrate assembly including at least one active device and forming a capacitor relative to the at least one active device. The capacitor comprises at least one electrode including a barrier layer of platinum(x):ruthenium(1-x) alloy.
  • [0014]
    A semiconductor device structure according to the present invention includes a substrate assembly including a surface and a barrier layer over at least a portion of the surface. The barrier layer is formed of a platinum(x):ruthenium(1-x) alloy, wherein x is in the range of about 0.60 to about 0.995.
  • [0015]
    A capacitor structure according to the present invention includes a first electrode, a dielectric material on at least a portion of the first electrode, and a second electrode on the dielectric material. At least one of the first and second electrodes comprises a barrier layer of platinum(x):ruthenium(1-x) alloy.
  • [0016]
    A memory cell structure according to the present invention includes a substrate assembly including at least one active device and a capacitor formed relative to the at least one active device. The capacitor comprises at least one electrode including a barrier layer formed of platinum(x):ruthenium(1-x) alloy.
  • [0017]
    Another integrated circuit structure includes a substrate assembly including at least one active device and an interconnect formed relative to the at least one active device. The interconnect including a barrier layer formed of platinum(x):ruthenium(1-x) alloy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    The present invention will be better understood from reading the following description of illustrative embodiments with reference to the attached drawings, wherein below:
  • [0019]
    [0019]FIG. 1 shows a device structure including a platinum:ruthenium alloy layer according to the present invention.
  • [0020]
    [0020]FIG. 2 shows a structure including a platinum:ruthenium alloy layer according to the present invention as part of a multiple conductive layer stack.
  • [0021]
    [0021]FIG. 3 is a structure including a high dielectric capacitor including an electrode having a platinum:ruthenium alloy layer according to the present invention.
  • [0022]
    [0022]FIG. 4 illustrates the use of a platinum:ruthenium alloy layer in a storage cell capacitor application.
  • [0023]
    [0023]FIG. 5 illustrates the use of a platinum:ruthenium alloy layer in an interconnect application.
  • [0024]
    FIGS. 6A-6C show the results of an example wherein a layer of platinum:ruthenium alloy material is deposited. FIG. 6A shows a depth profile of the deposited platinum:ruthenium alloy layer before an oxygen anneal, FIG. 6B shows a depth profile of the deposited platinum:ruthenium alloy layer after an oxygen anneal, and FIG. 6C shows an XPS montage display showing the Si signal during profile through the platinum:ruthenium layer after annealing in oxygen.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • [0025]
    The present invention shall be described generally with reference to FIG. 1. Thereafter, embodiments and illustrations of applications of the present invention shall be described with reference to FIGS. 2-5.
  • [0026]
    [0026]FIG. 1 illustrates a structure 10 including a substrate assembly 12 and a platinum:ruthenium alloy layer 14 according to the present invention formed on a surface 13 of the substrate assembly 12, e.g., a silicon containing surface. The structure 10 is illustrative of the use of a platinum:ruthenium alloy layer for any application requiring an effective barrier layer. In other words, the platinum:ruthenium alloy layer 14 may be used in the fabrication of semiconductor devices wherever it is necessary to prevent the diffusion of one material to an adjacent material. For example, the substrate assembly 12 may be representative of a contact structure having an opening extending to a silicon containing surface. In such a structure, diffusion barriers are commonly used in such openings to prevent undesirable reactions, such as the reaction of a contact material, e.g, aluminum, with the silicon containing surface.
  • [0027]
    Further, for example, the platinum:ruthenium alloy barrier layer 14 may be used in the formation of storage cell capacitors for use in semiconductor devices, e.g., memory devices. As further described herein, the platinum:ruthenium alloy barrier layer 14 may be used alone as an electrode in such storage cell capacitors or within a stack of layers forming an electrode of a capacitor. One skilled in the art will recognize that various semiconductor processes and structures for various devices, e.g., CMOS devices, memory devices, etc., would benefit from the barrier characteristics of the barrier layers of the present invention and in no manner is the present invention limited to the illustrative embodiments described herein.
  • [0028]
    As used in this application, “substrate assembly” refers to either a semiconductor substrate such as the base semiconductor layer, e.g., the lowest layer of a silicon material in a wafer, or a silicon layer deposited on another material, such as silicon on sapphire, or a semiconductor substrate having one or more layers or structures formed thereon or regions formed therein. When reference is made to a substrate assembly in the following description, various process steps may have been previously used to form or define regions, junctions, various structures or features, and openings such as vias, contact openings, high aspect ratio openings, etc.
  • [0029]
    The platinum:ruthenium alloy layer 14 according to the present invention, includes an atomic composition of platinum(x):ruthenium(1-x), where preferably, x is in the range of about 0.60 to about 0.995. In other words, the amount of ruthenium necessary in the platinum layer to accomplish barrier characteristics for semiconductor devices is minimal, i.e., in the range of about 40% to about 0.5%. More preferably, x is in the range of about 0.90 to about 0.98; and, yet more preferably, x is about 0.95, i.e., about 5% ruthenium in the layer is suitable to provide barrier characteristics. In other words, preferably, the atomic composition of the platinum:ruthenium alloy layer 14 is about 95% platinum and 5% ruthenium.
  • [0030]
    The thickness of the platinum:ruthenium alloy layer 14 is dependent upon the application for which it is used. Preferably, the thickness is in the range of about 10 Å to about 10,000 Å. More preferably, the thickness of the platinum:ruthenium alloy layer 14 is in the range of about 100 Å to about 500 Å. For example, this preferred thickness range of about 100 Å to about 500 Å is applicable to a single platinum:ruthenium alloy layer forming an electrode of a capacitor.
  • [0031]
    The platinum:ruthenium alloy layer 14 formed on the surface 13 of substrate assembly 12 may be formed by one or more various processes. For example, the formation of the platinum:ruthenium alloy layer 14 may be accomplished by the simultaneous evaporation of the metals from respective sources, i.e., co-evaporation; may be sputter deposited from a single deposition target of platinum:ruthenium alloy; may be deposited by the simultaneous co-sputtering from two targets (i.e., one target including platinum and the other target including ruthenium); or may be deposited by chemical vapor deposition (CVD), for example, atmospheric pressure chemical vapor deposition, low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or any other chemical vapor deposition technique. Preferably, the formation of the platinum:ruthenium alloy layer 14 is attained by CVD.
  • [0032]
    For example, the process may be carried out in a chemical vapor deposition reactor, such as a reaction chamber available under the trade designation of 7000 from Genus, Inc., (Sunnyvale, Calif.), or available under the trade designation of 5000 from Applied Materials, Inc., (Santa Clara, Calif.), or available under the trade designation of Prism from Novelus, Inc., (San Jose, Calif.). However, any reaction chamber suitable for performing CVD may be used.
  • [0033]
    Chemical vapor deposition (CVD) is defined as the formation of a non-volatile solid film on a substrate by the reaction of vapor phase reactants, i.e., reactant gases, that contain desired components. The reactant gases are introduced into the reaction chamber. The gases decompose and react at a heated wafer surface to form the desired layer. Chemical vapor deposition is just one process of providing thin layers on semiconductor wafers, such as films of elemental metals or compounds, e.g., platinum:ruthenium alloy layers. Chemical vapor deposition processes are favored in many respects because of the process capability to provide highly conformal layers even within deep contacts and other openings. Thus, as described further below with reference to FIGS. 4 and 5, CVD processing is preferably used to provide highly conformal layers within deep contacts and other openings such as for lower electrodes of storage cell capacitors. It will be readily apparent to one skilled in the art that although CVD is the preferred process, that the CVD process may be enhanced by various related techniques such as plasma assistance, photo assistance, laser assistance, as well as other techniques.
  • [0034]
    Preferably, according to the present invention, the co-deposition of platinum and ruthenium is conducted using a CVD process wherein a ruthenium precursor is delivered to a reaction chamber along with a platinum precursor. Preferably, the method is carried out in the presence of an oxidizing reactant gas, such as O2, NO, N2O, O3, hydrogen peroxide, organic peroxides such as T-butyl peroxide, or any other oxidizing agent.
  • [0035]
