US20020004146A1 - Organic electroluminescent devices - Google Patents

Organic electroluminescent devices Download PDF

Info

Publication number
US20020004146A1
US20020004146A1 US09250205 US25020599A US20020004146A1 US 20020004146 A1 US20020004146 A1 US 20020004146A1 US 09250205 US09250205 US 09250205 US 25020599 A US25020599 A US 25020599A US 20020004146 A1 US20020004146 A1 US 20020004146A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
layer
organic
metal
cathode
device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09250205
Inventor
Junji Kido
Tokio Mizukami
Jun Endoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kido Junji
Original Assignee
Junji Kido
Tokio Mizukami
Jun Endoh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5088Carrier injection layer
    • H01L51/5092Electron injection layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5203Electrodes
    • H01L51/5221Cathodes, i.e. with low work-function material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Abstract

An organic electroluminescent (EL) device comprising at least one luminescent layer of an organic compound, the luminescent layer being positioned between a cathode electrode and an anode electrode opposed to the cathode electrode, and an organic layer positioned adjacent to the cathode electrode, in which the organic layer is constituted from an organic metal complex compound containing at least one of alkali metal ions, alkali earth metal ions and rare earth metal ions, and the cathode electrode is constituted from a metal capable of reducing the metal ion in the complex compound, in vacuum, to the corresponding metal. The cathode electrode can be formed from a low cost and stable metal which is well-known as the wiring material. The EL device ensures a diminished energy barrier in an electron injection from the cathode electrode into the luminescent layer, a lowered driving voltage, and a high efficiency and luminescence.