    Typically, a liquid precursor is contained in a bubbler reservoir through which a carrier gas, such as helium or any other inert, i.e., nonreactive gas (e.g., nitrogen, argon, neon, and xenon) is bubbled through the reservoir containing the precursor to deliver the precursor to the reaction chamber. For example, a flow of carrier gas having a flow in the range of about one sccm to about 100 sccm of a nonreactive gas, i.e., nonreactive with other gases of the process, is used in a bubbler having a pressure in the range of about 0.5 to about 50 torr and a temperature in the range of about 30° C. to about 70° C. to deliver a platinum precursor to the reaction chamber. Likewise, a carrier gas, i.e., a nonreactive gas, having a flow in a range of about one sccm to about 10 sccm is used in a bubbler containing a ruthenium precursor at the conditions of about 0.5 torr to about 100 torr and a temperature of about 20° C. to about 50° C. to deliver the ruthenium precursor to the reaction chamber. Preferably, the reactant oxidizing gas is provided to the reaction chamber at a flow of about 0 sccm to about 500 sccm.
  • [0036]
    One skilled in the art will recognize that the manner in which the gases are introduced into the reaction chamber may include one of various techniques. For example, in addition to provision by bubbler techniques, the introduction may be accomplished with the use of compounds which are gases at room temperature or by heating a volatile compound and delivering the volatile compound to the reaction chamber using a carrier gas. Further, solid precursors and various methods of vaporizing such solid precursors may also be used for introduction of reactant compounds into the chamber. As such, the present invention is not limited to any particular technique. Further, typically, the reactant gases are admitted at separate inlet ports. In addition to the reactant gases, a dilution gas (i.e., a gas that is non-reactive with the reactant gases) may also be introduced into the chamber. For example, argon gas may be introduced into the chamber at a varied flow rate.
  • [0037]
    Therefore, in accordance with the present invention, the reactant gas mixture in the reaction chamber includes at least the ruthenium precursor gas, the platinum precursor gas, and optionally the oxygen reactant gas and/or a dilution gas. Preferably, within the reaction chamber, the partial pressure of ruthenium precursor gas is kept sufficiently low such that the ruthenium deposited is within the ranges described for forming the preferred platinum:ruthenium composition of the alloy layer 14 described above. This partial pressure may be controlled by controlling the flow of the inert gas, e.g., helium, through the bubbler containing the ruthenium precursor or through control of other parameters of the process, such as temperature and pressure of the bubbler.
  • [0038]
    In the preferred CVD process, the reaction chamber pressure is preferably maintained at a deposition pressure of about 0.5 torr to about 5 torr. The deposition temperature at the wafer surface upon which the platinum:ruthenium alloy layer 14 is deposited is held at a temperature in a range of about 200° C. to about 400° C.
  • [0039]
    Any ruthenium-containing precursor and platinum-containing precursor may be used in accordance with the present invention. Preferably, the platinum containing precursors include MeCpPtMe3 (where Cp=cyclopentadienyl), platinum hexafluoroacetylacetonate, CpPtMe3, Pt(acetylacetonate)2, Pt(F3)4, Pt(CO)2Cl2, cis-PtMe2[MeNC]2, (COD)Pt(CH3)2, (COD)Pt(CH3)Cl, (C5H5)Pt(CH3)(CO), (acac)(Pt)(CH3)3, where COD=1,5 cycloctadiene and acac=acetylacetonate. Further, preferably, the ruthenium precursors are liquid ruthenium complexes of the following formula (Formula I): (diene)Ru(CO)3 wherein: “diene” refers to linear, branched, or cyclic dienes, bicyclic dienes, tricyclic dienes, fluorinated derivatives thereof, combinations thereof, and derivatives thereof additionally containing heteroatoms such as halide, Si, S, Se, P, As, or N. These precursor complexes and others are described in Assignees' copending patent application entitled “Precursor Chemistries for Chemical Vapor Deposition of Ruthenium and Ruthenium Oxide” having U.S. Ser. No. ______ (Micron Docket No. 97-0675) and in Assignees' copending patent application entitled “Methods for Preparing Ruthenium and Osmium Compounds” having U.S. Ser. No. ______ (Micron Docket No. 97-0861). Further, for example, additional precursors are generally discussed in U.S. Pat. No. 5,372,849 to McCormick et al. More preferably, the ruthenium precursors used according to the present invention include one of C6H8Ru(CO)3, bis(cyclopentadienyl) ruthenium (II), triruthenium dodecacarbonyl, and cyclopentadienyl dicarbonyl ruthenium (II) dimer.
  • [0040]
    Methods of forming the co-deposited platinum:ruthenium alloy layer 14 are described in co-pending patent application entitled “Method for Producing Low Carbon/Oxygen Conductive Layers” (Docket No. 150.00730101 (Micron Docket No. 97-0996). One skilled in the art will recognize that these methods and various other methods may be used to form the platinum:ruthenium alloy layer 14 according to the present invention.
  • [0041]
    [0041]FIG. 2 shows a structure 20 including substrate assembly 22 and a stack 24. The stack 24 includes conductive layers 31-34. One or more of the conductive layers 31-34 are platinum:ruthenium alloy layers according to the present invention.
  • [0042]
    The one or more conductive layers, in addition to including one or more platinum:ruthenium alloy layers, may include conductive layers formed of various conductive materials. For example, the conductive layers may include, but are clearly not limited to, layers formed from metals such as platinum, paladium, rhodium, ruthenium, osmium, and iridium; metal alloys such as platinum:rhodium, platinum:ruthenium, and platinum:iridium; metal oxides such as ruthenium oxide, rhodium oxide, and iridium oxide; metal alloy oxides such as platinum:rhodium oxide, platinum:ruthenium oxide, and platinum:iridium oxide; metal nitrides such as titanium nitride, tungsten nitride, and tantalum nitride; metal silicides such as titanium silicide, ruthenium silicide, rhodium silicide, and iridium silicide.
  • [0043]
    The stack 24 may be used for one or numerous applications, e.g., interconnection applications, capacitor applications, etc. For example, stack 24 may be used as an electrode for a storage cell capacitor with substrate assembly 22 including a silicon containing surface 23. As such, the barrier properties of the stack 24 must prevent silicon difflusion from silicon-containing surface 23. In accordance with the present invention, the layer 31 may be formed as a platinum:ruthenium alloy layer to prevent diffusion of silicon from silicon-containing surface 23 through stack 24 to adjacent layer or layers 29. Further, for example, in the case where layer 29 is a high dielectric material requiring diffusion barrier properties to prevent oxygen from diffusing through stack 24, layer 34 or one of the other layers may also be formed as a platinum:ruthenium alloy barrier layer according to the present invention. One skilled in the art will recognize that the platinum:ruthenium alloy layer according to the present invention may be used in a stack of layers for a variety of applications and the stack may include one or more platinum:ruthenium alloy layers. Further, the composition of such platinum:ruthenium layers used in the same stack may differ.
  • [0044]
    [0044]FIG. 3 shows a structure 50 including substrate assembly 52 and capacitor structure 54. Capacitor structure 54 includes a first electrode 56, a second electrode 60, and a high dielectric constant layer 58 interposed therebetween. For example, the dielectric layer may be any suitable material having a desirable dielectric constant, such as Ta2O5, BaxSr(1-X)TiO3[BST], BaTiO3, SrTiO3, PbTiO3, Pb(Zr,Ti)O3[PZT], (Pb,La)(Zr,Ti)O3[PLZT], (Pb,La)TiO3[PLT], KNO3, and LiNbO3. With use of the high dielectric constant layer 58, diffusion barrier properties of the electrodes is particularly important. For example, to function well in a bottom electrode of a capacitor structure, the electrode layer or electrode stack must act as an effective barrier to the diffusion of oxygen, particularly due to the processes used to form the high dielectric constant materials. Such diffusion barrier properties are particularly required when the substrate assembly 52 includes a silicon-containing surface 53 upon which the capacitor is formed, e.g., polysilicon, silicon substrate material, N-doped silicon, P-doped silicon, etc., since oxidation of the diffused silicon may result in degraded capacitance, e.g., capacitance for a memory device. The co-deposition of the platinum with the ruthenium enhances the barrier properties of the layer formed and thus provides a significant improvement over pure platinum for electrode applications.
  • [0045]
    One skilled in the art will recognize that either of the electrodes 56, 60 may be formed as a single layer of platinum:ruthenium alloy material. Further, such electrodes 56, 60 may be formed as a stack such as described with reference to FIG. 2 including one or more layers of a platinum:ruthenium alloy material and one or more additional conductive layers.
  • [0046]
    Two illustrations of using the platinum:ruthenium alloy layer or layers as described above are shown and described below with reference to FIGS. 4 and 5. The use of the platinum:ruthenium layer or layers according to the present invention is described with reference to FIG. 4 wherein a bottom electrode of a high dielectric capacitor of a storage cell includes one or more layers of the platinum:ruthenium alloy material as described herein. Further, the use of platinum:ruthenium alloy layer or layers according to the present invention is described with reference to FIG. 5 wherein a contact liner requiring difflusion barrier characteristics is described. For simplistic purposes, the illustrative descriptions are limited to the use of the platinum:ruthenium alloy material described in these two illustrative structures. There are other semiconductor processes and structures for various devices, e.g., CMOS devices, memory devices, logic devices, etc., that would benefit from the present invention and in no manner is the present invention limited to the illustrative embodiments described herein, e.g., contact liner and electrode structure. The platinum:ruthenium alloy barrier layer may be used for any application requiring diffusion barrier characteristics, particularly those for preventing diffusion of oxygen and silicon into adjacent layers.
  • [0047]
    As shown in FIG. 4, a device structure 100 is fabricated in accordance with conventional processing techniques through the formation of an opening 184 prior to depositing a bottom electrode structure on the surfaces 185, 186 defining the opening 184. A platinum:ruthenium alloy bottom electrode is then formed in opening 184. As such, and as further described in U.S. Pat. No. 5,392,189 to Fazan, et al., the device structure 100 includes field oxide regions 105 and active regions, i.e., those regions of the substrate 107 not covered by field oxide. A word line 121 and an active device, i.e., field effect transistor (FET) 122, are formed relative to the field oxide region 105. Suitable source/drain regions 125, 130 are created in silicon substrate 107. An insulative layer of oxide material 140 is formed over regions of FET 122 and word line 121. Polysilicon plug 165 is formed to provide electrical communication between substrate 107 and the storage cell capacitor to be formed thereover. Various layers are formed over the polysilicon plug 165, including layers 167 and 175. For example, such layers may be titanium nitride, tungsten nitride, or any other metal nitride which acts as a barrier, and may also include one or more platinum:ruthenium alloy barrier layers as described herein. Thereafter, another insulative layer 183 is formed and an opening 184 is defined therein.
  • [0048]
    The opening 184 is a small high aspect ratio opening. As described herein, small high aspect ratio openings have feature sizes or critical dimensions below about 1 micron (e.g., such as a diameter or width of an opening being less than about 1 micron) and aspect ratios greater than about 1. Such aspect ratios are applicable to contact holes, vias, trenches, and any other configured openings. For example, a trench having an opening of 1 micron and depth of 3 microns has an aspect ratio of 3. The present invention is particularly beneficial for forming diffusion barrier layers in small high aspect ratio features due to the use of CVD processes for forming conformal layers of the platinum:ruthenium alloy material over step structures.
  • [0049]
    As shown in FIG. 4, a platinum:ruthenium alloy barrier layer 187 is formed on the bottom surface 185 and the one or more side walls 186 defining opening 184. A layer of platinum:ruthenium alloy material is first co-deposited over the entire structure including the bottom surface 185 and sidewalls 186 and then formed into lower electrode 187. For example, the layer may be etched or planarized to remove the desired regions for forming the bottom electrode 187. Thereafter, dielectric layer 191 is then formed relative to the platinum:ruthenium alloy diffusion barrier layer 187. Further thereafter, the second electrode 192 is formed relative to the dielectric material 191. For example, such an electrode may be of any conductive material such as the platinum:ruthenium alloy barrier material as described herein, tungsten nitride, titanium nitride, tantalum nitride, ruthenium, rhodium, iridium, ruthenium oxide, iridium oxide, any combination thereof, or any other conductive material typically used as an electrode of a storage cell capacitor. With the use of the present invention, the bottom electrode formed of platinum:ruthenium alloy material is conformally formed of uniform thickness using CVD within opening 184 providing a desired resistivity and barrier properties.
  • [0050]
    It will be recognized by one skilled in the art that any capacitor formed relative to a surface, e.g., silicon containing surface, whereupon diffusion barrier properties are required and/or conformally formed conductive layers are required will benefit from the present invention. For example, container capacitors typically includes electrodes formed on surfaces requiring conformal formation of a bottom electrode. Such a container capacitor storage cell is described in U.S. Pat. No. 5,270,241 to Dennison, et al., entitled “Optimized Container Stack Capacitor DRAM Cell Utilizing Sacrificial Oxide Deposition and Chemical Mechanical Polishing,” issued Dec. 14, 1993. One skilled in the art will also recognize that the bottom electrode 187 may include a stack of layers with one or more of the layers being a platinum:ruthenium alloy barrier layer as described previously herein.
  • [0051]
    As shown in FIG. 5, device structure 200 is fabricated in accordance with conventional processing techniques through the formation of contact opening 259 prior to metalization of the contact area 255 of substrate 207. As such, prior to metalization, the device structure 200 includes field oxide regions 205 and active areas, i.e., those regions of substrate 207 not covered by field oxide. Formed relative to the field oxide regions 205 in the active areas are word line 221 and FET 222. Suitably doped source/drain regions 225, 230 are formed as known to one skilled in the art. A conformal layer of oxide material 240 is formed thereover and contact opening 259 is defined therein to the contact area 255 of doped region 230 of silicon substrate 207. Thereafter, one or more metalization or conductive layers are formed in the contact opening 259 for providing electrical connection to substrate region 230. For example, various materials may be formed in contact opening 259, such as titanium nitride or other diffusion barrier materials. Preferably, contact liner 285 is formed of platinum:ruthenium alloy material according to the present invention on bottom surface 260 and the one or more side walls 261 defining the opening 259. The platinum:ruthenium alloy layers are generally deposited over the entire substrate assembly and then planarized to form the contact liner 285. Thereafter, a conductive material 276 is formed in the contact opening for providing connection to doped region 230 of substrate 207.
  • EXAMPLE
  • [0052]
    [0052]FIGS. 6A and 6B show depth profiles of a co-deposited platinum:ruthenium layer before and after an oxygen anneal, respectively. The small lab scale reaction CVD chamber was built by MDC Vaccuum Products Corp. (Hayward, Calif.) and the glass research bubbler is from Technical Glass Service (Boise, Id.). The conditions used for the co-deposition of the platinum:ruthenium layer include:
  • [0053]
    Platinum Precursor: MeCpPt(Me)3.
  • [0054]
    Ruthenium Precursor: C6H8Ru(CO)3.
  • [0055]
    Platinum Carrier Gas for use through Bubbler: 5 sccm of helium.
  • [0056]
    Ruthenium Carrier Gas for use through Bubbler: 10 sccm of helium.
  • [0057]
    Platinum Bubbler Conditions: pressure of 10 torr, temperature of 33° C.
  • [0058]
    Ruthenium Bubbler Conditions: pressure of 40 torr, temperature of 25° C.
  • [0059]
    Reaction Chamber Conditions: pressure of 5 torr, deposition temperature of 300° C. at wafer surface.
  • [0060]
    Deposition Time: 4 minutes.
  • [0061]
    Oxygen Reaction Gas: 10 sccm.
  • [0062]
    The depth profile was attained by using an XPS device available under the trade designation of Phi (Φ) 5600 from Physical Electronics (Eden Prairie, Minn.). The operating conditions for obtaining the profile include x-ray source of 350 W, monochromatic Al kα (hV=1486.6 eV); 45 degree extraction; 800 μm extraction aperture. Sputtering was performed with a 4 keV Argon ion beam rastored over a 3 mm area. The sputter time for the depth profile of FIG. 6A was 13 minutes and the sputter time for the depth profile of FIG. 6B was 14.3 minutes.
  • [0063]
    As shown in FIG. 6A, the co-deposited platinum:ruthenium layer deposited according to the above conditions is shown therein including at a depth of 200 Å a platinum composition of about 70% and a ruthenium composition of about 15%. FIG. 6B shows the co-deposited platinum:ruthenium layer after being subjected to a rapid thermal oxidation anneal at 750° C. for a period of 30 seconds. FIG. 6C shows an XPS montage display showing the Si signal during profile through the platinum:ruthenium layer, after annealing in oxygen. The peak shape shows the lack of SiO2 at the interface and only traces of Si at the surface. There appears to be no silicon diffusion or oxygen diffusion through the barrier layer and therefore, no silicon dioxide formation.
  • [0064]
    All patents and references cited herein are incorporated in their entirety as if each were incorporated separately. This invention has been described with reference to illustrative embodiments and is not meant to be construed in a limiting sense. As described previously, one skilled in the art will recognize that various other illustrative applications may use the platinum:ruthenium alloy layer as described herein to take advantage of the beneficial barrier characteristics thereof. Various modifications of the illustrative embodiments, as well as additional to the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments that may fall within the scope of the present invention as defined by the accompanying claims.