Description

    BACKGROUND OF THE INVENTION
  • [0001]
    1. Field of the Invention
  • [0002]
    The present invention relates to an organic electroluminescent device or element (hereinafter, also referred to as an “organic EL device”) which can be advantageously, for example, utilized as a planar light source or in display devices.
  • [0003]
    2. Description of the Related Art
  • [0004]
    Attention has been made to an organic electroluminescent device having a luminescent layer, i.e., light-emitting layer, formed from the specific organic compound, because it ensures a large area display device with low-voltage driving. To obtain an EL device with a high efficiency, Tang et al., as is reported in Appl. Phys. Lett., 51, 913 (1987), have succeeded in providing an EL device having a structure in which organic compound layers having different carrier transporting properties are laminated to thereby introduce holes and electrons with a good balance from an anode and a cathode, respectively. In addition, since the thickness of the organic compound layers is less than or equal to 2,000 Å, the EL device can exhibit a high luminance and efficiency sufficient in practical use, that is, a luminance of about 1,000 cd/M2 and an external quantum efficiency of about 1% at an applied voltage of not more than about 10 volts.
  • [0005]
    In the above-described high efficiency EL device, Tang et al. used a magnesium (Mg) having a low work function in combination with the organic compound which is basically considered to be an electrically insulating material, in order to reduce an energy barrier which can cause a problem during injection of electrons from a metal-made electrode. However, since the magnesium is liable to be oxidized and is instable, and also exhibits only a poor adhesion to a surface of the organic layers, magnesium was used after alloying, i.e., by the co-deposition of the same with silver (Ag) which is relatively stable and exhibits good adhesion to a surface of the organic layers.
  • [0006]
    On the other hand, the researchers of Toppan Printing Co. (cf, 51st periodical meeting, Society of Applied Physics, Preprint 28a-PB-4, p.1040) and those of Pioneer Co. (cf, 54th periodical meeting, Society of Applied Physics, Preprint 29p-ZC-15, p.1127) have had developments in the usage of lithium (Li), which has an even lower work function than that of Mg, and alloying the same with an aluminum (Al) to obtain a stabilized cathode, thereby embodying a lower driving voltage and a higher emitting luminance in comparison with those of the EL device using the Mg alloy. In addition, as is reported in IEEE Trans. Electron Devices., 40, 1342 (1993), the inventors of the present application have found that a two-layered cathode produced by depositing lithium (Li) alone with a very small thickness of about 10 Å on an organic compound layer, followed by laminating a silver (Ag) to the thus deposited Li layer is effective to attain a low driving voltage in the EL devices.
  • [0007]
    Recently, Pei et al. of Uniax Co. have proceeded to reduce a driving voltage of the EL device by doping a polymeric luminescent layer with a Li salt (cf. Science, 269, 1086 (1995)). This doping method is intended to dissociate the Li salt dispersed in the polymeric luminescent layer to distribute Li ions and counter ions near the cathode and near the anode, respectively, thus ensuring an in-situ doping of the polymer molecules positioned near the electrodes. According to this method, since the polymers near the cathode are reduced with Li as a donor dopant, i.e., electron-donating dopant, and thus the reduced polymers are contained in the state of radical anions, a barrier of the electron injection from the cathode can be remarkably reduced, contrary to the similar method including no Li doping.
  • [0008]
    More recently, the inventors of the present application have found that a driving voltage of the EL device can be reduced by doping an alkali metal such as lithium and the like, an alkali earth metal such as strontium and the like or a rare earth metal such as samarium and the like to an organic layer adjacent to the cathode electrode (cf. SID 97, Digest, P.775). It was believed that such reduction of the driving voltage could be obtained because a barrier in the electron injection from the cathode electrode can be notably reduced due to a radical anion state in the organic layer adjacent to the electrode produced by metal doping therein.
  • [0009]
    However, due to oxidation of the electrodes and other reasons, deterioration of the device can be resulted in the above-described EL devices using an alloy of Mg or Li as the electrode material. In addition, use of such alloy-made electrodes suffers from the limited selection of the material suitable for the electrodes, because the electrode material to be used has to simultaneously satisfy the requirement for the function as a wiring material. Further, the above-described two-layered cathode developed by the present inventors is unable to act as a cathode when a thickness of the Li layer is not less than about 20 Å (cf. IEEE Trans. Electron Devices., 40, 1342 (1993), and also suffers from a low reproducibility problem in the device production, because there is a difficulty in the control of the layer thickness, when the Li layer is deposited at a remarkably reduced thickness in the order of about 10 Å. Furthermore, in the in-situ doping method developed by Pei et al. in which the Li salt is added to the luminescent layer to cause their dissociation in the electric field, there is a problem with the transfer time of the dissociated ions to the close vicinity of the electrodes having a controlled velocity, thereby causing a remarkable retardation of the response speed of the devices.
  • [0010]
    Moreover, for the method including doping the metal as a dopant in the organic layer, there is a necessity to exactly control a concentration of the dopant during formation of the organic layer, because the doping concentration can affect on the properties of the resulting devices.
  • SUMMARY OF THE INVENTION
  • [0011]
    The present invention has been made to solve the above-described problems of the prior art EL devices, and accordingly one object of the present invention is to reduce an energy barrier in the electron injection of from a cathode electrode to an organic compound layer in accordance with the simple and reliable method, thereby ensuring a low-voltage driving regardless of the work function of the cathode material.
  • [0012]
    Another object of the present invention is to provide a device (organic electroluminescent device) capable of ensuring satisfactory characteristics which are similar to or higher than those obtained using the above-described alloy as the electrode material, when aluminum or other low-cost and stable metals which are conventionally used as the wiring material in the prior art are used alone as the cathode material.
  • [0013]
    According to the present invention, the above objects can be accomplished by an organic electroluminescent (EL) device comprising:
  • [0014]
    at least one luminescent layer constituted from an organic compound, the luminescent layer being positioned between a cathode electrode and an anode electrode opposed to the cathode electrode; and
  • [0015]
    an organic layer positioned adjacent to the cathode electrode,
  • [0016]
    in which the organic layer is constituted from an organic metal complex compound containing at least one member selected from the group consisting of an alkali metal ion, an alkali earth metal ion and a rare earth metal ion, and
  • [0017]
    the cathode electrode comprises a metal capable of reducing the metal ion contained in the complex compound, in vacuum, to the corresponding metal.
  • [0018]
    The metal used in the formation of the cathode electrode is not restricted to the specific one, insofar as it can reduce the metal ion contained in the organic metal complex compound constituting the organic layer, in vacuum, to the corresponding metal, and preferably the metal includes, for example, aluminum (Al), zirconium (Zr), titanium (Ti), yttrium (Y), scandium (Sc) and silicon (Si). These metals may be used alone in the formation of the cathode electrode, or alternatively their alloy containing one metal or two or more metals of the above-described Al, Zr, Ti, Y, Sc and Si may be used.
  • [0019]
    The above-described cathode metals and alloys thereof have a high melting point and, under the vacuum conditions, they can act to reduce a metal ion in the organic metal complex compound to the corresponding metal.
  • [0020]
    It is well-known that generally, some of alkali metals, alkali earth metals and rare earth metals can exhibit a higher saturated vapour pressure than that of the high melting point metals such as aluminum, and therefore any compounds containing such alkali metals or the like can be reduced with the high melting point metals such as aluminum, silicon, zirconium and the like. For example, it is well-known that calcium oxide can be reduced with aluminum to form a liberated metal calcium (cf. Chemical Handbook, “Applied Chemistry Section I”, edited by the Chemical Society of Japan, Maruzen Co., p.369), and rubidium oxide and strontium oxide (cf. Metal Handbook, edited by the Japan Institute of Metals, Maruzen Co., pp.88-89) can be also-reduced with aluminum to form a liberated metal rubidium and strontium, respectively.
  • [0021]
    The production of metal electrodes in the organic EL devices is carried out in a vacuum of not more than 10−5 Torr to deposit an atomic metal on a substrate upon melting and volatilization of the metal. Therefore, when a thermally reducible metal such as aluminum, silicon, zirconium and the like in an atomic state is applied onto the alkali metals, alkali earth metals or rare earth metals, the above-described reduction reaction in vacuum is resulted to produce a reduced and liberated metal from the corresponding metal compounds. In this reduction process, if the compound used is an organic metal compound (metal complex), the compound itself can be doped (reduced) by the liberated metal, or, if a layer of the compound is thin and has a thickness of not more than 100 Å, the liberated metal can act on the adjacent layer of the organic compound, thereby reducing organic compounds in an interfacial area between the two adjacent layers with its strong reduction power.
  • [0022]
    If the alkali metal, alkali earth metal or rare earth metal compounds to be reduced are inorganic compounds such as oxides, fluorides and the like thereof, it is sometimes difficult to deposit their metal onto an organic layer, because the inorganic compounds have a high evaporation temperature due to their good stability. Further, due to their high electrical insulation property, the inorganic compounds can be deposited only at a highly restricted layer thickness of at most 20 Å (cf. IEEE Trans. Electron Devices., 44, 1245 (1997).
  • [0023]
    That is, the present invention is based on the above findings, and, to reduce an evaporation temperature and at the same time, to obtain a good layer formation property, the alkali metal, alkali earth metal or rare earth metal compounds in the form of an organic metal complex are used in place of the inorganic compounds. Further, selection and use of a suitable ligand compound as the organic metal complex enables to give a carrier transportation property including electron transportation property and hole transportation property to the resulting devices, thereby providing an advantage that a limitation concerning the thickness of the metal compound layer itself can be moderated in comparison with use of the inorganic compounds.
  • [0024]
    As described above, according to the present invention, an organic layer (electron injection layer) adjacent to the cathode electrode is constituted from an organic metal complex compound containing at least one ion selected from the group consisting of an alkali metal ion, an alkali earth metal ion and a rare earth metal ion, and at the same time, a metal capable of reducing in vacuum the metal ion contained in the metal complex compound which is a material constituting the organic layer is used as the electrode material in the formation of the cathode electrode. Thus, according to the present invention, because of the high reducing power of the cathode metal in vacuum, a metal of the organic metal complex compound of the organic layer is liberated, and then an organic compound is reduced with the liberated metal. The present inventors have thus succeeded to diminish an electron injection barrier, thereby reducing a driving voltage of the devices.
  • [0025]