Claims (39)

    What is claimed is:
  1. 1. A method for use in the fabrication of integrated circuits, the method comprising:
    providing a substrate assembly having a surface; and
    forming a barrier layer over the at least a portion of the surface, wherein the barrier layer is formed of a platinum(x):ruthenium(1-x) alloy, where x is in the range of about 0.60 to about 0.995.
  2. 2. The method of claim 1, wherein x is in the range of about 0.90 to about 0.98.
  3. 3. The method of claim 2, wherein x is about 0.95.
  4. 4. The method of claim 1, wherein forming the barrier layer includes forming the barrier layer by chemical vapor deposition.
  5. 5. The method of claim 1, wherein the portion of the surface is a silicon containing surface.
  6. 6. A method for use in the formation of a capacitor, the method comprising:
    forming a first electrode on a portion of a substrate assembly;
    forming a high dielectric material over at least a portion of the first electrode;
    and
    forming a second electrode over the high dielectric material, wherein at least one of the first and second electrodes comprises a layer of a platinum:ruthenium alloy.
  7. 7. The method of claim 6, wherein the layer of platinum:ruthenium alloy is a layer of a platinum(x):ruthenium(1-x) alloy, where x is in the range of about 0.60 to about 0.995.
  8. 8. The method of claim 7, wherein x is in the range of about 0.90 to about 0.98.
  9. 9. The method of claim 8, wherein x is about 0.95.
  10. 10. The method of claim 1, wherein forming the at least one of the first electrode and second electrode comprising the layer of platinum(x):ruthenium(1-x) alloy includes forming the layer of platinum(x):ruthenium(1-x) alloy by chemical vapor deposition.
  11. 11. A method for use in the formation of a capacitor, the method comprising:
    providing a silicon containing surface of a substrate assembly;
    forming a first electrode on a least a portion of the silicon containing surface of the substrate assembly, the first electrode including a layer of platinum(x):ruthenium(1-x) alloy;
    providing a high dielectric material over at least a portion of the first electrode; and
    providing a second electrode over the high dielectric material.
  12. 12. The method of claim 11, wherein the first electrode is a single layer of platinum (x) and ruthenium (1-x) alloy.
  13. 13. The method of claim 12, wherein a thickness of the layer is in a range of about 100 Å to about 500 Å.
  14. 14. The method of claim 11, wherein the step of forming the first electrode includes depositing the layer of platinum (x):ruthenium (1-x) alloy by chemical vapor deposition.
  15. 15. The method of claim 11, wherein x is in the range of about 0.60 to about 0.995.
  16. 16. The method of claim 15, wherein x is in the range of about 0.90 to about 0.98.
  17. 17. The method of claim 11, wherein the first electrode includes the layer of platinum(x):ruthenium(1-x) alloy and one or more additional conductive layers.
  18. 18. The method of claim 17, wherein the one or more additional conductive layers are formed from materials selected from the group of metals and metal alloys; metal and metal alloy oxides; metal nitrides; and metal silicides.
  19. 19. A method for use in forming a storage cell including a capacitor, the method comprising:
    providing a substrate assembly including at least one active device; and
    forming a capacitor relative to the at least one active device, the capacitor comprising at least one electrode including a barrier layer of platinum(x):ruthenium(1-x) alloy.
  20. 20. The method of claim 19, wherein forming the at least one electrode includes depositing the barrier layer of platinum (x):ruthenium(1-x) alloy by chemical vapor deposition.
  21. 21. The method of claim 19, wherein x is in the range of about 0.60 to about 0.995.
  22. 22. The method of claim 21, wherein x is in the range of about 0.90 to about 0.98.
  23. 23. A semiconductor device structure, the structure comprising:
    a substrate assembly including a surface; and
    a barrier layer over at least a portion of the surface, wherein the barrier layer is formed of a platinum(x):ruthenium(1-x) alloy, where x is in the range of about 0.60 to about 0.995.
  24. 24. The structure of claim 23, wherein x is in the range of about 0.90 to about 0.98.
  25. 25. The structure of claim 24, wherein x is about 0.95.
  26. 26. The structure of claim 23, wherein the portion of the surface is a silicon containing surface.
  27. 27. A capacitor structure comprising:
    a first electrode;
    a dielectric material on at least a portion of the first electrode; and
    a second electrode on the dielectric material, wherein at least one of the first and second electrode comprises a barrier layer of platinum(x):ruthenium(1-x) alloy.
  28. 28. The structure of claim 27, wherein x is in the range of about 0.60 to about 0.995.
  29. 29. The structure of claim 28, wherein x is in the range of about 0.90 to about 0.98.
  30. 30. The structure of claim 27, wherein at least one of the first electrode and second electrode comprises the barrier layer of platinum(x):ruthenium(1-x) alloy and one or more additional conductive layers.
  31. 31. The structure of claim 30, wherein the one or more additional conductive layers are formed from materials selected from materials selected from the group of metals and metal alloys; metal and metal alloy oxides; metal nitrides; and metal silicides.
  32. 32. A memory cell structure comprising:
    a substrate assembly including at least one active device; and
    a capacitor formed relative to the at least one active device, the capacitor comprising at least one electrode including a barrier layer formed of platinum(x):ruthenium(1-x) alloy.
  33. 33. The structure of claim 32, wherein the capacitor includes:
    a first electrode formed relative to a silicon containing region of the at least one active device;
    a dielectric material on at least a portion of the first electrode; and
    a second electrode on the dielectric material, wherein the first electrode comprises the barrier layer formed of platinum(x):ruthenium(1-x) alloy.
  34. 34. The structure of claim 33, wherein the first electrode comprising the barrier layer formed of platinum(x):ruthenium(1-x) alloy includes one or more additional conductive layers.
  35. 35. The structure of claim 33, wherein x is in the range of about 0.60 to about 0.995.
  36. 36. The structure of claim 35, wherein x is in the range of about 0.90 to about 0.98.
  37. 37. A integrated circuit structure comprising:
    a substrate assembly including at least one active device; and
    an interconnect formed relative to the at least one active device, the interconnect including a barrier layer formed of platinum(x):ruthenium(1-x) alloy.
  38. 38. The structure of claim 37, wherein x is in the range of about 0.60 to about 0.995.
  39. 39. The structure of claim 38, wherein x is in the range of about 0.90 to about 0.98.
US09942200 1998-09-03 2001-08-29 Diffusion barrier layers and methods of forming same Abandoned US20020008270A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09146866 US6323081B1 (en) 1998-09-03 1998-09-03 Diffusion barrier layers and methods of forming same
US09942200 US20020008270A1 (en) 1998-09-03 2001-08-29 Diffusion barrier layers and methods of forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09942200 US20020008270A1 (en) 1998-09-03 2001-08-29 Diffusion barrier layers and methods of forming same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09146866 Division US6323081B1 (en) 1998-09-03 1998-09-03 Diffusion barrier layers and methods of forming same