    In the practice of the present invention, the organic metal complex compound used in the formation of the organic layer adjacent to the cathode metal is not restricted to the specific one, insofar as it contains, as a metal ion thereof, at least one metal ion of the alkali metal ions, alkali earth metal ions and rare earth metal ions. As the ligand compound for the metal complex compound, although they are not restricted to the below-described, quinolinol, benzoquinolinol, acrydinol, phenanethridinol, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiaryldiazole, hydroxyphenylpyridine, hydroxyphenylbenzoimidazole, hydroxybenzotriazole, hydroxyfurborane, bipyridyl, phenanethroline, phthalocyanine, porphyrin, cyclopentadiene, β-diketones, azomethines and derivatives thereof can be preferably used.
  • [0026]
    The present disclosure relates to the subject matter contained in Japanese Patent Application No.10-34599 (filed on Feb. 17, 1998) which is expressly incorporated herein by reference in its entirety.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0027]
    The present invention will be more clearly understood from the description as set forth below with reference to the accompanying drawings, wherein:
  • [0028]
    [0028]FIG. 1 is a cross-sectional view illustrating a lamination structure of the organic EL device according one preferred embodiment of the present invention;
  • [0029]
    [0029]FIG. 2 is a graph showing the relationship between the bias voltage and the luminance for the organic EL device according the present invention and the comparative organic EL device; and
  • [0030]
    [0030]FIG. 3 is a graph showing the relationship between the current density and the luminance for the organic EL device according the present invention and the comparative organic EL device.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • [0031]
    The present invention will be further described with reference to the preferred embodiments thereof.
  • [0032]
    [0032]FIG. 1 is a simplified cross-sectional view illustrating the organic EL device according one preferred embodiment of the present invention. A glass substrate (transparent substrate) 1 has, laminated in the following order on a surface thereof, a transparent electrode 2 constituting an anode electrode, a hole transportation layer 3 having a hole-transporting property, a luminescent layer 4, an organic layer 5 and a back electrode 6 constituting a cathode electrode. Among these components (layers) of the device, the glass substrate (transparent substrate) 1, the transparent electrode 2, the hole transportation layer 3, and the luminescent layer 4 are the well-known components, and the organic layer 5 and the back electrode 6 each has specific features suggested by the present invention.
  • [0033]
    In addition to the illustrated lamination structure of the layers, the organic EL device of the present invention may include other lamination structures such as anode/luminescent layer/organic layer/cathode, anode/hole transportation layer/luminescent layer/organic layer /cathode, anode/hole transportation layer/luminescent layer/electron transportation layer/organic layer/cathode, anode/hole injection layer/luminescent layer/organic layer/cathode, anode/hole injection layer/hole transportation layer/luminescent layer/organic layer/cathode, anode/hole injection layer/hole transportation layer/luminescent layer/electron transportation layer/organic layer/cathode, and others. For the organic EL device of the present invention, it may have any desired lamination structure, as long as a combination of the organic layer 5 and the cathode electrode 6 both included therein can satisfy the above-described requirements of the present invention.
  • [0034]
    The formation of the organic layer 5 may be carried out by using any desired methods for forming thin films including, for example, a vapour deposition method and a sputtering method. In addition to these methods, if its layer can be formed from a coating solution, the organic layer 5 may be formed from the coating solution by using any desired coating methods such as a spin coating method and a dip coating method.
  • [0035]
    Further, the formation of the cathode electrode 6 may be carried out by using the vapour deposition method and the sputtering method, however, any other methods may be used, if desired, as long as such methods are based on the film formation in vacuum.
  • [0036]
    In the production of the organic EL device of the present invention, the organic compounds which can be used in the formation of the luminescent layer and the electron transportation layer are not restricted to the specific compounds. Typical examples of suitable organic compounds include polycyclic compounds such as p-terphenyl and quaterphenyl as well as derivatives thereof; condensed polycyclic hydrocarbon compounds such as naphthalene, tetracene, pyrene, coronene, chrysene, anthracene, diphenylanthracene, naphthacene and phenanthrene as well as derivatives thereof; condensed heterocyclic compounds such as phenanthroline, bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, phenazine and the like as well as derivatives thereof; and fluoresceine, perylene, phthaloperylene, naphthaloperylene, perynone, phthaloperynone, naphthaloperynone, diphenylbutadiene, tetraphenylbutadiene, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, oxine, aminoquinoline, imine, diphenylethylene, vinylanthracene, diaminocarbazole, pyrane, thiopyrane, polymethine, merocyanine, quinacridone and rubrene as well as derivatives thereof.
  • [0037]
    In addition to these compounds, metal-chelated complex compounds described in Japanese Unexamined Patent Publication (Kokai) Nos.63-295695, 8-22557, 8-81472, 5-9470 and 5-17764 can be suitably used as the organic compounds. Among these metal-chelated complex compounds, metal-chelated oxanoide compounds, for example, metal complexes which contain, as a ligand thereof, at least one member selected from 8-quinolinolato such as tris(8-quinolinolato)aluminum, bis(8-quinolinolato)magnesium, bis[benzo(f)-8-quinolinolato] zinc, bis(2-methyl-8-quinolinolato)aluminum, tri(8-quinolinolato)indium, tris(5-methyl-8-quinolinolato)aluminum, 8-quinolinolatolithium, tris(5-chloro-8-quinolinolato)gallium and bis(5-chloro-8-quinolinolato)calcium as well as derivatives thereof can be particularly suitably used.
  • [0038]
    Also, oxadiazoles disclosed in Japanese Patent Kokai Nos.5-202011, 7-179394, 7-278124 and 7-228579, triazines disclosed in Japanese Patent Kokai No.7-157473, stilbene derivatives and distyrylarylene derivatives disclosed in Japanese Patent Kokai No.6-203963, styryl derivatives disclosed in Japanese Patent Kokai Nos.6-132080 and 6-88072, and diolefin derivatives disclosed in Japanese Patent Kokai Nos.6-100857 and 6-207170 are preferably used in the formation of the luminescent layer and the electron transportation layer.
  • [0039]
    Further, a fluorescent whitening agent such as benzoxazoles, benzothiazoles and benzoimidazoles may be used as the organic compounds, and it includes, for example, those described in Japanese Patent Kokai No.59-194393. Typical examples of the fluorescent whitening agent include the fluorescent whitening agents classified under the group of benzoxazoles such as 2,5-bis(5,7-di-t-pentyl-2-benzoxazolyl)-1,3,4-thiadiazole, 4,4′-bis(5,7-t-pentyl-2-benzoxazolyl)stilbene, 4,4′-bis[5,7-di(2-methyl-2-butyl)-2-benzoxazolyl]stilbene, 2,5-bis(5,7-di-t-pentyl-2-benzoxazolyl)thiophene, 2,5-bis[5-(α,α-dimethylbenzyl)-2-benzoxazolyl]thiophene, 2,5-bis[5,7-di(2-methyl-2-butyl)-2-benzoxazolyl]-3,4-diphenylthiophene, 2,5-bis(5-methyl-2-benzoxazolyl)thiophene, 4,4′-bis(2-benzoxazolyl)biphenyl, 5-methyl-2-{2-[4-(5-methyl-2-benzoxazolyl)phenyl]vinyl} benzoxazole and 2-[2-(4-chlorophenyl)vinyl]naphtho(1,2-d)oxazole; under the group of benzothiazoles such as 2,2′-(p-phenylenedipynylene)-bisbenzothiazole; and under the group of benzoimidazoles such as 2-{2-[4-(2-benzoimidazolyl)phenyl]vinyl} benzoimidazole and 2-[2-(4-carboxyphenyl)vinyl]benzoimidazole.
  • [0040]
    As the distyrylbenzene compound, the compounds disclosed in European Patent No.373,582 may be used, for example. Typical examples of the distyrylbenzene compound include 1,4-bis(2-methylstyryl)benzene, 1,4-bis(3-methylstyryl)benzene, 1,4-bis(4-methylstyryl)benzene, distyrylbenzene, 1,4-bis(2-ethylstyryl)benzene, 1,4-bis(3-ethylstyryl)benzene, 1,4-bis(2-methylstyryl)-2-methylbenzene and 1,4-bis(2-methylstyryl)-2-ethylbenzene.
  • [0041]
    Furthermore, distyrylpyrazine derivatives disclosed in Japanese Patent Kokai No.2-252793 may also be used in the formation of the luminescent layer and the electron transportation layer. Typical examples of the distyrylpyrazine derivatives include 2,5-bis(4-methylstyryl) pyrazine, 2,5-bis(4-ethylstyryl)pyrazine, 2,5-bis[2-(1-naphthyl)vinyl]pyrazine, 2,5-bis(4-methoxystyryl)pyrazine, 2,5-bis[2-(4-biphenyl)vinyl]pyrazine and 2,5-bis[2-(1-pyrenyl)vinyl]pyrazine.
  • [0042]
    In addition, dimethylidine derivatives disclosed in European Patent No.388,768 and Japanese Patent Kokai No.3-231970 may also be used as the material of the luminescent layer and the electron transportation layer. Typical examples of the dimethylidine derivatives include 1,4-phenylenedimethylidine, 4,4′-phenylenedimethylidine, 2,5-xylylenedimethylidine, 2,6-naphthylenedimethylidine, 1,4-biphenylenedimethylidine, 1,4-p-terephenylenedimethylidine, 9,10-anthracenediyldimethylidine, 4,4′-(2,2-di-t-butylphenyl vinyl)biphenyl and 4,4′-(2,2-diphenylvinyl)biphenyl as well as derivatives thereof; silanamine derivatives disclosed in Japanese Patent Kokai Nos.6-49079 and 6-293778; polyfunctional styryl compounds disclosed in Japanese Patent Kokai Nos.6-279322 and 6-279323; oxadiazole derivatives disclosed in Japanese Patent Kokai Nos.6-107648 and 6-92947; anthracene compounds disclosed in Japanese Patent Kokai No.6-206865; oxynate derivatives disclosed in Japanese Patent Kokai No.6-145146; tetraphenylbutadiene compounds disclosed in Japanese Patent Kokai No.4-96990; and organic trifunctional compounds disclosed in Japanese Patent Kokai No.3-296595; as well as coumarin derivatives disclosed in Japanese Patent Kokai No.2-191694; perylene derivatives disclosed in Japanese Patent Kokai No.2-196885; naphthalene derivatives disclosed in Japanese Patent Kokai No.2-255789; phthaloperynone derivatives disclosed in Japanese Patent Kokai Nos.2-289676 and 2-88689; and styrylamine derivatives disclosed in Japanese Patent Kokai No.2-250292.
  • [0043]
    Moreover, in the production of the organic EL device of the present invention, any well-known compounds which are conventional in the production of the prior art organic EL devices may be suitably used, if desired.
  • [0044]
    The arylamine compounds used in the formation of the hole injection layer, the hole transportation layer and the hole-transporting luminescent layer, although they are not restricted to, preferably include those disclosed in Japanese Patent Kokai Nos.6-25659, 6-203963, 6-215874, 7-145116, 7-224012, 7-157473, 8-48656, 7-126226, 7-188130, 8-40995, 8-40996, 8-40997, 7-126225, 7-101911 and 7-97355. Typical examples of suitable arylamine compounds include, for example, N,N,N′,N′-tetraphenyl-4,4′-diaminophenyl, N,N′-diphenyl-N,N′-di(3-methylphenyl)-4,4′-diaminobiphenyl, 2,2-bis(4-di-p-tolylaminophenyl)propane, N,N,N′,N′-tetra-p-tolyl-4,4′-diaminobiphenyl, bis(4-di-p-tolylaminophenyl)phenylmethane, N,N′-diphenyl-N,N′-di(4-methoxyphenyl)-4,4′-diaminobiphenyl, N,N,N′,N′-tetraphenyl-4,4′-diaminodiphenylether, 4,4′-bis(diphenylamino)quadriphenyl, 4-N,N-diphenylamino-(2-diphenylvinyl)benzene, 3-methoxy-4′-N,N-diphenylaminostilbenzene, N-phenylcarbazole, 1,1-bis(4-di-p-triaminophenyl)cyclohexane, 1,1-bis(4-di-p-triaminophenyl)-4-phenylcyclohexane, bis(4-dimethylamino-2-methylphenyl)phenylmethane, N,N,N-tri(p-tolyl)amine, 4-(di-p-tolylamino)-4′-[4-(di-p-tolylamino)styryl]stilbene, N, N,N′,N′-tetraphenyl-4,4′-diaminobiphenyl N-phenylcarbazole, 4,4′-bis[N-(1-naphthyl)-N-phenylamino]biphenyl, 4,4″-bis[N-(1-naphthyl)-N-phenylamino]p-terphenyl, 4,4′-bis[N-(2-naphthyl)-N-phenylamino]biphenyl, 4,4′-bis[N-(3-acenaphthenyl)-N-phenylamino]biphenyl, 1,5-bis[N-(1-naphthyl)-N-phenylamino]naphthalene, 4,4′-bis[N-(9-anthryl)-N-phenylamino]biphenyl, 4,4″-bis[N-(1-anthryl)-N-phenylamino] p-terphenyl, 4,4′-bis[N-(2-phenanthryl)-N-phenylamino]biphenyl, 4,4′-bis[N-(8-fluoranthenyl)-N-phenylamino]biphenyl, 4,4′-bis[N-(2-pyrenyl)-N-phenylamino]biphenyl, 4,4′-bis[N-(2-perylenyl)-N-phenylamino]biphenyl, 4,4′-bis[N-(1-coronenyl)-N-phenylamino]biphenyl, 2,6-bis(di-p-tolylamino)naphthalene, 2,6-bis[di-(1-naphthyl) amino]naphthalene, 2,6-bis[N-(1-naphthyl)-N-(2-naphthyl)amino]naphthalene, 4,4″-bis[N,N-di(2-naphthyl)amino]terphenyl, 4,4′-bis{N-phenyl-N-[4-(1-naphthyl)phenyl]amino} biphenyl, 4,4′-bis[N-phenyl-N-(2-pyrenyl)amino]biphenyl, 2,6-bis[N,N-di(2-naphthyl) amino]fluorene, 4,4″-bis(N,N-di-p-tolylamino)terphenyl and bis(N-1-naphthyl)(N-2-naphthyl)amine. Also, any well-known arylamine compounds which are conventional in the production of the prior art organic EL devices may be suitably used, if desired.