Publications (1)

Publication Number Publication Date
US20020008270A1 true true US20020008270A1 (en) 2002-01-24

Family

ID=22519319

Family Applications (2)

Application Number Title Priority Date Filing Date
US09146866 Active US6323081B1 (en) 1998-09-03 1998-09-03 Diffusion barrier layers and methods of forming same
US09942200 Abandoned US20020008270A1 (en) 1998-09-03 2001-08-29 Diffusion barrier layers and methods of forming same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09146866 Active US6323081B1 (en) 1998-09-03 1998-09-03 Diffusion barrier layers and methods of forming same

Country Status (4)

Country Link
US (2) US6323081B1 (en)
JP (2) JP5328065B2 (en)
KR (1) KR100441190B1 (en)
WO (1) WO2000014778A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040043580A1 (en) * 2002-08-29 2004-03-04 Micron Technology, Inc. Protection in integrated circuits
US20040048467A1 (en) * 2000-08-31 2004-03-11 Micron Technologies, Inc. Devices containing platinum-iridium films and methods of preparing such films and devices
US20040147086A1 (en) * 1998-08-26 2004-07-29 Micron Technology, Inc. Methods and apparatus for forming rhodium-containing layers
US20080310231A1 (en) * 2003-12-05 2008-12-18 Cleeves James M Optimization of critical dimensions and pitch of patterned features in and above a substrate
US7560815B1 (en) 1998-08-27 2009-07-14 Micron Technology, Inc. Device structures including ruthenium silicide diffusion barrier layers
US20100025854A1 (en) * 2008-08-04 2010-02-04 Micron Technology, Inc. Polishing systems and methods for removing conductive material from microelectronic substrates
US20100255653A1 (en) * 2009-04-07 2010-10-07 Micron Technology, Inc. Semiconductor processing
US20110204427A1 (en) * 2010-02-25 2011-08-25 Samsung Electronics Co., Ltd. Capacitor having an electrode structure, method of manufacturing a capacitor having an electrode structure and semiconductor device having an electrode structure
US20120112349A1 (en) * 2010-11-04 2012-05-10 Hynix Semiconductor Inc. Semiconductor device
US20130168812A1 (en) * 2012-01-04 2013-07-04 Inotera Memories, Inc. Memory capacitor having a robust moat and manufacturing method thereof
US20130221420A1 (en) * 2000-11-10 2013-08-29 Micron Technology, Inc. Structure comprising a ruthenium metal material

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323081B1 (en) * 1998-09-03 2001-11-27 Micron Technology, Inc. Diffusion barrier layers and methods of forming same
US6717201B2 (en) * 1998-11-23 2004-04-06 Micron Technology, Inc. Capacitor structure
US6303956B1 (en) * 1999-02-26 2001-10-16 Micron Technology, Inc. Conductive container structures having a dielectric cap
JP2001144263A (en) * 1999-11-11 2001-05-25 Tokyo Ohka Kogyo Co Ltd Dielectric element and manufacturing method of dielectric method
US7037730B2 (en) * 2001-07-11 2006-05-02 Micron Technology, Inc. Capacitor with high dielectric constant materials and method of making
US20030036242A1 (en) * 2001-08-16 2003-02-20 Haining Yang Methods of forming metal-comprising materials and capacitor electrodes; and capacitor constructions
US20040036129A1 (en) * 2002-08-22 2004-02-26 Micron Technology, Inc. Atomic layer deposition of CMOS gates with variable work functions
US6830983B2 (en) * 2002-08-29 2004-12-14 Micron Technology, Inc. Method of making an oxygen diffusion barrier for semiconductor devices using platinum, rhodium, or iridium stuffed with silicon oxide
US6952364B2 (en) * 2003-03-03 2005-10-04 Samsung Electronics Co., Ltd. Magnetic tunnel junction structures and methods of fabrication
US7081421B2 (en) 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7494939B2 (en) 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US7375027B2 (en) 2004-10-12 2008-05-20 Promos Technologies Inc. Method of providing contact via to a surface
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7473637B2 (en) 2005-07-20 2009-01-06 Micron Technology, Inc. ALD formed titanium nitride films
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US7575978B2 (en) 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
US7931090B2 (en) * 2005-11-15 2011-04-26 Schlumberger Technology Corporation System and method for controlling subsea wells
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US8242600B2 (en) * 2009-05-19 2012-08-14 International Business Machines Corporation Redundant metal barrier structure for interconnect applications

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335138A (en) * 1993-02-12 1994-08-02 Micron Semiconductor, Inc. High dielectric constant capacitor and method of manufacture
US5744832A (en) * 1994-10-04 1998-04-28 U.S. Philips Corporation Semiconductor device having a ferroelectric memory element with a lower electrode provided with an oxygen barrier
US5962716A (en) * 1998-08-27 1999-10-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
US6049103A (en) * 1995-03-22 2000-04-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor capacitor
US6074945A (en) * 1998-08-27 2000-06-13 Micron Technology, Inc. Methods for preparing ruthenium metal films
US6133159A (en) * 1998-08-27 2000-10-17 Micron Technology, Inc. Methods for preparing ruthenium oxide films
US6140228A (en) * 1997-11-13 2000-10-31 Cypress Semiconductor Corporation Low temperature metallization process
US6177696B1 (en) * 1998-08-13 2001-01-23 International Business Machines Corporation Integration scheme enhancing deep trench capacitance in semiconductor integrated circuit devices
US6197628B1 (en) * 1998-08-27 2001-03-06 Micron Technology, Inc. Ruthenium silicide diffusion barrier layers and methods of forming same
US6204172B1 (en) * 1998-09-03 2001-03-20 Micron Technology, Inc. Low temperature deposition of barrier layers
US6261850B1 (en) * 1998-09-03 2001-07-17 Micron Technology, Inc. Direct writing of low carbon conductive material
US6284655B1 (en) * 1998-09-03 2001-09-04 Micron Technology, Inc. Method for producing low carbon/oxygen conductive layers
US6323081B1 (en) * 1998-09-03 2001-11-27 Micron Technology, Inc. Diffusion barrier layers and methods of forming same
US20020056863A1 (en) * 1998-06-19 2002-05-16 Salman Akram Capacitor and method for forming the same
US20020058415A1 (en) * 2000-06-08 2002-05-16 Micron Technology, Inc. Methods for forming rough ruthenium-containing layers and structures/methods using same

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2138339B1 (en) 1971-05-24 1974-08-19 Radiotechnique Compelec
US4830982A (en) 1986-12-16 1989-05-16 American Telephone And Telegraph Company Method of forming III-V semi-insulating films using organo-metallic titanium dopant precursors
GB8717566D0 (en) 1987-07-24 1987-09-03 Thorn Emi Ltd Organic compounds
US4992305A (en) 1988-06-22 1991-02-12 Georgia Tech Research Corporation Chemical vapor deposition of transistion metals
US5130172A (en) 1988-10-21 1992-07-14 The Regents Of The University Of California Low temperature organometallic deposition of metals
JP2528719B2 (en) 1989-12-01 1996-08-28 三菱電機株式会社 A semiconductor memory device
US5149596A (en) 1990-10-05 1992-09-22 The United States Of America As Represented By The United States Department Of Energy Vapor deposition of thin films
US5096737A (en) 1990-10-24 1992-03-17 International Business Machines Corporation Ligand stabilized +1 metal beta-diketonate coordination complexes and their use in chemical vapor deposition of metal thin films
KR930011538B1 (en) 1991-07-16 1993-12-10 박원희 Depositing method of wn film for metalization of semiconductor device
US5252518A (en) 1992-03-03 1993-10-12 Micron Technology, Inc. Method for forming a mixed phase TiN/TiSi film for semiconductor manufacture using metal organometallic precursors and organic silane
US5270241A (en) 1992-03-13 1993-12-14 Micron Technology, Inc. Optimized container stacked capacitor DRAM cell utilizing sacrificial oxide deposition and chemical mechanical polishing
JP3351856B2 (en) 1992-04-20 2002-12-03 テキサス インスツルメンツ インコーポレイテツド Process for producing a fine structure and a capacitor
US5198386A (en) 1992-06-08 1993-03-30 Micron Technology, Inc. Method of making stacked capacitors for DRAM cell
JP3407204B2 (en) 1992-07-23 2003-05-19 オリンパス光学工業株式会社 Ferroelectric integrated circuit and a method of manufacturing the same
US5187638A (en) 1992-07-27 1993-02-16 Micron Technology, Inc. Barrier layers for ferroelectric and pzt dielectric on silicon
US5314727A (en) 1992-07-28 1994-05-24 Minnesota Mining & Mfg. Co./Regents Of The University Of Minnesota Chemical vapor deposition of iron, ruthenium, and osmium
US5403620A (en) 1992-10-13 1995-04-04 Regents Of The University Of California Catalysis in organometallic CVD of thin metal films
US5232873A (en) 1992-10-13 1993-08-03 At&T Bell Laboratories Method of fabricating contacts for semiconductor devices
US5354712A (en) 1992-11-12 1994-10-11 Northern Telecom Limited Method for forming interconnect structures for integrated circuits
US5605857A (en) 1993-02-12 1997-02-25 Micron Technology, Inc. Method of forming a bit line over capacitor array of memory cells and an array of bit line over capacitor array of memory cells
DE69428387T2 (en) 1993-02-15 2002-07-04 Semiconductor Energy Lab Method of manufacturing a crystallized semiconductor layer
US5381302A (en) 1993-04-02 1995-01-10 Micron Semiconductor, Inc. Capacitor compatible with high dielectric constant materials having a low contact resistance layer and the method for forming same
US5392189A (en) 1993-04-02 1995-02-21 Micron Semiconductor, Inc. Capacitor compatible with high dielectric constant materials having two independent insulative layers and the method for forming same
US5478772A (en) 1993-04-02 1995-12-26 Micron Technology, Inc. Method for forming a storage cell capacitor compatible with high dielectric constant materials
US5498562A (en) 1993-04-07 1996-03-12 Micron Technology, Inc. Semiconductor processing methods of forming stacked capacitors
US5407855A (en) 1993-06-07 1995-04-18 Motorola, Inc. Process for forming a semiconductor device having a reducing/oxidizing conductive material
US5341016A (en) 1993-06-16 1994-08-23 Micron Semiconductor, Inc. Low resistance device element and interconnection structure
JP3724592B2 (en) 1993-07-26 2005-12-07 エヌシーアール インターナショナル インコーポレイテッドNCR International,Inc. Planarization method of the semiconductor substrate
US6127257A (en) 1993-11-18 2000-10-03 Motorola Inc. Method of making a contact structure
US5362632A (en) 1994-02-08 1994-11-08 Micron Semiconductor, Inc. Barrier process for Ta2 O5 capacitor
JP3460347B2 (en) 1994-03-30 2003-10-27 松下電器産業株式会社 A method of manufacturing a semiconductor device
US5504041A (en) 1994-08-01 1996-04-02 Texas Instruments Incorporated Conductive exotic-nitride barrier layer for high-dielectric-constant materials
US5566045A (en) 1994-08-01 1996-10-15 Texas Instruments, Inc. High-dielectric-constant material electrodes comprising thin platinum layers
US6093615A (en) 1994-08-15 2000-07-25 Micron Technology, Inc. Method of fabricating a contact structure having a composite barrier layer between a platinum layer and a polysilicon plug
US5480684A (en) 1994-09-01 1996-01-02 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organometallic precursor compounds
US5972105A (en) 1994-09-15 1999-10-26 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating semiconductor device
US5691219A (en) * 1994-09-17 1997-11-25 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor memory device
DE69508689T2 (en) 1994-10-11 1999-09-30 Solvay Electrode for electrochemical processes and use thereof
US5464786A (en) 1994-10-24 1995-11-07 Micron Technology, Inc. Method for forming a capacitor having recessed lateral reaction barrier layer edges
US5576071A (en) 1994-11-08 1996-11-19 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5661115A (en) 1994-11-08 1997-08-26 Micron Technology, Inc. Method of reducing carbon incorporation into films produced by chemical vapor deposition involving organic precursor compounds
US5696384A (en) 1994-12-27 1997-12-09 Mitsubishi Materials Corporation Composition for formation of electrode pattern
JPH08176177A (en) * 1994-12-27 1996-07-09 Mitsubishi Materials Corp Composition for forming platinum film, and platinum film and platinum film pattern formed from this compostion
US5555486A (en) 1994-12-29 1996-09-10 North Carolina State University Hybrid metal/metal oxide electrodes for ferroelectric capacitors
JP2953974B2 (en) 1995-02-03 1999-09-27 松下電子工業株式会社 A method of manufacturing a semiconductor device
KR100199346B1 (en) 1995-04-04 1999-06-15 김영환 Electrode of capacitor fabrication method
EP0740348B1 (en) 1995-04-24 2002-02-27 Infineon Technologies AG Semiconductor memory structure, using a ferroelectric dielectric and method of formation
JPH08293581A (en) * 1995-04-25 1996-11-05 Matsushita Electron Corp Ferroelectric thin film capacitor
WO1996035932A1 (en) 1995-05-11 1996-11-14 Matsushita Electric Industrial Co., Ltd. Temperature sensor element, temperature sensor having the same and method for producing the same temperature sensor element
US5654222A (en) 1995-05-17 1997-08-05 Micron Technology, Inc. Method for forming a capacitor with electrically interconnected construction
US5663088A (en) 1995-05-19 1997-09-02 Micron Technology, Inc. Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a Ta2 O5 dielectric layer and amorphous diffusion barrier layer
KR0147640B1 (en) 1995-05-30 1998-08-01 김광호 Capacitor of semiconductor device & its fabrication method
JP3365150B2 (en) * 1995-06-05 2003-01-08 ソニー株式会社 Semiconductor memory
JPH0920980A (en) * 1995-07-04 1997-01-21 Mitsubishi Materials Corp Production of platinum film
JPH0936062A (en) * 1995-07-18 1997-02-07 Mitsubishi Materials Corp Platinum alloy electrode formation composition, platinum alloy electrode and platinum alloy electrode pattern
JP3672115B2 (en) * 1995-09-19 2005-07-13 富士通株式会社 Method of manufacturing a thin film forming method and a semiconductor device
KR100200299B1 (en) 1995-11-30 1999-06-15 김영환 Method for manufacturing capacitor of semiconductor device
JPH09162372A (en) 1995-12-13 1997-06-20 Ricoh Co Ltd Electrode material and capacitor element using it
JP3488007B2 (en) * 1996-03-05 2004-01-19 富士通株式会社 Thin film forming method, a semiconductor device and a manufacturing method thereof
US5695815A (en) 1996-05-29 1997-12-09 Micron Technology, Inc. Metal carboxylate complexes for formation of metal-containing films on semiconductor devices
US5783716A (en) * 1996-06-28 1998-07-21 Advanced Technology Materials, Inc. Platinum source compositions for chemical vapor deposition of platinum
US5760474A (en) 1996-07-09 1998-06-02 Micron Technology, Inc. Capacitor, integrated circuitry, diffusion barriers, and method for forming an electrically conductive diffusion barrier
US5970378A (en) 1996-09-03 1999-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-step plasma treatment process for forming low resistance titanium nitride layer
JP3676004B2 (en) * 1996-11-28 2005-07-27 富士通株式会社 Method for manufacturing a forming method and a semiconductor device of the ruthenium oxide film
JPH10189886A (en) 1996-12-26 1998-07-21 Sony Corp Dielectric capacitor and ferroelectric memory
JPH10200072A (en) * 1997-01-10 1998-07-31 Sony Corp Capacitor structure of semiconductor memory cell and its forming method
JP3347010B2 (en) 1997-01-30 2002-11-20 株式会社東芝 Thin film dielectric element
DE19737323A1 (en) 1997-08-28 1999-03-11 Philips Patentverwaltung Component with a ferroelectric thin film capacitor
US6284654B1 (en) * 1998-04-16 2001-09-04 Advanced Technology Materials, Inc. Chemical vapor deposition process for fabrication of hybrid electrodes
US6583022B1 (en) 1998-08-27 2003-06-24 Micron Technology, Inc. Methods of forming roughened layers of platinum and methods of forming capacitors
US6063705A (en) 1998-08-27 2000-05-16 Micron Technology, Inc. Precursor chemistries for chemical vapor deposition of ruthenium and ruthenium oxide