  • [0045]
    Further, in the formation of the hole injection layer, the hole transportation layer and the hole-transporting luminescent layer, a dispersion of the above-described organic compounds in a polymer or a polymerized product of such organic compounds may be used as the layer-forming layer. Also, so-called “π-conjugated polymers” such as polyparaphenylene vinylene and its derivatives, hole-transporting non-conjugated polymers, typically poly(N-vinylcarbazole), and σ-conjugated polymers of polysilanes may be used as the layer-forming material.
  • [0046]
    The material of the hole injection layer to be deposited over the ITO (indium-tin oxide) electrode is not restricted to the specific one, however, metal phthalocyanines such as copper phthalocyanine as well as non-metal phthalocyanines, carbon films and electrically conductive polymers such as polyanilines may be preferably used in the formation of the hole injection layer. Alternatively, the hole injection layer may be formed by reacting the above-described arylamine compounds with a Lewis acid as an oxidizing agent to generate radical cations.
  • [0047]
    As is appreciated from the above detailed descriptions and the appended working examples, according to the present invention, since an organic layer adjacent to the cathode is constituted from an organic metal complex compound containing at least one of the alkali metal ions, alkali earth metal ions and rare earth metal ions, and the cathode is constituted from a metal capable of reducing, in vacuum, the metal ion of the metal complex compound constituting the organic layer, it becomes possible to utilize low cost and stable metals, which are conventional as a wiring material in the prior art devices, as a cathode material in the production of the organic EL devices.
  • [0048]
    In addition to this remarkable advantage, according to the present invention, it becomes possible to produce the EL devices having a diminished electron injection barrier and a reduced driving voltage as well as a high efficiency and high luminance. Accordingly, the EL devices of the present invention can exhibit a high utility in practical use, and ensures their effective utilization as display devices, light sources and others.
  • EXAMPLES
  • [0049]
    The present invention will be further described with reference to the following examples, however, it should be noted that the present invention is not restricted by these examples.
  • [0050]
    In the following examples, vapour deposition of the organic compound and that of the metal each was carried out by using the vapour deposition apparatus “VPC-400” commercially available from Shinkuu Kikou Co. The thickness of the deposited layers was determined by using the profilometer “DekTak3ST” commercially available from Sloan Co.
  • [0051]
    Further, the characteristics of the organic EL device were determined by using the source meter 2400 commercially available from Keithley & Co. and the luminance meter BM-8 commercially available from Topcon Co. A DC voltage was stepwise applied at an increasing rate of one volt per 2 seconds to the EL device having an ITO anode and an aluminum (Al) cathode, and the luminance and the electric current were determined after one second had passed from the completion of each increase of the voltage. The EL spectrum was determined by using the optical multichannel analyzer PMA-10, commercially available from Hamamatsu Photonics Co., driven at a constant electric current.
  • EXAMPLE 1
  • [0052]
    The organic EL device having the lamination structure illustrated in FIG. 1 was produced according to the present invention.
  • [0053]
    A glass substrate 1 was coated with an ITO (indium-tin oxide) layer having a sheet resistance of about 25 Ω/□, commercially available as an electron beam deposition product from Sanyo Shinku Co., to form a transparent anode electrode 2. Alpha (α)-NPD having a hole transporting property, represented by the following formula (1), was deposited onto the ITO-coated glass substrate 1 under the vacuum vapour deposition conditions of about 10−6 Torr and about 2 Å/sec to form a hole transportation layer 3 having a thickness of about 500 Å.
    Figure US20020004146A1-20020110-C00001
  • [0054]
    Next, an aluminum complex of tris(8-quinolinolato) (hereinafter, briefly referred to as “Alq”) capable of exhibiting a green luminescence, represented by the following formula (2), was deposited onto the hole transportation layer 3 under the same vacuum vapour deposition conditions as in the above-described deposition of the hole transportation layer 3 to form a luminescent layer 4 having a thickness of about 700 Å.
    Figure US20020004146A1-20020110-C00002
  • [0055]
    After the formation of the luminescent layer 4, a lithium complex of mono(8-quinolinolato) (briefly referred to as “Liq”) represented by the following formula (3) was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00003
  • [0056]
    Finally, aluminum (Al) was deposited at the deposition speed of about 10 Å/sec onto the organic layer 5 to form a back electrode 6, acting as a cathode, having a thickness of about 1,000 Å. The organic EL device having a square luminescent area of about 0.5 cm (length) by about 0.5 cm (width) was thus obtained.
  • [0057]
    In the obtained organic EL device, a DC voltage was applied to between the anode electrode (ITO) 2 and the cathode electrode (Al) 6, and a luminance of the green luminescence from the luminescent layer (Alq) 4 was determined. The results were plotted with circles in each of FIG. 2 showing the relationship between the bias voltage and the luminance of the EL device and FIG. 3 showing the relationship between the current density and the luminance of the EL device. These results indicate that a high luminance of at most about 27,000 cd/m2 could be obtained at the applied bias voltage of 14 volts. The current density was determined to be about 333 mA/cm2. A luminance of about 1,000 cd/m2 could be obtained at the applied bias voltage of about 8.5 volts.
  • Comparative Example 1
  • [0058]
    The procedure of Example 1 was repeated with the proviso that, for the purpose of comparison, an organic layer (electron injection layer) was omitted from the organic EL device. That is, α-NPD was first deposited onto the ITO-coated glass substrate to form a hole transportation layer having a thickness of about 500 Å, and then Alq was lo deposited under the same vacuum deposition conditions as in the deposition of the hole transportation layer to form a luminescent Alq layer having a thickness of about 700 Å.
  • [0059]
    Then, aluminum (Al) was deposited at a thickness of about 1,000 Å over the luminescent Alq layer to form a cathode electrode. The organic EL device was thus obtained.
  • [0060]
    In the obtained organic EL device, the luminance of the green luminescence from the luminescent Alq layer was determined as in Example 1. The results were plotted with triangular marks in each of FIG. 2 and FIG. 3. These results indicate that only a luminance of at most about 1,600 cd/m2 could be obtained at the applied bias voltage of 16 volts, and an application of the voltage of about 14.5 volts was required to obtain a luminance of 1,000 cd/m2. It is appreciated from these results that the presence of the organic layer which is essential to the organic EL device of the present invention is effective to reduce the driving voltage of the EL device.
  • EXAMPLE 2
  • [0061]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, a sodium complex of mono(8-quinolinolato) (briefly referred to as “Naq”), represented by the following formula (4), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00004
  • [0062]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Å over the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0063]
    In the obtained organic EL device, a maximum luminance of about 31,500 cd/m2 could be obtained at the applied bias voltage of 13 volts, along with the current density of about 319 mA/cm2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.
  • EXAMPLE 3
  • [0064]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, a lithium complex of mono(2,2,6,6-tetramethyl-3,5-heptanediona to) (briefly referred to as “Li(dpm)”), represented by the following formula (5), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00005
  • [0065]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Å over the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0066]
    In the obtained organic EL device, a maximum luminance of about 18,000 cd/m2 could be obtained at the applied bias voltage of 15 volts, along with the current density of about 327 mA/cm2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.
  • EXAMPLE 4
  • [0067]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, a sodium complex of mono(2,2,6,6-tetramethyl-3,5-heptane-dionato) (briefly referred to as “Na(dpm)”), represented by the following formula (6), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00006
  • [0068]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Å over the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0069]
    In the obtained organic EL device, a maximum luminance of about 21,000 cd/m2 could be obtained at the applied bias voltage of 14 volts, along with the current density of about 433 mA/CM2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.
  • EXAMPLE 5
  • [0070]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, a rubidium complex of mono(2,2,6,6-tetramethyl-3,5-heptane-dionato) (briefly referred to as “Rb(dpm)”), represented by the following formula (7), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00007
  • [0071]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Å over the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0072]
    In the obtained organic EL device, a maximum luminance of about 25,000 cd/m2 could be obtained at the applied bias voltage of 13 volts, along with the current density of about 504 mA/cm2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.
  • EXAMPLE 6
  • [0073]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, a magnesium complex of di(2,2,6,6-tetramethyl-3,5-heptanediona to) (briefly referred to as “Mg(dpm)2 ”), represented by the following formula (8), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00008
  • [0074]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Åover the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0075]
    In the obtained organic EL device, a maximum luminance of about 3,400 cd/m2 could be obtained at the applied bias voltage of 17 volts, along with the current density of about 120 mA/cm2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.
  • EXAMPLE 7
  • [0076]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, a calcium complex of di(2,2,6,6-tetramethyl-3,5-heptanedionato(briefly referred to as “Ca(dpm)2 ”), represented by the following formula (9), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00009
  • [0077]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Å over the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0078]
    In the obtained organic EL device, a maximum luminance of about 14,300 cd/m2 could be obtained at the applied bias voltage of 18 volts, along with the current density of about 168 mA/cm2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.
  • EXAMPLE 8
  • [0079]
    The procedure of Example 1 was repeated with the proviso that in this example, α-NPD was first deposited onto the ITO-coated glass substrate 1 to form a hole transportation layer 3 having a thickness of about 500 Å, followed by vacuum deposition of Alq to form a luminescent layer 4 having a thickness of about 700 Å. Thereafter, an europium complex of tri(1,3-phenyl-1,3-propanedionato)mono (bathophenanthoroline) (briefly referred to as “Eu(dpm) 3. Bphen”), represented by the following formula (10), was deposited under the pressure of about 10−6 Torr and at the deposition speed of about 1 Å/sec onto the luminescent layer 4 to form an organic layer (electron injection layer) 5 having a thickness of about 10 Å.
    Figure US20020004146A1-20020110-C00010
  • [0080]
    After the formation of the organic layer 5, aluminum (Al) was deposited at a thickness of about 1,000 Å over the organic layer 5 to form a cathode electrode 6. The organic EL device was thus obtained.
  • [0081]
    In the obtained organic EL device, a maximum luminance of about 12,000 cd/m2 could be obtained at the applied bias voltage of 13 volts, along with the current density of about 230 mA/cm2. That is, in this example, a highly increased luminance which is comparable to that of the above-described Example 1 could be obtained at a low driving voltage.