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335138A (en) * 1993-02-12 1994-08-02 Micron Semiconductor, Inc. High dielectric constant capacitor and method of manufacture
US5744832A (en) * 1994-10-04 1998-04-28 U.S. Philips Corporation Semiconductor device having a ferroelectric memory element with a lower electrode provided with an oxygen barrier
US6049103A (en) * 1995-03-22 2000-04-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor capacitor
US6140228A (en) * 1997-11-13 2000-10-31 Cypress Semiconductor Corporation Low temperature metallization process
US20020056863A1 (en) * 1998-06-19 2002-05-16 Salman Akram Capacitor and method for forming the same
US6177696B1 (en) * 1998-08-13 2001-01-23 International Business Machines Corporation Integration scheme enhancing deep trench capacitance in semiconductor integrated circuit devices
US6114557A (en) * 1998-08-27 2000-09-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
US6074945A (en) * 1998-08-27 2000-06-13 Micron Technology, Inc. Methods for preparing ruthenium metal films
US5962716A (en) * 1998-08-27 1999-10-05 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
US6197628B1 (en) * 1998-08-27 2001-03-06 Micron Technology, Inc. Ruthenium silicide diffusion barrier layers and methods of forming same
US20030212285A1 (en) * 1998-08-27 2003-11-13 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds and films
US6576778B1 (en) * 1998-08-27 2003-06-10 Micron Technology, Inc. Methods for preparing ruthenium and osmium compounds
US6133159A (en) * 1998-08-27 2000-10-17 Micron Technology, Inc. Methods for preparing ruthenium oxide films
US6281125B1 (en) * 1998-08-27 2001-08-28 Micron Technology, Inc. Methods for preparing ruthenium oxide films
US6323511B1 (en) * 1998-09-03 2001-11-27 Micron Technology, Inc. Structures including low carbon/oxygen conductive layers
US6323081B1 (en) * 1998-09-03 2001-11-27 Micron Technology, Inc. Diffusion barrier layers and methods of forming same
US6284655B1 (en) * 1998-09-03 2001-09-04 Micron Technology, Inc. Method for producing low carbon/oxygen conductive layers
US6204172B1 (en) * 1998-09-03 2001-03-20 Micron Technology, Inc. Low temperature deposition of barrier layers
US6403414B2 (en) * 1998-09-03 2002-06-11 Micron Technology, Inc. Method for producing low carbon/oxygen conductive layers
US6455423B2 (en) * 1998-09-03 2002-09-24 Micron Technology, Inc. Direct writing of low carbon conductive material
US6495458B2 (en) * 1998-09-03 2002-12-17 Micron Technology, Inc. Method for producing low carbon/oxygen conductive layers
US6261850B1 (en) * 1998-09-03 2001-07-17 Micron Technology, Inc. Direct writing of low carbon conductive material
US6429127B1 (en) * 2000-06-08 2002-08-06 Micron Technology, Inc. Methods for forming rough ruthenium-containing layers and structures/methods using same
US20020058415A1 (en) * 2000-06-08 2002-05-16 Micron Technology, Inc. Methods for forming rough ruthenium-containing layers and structures/methods using same
US6784504B2 (en) * 2000-06-08 2004-08-31 Micron Technology, Inc. Methods for forming rough ruthenium-containing layers and structures/methods using same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040147086A1 (en) * 1998-08-26 2004-07-29 Micron Technology, Inc. Methods and apparatus for forming rhodium-containing layers
US20050260823A9 (en) * 1998-08-26 2005-11-24 Micron Technology, Inc. Methods and apparatus for forming rhodium-containing layers
US8461682B2 (en) 1998-08-27 2013-06-11 Micron Technology, Inc. Ruthenium silicide diffusion barrier layers and methods of forming same
US20090278232A1 (en) * 1998-08-27 2009-11-12 Micron Technology, Inc Ruthenium silicide diffusion barrier layers and methods of forming same
US7560815B1 (en) 1998-08-27 2009-07-14 Micron Technology, Inc. Device structures including ruthenium silicide diffusion barrier layers
US20040048467A1 (en) * 2000-08-31 2004-03-11 Micron Technologies, Inc. Devices containing platinum-iridium films and methods of preparing such films and devices
US6900107B2 (en) 2000-08-31 2005-05-31 Micron Technology, Inc. Devices containing platinum-iridium films and methods of preparing such films and devices
US20130221420A1 (en) * 2000-11-10 2013-08-29 Micron Technology, Inc. Structure comprising a ruthenium metal material
US20060270240A1 (en) * 2002-08-29 2006-11-30 Rueger Neal R Protection in integrated circuits
US20040043580A1 (en) * 2002-08-29 2004-03-04 Micron Technology, Inc. Protection in integrated circuits
US7494894B2 (en) 2002-08-29 2009-02-24 Micron Technology, Inc. Protection in integrated circuits
US7632737B2 (en) 2002-08-29 2009-12-15 Micron Technology, Inc. Protection in integrated circuits
US20080310231A1 (en) * 2003-12-05 2008-12-18 Cleeves James M Optimization of critical dimensions and pitch of patterned features in and above a substrate
US8766332B2 (en) 2003-12-05 2014-07-01 Sandisk 3D Llc Optimization of critical dimensions and pitch of patterned features in and above a substrate
US8283706B2 (en) * 2003-12-05 2012-10-09 Sandisk 3D Llc Optimization of critical dimensions and pitch of patterned features in and above a substrate
US9099431B2 (en) 2008-08-04 2015-08-04 Micron Technology, Inc. Polishing systems and methods for removing conductive material from microelectronic substrates
US8772939B2 (en) * 2008-08-04 2014-07-08 Micron Technology, Inc. Polishing systems and methods for removing conductive material from microelectronic substrates
US20100025854A1 (en) * 2008-08-04 2010-02-04 Micron Technology, Inc. Polishing systems and methods for removing conductive material from microelectronic substrates
US8455296B2 (en) 2009-04-07 2013-06-04 Micron Technology, Inc. Semiconductor processing
US20100255653A1 (en) * 2009-04-07 2010-10-07 Micron Technology, Inc. Semiconductor processing
US8003521B2 (en) 2009-04-07 2011-08-23 Micron Technology, Inc. Semiconductor processing
US8580648B2 (en) * 2010-02-25 2013-11-12 Samsung Electronics Co., Ltd. Capacitor having an electrode structure, method of manufacturing a capacitor having an electrode structure and semiconductor device having an electrode structure
US20110204427A1 (en) * 2010-02-25 2011-08-25 Samsung Electronics Co., Ltd. Capacitor having an electrode structure, method of manufacturing a capacitor having an electrode structure and semiconductor device having an electrode structure
US20120112349A1 (en) * 2010-11-04 2012-05-10 Hynix Semiconductor Inc. Semiconductor device
US9105758B2 (en) * 2010-11-04 2015-08-11 Hynix Semiconductor Inc. Semiconductor device including a capacitor
US20130168812A1 (en) * 2012-01-04 2013-07-04 Inotera Memories, Inc. Memory capacitor having a robust moat and manufacturing method thereof

Also Published As

Publication number Publication date Type
JP2012134508A (en) 2012-07-12 application
KR100441190B1 (en) 2004-07-22 grant
WO2000014778A1 (en) 2000-03-16 application
JP5490829B2 (en) 2014-05-14 grant
JP2002524872A (en) 2002-08-06 application
JP5328065B2 (en) 2013-10-30 grant
US6323081B1 (en) 2001-11-27 grant

Similar Documents

Publication Publication Date Title
US5605858A (en) Method of forming high-dielectric-constant material electrodes comprising conductive sidewall spacers of same material as electrodes
US5563090A (en) Method for forming rugged tungsten film and method for fabricating semiconductor device utilizing the same
US7544987B2 (en) High-k dielectric materials and processes for manufacturing them
US5846859A (en) Method for manufacturing a semiconductor memory device having capacitive storage
US5576928A (en) High-dielectric-constant material electrodes comprising thin platinum layers
US5612574A (en) Semiconductor structures using high-dielectric-constant materials and an adhesion layer
US6320213B1 (en) Diffusion barriers between noble metal electrodes and metallization layers, and integrated circuit and semiconductor devices comprising same
US6162744A (en) Method of forming capacitors having high-K oxygen containing capacitor dielectric layers, method of processing high-K oxygen containing dielectric layers, method of forming a DRAM cell having having high-K oxygen containing capacitor dielectric layers
US5786248A (en) Semiconductor processing method of forming a tantalum oxide containing capacitor
US6117689A (en) Stable high-dielectric-constant material electrode and method
US20050208754A1 (en) Method of growing electrical conductors
US6656835B2 (en) Process for low temperature atomic layer deposition of Rh
US6204178B1 (en) Nucleation and deposition of PT films using ultraviolet irradiation
US7494927B2 (en) Method of growing electrical conductors
US6803311B2 (en) Method for forming metal films
US6017789A (en) Method of forming a Ta2 O5 dielectric layer with amorphous diffusion barrier layer and method of forming a capacitor having a b. Ta.su2 O5 dielectric layer with amorphous diffusion barrier layer
US5892254A (en) Integrated circuit capacitors including barrier layers having grain boundary filling material
US5852307A (en) Semiconductor device with capacitor
US20020187578A1 (en) Method for manufacturing memory device
US6127218A (en) Methods for forming ferroelectric films using dual deposition steps
US6165834A (en) Method of forming capacitors, method of processing dielectric layers, method of forming a DRAM cell
US6881260B2 (en) Process for direct deposition of ALD RhO2
US5691235A (en) Method of depositing tungsten nitride using a source gas comprising silicon
US20020055235A1 (en) Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
US20040018307A1 (en) Methods of forming atomic layers of a material on a substrate by sequentially introducing precursors of the material