Claims (3)

    What is claimed is:
  1. 1. An organic electroluminescent device comprising:
    at least one luminescent layer constituted from an organic compound, the luminescent layer being positioned between a cathode electrode and an anode electrode opposed to the cathode electrode; and
    an organic layer positioned adjacent to said cathode electrode,
    in which said organic layer is constituted from an organic metal complex compound containing at least one member selected from the group consisting of an alkali metal ion, an alkali earth metal ion and a rare earth metal ion, and
    said cathode electrode comprises a metal capable of reducing the metal ion contained in said complex compound, in vacuum, to the corresponding metal.
  2. 2. The organic electroluminescent device according to claim 1, in which the metal used in said cathode electrode is any one of aluminum, zirconium, titanium, yttrium, scandium and silicon.
  3. 3. The organic electroluminescent device according to claim 1, in which the metal used in said cathode electrode is an alloy containing at least one of aluminum, zirconium, titanium, yttrium, scandium and silicon.
US09250205 1998-02-17 1999-02-16 Organic electroluminescent devices Abandoned US20020004146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3459998A JP4514841B2 (en) 1998-02-17 1998-02-17 The organic electroluminescent element
JP10-34599 1998-02-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10274752 US7326473B2 (en) 1998-02-17 2002-10-21 Organic electroluminescent devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10274752 Continuation US7326473B2 (en) 1998-02-17 2002-10-21 Organic electroluminescent devices

Publications (1)

Publication Number Publication Date
US20020004146A1 true true US20020004146A1 (en) 2002-01-10

Family

ID=12418821

Family Applications (2)

Application Number Title Priority Date Filing Date
US09250205 Abandoned US20020004146A1 (en) 1998-02-17 1999-02-16 Organic electroluminescent devices
US10274752 Active US7326473B2 (en) 1998-02-17 2002-10-21 Organic electroluminescent devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10274752 Active US7326473B2 (en) 1998-02-17 2002-10-21 Organic electroluminescent devices

Country Status (5)

Country Link
US (2) US20020004146A1 (en)
EP (1) EP0936844B1 (en)
JP (1) JP4514841B2 (en)
CN (1) CN100372143C (en)
DE (2) DE69914000D1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030044645A1 (en) * 2001-08-20 2003-03-06 Tdk Corporation Organic EL device and preparation method
US20040018383A1 (en) * 2002-07-26 2004-01-29 Xerox Corporation Display device with anthracene and triazine derivatives
US20050127824A1 (en) * 2002-10-01 2005-06-16 Dai Nippon Printing Co., Ltd. Organic electroluminescent display
US20050244676A1 (en) * 2000-09-07 2005-11-03 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US20100013387A1 (en) * 2007-03-26 2010-01-21 Ulvac, Inc. Organic el device and an organic el device producing method
US20140021462A1 (en) * 2011-04-06 2014-01-23 Konica Minolta, Inc. Method for manufacturing organic electroluminescent element, and organic electroluminescent element
US8643270B2 (en) 2004-05-20 2014-02-04 Semiconductor Energy Laboratory Co., Inc. Light-emitting element and display device
US8994017B2 (en) 2001-11-27 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting device containing iridium complex
US20160322577A1 (en) * 2015-04-28 2016-11-03 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9712483D0 (en) 1997-06-17 1997-08-20 Kathirgamanathan Poopathy Fabrication of light emitting devices from chelates of transition metals, lanthanides and actinides
JP4514841B2 (en) 1998-02-17 2010-07-28 ローム株式会社 The organic electroluminescent element
GB9823761D0 (en) 1998-11-02 1998-12-23 South Bank Univ Entpr Ltd Novel electroluminescent materials
GB9826406D0 (en) * 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Quinolates
GB9826405D0 (en) 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Method for forming films or layers
GB9826407D0 (en) 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Novel electroluminescent materials
JP4505067B2 (en) * 1998-12-16 2010-07-14 ローム株式会社 The organic electroluminescent element
US7871713B2 (en) 1998-12-25 2011-01-18 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
US6656608B1 (en) * 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
GB9901971D0 (en) 1999-02-01 1999-03-17 South Bank Univ Entpr Ltd Electroluminescent material
EP1255422A4 (en) 2000-01-13 2006-11-29 Matsushita Electric Ind Co Ltd Electrode body, thin-film el device comprising the same, method for manufacturing the same, and display and illuminator comprising the thin-film el device
WO2001058222A1 (en) * 2000-02-02 2001-08-09 Mitsubishi Chemical Corporation Organic electroluminescent element and method of manufacture thereof
EP1278227A4 (en) * 2000-03-24 2006-07-05 Japan Science & Tech Agency Method of generating ballistic electrons and ballistic electron solid semiconductor element and light emitting element and display device
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
KR20010095429A (en) 2000-03-30 2001-11-07 윤덕용 Organic Electroluminescent Devices Using a Single Ion Conductor as an Electron or a Hole Injecting Material
US6660411B2 (en) 2000-09-20 2003-12-09 Mitsubishi Chemical Corporation Organic electroluminescent device
JP4507420B2 (en) * 2001-02-22 2010-07-21 コニカミノルタホールディングス株式会社 The organic electroluminescence element
US6841932B2 (en) 2001-03-08 2005-01-11 Xerox Corporation Display devices with organic-metal mixed layer
GB0109755D0 (en) 2001-04-20 2001-06-13 Elam T Ltd Devices incorporating mixed metal organic complexes
WO2002102924A3 (en) 2001-06-15 2003-04-24 Elam T Ltd Electroluminescent devices
GB0116644D0 (en) 2001-07-09 2001-08-29 Elam T Ltd Electroluminescent materials and devices
JP4611578B2 (en) * 2001-07-26 2011-01-12 ローム株式会社 The organic electroluminescent element
WO2003014256A1 (en) 2001-08-04 2003-02-20 Elam-T Limited Electroluminescent device
US6794061B2 (en) 2002-01-31 2004-09-21 Eastman Kodak Company Organic electroluminescent device having an adhesion-promoting layer for use with a magnesium cathode
JP3933591B2 (en) 2002-03-26 2007-06-20 三菱重工業株式会社 The organic electroluminescent element
JP2004172090A (en) 2002-10-31 2004-06-17 Seiko Epson Corp Manufacturing method of electroluminescent device and electroluminescent device as well as electronic equipment
JP4466064B2 (en) * 2003-02-17 2010-05-26 セイコーエプソン株式会社 Method of manufacturing an electro-optical device
CN101431842B (en) 2003-03-27 2012-01-25 精工爱普生株式会社 Electro-optical device, and electronic apparatus
KR100560778B1 (en) 2003-04-17 2006-03-13 삼성에스디아이 주식회사 Organic electroluminescent display device
KR100527189B1 (en) 2003-05-28 2005-11-08 삼성에스디아이 주식회사 FPD and Method of fabricating the same
US7411223B2 (en) 2003-09-15 2008-08-12 General Electric Company Compound electrodes for electronic devices
JP4683829B2 (en) * 2003-10-17 2011-05-18 ローム株式会社 The organic electroluminescent device and a manufacturing method thereof
JP4476594B2 (en) 2003-10-17 2010-06-09 ローム株式会社 The organic electroluminescent element
JP4961412B2 (en) * 2003-11-10 2012-06-27 ローム株式会社 Organic elements, and, a method of manufacturing an organic device
JP4243237B2 (en) 2003-11-10 2009-03-25 ローム株式会社 Organic devices, organic el element, organic solar cells, and organic fet structure, and manufacturing method of the organic device
JP4175273B2 (en) 2004-03-03 2008-11-05 セイコーエプソン株式会社 Production method and a display device of a stacked organic electroluminescent device
JP4991524B2 (en) * 2004-05-04 2012-08-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent compounds containing exciton conducting compound
US8026510B2 (en) * 2004-10-20 2011-09-27 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same
CN1965614B (en) 2004-06-04 2010-06-09 皇家飞利浦电子股份有限公司 Electroluminescent structure and LED with an EL structure
US7270894B2 (en) * 2004-06-22 2007-09-18 General Electric Company Metal compound-metal multilayer electrodes for organic electronic devices
US20060131565A1 (en) * 2004-12-20 2006-06-22 General Electric Company Surface modified electrodes for electrooptic devices
US20060131567A1 (en) * 2004-12-20 2006-06-22 Jie Liu Surface modified electrodes and devices using reduced organic materials
WO2006089901A3 (en) * 2005-02-22 2007-02-08 Armand Bettinelli Organic light-emitting diode with doped layers
US20060286405A1 (en) * 2005-06-17 2006-12-21 Eastman Kodak Company Organic element for low voltage electroluminescent devices
JP4548301B2 (en) 2005-10-21 2010-09-22 セイコーエプソン株式会社 Method of manufacturing an organic light emitting device
JP4724585B2 (en) * 2006-03-31 2011-07-13 キヤノン株式会社 The organic electroluminescent element and a light-emitting device
US7737464B2 (en) * 2006-11-10 2010-06-15 Canon Kabushiki Kaisha Organic light emitting apparatus
CN101910095A (en) * 2007-12-25 2010-12-08 国立大学法人名古屋大学;国立大学法人九州大学;中央硝子株式会社 Organic material containing oligophenylene skeleton and light-emitting device using the same
JP2010165977A (en) * 2009-01-19 2010-07-29 Sony Corp Organic electroluminescent element, display and electronic equipment
EP2416628A4 (en) * 2009-04-01 2013-08-14 Ason Technology Co Ltd Organic electroluminescent element
CN107556298A (en) 2011-11-22 2018-01-09 出光兴产株式会社 Aromatic heterocyclic derivative, material for organic eletroluminescent element, and organic electroluminescent element
JP5889730B2 (en) 2012-06-27 2016-03-22 Lumiotec株式会社 The organic electroluminescent device and a lighting device
JPWO2015194189A1 (en) * 2014-06-20 2017-04-20 株式会社Joled The organic light emitting device and a display device

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US4885211A (en) 1987-02-11 1989-12-05 Eastman Kodak Company Electroluminescent device with improved cathode
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
JPH0288689A (en) 1988-09-26 1990-03-28 Mitsubishi Kasei Corp Luminescent element of electric field
DE68921437T2 (en) 1988-12-14 1995-06-29 Idemitsu Kosan Co An electroluminescent device.
JPH02289676A (en) 1989-01-13 1990-11-29 Ricoh Co Ltd Electric field light emitting element
JP2651233B2 (en) 1989-01-20 1997-09-10 出光興産株式会社 Thin film organic el element
JPH02196885A (en) 1989-01-25 1990-08-03 Asahi Chem Ind Co Ltd Organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2879080B2 (en) 1989-03-23 1999-04-05 株式会社リコー Electroluminescent device
JPH07119408B2 (en) 1989-03-28 1995-12-20 出光興産株式会社 The organic electroluminescence element
JPH02255789A (en) 1989-03-29 1990-10-16 Asahi Chem Ind Co Ltd Organic electric field luminescent element
GB8909011D0 (en) 1989-04-20 1989-06-07 Friend Richard H Electroluminescent devices
JP2554771B2 (en) 1989-12-28 1996-11-13 出光興産株式会社 Aromatic dimethylidyne compound
JPH07119409B2 (en) * 1990-03-19 1995-12-20 凸版印刷株式会社 The organic thin film el element
JPH03296595A (en) 1990-04-13 1991-12-27 Kao Corp Organic thin film electroluminescent element
US5364654A (en) * 1990-06-14 1994-11-15 Idemitsu Kosan Co., Ltd. Process for production of a thin film electrode and an electroluminescence device
US5059862A (en) 1990-07-26 1991-10-22 Eastman Kodak Company Electroluminescent device with improved cathode
JP2997021B2 (en) 1990-08-10 2000-01-11 パイオニア株式会社 The organic electroluminescence element
JPH04137485A (en) 1990-09-28 1992-05-12 Ricoh Co Ltd Electroluminesence element
JP2891783B2 (en) 1991-02-06 1999-05-17 パイオニア株式会社 The organic electroluminescence element
JP2891784B2 (en) 1991-02-06 1999-05-17 パイオニア株式会社 The organic electroluminescence element
JP3065705B2 (en) 1991-04-26 2000-07-17 パイオニアビデオ株式会社 The organic electroluminescence element
JPH05202011A (en) 1992-01-27 1993-08-10 Toshiba Corp Oxadiazole derivative
US5456988A (en) * 1992-01-31 1995-10-10 Sanyo Electric Co., Ltd. Organic electroluminescent device having improved durability
JPH0649079A (en) 1992-04-02 1994-02-22 Idemitsu Kosan Co Ltd Silanamine derivative, its production and el element using the same silanamine derivative
JP3227784B2 (en) 1992-06-04 2001-11-12 三菱化学株式会社 The organic electroluminescent device
JPH0625659A (en) 1992-07-07 1994-02-01 Idemitsu Kosan Co Ltd Phosphamine derivative, its preparation, and electroluminescent element made using the same
JP3341090B2 (en) 1992-07-27 2002-11-05 株式会社リコー Oxadiazole derivatives and preparation thereof
JP3228301B2 (en) 1992-09-07 2001-11-12 出光興産株式会社 The organic electroluminescence element
JP3163589B2 (en) 1992-09-21 2001-05-08 出光興産株式会社 The organic electroluminescence element
JPH06107648A (en) 1992-09-29 1994-04-19 Ricoh Co Ltd New oxadiazole compound
JPH06206865A (en) 1992-10-14 1994-07-26 Chisso Corp New anthracene compound and electroluminescent element using the compound
JP3287421B2 (en) 1992-10-19 2002-06-04 出光興産株式会社 The organic electroluminescence element
JPH06145146A (en) 1992-11-06 1994-05-24 Chisso Corp Oxinate derivative
JP3300069B2 (en) * 1992-11-19 2002-07-08 パイオニア株式会社 The organic electroluminescence element
JP3366401B2 (en) 1992-11-20 2003-01-14 出光興産株式会社 White organic electroluminescent device
JPH06203963A (en) 1993-01-08 1994-07-22 Idemitsu Kosan Co Ltd Organic electroluminescent element
JPH06215874A (en) 1993-01-20 1994-08-05 Idemitsu Kosan Co Ltd Organic electroluminescent element
JP3419534B2 (en) 1993-02-10 2003-06-23 ティーディーケイ株式会社 Trisaryl aminobenzene derivatives, organic el element compound and an organic el element
US5529853A (en) * 1993-03-17 1996-06-25 Sanyo Electric Co., Ltd. Organic electroluminescent element
JP2797883B2 (en) 1993-03-18 1998-09-17 株式会社日立製作所 Multicolor light-emitting element and its substrate
JP3214674B2 (en) 1993-03-26 2001-10-02 出光興産株式会社 Novel styryl compounds, their production and an organic electroluminescence device comprising the same
JP3211994B2 (en) 1993-03-26 2001-09-25 出光興産株式会社 Tetrafunctional styryl compounds and their preparation
JPH06293778A (en) 1993-04-05 1994-10-21 Idemitsu Kosan Co Ltd Silanamine derivative and its production
JP3549555B2 (en) 1993-10-04 2004-08-04 株式会社リコー The novel pyrene derivatives, as well as a method for manufacturing the same
JP3220950B2 (en) 1993-11-01 2001-10-22 保土谷化学工業株式会社 Benzidine compound
JP3574860B2 (en) 1993-11-01 2004-10-06 保土谷化学工業株式会社 Tetraphenyl benzidine compound
JPH07145116A (en) 1993-11-25 1995-06-06 Nisshinbo Ind Inc Aromatic diamine compound
JPH07157473A (en) 1993-12-06 1995-06-20 Chisso Corp Triazine derivative, its production and electric field luminescent element using the same
JP3300827B2 (en) 1993-12-21 2002-07-08 株式会社リコー Oxadiazole compounds and their preparation
JP3539995B2 (en) 1993-12-21 2004-07-07 株式会社リコー Oxadiazole compounds and their preparation
JP3594642B2 (en) 1993-12-24 2004-12-02 保土谷化学工業株式会社 The organic electroluminescent device using the diaminodiphenyl compound and the compound
JP3496080B2 (en) 1993-12-24 2004-02-09 株式会社リコー Oxadiazole derivatives and a method for manufacturing the same
JP3579746B2 (en) 1994-02-07 2004-10-20 チッソ株式会社 Diphenylamine derivatives
JP3828595B2 (en) 1994-02-08 2006-10-04 Tdk株式会社 Organic el element
JP2846571B2 (en) 1994-02-25 1999-01-13 出光興産株式会社 The organic electroluminescence element
US6064355A (en) 1994-05-24 2000-05-16 Texas Instruments Incorporated Method and apparatus for playback with a virtual reality system
JP3593718B2 (en) 1994-08-04 2004-11-24 東洋インキ製造株式会社 Novel triphenylamine derivative, its preparation and use
JP3593717B2 (en) 1994-08-04 2004-11-24 東洋インキ製造株式会社 Novel triphenylamine derivative, its preparation and use
JP3593719B2 (en) 1994-08-04 2004-11-24 東洋インキ製造株式会社 Novel triphenylamine derivative, its preparation and use
EP0700917B1 (en) 1994-09-12 2002-05-08 Motorola, Inc. Light emitting devices comprising organometallic complexes
JP3261945B2 (en) * 1994-10-14 2002-03-04 東洋インキ製造株式会社 Electroluminescent element encapsulation laminate and electroluminescence element sealing structure
DE69623443T2 (en) 1995-02-06 2003-01-23 Idemitsu Kosan Co Multicolored light-emitting device and method for manufacturing the same
US5693428A (en) * 1995-02-06 1997-12-02 Sanyo Electric Co., Ltd. Organic electroluminescent device
JP2931229B2 (en) * 1995-02-13 1999-08-09 出光興産株式会社 The organic electroluminescence element
JP3529543B2 (en) * 1995-04-27 2004-05-24 パイオニア株式会社 The organic electroluminescence element
JP3743456B2 (en) * 1995-05-10 2006-02-08 ソニー株式会社 Metal polynuclear complex, a manufacturing method and optical element
US5719467A (en) 1995-07-27 1998-02-17 Hewlett-Packard Company Organic electroluminescent device
DE69625018D1 (en) * 1995-09-25 2003-01-09 Toyo Ink Mfg Co Leuchtemittierender material for organic Elektrolumineszensvorrichtung, and organic Elektrolumineszensvorrichtung with this leuchtemittierendem for suitable material
JPH09120890A (en) * 1995-10-27 1997-05-06 Mitsubishi Chem Corp Organic electric field fluorescent element and its manufacture
JP3861930B2 (en) * 1995-12-15 2006-12-27 ソニー株式会社 Metal polynuclear complex, a manufacturing method and optical element
US5981092A (en) 1996-03-25 1999-11-09 Tdk Corporation Organic El device
JP3766143B2 (en) * 1996-03-26 2006-04-12 ケミプロ化成株式会社 New luminescent materials, novel electron transport material and el device using the same
JPH09272865A (en) * 1996-04-08 1997-10-21 Toyo Ink Mfg Co Ltd Electron injection material for organic el element and organic el element using the same
JPH1050480A (en) 1996-04-24 1998-02-20 Toray Ind Inc Light-emitting element and manufacture thereof
JP2762993B2 (en) 1996-11-19 1998-06-11 日本電気株式会社 Emitting device and manufacturing method thereof
JPH10270171A (en) 1997-01-27 1998-10-09 Aimesu:Kk Organic electroluminescent element
US5989737A (en) 1997-02-27 1999-11-23 Xerox Corporation Organic electroluminescent devices
ES2157624T5 (en) * 1997-05-22 2004-11-01 Goldschmidt Ag Organopolysiloxanes containing radical polyhydroxy organyl, particularly sugar radicals or radicals derived from sugar and polyoxyalkylene groups.
JPH11120894A (en) * 1997-10-13 1999-04-30 Matsushita Electric Ind Co Ltd Electron-filling negative electrode and manufacture thereof
JPH11121176A (en) * 1997-10-13 1999-04-30 Matsushita Electric Ind Co Ltd Implantation type electroluminescent device and its manufacture
JP4514841B2 (en) 1998-02-17 2010-07-28 ローム株式会社 The organic electroluminescent element
JPH11251067A (en) 1998-03-02 1999-09-17 Aimesu:Kk Organic electroluminescence element
JP4505067B2 (en) 1998-12-16 2010-07-14 ローム株式会社 The organic electroluminescent element
JP2000196140A (en) 1998-12-28 2000-07-14 Sharp Corp Organic electroluminescence element and fabrication thereof
JP2000268965A (en) 1999-03-16 2000-09-29 Tdk Corp Organic el element
JP4729154B2 (en) 1999-09-29 2011-07-20 ローム株式会社 The organic electroluminescent device, an organic electroluminescent element group and the control method of the emission spectrum
KR20010050711A (en) 1999-09-29 2001-06-15 준지 키도 Organic electroluminescent device, group of organic electroluminescent devices and controlling method of emission spectrum in such devices
JP2001142627A (en) 1999-11-15 2001-05-25 Brother Ind Ltd Coordinate reader
JP4824848B2 (en) 2000-02-29 2011-11-30 ローム株式会社 The organic electroluminescent device, an organic electroluminescent element groups and the particular mode of its emission spectrum
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP4565720B2 (en) 2000-09-18 2010-10-20 グンゼ株式会社 Polyimide multilayer endless tubular film and its preparation and use thereof
JP3955744B2 (en) 2001-05-14 2007-08-08 淳二 城戸 The method for manufacturing an organic thin film element
EP1285957A3 (en) 2001-08-20 2005-12-21 TDK Corporation Organic electroluminescent device and method of its preparation
JP3933591B2 (en) 2002-03-26 2007-06-20 三菱重工業株式会社 The organic electroluminescent element

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100308315A1 (en) * 2000-09-07 2010-12-09 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US7879465B2 (en) 2000-09-07 2011-02-01 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US8841003B2 (en) * 2000-09-07 2014-09-23 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US20070254186A1 (en) * 2000-09-07 2007-11-01 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US20050244676A1 (en) * 2000-09-07 2005-11-03 Idemitsu Kosan Co., Ltd. Organic electric-field light-emitting element
US20030044645A1 (en) * 2001-08-20 2003-03-06 Tdk Corporation Organic EL device and preparation method
US7018724B2 (en) 2001-08-20 2006-03-28 Tdk Corporaiton Organic EL device and preparation method
US6821649B2 (en) * 2001-08-20 2004-11-23 Tdk Corporation Organic EL device and preparation method
US20050064241A1 (en) * 2001-08-20 2005-03-24 Tdk Corporation Organic EL device and preparation method
US8994017B2 (en) 2001-11-27 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting device containing iridium complex
US9263691B2 (en) 2001-11-27 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting device containing iridium complex
US7169482B2 (en) * 2002-07-26 2007-01-30 Lg.Philips Lcd Co., Ltd. Display device with anthracene and triazine derivatives
US20040018383A1 (en) * 2002-07-26 2004-01-29 Xerox Corporation Display device with anthracene and triazine derivatives
US7012364B2 (en) * 2002-10-01 2006-03-14 Dai Nippon Printing Co., Ltd. Organic electroluminescent display
US20050127824A1 (en) * 2002-10-01 2005-06-16 Dai Nippon Printing Co., Ltd. Organic electroluminescent display
US8643270B2 (en) 2004-05-20 2014-02-04 Semiconductor Energy Laboratory Co., Inc. Light-emitting element and display device
US20100013387A1 (en) * 2007-03-26 2010-01-21 Ulvac, Inc. Organic el device and an organic el device producing method
US8334647B2 (en) * 2007-03-26 2012-12-18 Ulvac, Inc. Organic EL device and an organic EL device producing method
US20140021462A1 (en) * 2011-04-06 2014-01-23 Konica Minolta, Inc. Method for manufacturing organic electroluminescent element, and organic electroluminescent element
US20160322577A1 (en) * 2015-04-28 2016-11-03 Samsung Display Co., Ltd. Compound and organic light-emitting device including the same

Also Published As

Publication number Publication date Type
EP0936844A3 (en) 2000-12-13 application
EP0936844B1 (en) 2004-01-07 grant
CN100372143C (en) 2008-02-27 grant
DE69914000T2 (en) 2004-10-21 grant
US7326473B2 (en) 2008-02-05 grant
CN1238655A (en) 1999-12-15 application
JP4514841B2 (en) 2010-07-28 grant
JPH11233262A (en) 1999-08-27 application
DE69914000D1 (en) 2004-02-12 grant
US20030072967A1 (en) 2003-04-17 application
EP0936844A2 (en) 1999-08-18 application

Similar Documents

Publication Publication Date Title
Shaheen et al. Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode
Kido et al. Bright organic electroluminescent devices having a metal-doped electron-injecting layer
US6278236B1 (en) Organic electroluminescent devices with electron-injecting layer having aluminum and alkali halide
US6483236B1 (en) Low-voltage organic light-emitting device
US6558817B1 (en) Organic electroluminescent element
US6614175B2 (en) Organic light emitting devices
US5061569A (en) Electroluminescent device with organic electroluminescent medium
EP1530245A2 (en) Organic electroluminescent devices, organic solar cells, organic fet structures and production method of organic devices
US20060087225A1 (en) White OLEDs with a color-compensated electroluminescent unit
Deng et al. Enhanced brightness and efficiency in organic electroluminescent devices using SiO 2 buffer layers
US6573651B2 (en) Highly efficient OLEDs using doped ambipolar conductive molecular organic thin films
US6773830B2 (en) Green organic light emitting devices
US5739635A (en) Organic electroluminescent device
US20020145380A1 (en) Electroluminescent devices
US5932363A (en) Electroluminescent devices
EP1480280A2 (en) Organic electroluminescent device and method for manufacturing the same
US6137223A (en) Electron-injecting layer formed from a dopant layer for organic light-emitting structure
US6753098B2 (en) Organic light emitting devices
US20020027416A1 (en) Organic electroluminescent device including charge transport buffer layer
US6392339B1 (en) Organic light emitting devices including mixed region
US6759146B2 (en) Organic devices
US6069442A (en) Organic electroluminescent device with inorganic electron transporting layer
US20090191428A1 (en) Tandem oled device with intermediate connector
US6811896B2 (en) Organic light emitting device (OLED) with thick (100 to 250 nanometers) porphyrin buffer layer
US6172459B1 (en) Electron-injecting layer providing a modified interface between an organic light-emitting structure and a cathode buffer layer

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL MANUFACTURING AND ENGINEERING SERVIC

Free format text: SAID RECEIVING PARTIES TO RECEIVE UNDIVIDED ONE-HALF INTEREST.;ASSIGNORS:KIDO, JUNJI;MIZUKAMI, TOKIO;ENDOH, JUN;REEL/FRAME:009782/0626;SIGNING DATES FROM 19990203 TO 19990210

Owner name: KIDO, JUNJI (UNDIVIDED ONE-HALF INTEREST), JAPAN

Free format text: SAID RECEIVING PARTIES TO RECEIVE UNDIVIDED ONE-HALF INTEREST.;ASSIGNORS:KIDO, JUNJI;MIZUKAMI, TOKIO;ENDOH, JUN;REEL/FRAME:009782/0626;SIGNING DATES FROM 19990203 TO 19990210